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Abstract

As road transportation energy use and environmental impact are globally rising
at an alarming pace, authorities seek in research and technological advancement
innovative solutions to increase road traffic sustainability. The unclear and par-
tial correlation between road congestion and environmental impact is promoting
new research directions in traffic management. This paper aims to review the
existing modeling approaches to accurately represent traffic behavior and the
associated energy consumption and pollutant emissions. The review then covers
the transportation problems and control strategies that address directly environ-
mental performance criteria, especially in urban networks. A discussion on the
advantages of the different methods and on the future outlook for the eco-traffic
management completes the proposed survey.

Keywords: energy efficiency, traffic management, traffic modeling, pollutant
emissions, optimization.

1. Introduction

While energy-related air pollution is considered today one of the primary
premature death causes (World Health Organization, 2016), the global carbon
dioxide (CO2) emissions are on a rising trend destined to grow well above the
levels imposed by the international climate goals (International Energy Agency,
2018). Population surge and economic growth of the developing countries have
been identified as the main causes of the drastic increase of energy demand and
pollutant emissions in all sectors (International Energy Agency, 2018).
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The worldwide transportation sector alone accounts for 55% of the total liq-
uid fuels consumption and, with the increasing travel demand, this share is not
expected to decrease for the next two decades (U.S. Energy Information Admin-
istration, 2017a). In the member countries of the Organisation for Economic
Co-operation and Development (OECD), projections show that the improved
energy efficiency in transportation may lead to a net decline of about 2% in
energy use until 2040, thus outpacing the predicted increase of vehicle-miles
traveled (VMT). However, in OECD-Europe, transportation still represents the
biggest source of carbon emissions (Transport & Environment, 2018), contribut-
ing about 25% of the total CO2 emissions, with cars and vans representing more
than two thirds of this share (Mandl and Pinterits, 2018). The situation is
even more alarming in non-OECD countries, where the transportation energy
demand is expected to rise by 64% until 2040, implying an increase of about
15% of energy-related CO2 emissions (U.S. Energy Information Administration,
2017a).

Therefore, a lot of attention has been drawn worldwide to finding the most ef-
fective measures to help reduce the current contribution to greenhouse gas emis-
sions from transportation. Governments, practitioners and researchers seem to
agree on the fact that a combination of short-term and long-term strategies must
be adopted. In the short-term, policies and regulations encouraging changes in
behavior and travel habits represent a key lever. Attractiveness of alternative
means of transportation should be enhanced, a shift to less polluting transport
modes should be promoted, and a change in purchasing habits favoring smaller
and more energy-efficient cars should be encouraged (Chapman, 2007). In the
long-term, the widespread adoption of innovative technological solutions such as
electrification, connectivity and automation are expected to enable a significant
shift in the future of personal transportation and mobility. The way for such
a technological transformation of mobility is already being paved thanks to the
diffusion of connected and automated vehicles (CAVs), multi-vehicle (V2V) and
vehicle-infrastructure (V2I) cooperation and communication networks, in- and
over-roadway sensors, cloud-computing capabilities, etc. (Guanetti et al., 2018).

However, the potential energy benefits of these technologies remain uncer-
tain, mostly because of the high level of non-linear dependence between different
aspects of an automated transportation system operating with conventional ve-
hicles, as well as possible side-effects of automation (U.S. Energy Information
Administration, 2017b). Among the features enabled by the aforementioned
technologies that promise to increase energy efficiency and reduce pollutant
emissions of transportation, it is worth mentioning eco-driving, eco-routing,
platooning, roadway throughput optimization, powertrain electrification, vehi-
cle down-sizing, parking search time reduction, ride-sharing. On the other hand,
as for the side-effects that may endanger energy efficiency and emission reduc-
tion, it is likely that technology may increase traffic congestion as a consequence
of an increased access to mobility, increase travel speeds as a consequence of en-
hanced safety, increase commute distances as an effect of increased comfort and
reduced travel costs, etc. (U.S. Energy Information Administration, 2017b).

From a single-vehicle efficiency perspective, research suggests that lightweight,
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low-speed, autonomous vehicles have the potential to achieve fuel economies an
order of magnitude higher than current cars (U.S. Energy Information Admin-
istration, 2017b). However, at system-wide level, current estimates suggest that
the total energy consumption impacts can range from a 90% decrease to a 200%
increase in fuel consumption as compared to a projected 2050 baseline energy
(Brown et al., 2014).

Such a large variability in the possible outcome of the adoption of the new
vehicular and traffic technologies makes it somewhat difficult to focus and pri-
oritize the research efforts to increase energy efficiency of mobility. Nowadays,
the general trend in research and policy seems to aim to reduce CO2 emissions
by pushing for more efficient vehicles and reducing VMT. This is based on a
generally accepted paradigm that congestion mitigation programs should reduce
CO2 emissions. However, it is difficult to prove a clear direct proportionality
between congestion and CO2 emissions (Fiori et al., 2018). The most reliable
approach to improve energy efficiency and reduce pollutant emissions in the de-
sign of a traffic regulation measure consists in directly considering these aspects
as decision and optimization criteria. Therefore, interest in transportation reg-
ulation problems with explicit environmental considerations is growing (Wang
et al., 2018; Vreeswijk et al., 2013).

This paper surveys the existing scientific literature on energy consumption
and emission models, as well as road transportation problems directly address-
ing the issue of energy consumption and pollutant emissions reduction. Such
problems can be tackled at different levels depending on the granularity and
the object of the control action. At vehicle level, the energy-efficient control
strategies typically act on single vehicles or groups of cooperating vehicles by
modifying their individual speed profiles or route choices. At traffic level, the
control strategies aim to influence the vehicular flow as a whole by acting on
the typical flow regulation actuators, such as traffic lights, speed limits, etc.
The adopted categorization in terms of modeling and control approaches both
at vehicle and traffic level for the general problem of reducing environmental
impact of road transportation is illustrated in Fig. 1.

The contributions of this paper are summarized as follows:

• A comprehensive literature review of the existing energy consumption and
pollutant emissions models is provided. The review distinguishes between
data and physics-based models and discusses their adaptation for usage
with both single-vehicles and traffic flow.

• An overview of the existing vehicle and traffic control strategies to im-
prove energy and environmental efficiency of transportation is given. The
review focuses on the control techniques that explicitly address energy con-
sumption and emissions. The connection and interaction between traffic
congestion and energy efficiency is also discussed.

• As an outcome of this review, research gaps in the current state of the art
have been identified and discussed in order to inspire future works in this
field.

3



Single vehicle Kinematics
Emission/energy

models
Control

Speed
measurements

Microscopic
traffic models

Data-driven

Physical

Eco-driving

Eco-routing

Traffic Kinematics
Emission/energy

models
Control

Speed
measurements

Fluid-based
models

Data-driven

Physical

Traffic
lights

Speed
limits

Dynamic
routing

Automated
vehicles

Figure 1: Diagram of the global approach for energy consumption and emissions modeling
and control for single vehicles and traffic flow.

The body of the paper is organized as follows. Section II presents the energy
consumption and emission models for the single vehicle with a brief discussion of
how the vehicle kinematics can be obtained. Analogously, Section III introduces
the modeling approaches to describe traffic kinematics, with a particular focus
on the most popular fluid-dynamics traffic models, as well as the energy con-
sumption and emission models for vehicular flow. The energy-optimal control
strategies for single vehicles are presented in Section IV, while the transporta-
tion problems dealing with traffic energy efficiency are reviewed in Section V.
Finally, Section VI contains concluding remarks and discussion on the current
research gaps and future outlooks.

2. Emission and energy consumption models for single vehicles

Different models estimating emissions and energy consumption rate (Jy) of
a vehicle as a function of its parameters and operation variables (u) have been
investigated in the past. This section presents the data-driven and the physical
modeling approaches employed to estimate Jy.

In the proposed formalization, Jy refers to the prediction of the rate of y,
which can be calculated per distance traveled by the vehicle (J spat

y ) or per time
unit (J temp

y ), depending on the modeling method. y corresponds either to the
emission of a pollutant (CO, NOx, HC, ...) or the energy consumption (fuel or
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Figure 2: Classification of emission and energy consumption models for single vehicles.

electricity consumption, depending on the vehicle powertrain considered):

y ∈ {fuel or electricity consumption, emission of CO, NOx, HC, ...}

Such emission and energy consumption models are said microscopic because
they consider each vehicle individually. They can be described as

Jy = f(u) (1)

where f is a function that relates the model inputs to the output.
The function f can be constructed in different ways. The different ap-

proaches detailed in this section to estimate emissions and energy consumption
are classified as illustrated in Fig. 2.

The first step to determine the emission and energy consumption rates of
a vehicle is to determine its operation variables (e.g. speed, acceleration). A
solution is to obtain these data by sensors. For example, Thibault et al. (2016)
propose to use smartphone devices and their embedded sensors to get the posi-
tion and speed of vehicles. Treiber and Kesting (2013b) present a methodology
to express the operation variables of vehicles from trajectory and floating-car
data.

They can also be determined through simulation using a microscopic traffic
model, which reproduces the movement of each vehicle individually. Some com-
plete overviews of microscopic traffic models can be found in van Wageningen-
Kessels et al. (2015); Ferrara et al. (2018b); Hoogendoorn and Bovy (2001).
These approaches are mainly based on the car-following principle (e.g. safe-
distance models, stimulus-response models, action point models). For example,
the optimal velocity car-following model expresses the acceleration of each ve-
hicle as

a =
ve − v
τ

(2)

where the optimal speed, ve, depends on the distance with the vehicle upstream,
and τ is the driver reaction time.

The use of a microscopic traffic model, especially in order to estimate emis-
sions and energy consumption, requires a precise calibration of model param-
eters. Jie et al. (2013) present a methodology to perform such a parameters
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Symbol Description

a Vehicle acceleration [m s−2]
A Cross-sectional area [m2]
b Stoichiometric CPF (Catalyst Pass Fraction) coefficient [s kg−1]
c Enrichment CPF coefficient [s kg−1]
Ca Aerodynamic drag coefficient [–]
Cd Reynolds coefficient [–]
Ce Engine friction factor [J rev−1 m−3]
Cr Rolling resistance coefficient [–]
COC Center of combustion (50% energy conversion, from Top Dead

Center) [crank angle degree]
CPFy Catalyst pass fraction of y [–]
d Mass density of air [kg m−3]
D Engine displacement [m3]
g Gravitational constant [m s−2]

LHVfuel Fuel lower heating value [J kg−1]
mcyl In-cylinder air mass per stroke and displaced

volume [kg m−3 sr−1]
mO2 In-cylinder oxygen mass per stroke and displaced

volume [kg m−3 sr−1]
M Vehicle mass [kg]
n Engine speed [rev s−1]
Pacc Engine power demand associated with accessories [W]
RBGR In-cylinder burnt gas ratio [–]
v Vehicle speed [m s−1]
εy Maximum catalyst efficiency of y [–]
α Road grade angle [rad]
λ Ratio between the air/fuel ratio at stochiometry and

the commanded air/fuel ratio [–]
ηbatt Battery efficiency [–]
ηeng Engine efficiency [–]
ηtf Efficiency of the transmission and final drive [–]

Table 1: Parameters and operation variables of vehicles used in the emission and energy
consumption models.

calibration and emphasize on its benefits in terms of speed and acceleration
estimation.

The second step to determine the emission and energy consumption rates
of a vehicle is to use a microscopic emission and energy consumption model
whose inputs are the vehicle operating variables and parameters, summarized
in Table 1. This step is presented in detail in the following sections.
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2.1. Data-driven methods

Emission and energy consumption rates can be calculated using data-driven
approaches. These can be either based on look-up table models or regression
models.

2.1.1. Look-up table models

One old common approach to estimate emission and fuel consumption rates
consists in performing chassis dynamometer tests and recording the emissions
and fuel consumption in a look-up table, also called emission matrix. Usually,
such look-up tables provide Jy from speed and acceleration (Post et al., 1984;
Sturm et al., 1998) for a given set of vehicle parameters. These reference emis-
sion look-up tables can be used later to instantly estimate emissions and fuel
consumption.

Although this method is easy to use, usually the available matrices are
sparse, due to measurement difficulties. Moreover, empirical matrix-based pre-
diction concerns only steady-state emissions, and not transient operations (Scora
and Barth, 2006). Finally, this method is sensitive to the driving cycle and the
quality of on-line measurements. This may lead to large errors.

Another possibility is to determine emission and fuel consumption rates as a
function of the vehicle position. Andersen et al. (2013) propose to associate to
each road a corresponding fuel consumption, based on average measurements.
The amount of fuel consumed by a vehicle during a trip is therefore simply
approximated by the sum of the average fuel consumption associated with the
corresponding roads. This approach is very simple but it cannot distinguish
between different types of vehicle, as they are all mixed in the same computed
average value. Also, it cannot reflect the evolution of emissions and fuel con-
sumption in case of traffic congestion.

2.1.2. Regression models

Emissions and energy consumption of a single vehicle can also be predicted
on a second-by-second basis by using data-based models, such as regression
techniques or neural networks. The inputs of these models can typically be
the speed, acceleration or power demand, and the outputs are the emission or
energy consumption rates prediction.

Regression techniques and neural networks for emission and energy consump-
tion modeling both use the collected data in order to train a model that mimics
these data. In regression techniques, it is necessary to identify the model pa-
rameters by curve fitting, while in neural networks the weight of the connections
between neurons is to be identified.

The use of neural networks to estimate emissions and energy consumption
is motivated by the heavy nonlinearity of emissions. There is also a need of
high computational efficiency in order to be compatible with second-by-second
microscopic traffic models. Such neural network frameworks can be found in
Ahn (1998); Obodeh and Ajuwa (2009); Jafarmadar (2015); Xu et al. (2017).

Ahn (1998) presents non-linear multiple regression models constructed with
quadratic and cubic speed-acceleration terms. The data used to determine the
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coefficients of these models for a given type of vehicle is obtained from dy-
namometer emission tests, based on the New European Drive Cycle (NEDC)
(Ahn et al., 2004). It is also desirable to use data from vehicles in real urban
traffic situations, when available (Panis et al., 2006). In fact, it is important to
note that emission levels obtained from dynamometer tests can be much lower
than those produced in real traffic (Pelkmans and Debal, 2006). For example,
a criticism against the NEDC is that its acceleration profile is very smooth and
not sufficiently realistic (Andre and Pronello, 1997).

Based on this technique, the VT-micro model can be formulated in matrix
form (Zegeye et al., 2013) as

ln(J temp
y ) = ~vMy~a (3)

where My denotes the regression coefficients matrix of y for the type of vehicle
under consideration, ~v and ~a are respectively the speed and acceleration vectors
defined as

~v =
[
1, v, v2, v3

]
~a =

[
1, a, a2, a3

]T (4)

Note that the VT-micro model can also be expressed with a regression co-
efficients matrix for positive accelerations, and another matrix for negative ac-
celerations, depending on the data used to calibrate the model (Alsabaan et al.,
2012). VT-micro estimates emissions and energy consumption from instanta-
neous speed and acceleration, i.e. measured at the present time. Qi et al. (2004)
formulate a regression model, named POLY, which also takes into account the
past accelerations and the road grade angle. The model reads

J temp
y = β0 + β1v(k) + β2v

2(k) + β3v
3(k)

+β4T
acc(k) + β5T

dec(k)

+β6ga(k) + ...+ β15ga(k − 9) + β16v(k)ga(k)

(5)

where β0 to β16 are the parameters determined by least-square method for
one type of vehicle, T acc(k) and T dec(k) are respectively the acceleration and
deceleration duration since their inception up to the current time step k. At
each time step, at least one of them is zero. To consider the grade angle α, the
function ga is defined as follows

ga(k) = a(k) + g

[
α(k)√

1 + α2(k)

]
(6)

POLY is an accurate emission model. However, it may underestimate emis-
sions of higher emitting vehicles as it is built from average measured data (Qi
et al., 2004).

While data-driven models can be developed quickly without prior knowledge
on the vehicle or roads, they usually lack a clear physical interpretation and
might be too coarse. They may also over-fit the calibration data if the number
of variables considered is too large.
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2.2. Physical modeling approach

An alternative method for estimating emissions and energy consumption is
to employ a physical approach that leads to model parameters with physical
meaning. Two types of models can be distinguished, the deterministic and
probabilistic models, that are both described in the following sections.

2.2.1. Deterministic methods

The emission and energy consumption rates can be determined from the
power engine demand P , which can be calculated using the following vehicle
longitudinal dynamics, as in Sciarretta et al. (2015){

Ma = Ftrac − Fb − Fres

a = dv
dt

(7)

where Ftrac is the traction force transmitted by the powertrain to the wheels,
Fb is the mechanical brake force and Fres is the resistance force that can be
calculated as follows

Fres = Mg sinα+MgCr +
1

2
dv2ACa (8)

The total tractive power of the vehicle is denoted Ptrac and is given by

Ptrac = Ftracv (9)

(7) – (9) lead to

Ptrac = Mv (a+ g sinα) + v

(
MgCr +

d

2
v2ACa

)
+ Fbv (10)

Finally, the power engine demand P can be calculated as follows

P =
Ptrac

ηtf
+ Pacc (11)

Once the power demand is known, Post et al. (1984) propose to estimate the
emission and energy consumption rates as follows

J temp
y =

{
ay + byP , if P ≥ 0
ay , if P < 0

(12)

ay and by are the regression coefficients determined for a given y and vehicle
type. When y represents the fuel consumption, ay can be approximated by the
following linear function

ay = γ ×D (13)

where γ is a constant.
Barth et al. (1996) propose to replace the regression coefficients by physical

parameters and operation variables to approximate the fuel use rate. The model
is defined as

J temp
fuel LHVfuel ≈ λ

(
CenD +

P

ηeng

)
(14)

9



where the engine friction factor Ce is the energy used at zero-power output to
overcome engine friction.

An et al. (1997) then propose to calculate the pollutant emission rates as
follows

J temp
y = J temp

fuel

dy

d(fuel)
CPFy (15)

where y refers here only to emissions, dy
d(fuel) corresponds to the grams of engine-

out emissions per gram of fuel consumed for pollutant y, and the catalyst pass
fraction CPFy can be modeled as

CPFy = 1− εy exp

[[
−b− c

(
1− 1

λ

)]
J temp

fuel

]
(16)

The Comprehensive Modal Emissions Model (CMEM) is based on (15)
(Scora and Barth, 2006). It considers different categories of vehicle and different
modes of operation (idling, cruising, acceleration, and deceleration). Emission
and fuel consumption rates are calculated as a function of the vehicle fleet com-
position (vehicle categorization based on model year, weight, etc.), operation
variables and model-calibrated parameters. The structure of the model is shown
in Fig. 3. The CMEM predicts emissions well, but may underestimate them
for high-emitting vehicles because the model is based on the average data of
300 vehicles (including about 30 high emitters) measured during dynamometer
tests, along different driving cycles (Rakha et al., 2003).

Figure 3: Structure of the CMEM (Scora and Barth, 2006) [Published with permission of the
Center for Environmental Research and Technology].

Another model proposed by Gärtner et al. (2004) estimates emissions from
fuel consumption at engine mechanics level. The model relies on the first Law of
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Thermodynamics and chemical kinetic reaction rate considerations. For NOx
emissions, the model reads

log

(
d(NOx)

d(fuel)

)
= a0 + a1COC + a2mcyl + a3mO2

(17)

where d(NOx)
d(fuel) is the mass of nitrogen oxides emitted per mass of fuel consumed,

and a0 – a3 are model coefficients.
A simplified version of (17) is proposed by Thibault et al. (2016). The

authors propose to express log(JNOx) as a linear function of the in-cylinder
burnt gas ratio RBGR, as follows

log

(
d(NOx)

d(fuel)

)
= a4 + a5RBGR (18)

where a4, a5 are model coefficients.
RBGR is expressed as a function of the engine speed and the engine torque

for a given type of vehicle, based on the data from the NEDC. The engine con-
ditions are physically determined from the speed of the vehicle and its constant
parameters.

The same approach can be considered to estimate the emissions of other
pollutants.

2.2.2. Probabilistic methods

The previous models estimate emissions and energy consumption as a func-
tion of real vehicle operation variables (e.g. speed and acceleration, power de-
mand, engine mechanics).

However, these data are not always available. One may obtain the velocity
through microscopic traffic model simulation. But such models can be difficult
to implement, especially on a large spatial scale with a lack of precise knowl-
edge about the traffic situation, and can lead to unrealistically smooth velocity
profiles. Hence, probabilistic models, based on random velocity disturbances,
have been proposed in the literature.

The general idea of the random velocity disturbances approach is to run the
emission and energy consumption models while replacing, for a given route, the
actual speed of the vehicle by an approximate second-by-second speed profile
built from a deterministic and a stochastic component as

ṽ = v̄ + Θ (19)

where v̄ is the average traffic speed estimated from the road attributes provided
by a geographical information system (e.g. speed limit, traffic signs, road grade)
and Θ is a random variation in velocity for the subject vehicle.

It is possible to consider a spatial distribution of speed or acceleration based
on driving cycles or statistical distributions (Burghout, 2004).

Karbowski et al. (2014) combine Markov chains with deterministic route
attributes to generate the speed profile. In this model, Θ is adjusted according
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to
P (X(k + 1) = Xi|X(k) = Xj) = MTP(i, j) (20)

where X(k) = [v(k) a(k)]T is the state vector of the vehicle at time step k, and
the transition probability matrix MTP is built from real data.

Another probabilistic model is the Motor Vehicle Emission Simulator (MOVES),
presented by Wu et al. (2014). The aim of this method is to make the veloc-
ity trajectory more realistic. Thus, it is assumed that vehicle detector stations
provide an estimation of v̄. The random variation in velocity is defined as

Θ(k) = ṽ(k − 1) + a(k − 1)− v̄(k) (21)

A procedure to determine the acceleration a is presented in Wu et al. (2014).
Probabilistic approaches are a solution in case of lack of information about

the vehicle dynamics. By construction, they are less accurate than models
based on the actual speed, but can be effectively used to estimate emissions and
energy consumption (Kubička et al., 2016). To improve these methods, traffic
prediction models could be integrated to determine v̄ (cf. Section 3.1.2).

Note that the variability of certain unobserved parameters between vehicles
(e.g. temperature, Reid vapor pressure) can affect the emissions and energy con-
sumption. These issues can be addressed by introducing probabilistic correction
factors (Frey and Zheng, 2002).

3. Emission and energy consumption models for traffic vehicular flows

The emission and energy consumption models presented in Section 2 are
microscopic. They estimate emissions and energy consumption based on the
instantaneous operating variables of individual vehicles, that can be obtained
through microscopic traffic models. But on a network scale, they have the known
disadvantage of high computational load, as their computation time increases
sharply with the number of vehicles. The instantaneous operating variables can
also be measured, but the data for so many vehicles are very difficult to obtain
and process.

For large scale control purposes it is necessary to develop macroscopic models
that use aggregate network or link-based data to estimate global emissions and
energy consumption. These models are more coarse but also simpler to use and
allow for faster computation. They are based on the traffic variables presented
in Table 2.

In this section, we first review how to determine the traffic kinematics, then
we present different emission and energy consumption models that can be set
up.

3.1. Traffic kinematics

To determine the traffic kinematics, it is possible to measure the average
speed of vehicles, or to use a traffic model based on fluid dynamics.
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Symbol Description

i Cell index [–]
k Discrete Time index [–]
L Length of link [m]

Ni(k) Number of vehicles in cell i at time step k [veh]
v Traffic speed [m s−1]
v̄ Average traffic speed [m s−1]

vmax Maximum speed, forward wave speed [m s−1]
δ Discrete-time step size [s]
δx Discrete-space cell length [m]
ρ Vehicle density [veh m−1]
ρcr Critical density, i.e. associated with the maximum flow [veh m−1]
ρM Maximum possible vehicle density [veh m−1]
ϕ Traffic flow [veh s−1]

ϕi(k) Traffic flow entering cell i during [kδ, (k + 1)δ] [veh s−1]
ϕM Maximum possible traffic flow [veh s−1]
w Backward wave speed [m.s−1]

Table 2: Traffic variables and indices used in emission and energy consumption models.

3.1.1. Average speed

The average speed of the traffic on each link i is defined as

v̄(i) =
1

T

T∑
k=1

1

N(i, k)

N(i,k)∑
j=1

vj(k) (22)

where T is the number of time steps on which the average speed is performed,
N(i, k) is the number of vehicles on link i at time step k and vj(k) denotes the
speed of vehicle j at time step k. In the following, the average speed of link i,
v̄(i), is referred to as v̄ for simplicity.

The average speed can be provided using fixed sensors or Floating Car Data
(FCD) methods, like the smartphone devices of the drivers for example. Sim-
ilarly, the number of vehicles N(i, k) can be provided by induction loops or
cameras.

3.1.2. Fluid-based models

The traffic kinematics can also be determined through dynamic fluid-based
traffic models that describe the evolution of the traffic in the network as a fluid
in a pipe. Some overviews presenting this kind of models can be found in Ferrara
et al. (2018a,c); van Wageningen-Kessels et al. (2015); Hoogendoorn and Bovy
(2001).

This approach provides the traffic variables, i.e. ρ(x, t), v(x, t), and ϕ(x, t),
at given position x and time t. It considers the traffic speed as a function of x
and t. Therefore, unlike the average speed approach, these models reflect the
speed differences along links and provide a dynamic traffic speed.
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Some macroscopic traffic models are reviewed in the following. They are all
based on the following conservation law

∂

∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)v(x, t)) = 0 (23)

Some of these models are continuous and others are spatially and temporally
discretized. A distinction is made between first and higher order models.

– First order models

• Lighthill-Whitham-Richard model

Lighthill and Whitham (1955) and Richards (1956) assume that v depends
only on ρ. Hence, the flow can be expressed as a function of only ρ as

ϕ = ρv(ρ) = Φ(ρ) (24)

The conservation law presented in (23) can then be expressed as

∂

∂t
ρ+

∂

∂x
Φ(ρ) = 0 (25)

where Φ is a strictly concave C1 function defined on [0, ρM] and satisfying Φ(0) =
Φ(ρM) = 0.

The relationship ϕ = Φ(ρ) is called the fundamental diagram. The most
common fundamental diagrams are listed in Table 3 (Garavello et al., 2016), in
which v0 is a positive constant.

Fundamental Diagram Expression

Greenshields et al. (1935) Φ(ρ) = ρvmax

(
1−

(
ρ
ρM

)p)
, p ∈ N

Greenberg (1959) Φ(ρ) = ρv0 ln
(
ρM

ρ

)
Underwood Φ(ρ) = ρvmax exp

(
− ρ
ρM

)
California Φ(ρ) = ρv0

(
1
ρ −

1
ρM

)
Trapezoidal (Daganzo, 1994) Φ(ρ) = min

{
ρvmax, ϕ

M, (ρM − ρ)w
}

Triangular (Newell, 1993) Φ(ρ) = min
{
ρvmax, (ρ

M − ρ)w
}

Table 3: List of most common fundamental diagrams.

• Cell transmission model

Daganzo (1994) proposes the cell transmission model (CTM) which is a
temporally and spatially discretized version of the LWR model based on the
triangular or the trapezoidal fundamental diagram. The model is defined as

ρi(k + 1) = ρi(k) + δ
δx

(ϕi(k)− ϕi+1(k))

ϕi(k) = min
{
ρi−1(k)vmax, ϕ

M, w(ρM − ρi(k))
} (26)
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• Variable-length model

In order to depict density evolution and track the congestion front, Canudas-
de-Wit (2011) proposes the variable-length model (VLM) for highway traffic
modeling. Illustrations are given on a closed ring road and on an urban road
with traffic lights in Canudas-de-Wit and Ferrara (2018).

The VLM is also a discrete version of the LWR model based on the triangular
fundamental diagram. The idea is to model any road section with only two
lumped cells that are variable in length: an upstream cell in free flow and
a downstream congested cell. Consider a road section of length L, then the
length of the free and the congested cells will respectively be L− l and l.

The main advantage of the VLM is that it is based on only three state vari-
ables: density in the upstream free cell ρf , density in the downstream congested
cell ρc, and position of the congestion front l. The model reads

ρ̇f = [ϕin − ϕ(ρf)]
1
L−l

ρ̇c = [ϕ(ρc)− ϕout]
1
l

l̇ = ϕ(ρf )−ϕ(ρc)
ρc−ρf

(27)

where the interface flows ϕ(ρf) and ϕ(ρc), which correspond to the demand of
the free cell and the supply of the congested cell respectively, can be expressed
as

ϕ(ρf) =ρfvmax

ϕ(ρc) =w(ρM − ρc)
(28)

ϕin and ϕout are the inflow and outflow at the boundaries of the section of length
L. They are defined as

ϕin = min {Din, sf}
ϕout = min {Dc, Sout}

(29)

where Din and Sout are respectively the input demand and the output supply.
Dc and sf are

Dc = min {ρcvmax, vmaxρ
cr(vmax)}

sf = min
{
w(ρM − ρf), vmaxρ

cr(vmax)
} (30)

where ρcr(vmax) is the critical density relative to vmax. It is defined as

ρcr(vmax) =
wρM

vmax + w
(31)

De Nunzio et al. (2014) propose to adapt the VLM to the urban environment
by considering a binary variable ζ multiplying the boundary flows in (29) to
model the behavior of traffic lights, as

ζ =

{
1 , if the traffic light is green
0 , else

(32)
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• Link transmission model

Yperman (2007) proposes the link transmission model (LTM), which is a
discrete version of the LWR model based on the triangular fundamental diagram,
with only one cell per road. Therefore, computation times are reduced.

The LTM introduces the notion of cumulative vehicle counts. N tot
up (kδ) and

N tot
down(kδ) are respectively the cumulative entering and exiting vehicle count of

a given link at kδ, based on given split ratios at intersections.
The maximum number of vehicles that can be sent by this link to the next

one during time interval [kδ, (k + 1)δ] is

Sboundary(k) = N tot
up

(
(k + 1)δ − L

vmax

)
−N tot

down(kδ) (33)

The maximum number of vehicles that can leave the considered link during
the time interval [kδ, (k + 1)δ] is

Slink(k) = ρMLδ (34)

The number of vehicles sent by the link to the next one is then simply

S(k) = min {Sboundary(k), Slink(k)} (35)

In the same way, the number of vehicles R(k) received by the link is expressed
as 

R(k) = min {Rboundary(k), Rlink(k)}

Rboundary(k) = N tot
down

(
(k + 1)δ − L

w

)
+ ρML−N tot

up (kδ)

Rlink(k) = ρMLδ

(36)

• Queue models

Queue models are interested in the length of the queues at the end of each
link i. An example is the Berg-Lin-Xi (BLX) model, presented by Van den Berg
et al. (2007) and Lin and Xi (2008). Lin et al. (2012) propose an extension of
the BLX model. Like the LTM, the BLX model considers flows between the
links.

The queue on link i is composed of Nq
i vehicles. When the traffic light is

green, the number of vehicles entering cell i from the upstream cell during time
interval [kδ, (k + 1)δ] is

δϕi(k) = max
{

0, min
{
Nq
i−1(k) + δϕi−1(k), Si(k), δϕM

}}
(37)

where Si(k) denotes the available storage of link i at time step k, expressed in
number of vehicles.

The queue length and the available storage can be expressed as Nq
i (k + 1) = Nq

i (k) + δ(ϕi(k)− ϕi+1(k))

Si(k + 1) = Si(k) + δ(ϕi+1(k)− ϕi(k))
(38)
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The total number of vehicles in link i at time step k can be determined as

Ni(k) = ρML− Si(k) (39)

• Summary

The LWR model and its discrete variations, presented above, are simple first
order mathematical representations of the traffic inspired by fluid mechanics.
They are based on fundamental diagrams that associate ϕ to ρ. These models
are able to capture realistic traffic phenomena such as shock waves, physical
queues and queue spillbacks (Garavello et al., 2016).

However, first-order models based on the fundamental diagram are not suf-
ficient to capture unstable traffic variations caused by the inertia of vehicles
because they assume that v is always in equilibrium. Consequently, they have
limitations in capturing complex traffic phenomena such as stop-and-go waves,
capacity drops and phantom jams (formation of clusters of cars with high densi-
ties due to the driving style of road users Kerner and Konhäuser (1993)). These
must be taken into account in order to best estimate emissions and energy con-
sumption.

– Second order models

Second order models have been developed in order to capture more realistic
traffic behavior in congested areas. They still consider the equation for the
conservation of vehicles presented in (23) and use the fundamental diagram to
determine the steady state of the system, but they have an additional equation
for the conservation of momentum.

• Payne-Whitham model

An example of a well known second order model is proposed in Payne (1971).
The model has the following form{

∂tρ+ ∂x(ρv) = 0
∂tv + v∂xv + 1

ρ∂x(p(ρ)) = 1
τ (ve(ρ)− v)

(40)

where ve(ρ) is the equilibrium speed given by the fundamental diagram, and
p(ρ) is analogous to the pressure in the fluid dynamics equations and depends
on the density (Piccoli and Tosin, 2009).

The anticipation term 1
ρ∂x(p(ρ)) models the reaction of vehicles, i.e. accel-

eration or deceleration, to the variations of ρ. The relaxation term 1
τ (ve(ρ)− v)

models the tendency of vehicles to travel from v towards ve(ρ) within a time
τ > 0 that represents the time needed by the vehicles to adjust their actual
speed to ve(ρ).

The second equation of (40) is the acceleration equation. Whitham (1974)
proposes to simplify the model by considering p(ρ) as a constant. Other expres-
sions for this term exist, they are presented in Garavello et al. (2016), as well
as the modeling of an additional viscous term in this equation.
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• Aw-Rascle-Zhang model

Daganzo (1995) highlights some limitations of the Payne-Whitham model
presented above. In particular, the model allows the vehicles to travel with
negative speed.

To tackle this problem, Aw and Rascle (2000) and Zhang (2002) propose the
following model {

∂tρ+ ∂x(ρv) = 0
∂t(v + p(ρ)) + v∂x(v + p(ρ)) = 0

(41)

where the pressure term p may be defined as

p(ρ) = ργ , γ > 0 (42)

• METANET model

Messmer and Papageorgiou (1990) present the METANET model which is
a discrete version of the Payne-Whitham model presented in (40). It reads

ρi(k + 1) = ρi(k) + δ
δx

(ϕi(k)− ϕi+1(k))

vi(k + 1) = vi(k) + δ
γ1

[ve(ρi(k))− vi(k)]

+ δ
δx
vi(k)[vi−1(k)− vi(k)]− γ2δ[ρi+1(k)−ρi(k)]

γ1δx[ρi(k)+γ3]

(43)

and the authors propose the following fundamental diagram to define the equi-
librium speed ve(ρ)

ve(ρi) = vmax exp

[
− 1

γ4

(
ρi(k)

ρcr

)γ4]
(44)

where γ1 – γ4 are model coefficients.
METANET was originally introduced to capture traffic phenomena on high-

ways. The proceeding of flows between the segments is fully presented in Mess-
mer and Papageorgiou (1990).

– Phase transition and higher order models

Second order models generally have higher computation times. Phase tran-
sition models are a good alternative to the extent that they behave like the
classic LWR model when the traffic is free and like a second-order model when
the traffic is congested. This allows to capture complex traffic phenomena while
keeping reasonable computation times for free-flow traffic.

Colombo (2002) proposes the following phase transition model

• For free flow traffic, the author considers the LWR model, presented in
(25), with the Greenshields fundamental diagram (cf. Table 3, with p = 1).
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• For congested traffic, v cannot be considered as a function only of the
density anymore. In this case, the density-flow points are scattered in a
two-dimensional region, based on the following second-order model{

∂tρ+ ∂x(ρv) = 0
∂tq + ∂x((q −Q)v) = 0

(45)

where q is the momentum, Q is a parameter of the road considered, and
v is expressed as

v =

(
1− ρ

ρM

)
q

ρ
(46)

The associated hybrid fundamental diagram is shown in Fig. 4.

Figure 4: Fundamental diagram of the phase transition model, representing the free region
Ωf and the congested region Ωc (Colombo, 2002) [Copyright c©2002 Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved].

Finally, higher-order models exist but they are less appropriate for emissions
and energy consumption estimation as their computation times are higher. An
example of third order model, where the additional equation is for the variance
of the speed, can be found in Helbing (1995). This method is useful to describe
the increase of the speed variance just before traffic jams occur.

– Network-wide extension

The traffic models presented above can be extended across a network. The
junctions represent a very important part of the extended model. Basically, each
junction can be reduced to a combination of simple merge and diverge junctions
(Garavello et al., 2016). A complete overview of macroscopic node models can
be found in Tampère et al. (2011). The authors present macroscopic node model
instances both for signalized and unsignalized intersections.

In the case of the extended CTM, a fundamental diagram is associated with
each link, each link being partitioned into uniform cells. An urban version
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of the CTM is proposed in Xie et al. (2013). The authors use turning ratios
assigned to intersections and distinguish two possibilities. First, a cell preceding
an intersection can be composed of one traffic light. Such cells have one unique
queue, and all the vehicles merge into it. Second, the cell can be divided into
sub cells so that each direction has its own traffic light.

Similarly, the LTM can be extended considering the flows sent and received
by links (Garavello et al., 2016). Regarding queue models, Lin et al. (2012)
consider the case of links with multiple junctions (connected to several upstream
and downstream links) and, for control purposes, present the S model, which is
basically a simplification of the BLX model, with a time interval equal to the
traffic-light cycle.

The network-wide extension approach is similar for second order traffic mod-
els. For example, Garavello et al. (2016) present the extension of the Aw-Rascle-
Zhang model on a network scale. A more detailed description of this model at
junctions can be found in Herty and Rascle (2006).

For control purposes, De Nunzio et al. (2014) suggest to simplify the VLM
by assuming an average continuous flow through the traffic lights by replacing
the binary variable ζ with

Tgreen

Tcycle
, where Tgreen and Tcycle denote respectively the

green phase time and the cycle time of the traffic light. This method is inspired
by store-and-forward models, originally suggested by Gazis and Potts (1963).
It allows to describe the urban traffic without using binary variables. Hence,
polynomial complexity control methods can be applied to the system, which
allows for consideration of large-scale networks. However, due to this simplifi-
cation, the effect of offsets between traffic lights of successive intersections is not
depicted. Moreover, the oscillations of the system (stop-and-go waves, propa-
gation waves, etc.) are not represented, which is a crucial point for emissions
and energy consumption estimation (Hall, 2012; Aboudolas et al., 2009).

3.2. Emission and energy consumption meta-models

In Section 3.1, we reviewed some methods to determine the traffic kinematics,
either by measuring the static average speed (cf. Section 3.1.1), or by using
dynamic fluid-based traffic models (cf. Section 3.1.2). In this section, we present
the meta-models used to calculate emissions and energy consumption from the
traffic dynamics, considering either approach.

3.2.1. Meta-model associated with static average speed-based approaches

Emissions and energy consumption can be calculated by considering an av-
erage speed-based approach. This is done by a meta-model whose general pro-
cedure is illustrated in Fig. 5, and operation steps are presented below.

1. The average speed v̄ and the number of vehicles N are measured, or esti-
mated.

2. The emission or energy consumption rate of a single vehicle Jy is calculated
from v̄ using a microscopic emission and energy consumption model (cf.
Section 2).
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N

Figure 5: Structure of the emission and energy consumption meta-model associated with static
average speed-based approaches.

3. Jy(v̄) is then multiplied by N to approximate the total emission or energy
consumption rate.

Note that this procedure can be conducted at different scales. The average
speed v̄ and the number of vehicles associated N can refer to a single link of
a network, if the data are available, or to a larger spatial area. Moreover, the
duration between two successive measurements usually depend on the measuring
devices. These issues are addressed in Section 3.3.

This meta-model can be associated either with a data-based or a physical
microscopic emission and energy consumption model. These approaches are
detailed below. Note that they involve measuring, or estimating, the number of
vehicles on the roads under consideration.

• Data-based model

Some authors propose to associate the meta-model with a data-based mi-
croscopic emission and energy consumption model.

For instance, Boriboonsomsin et al. (2012) propose the following regression-
based model in order to estimate the fuel use rate of a single vehicle

ln
(
J spat

fuel

)
= β0 + β1v̄ + β2v̄

2 + β3v̄
3 + β4v̄

4 + β5α (47)

where β0 to β5 are the regression coefficients.
Another common approach to estimate emissions and energy consumption

on a large spatial scale is to associate this meta-model with a microscopic model
based on aggregated data-driven emission or energy consumption factors Jy(v̄, θ)
that depend on the traffic average speed v̄ and some vehicle parameters θ.

Let Ω be the set of possible parameters sets. Aggregated factors are usu-
ally simply the mean values of experimental measurements and are typically
expressed in mass of pollutant emitted (or mass of fuel consumed) per vehicle
and per unit distance traveled. Hence, the total emission or energy consump-
tion rate (per distance traveled), i.e. the output of the meta-model, of a link i
containing N(i, θ) vehicles with the set of parameters θ is given by

J iy =
∑
θ∈Ω

N(l, θ)Jy(v̄, θ) (48)

In practice, detailed information on the fleet composition is not available.
Hence, a reference set can be considered, i.e. all the vehicles have the same
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parameters θ̄, and the emission or energy consumption rate on link i simply
becomes:

J iy = N(i, θ̄)Jy(v̄, θ̄) (49)

The COPERT (COmputer Programme to calculate Emissions from Road
Transport) model (Ntziachristos et al., 2009) developed by the European En-
vironment Agency is based on this method. Several vehicle parameters are
included in θ: the vehicle type (passenger car, light commercial vehicle, heavy
duty vehicle, L-category vehicle), the fuel type, the engine displacement and its
registration date. The sets of parameters of all the vehicles constitute the vehi-
cle fleet composition. An example of emission factors obtained with COPERT
for different types of vehicle as a function of the speed is given in Fig. 6.

Figure 6: Fuel consumption factors of different gasoline passenger cars calculated with COP-
ERT (Sobrino et al., 2014) [Published with permission of Networks and Spatial Economics].

Hausberger (2009) proposes the HBEFA (HandBook Emission FActors for
road transport) model, which is more precise. This method additionally con-
siders the driving conditions (highways, urban roads, stop-and-go traffic) and
the volume-to-capacity ratio (number of vehicles divided by the capacity of the
link), which is a dynamic variable, to determine Jy(v̄, θ).

The accuracy can also be improved by multiplying the emission and energy
consumption factor Jy(v̄, θ) by a congestion correction factor, as does the TEE
(Traffic Energy and Emissions) model. The objective is to represent the effect
of congestion on emissions and energy consumption. The congestion correction
factor depends on the average speed, the traffic-light timing, the link length, and
the traffic density (Negrenti, 1999). These variables and parameters are used to
estimate the time spent in each traffic situation (cruising, acceleration, decel-
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eration and idling) and thus reflect the speed variability along the considered
road link. The corresponding speed profile can then be reconstructed.

One limitation of these aggregated factors models is that the emission and
energy consumption factors are not fundamental, as they depend on the driving
cycle used during the measurements.

• Physical model

It is also possible to use this meta-model by associating it with a physical
emission and energy consumption model.

For example, Jurik et al. (2014) propose to use the following microscopic
physical model to estimate the energy consumption of a vehicle on link i

Ey(i) = J iyL(i) =

{
Er(i) + (ν − 1)Ep(i) , if Ep(i) ≤ 0
Er(i) , if Ep(i) > 0

(50)

where L(i) is the length of the link i, and ν ∈ [0, 1] is the downhill potential
energy recuperation coefficient. The resistance and the potential energies are
respectively given by

Er(i) =
d

2
ACdv̄

2L(i) +MgCrL(i) cosα

Ep(i) = MgL(i) sinα
(51)

To model more precisely the speed change at an intersection, De Nunzio
et al. (2017) introduce a transition speed at the interface between two links of
respective average speeds v̄before and v̄after defined as

vtransition = β
v̄before + v̄after

2
(52)

where β ∈ [0, 1] is a parameter depending on the type of interface (e.g. stop
sign, traffic light, turning movement, etc.). This transition speed can be intro-
duced to any model similar to the one presented in (50) – (51) to better model
intersections.

3.2.2. Meta-model associated with dynamic fluid-based models

Emissions and energy consumption can be calculated by considering the
fluid-based models dynamics. This is done by another meta-model whose general
procedure is illustrated in Fig. 7, and operation steps are presented below.

1. First, a dynamic fluid-based traffic model is chosen (cf. Section 3.1.2). It
provides the traffic variables, i.e. ρ(x, t), v(x, t), ϕ(x, t).

2. Then, these variables are processed by an interface to generate groups of
vehicles g(x, t) sharing the same speed and acceleration. The interface
calculates the speed, acceleration and number of vehicles of each group.
They are respectively denoted v(g(x, t)), a(g(x, t)) and N(g(x, t)).
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Figure 7: Structure of the emission and energy consumption meta-model associated with
dynamic fluid-based traffic models.

3. A microscopic emission and energy consumption model is chosen (cf. Sec-
tion 2). It provides the emission or energy consumption rate Jy(v, a) of
a vehicle of group g(x, t) using the outputs v(g(x, t)) and a(g(x, t)) of the
interface.

4. The emission or energy consumption rate Jy(v, a) of a vehicle of group
g(x, t) is multiplied by the number of vehicles in the corresponding group
N(g(x, t)) to provide the total emission or energy consumption rate of
group g(x, t).

The procedure presented above is repeated as many times as there are
groups. It is important to note that this generation of groups with homoge-
neous operation variables relies on the spatial and temporal discretizations of
the traffic model. This issue is addressed in Section 3.3.

The procedure of the interface presented above is detailed in the following
(Zegeye et al., 2013).

To compute emissions and energy consumption, the employed traffic models
are often discrete both in time and in space. Hence, two acceleration components
have to be considered: the temporal and the spatial accelerations:

- The temporal acceleration describes the change in speed of vehicles within
a cell from one time step to the next. It only applies to the vehicles that
remain in the cell. It is expressed as

atemp
i (k) =

vi(k + 1)− vi(k)

δ
(53)

The number of vehicles subject to this acceleration, i.e. that stay within
the cell i from time step k to time step k + 1 is equal to

N temp
i (k) = δxρi(k)− ϕouti (k)δ (54)

where ϕouti (k) is the outflow of cell i during time interval [kδ, (k + 1)δ].
The first term represents the number of vehicles initially in cell i at time
step k.
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These vehicles constitute a group g(x, t) mentioned above. There are as
many groups of this type as there are cells in the spatial discretization of
the traffic model.

- The spatial acceleration describes the change in speed of vehicles moving
from cell i to cell j. It is defined as

aspat
i,j (k) =

vj(k + 1)− vi(k)

δ
(55)

The number of vehicles subject to this acceleration, i.e. that move from
the cell i to cell j during time interval [kδ, (k + 1)δ] is

N spat
i,j (k) = ϕi,j(k)δ (56)

where ϕi,j(k) is the flow of vehicles moving from cell i to cell j.

These vehicles constitute a group g(x, t) mentioned above. There are
as many groups of this type as there are cells interfaces in the spatial
discretization of the traffic model.

Ultimately, a generic formulation to calculate the emissions and energy con-
sumption rate in a network made of n cells is

Jnetwork
y (k) =

∑n
i=1 Jy(atemp

i (k), vi(k))N temp
i (k)+∑n

i=1

∑n
j=1 αi,jJy(aspat

i,j (k), vi(k))N spat
i,j (k)

(57)

where αi,j is a binary variable equal to 1 if cells i and j are connected in the sense
that vehicles can move directly from cell i to cell j, αi,j equals zero otherwise.
The first term of (57) refers to the emissions and energy consumption of vehicles
staying in the same cell from time step k to k + 1, and the second term refers
to those of vehicles moving from one cell to another.

To estimate emissions and energy consumption more precisely, this calcula-
tion can be done by differentiating classes of vehicles. In that case, the function
Jy can consider the real parameters of the vehicles instead of average values.

This meta-model can be associated either with a data-based or a physi-
cal microscopic emission and energy consumption model. Some examples are
presented below. Naturally, the meta-model procedure is generic and can be
adopted to other models.

• Data-based model

Some authors propose to use this meta-model by associating it with a data-
based emission and energy consumption model. For example, Zegeye et al.
(2013) propose to integrate the macroscopic traffic second order model METANET
with the microscopic data-driven emission and fuel consumption model VT-
micro. The resulting meta-model, called VT-macro, is mainly suitable for mod-
eling emissions and energy consumption on highways.

Similarly, Lin et al. (2013) suggest to associate the traffic first order S model
with VT-micro in an urban network. The authors present a set of possible
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behaviors for the vehicles (e.g. free, idling, accelerating, decelerating, start-
and-stop behavior). Another use of the meta-model in an urban environment
can be found in Jamshidnejad et al. (2017), in which the authors propose the
same models association.

• Physical model

It is also possible to use this meta-model by associating it with a physical
emission and energy consumption model. For example, De Nunzio et al. (2014)
develop a method based on the VLM and a physical approach to determine
energy consumption. This model considers only the spatial component of accel-
eration. In each cell, energy consumption is determined from the cell average
speed (either free or congested), considering zero temporal acceleration. At the
interface of the cells, the energy is calculated based on the following spatial
acceleration

aspat
i,j = min

{
amax,

vj − vi
δ

}
(58)

where the maximum acceleration amax is a model parameter. Note that time
does not appear in the formulation of De Nunzio et al. (2014) because the
analysis is performed at steady state.

3.3. Spatial and temporal discretizations

The spatial and temporal discretizations of the methods used are a crucial
point in emissions and energy consumption estimation: a compromise has to be
found between precision and computation time.

• Spatial discretization

Concerning the use of the average speed meta-model, measurements of aver-
age speed and number of vehicles made on a road level would naturally give bet-
ter results than measurements made on a larger spatial scale. But this depends
mainly on the devices used to monitor the traffic. Some average speed-based
meta-models consider a fine spatial discretization in order to be compatible with
urban networks (e.g. COPERT Street Level (Rai et al., 2017)).

When using the meta-model associated with dynamic fluid-based models,
the choice of the spatial discretization step size should be given some thought.
A balance concerning the number of cells and their length has to be found in
order to satisfy the desired accuracy without excessively increasing computation
times.

• Temporal discretization

Some authors have proposed methods to use the average speed meta-model
with high-frequency data inputs, i.e. average speeds and number of vehicles
updated at high frequency. For example, Lejri et al. (2018) propose a method
to adapt the COPERT emission and fuel consumption model to high-frequency
data inputs. This kind of approach is more precise. However, it is essential
to note that the average speed-based meta-model is static. In other words,
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even with high frequency data inputs, emissions and energy consumption are
calculated for successive average speeds, but do not consider the acceleration
of vehicles, yet crucial to fully characterize emissions and energy consumption
(Ahn and Rakha, 2008).

The dynamic fluid-based meta-model considers vehicles accelerations. There-
fore, this approach is more precise, but its crucial point is the estimation of the
acceleration. In the formulation proposed in Section 3.2.2, the choice of δ must
lead to realistic accelerations values while respecting the Courant–Friedrichs–Lewy
(CFL) condition expressed as

2δvmax ≤ δx (59)

• Summary

In other words, adopting a dynamic fluid-based approach with very long
time step size and length of cells is similar to having an average speed-based
approach. The difference would be that the data are obtained by simulation
instead of being measured.

Finally, the most precise way to calculate emissions and energy consump-
tion at a large spatial scale would be to use a microscopic traffic model and
to associate it with a microscopic emission and energy consumption model (cf.
Section 2). In fact, this approach is the only one able to reflect differences in
microscopic drivers’ behavior (e.g. sudden deceleration, merging, lane chang-
ing). When traffic is congested, these can result in shock waves causing traffic
breakdown, that a macroscopic traffic model cannot depict (Khondaker and
Kattan, 2015b). However, this method is not possible at large scale because
of the enormous computation times generated by the large number of vehicles
considered. Schiper (2017) proposes a statistical approach to process this large
amount of data by introducing sampling methods. The author suggests to esti-
mate emissions and energy consumption only in some relevant locations of the
network, and to extend the estimations at larger scales.

4. Single vehicles control design for emission and energy consumption
reduction

In Sections 2 and 3, emission and energy consumption models have been pre-
sented for single vehicles and for traffic flows. In this section, we review some
control strategies for single vehicles aiming at limiting emissions and energy
consumption. They can be mostly categorized into eco-driving, i.e. computing
a vehicle speed trajectory that minimizes the emissions or energy consumption
along a given route, and eco-routing, i.e. planning a minimum energy or emis-
sions route. An excellent overview of the existing vehicle control strategies is
given by Guanetti et al. (2018).

4.1. Eco-driving

Eco-driving consists in computing a vehicle trajectory that minimizes the
emissions or energy consumption along a given route, under technical (speed,
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acceleration and brake characteristics of the vehicle) and environment (traffic,
traffic signs, traffic lights, etc.) constraints (Guanetti et al., 2018).

We define the state vector of a vehicle at time step k as x(k) = [s(k), v(k)]T ,
where s and v respectively denote the vehicle’s position along the route and the
speed of the vehicle. Let Ftrac and Fb be respectively the traction force at the
wheels and the mechanical brake force, the objective of the eco-driving algorithm
is to find at each time step k the input vector u(k) = [Ftrac(k), Fb(k)]T that
minimizes the emissions or the energy consumption calculated by the function
g. The objective function g is similar to those presented in Section 2. It may
consider vehicle parameters like its mass and parameters of the environment like
the road slope, usually provided by a Geographic Information System (GIS).

Sciarretta et al. (2015) formulate the eco-driving optimization problem as
follows

minimize
u0,...,un−1

n−1∑
k=0

g(x(k), u(k)) (60)

subject to

x(k + 1) = f(x(k), u(k)),
0 ≤ s(k) ≤ sf ,
vmin(k, s(k)) ≤ v(k) ≤ vmax(k, s(k)),
Ftrac,min(v(k)) ≤ Ftrac(k) ≤ Ftrac,max(v(k)),
Fb,min ≤ Fb(k) ≤ Fb,max,

 ∀k ∈ [0 .. n− 1]

x(0) = x0,
x(n) = xf .

(61)

The state of the vehicle at time step k+ 1 is given by the following function
based on the vehicle dynamics

f(x(k), u(k)) =

(
s(k) + δv(k)

v(k) + δ
M (Ftrac(k)− Fb(k)− Fres(k))

)
(62)

where Fres is the resistance force, expressed in (8). The technical limits of the
vehicle consist in bounding the input variables Ftrac and Fb as indicated in
(61). The function vmin and vmax define a convex constraint set that takes into
account the environment constraints associated with speed limits, traffic lights,
traffic signs, road curvature, etc. x0 = [s0, v0]T and xf = [sf , vf ]

T are the
initial and final constraints of the eco-driving problem.

The eco-driving problem considering Ftrac and Fb as control inputs is per-
fectly compatible with autonomous vehicles, which include the control in the
longitudinal and lateral directions, as it gives instructions to the powertrain.
However, it is expected from an eco-driving problem for human drivers to re-
turn an advisory speed profile the user can follow. In that case, the algorithm
may return at each time step k the speed instruction v(k + 1) calculated with
(62) instead of Ftrac(k) and Fb(k). Another solution is to directly formulate
the optimization problem considering the recommended maximal speed of the
vehicle as the control input (Ozatay et al., 2014a; Boehme et al., 2013).
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Sciarretta et al. (2015) present several algorithms aiming at solving the eco-
driving problem given in (60) – (62). These solutions can either be offline, i.e.
consider all road characteristics known in advance, or online, i.e. make use of
real-time estimations on a vehicle immersed in its environment.

Many solutions can be used for offline optimization: dynamic programming
(Dib et al., 2012), Pontryagin’s minimum principle (Sciarretta et al., 2015) or
calculating the analytical solution (Ozatay et al., 2014b).

Online solutions allow to acquire more information in real time about the
upcoming route. For example, Hellström et al. (2009) propose a method with an
on board optimizing controller taking into account the road slope. In the case
of connected vehicles, one may also imagine a control design taking into account
the prediction of the upcoming traffic conditions and accordingly updating the
vmin and vmax constraints of (61). The main limitation of these online solutions
is the computation time as they are expected to be compatible with real-time
execution.

In an urban environment, eco-driving is complex because of the uncertainty
of traffic. In particular, it is very difficult to know the traffic-light cycles in ad-
vance as some signalized intersections have a variable phase duration depending
on the traffic level. Intelligent transportation systems and traffic infrastruc-
ture connectivity are expected to reduce this uncertainty (Dimitrakopoulos and
Demestichas, 2010).

If the traffic-light cycles are unknown by the eco-driving algorithm, Ozatay
et al. (2014a) propose a method that considers traffic lights as stop signs in the
optimization problem. Naturally, the driver is free not to follow the advised
velocity given by the algorithm in the case of green at a traffic light.

To take into account the uncertainty about traffic-light cycles, Sun et al.
(2018) consider a stochastic cycle timing that adds to the red-light duration a
random variable. To generate more realistic signal timings, Mahler and Vahidi
(2012) introduce for each intersection a time-varying probability of green based
on measured data. In the optimization process, solutions that pass through
time intervals with high green probability are then naturally preferred.

In the case of known and deterministic traffic-light cycles, many algorithms
can be used to solve the eco-driving problem. For example, Miyatake et al.
(2011) present a method based on dynamic programming, De Nunzio et al.
(2016) use Dijkstra’s shortest path algorithm, HomChaudhuri et al. (2017) de-
velop a method with model predictive control, and Seredynski et al. (2013)
implement a genetic algorithm. The principle of these algorithms is to add a
constraint on the crossing time at intersections.

To improve the safety and avoid rear-end collisions, Zhang and Cassandras
(2018) propose a control strategy for vehicles crossing an urban signal-free in-
tersection. The principle is to generate acceleration profiles for the vehicles in
order to cross the merging zone in a limited time while minimizing the accel-
eration. This approach is adapted for autonomous vehicles, but the authors
consider a mixed traffic in their simulation (autonomous and human-piloted
vehicles) and analyze the impact of the proportion of autonomous vehicles on
their acceleration. Human-piloted vehicles are subject to priority rules.
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Eco-driving algorithms need information about the traffic situation in order
to be accurate. These data can be provided either by sensors or by a macroscopic
traffic model. Many parameters of the problem, like pedestrians or drivers
decision making, remain uncertain and unpredictable.

Autonomous vehicles raise the issue of their safety, but they offer prospects in
terms of energy savings as they can accurately track the instructions generated
by the eco-driving algorithm (Han et al., 2018). Moreover, if the autonomous
vehicles communicate with each other, they can reduce their energy consumption
by coordinating and forming micro-platoons along the route, even if they have
different origins and destinations (Lelouvier et al., 2017).

4.2. Eco-routing

Eco-routing consists in planning an emission or energy-minimal route, given
an origin and a destination. The function that attributes to each link the energy
consumption (or the emissions) of a vehicle traveling along this link is denoted
g.

In the case of static eco-routing algorithms, the function g depends only on
the link under consideration. In the general case, the function g depends on the
time t as the traffic situation in the network evolves over time.

Ericsson et al. (2006) present an eco-routing algorithm that classifies the
roads of the network into 6 groups, depending on their GPS data. Based on the
same data, a fuel consumption factor is calculated for each group. Then, the
function g assigns to each link its energy consumption, using the fuel consump-
tion factor and the length of the link. The authors introduce peak and off-peak
hours to model the evolution of the traffic during the day. Similarly, Boriboon-
somsin et al. (2012) propose to consider not only historical GPS data, but also
real-time vehicle velocity trajectories to estimate the energy consumption of
each link, i.e. build the function g.

Usually, eco-routing algorithms only take into account the energetic cost of
links and not the vehicle behavior at intersections. However, this aspect is cru-
cial in energy consumption estimation. To model the energy consumption at
intersections, De Nunzio et al. (2017) introduce a transition speed at the inter-
face between two links, given in (52). Traffic lights at intersections have also to
be considered. For example, Sun and Liu (2015) propose an eco-routing algo-
rithm based on a signalized traffic network in which the authors use a Markov
decision process to model the traffic.

To determine the energy-optimal route, heuristic searches can be imple-
mented (Nannicini et al., 2012). Kluge et al. (2013) propose another approach
as the authors solve a time-dependent eco-routing problem by using an extension
of Dijkstra’s algorithm.

In order to limit the computation time, eco-routing algorithms can consider
a constraint on the maximum travel time or distance to reduce the set of pos-
sible solutions. Another possibility is to implement multi-objective eco-routing
that minimizes not only the energy consumption but also the travel time and
distance traveled. In this case, the solution proposed is a Pareto-optimal route
(Bertsekas, 1995; De Nunzio et al., 2017).
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5. Traffic flow control design for emission and energy consumption
reduction

In Section 4, we presented vehicle-based control designs aiming at reducing
the emissions and energy consumption of a single vehicle. In this section, we
review some road-based control strategies to reduce the environmental impact
on a large spatial scale and for a large number of vehicles. These strategies
consist in regulating vehicular flow by controlling speed limits, traffic-light duty
cycles or offsets, split ratios at intersections or bifurcations, or mobile actuators
(e.g. autonomous vehicles). In the following, the control strategies are classified
according to the employed actuator. For each actuator, we review first the
strategies adapted to highways, and then the strategies that can be set up for
an urban environment.

The objective of the following frameworks is to determine via an optimization
method, at each control time step, the control inputs that minimize the traffic
emissions and energy consumption. Note that some of the papers presented
in the following do not explicitly minimize emissions or energy consumption.
Instead, they tend to mitigate congestion and eliminate shock waves through
density homogenization, vehicles interdistance equalization, etc. These methods
are likely to indirectly reduce emissions and energy consumption as they reduce
the number of acceleration and deceleration (Barth and Boriboonsomsin, 2008).
However, it is important to make careful analyses about the assessment of the
effect of congestion reduction on emissions and energy consumption. In fact,
their relationship depends on many factors such as the speed of the traffic (Fiori
et al., 2018).

5.1. Speed limits control

A first approach to regulate the flow in order to reduce the emissions and
energy consumption is to control speed limits. This corresponds to imposing
variable location-dependent speed limits across the road network.

Many works present variable speed limits adapted to highways. Some of
them do not aim at explicitly reducing emissions and energy consumption (e.g.
SPECIALIST method that eliminates shock waves (Hegyi et al., 2008)). An
increasingly common approach is to use reinforcement learning methods to op-
timize speed limits. Walraven et al. (2016) propose to follow this approach to
minimize the amount of time vehicles spend on the highway under consideration.

Some other works are explicitly oriented on emissions and energy consump-
tion reduction. Generally, they implement a multi-objective optimization that
minimizes also the travel time so that unrealistic solutions like speed limits
equal to zero are avoided. For example, Zu et al. (2018) express the energy con-
sumption minimization on highways as a convex quadratic optimization prob-
lem whose objective function is derived from the average speed-based COPERT
model. The density is expressed as a function of the speed, considering the
Greenshields fundamental diagram (cf. Table 3). Another approach is proposed
by Zegeye et al. (2012). The authors propose a control design applicable to

31



highways in which the speed limits are determined by Model Predictive Con-
trol (MPC). Because of the non-convex nature of the objective function, Zegeye
et al. (2012) use a multi-start local sequential quadratic programming method
to determine the control inputs.

MPC offers opportunities for traffic control as it is compatible with the un-
certainties of the traffic models, and it can also handle non-linear and non-convex
optimization. However, computation times have to be reduced to make MPC
tractable for real-time operation, especially when the number of control inputs
is too large. Hence, in order to use MPC for macroscopic traffic control without
significantly compromising the performance, Zegeye et al. (2012) propose to use
a parameterized MPC, more specifically called Rolling Horizon Parameterized
(RHP) control.

In RHP control, the control inputs are parameterized according to some
time-profiles and the optimization focuses on the parameters. The number of
parameters to optimize is smaller than the number of control inputs and the
set of possible solutions is generally smaller. This results in faster computation
times but also a loss of performance. For computation time issues, RHP control
is more suitable for real-time application than conventional MPC, but it still
may be too slow, depending on the considered system, the parameterization,
and the control time step.

Note that some authors propose to use approaches based on microscopic
traffic models to control variable speed limits on freeways. For example, Khon-
daker and Kattan (2015a) present an MPC-based approach to maximize mobil-
ity, safety and environmental benefit.

A hybrid approach proposed in Van den Berg et al. (2007) aims at controlling
speed limits for mixed urban and highway networks. The authors present an
MPC framework that minimizes the TTS.

In an urban environment, some works do not explicitly minimize emissions
and energy consumption. For example, Tajali and Hajbabaie (2018) present
an MPC framework aiming at harmonizing the speed within the network and
maximizing the outflows.

Other works explicitly aim at reducing emissions and energy consumption.
Taylor (2000) presents an approach to evaluate the impact of various speed
limits on emissions, energy consumption, and traffic congestion, without seeking
to optimize speed limits. De Nunzio et al. (2014) propose a method to find the
optimal speed limit of a road section. The traffic model considered is the VLM
presented in Section 3.1.2, and the same notations are used here. The control
input is vmax and the objective function is the weighted sum of the energy
consumption, the total time spent TTS, the instantaneous travel time ITT and
the total travel distance TTD. These new metrics are defined as follows

ITT (ρ) =
L− l
vmax

+
lρc

w(ρM − ρc)
(63)

TTD(ρ) = Tcycle

(
ρfvmaxL+ [w(ρM − ρc)− vmaxρf ]l

)
(64)
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TTS(ρ) = Tcycle (ρfL+ (ρc − ρf)l) (65)

A method based on shock waves theory to control speed limits in an urban
area has been proposed by De Nunzio and Gutman (2017) to optimize energy
consumption and TTS.

Panis et al. (2006) present a methodology to analyze the environmental im-
pact of speed limits in an urban environment. The authors use the microscopic
traffic model DRACULA and a data-based emission and energy consumption
model. A case study is conducted in Ghentbrugge, a neighborhood of the city
of Ghent, Belgium. Similarly, Liu and Tate (2004) propose to study the effect
of speed limits in an urban network by implementing Intelligent Speed Adapta-
tion (ISA). This system suggests, or imposes, speed limits to the driver through
in-vehicle electronic devices. Note that ISA only informs road users of the speed
limits, but does not calculate it independently for each vehicle. In other words,
it is just a communication device. In this study, the authors consider the speed
limits as inputs of the simulation, i.e. they can vary with locations but are fixed
over the simulation time period, and are not optimized. One may also consider
dynamic speed limits based on an optimization framework. The authors use the
DRACULA traffic model. One of the main limitations of this kind of approach
based on microscopic traffic models is that a lot of data are involved. They are
usually very difficult to obtain, and they cause long computation times.

Note that machine learning methods can be used to control variable speed
limits. For example, Zhu and Ukkusuri (2014) present a Reinforcement Learning
(RL) approach aiming at optimizing the total network throughput, the delay
time, and the emissions. The authors propose a case study conducted on the
Sioux Falls network.

A general overview of the theoretical background and the main strategies of
variable speed limits strategies can be found in Khondaker and Kattan (2015b).

5.2. Traffic lights control

Road-based ecological control designs based on different actuators can be
found in the literature. The main alternative is traffic lights control. On free-
ways, this control strategy, known as ramp metering, can be applied on on-
ramps, and it consists in regulating the traffic flow entering the highway.

Many ramp metering strategies do not explicitly optimize emissions and
energy consumption, but they aim at reaching a desired density. That is the
case of ALINEA method, presented in Papageorgiou et al. (1991), which uses a
feedback law and the traffic density measured downstream from the merge area.
Similarly, Pisarski and Canudas-de-Wit (2016) present an approach to balance
the vehicle density on the freeway by formulating the optimization problem as
a non-cooperative Nash game.

Some authors express the ramp metering control approach as an optimiza-
tion problem aiming at directly reducing emissions and energy consumption.
For example, Csikós et al. (2011) present a multi-objective optimization based
on a constrained LQ (Linear-Quadratic) control, minimizing both TTS and
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traffic emissions on freeways. Pasquale et al. (2015) formulate the ramp me-
tering control problem as a multi-objective nonlinear constrained optimization
problem considering the same objective function. These metrics are calculated
considering both the traffic in the on-ramp and in the mainstream. The emis-
sions are calculated using an average speed-based model based on COPERT.
The nonlinear optimization problem is solved with a specific version of the fea-
sible direction algorithm: the derivative backpropagation method RPROP. A
specific feature of this work is that the authors consider two classes of vehicles
(cars and trucks) individually controlled by the optimization process.

In an urban environment, many traffic signal timing optimization strategies
have been developed to control traffic-light cycles. Most of them do not explic-
itly optimize emissions and energy consumption. Instead, they minimize the
congestion by improving the throughput and reducing the delay. Some of these
strategies are: SCOOT (Split, Cycle and Offset Optimisation Technique) (Hunt
et al., 1981), SCATS (Sydney Coordinated Adaptive Traffic System) (Lowrie
et al., 1982), RHODES (Real-time Hierarchical Optimized Distributed Effec-
tive System) (Mirchandani and Head, 2001), TUC (Traffic-responsive Urban
Control) (Dinopoulou et al., 2006), max-pressure (Varaiya, 2013).

Grandinetti et al. (2018) formulate the signal timing control problem as
a CTM-based real-time convex optimization whose objective function is the
weighted sum of TTD, the density balancing and a regularization term that
penalizes abrupt changes in the control dynamics. The density balancing term
aims at homogenizing the density over the network. The algorithm is split into
subproblems whose sizes are independent of the network size, thus allowing for
scalability.

Some authors explicitly consider emissions and energy consumption reduc-
tion. For example, Han et al. (2016) express the signal timing optimization in
an urban environment as an LTM-based Mixed Integer Linear Program (MILP)
optimizing both the delays and the emissions. Emissions are calculated as a
function of the density of the links, by calculating the spatial and the tempo-
ral accelerations defined in Section 3.2.2. Similarly, Osorio and Nanduri (2015)
propose a meta-model that considers the simulations of TTS and fuel consump-
tion as well as their analytical approximations to solve the urban signal timing
optimization using a simulation-based optimization algorithm.

MPC can be implemented in a traffic light control framework. For example,
Lin et al. (2013) present a method adapted for urban traffic networks based on
MPC. The authors consider a dynamic fluid-based meta-model associating the
S model and VT-micro to characterize emissions (cf. Section 3.2.2). The ap-
proach aims at reducing both congestion and emissions as the objective function
considers the weighted sum of TTS and total emissions. Jamshidnejad et al.
(2018) propose a similar approach based on a gradient-based optimization ap-
proach. The authors consider an extension of the S traffic model. The objective
function considers the weighted sum of TTS, total emissions, and the absolute
difference of two temporally successive control inputs, in order to avoid abrupt
variations.

A more precise approach can be found in Stevanovic et al. (2009). The
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authors propose to simulate the traffic dynamics through a microscopic traffic
model, namely VISSIM, and to calculate the emissions by using the CMEM
emission and energy consumption model (cf. Section 2.2). A signal timings op-
timization is then conducted using VISGAOST, an optimization program based
on the stochastic nature of genetic algorithms. Although the authors propose
a case study on a road network composed of two suburban arteries, an online
optimization based on this method is not possible because of lengthy calculation
times. But such methods can be implemented for an offline optimization.

RL methods can also be implemented to control traffic lights in an urban
network. For example, Khamis and Gomaa (2012) present a framework that
considers the microscopic dynamics of vehicles. The authors propose to approx-
imate the energy consumption metric by the average number of vehicles stops,
assuming that this performance index can be directly related to ecological issues.

5.3. Coordinated speed limits and traffic lights control

To improve the results of road-based control, it is possible to coordinate
actuators such as speed limits and signal timing control.

For freeways control, Hegyi et al. (2005) propose a method to optimize TTS,
without considering emissions and energy consumption. The authors develop
an MPC framework, in which the control inputs are speed limits and ramp
metering.

Other authors have used coordinated speed limits and signal timing control
to reduce emissions and energy consumption. For example, Zegeye (2011) op-
timizes TTS, fuel consumption, and NOx emissions via MPC. A very similar
approach is presented in Liu et al. (2017). The authors also use MPC to control
both ramp metering and speed limits on a highway section, and the objective
function is the weighted sum of TTS and total emissions. A specific feature of
this work is that multiple classes of vehicles are considered.

A problem to study in an urban environment is bandwidth maximization
along an artery. Assuming that all the traffic lights have a common cycle, the
problem of bandwidth maximization consist in maximizing the vehicle through-
put along the artery under study, by traffic lights offset control. Usually, the
actuators are only the traffic lights offset, like presented in Mehr et al. (2018) in
which the authors express a nonlinear optimization problem and convert it to a
MILP. The bandwidth maximization problem optimizes the flow of vehicles but
does not explicitly reduce the emissions and energy consumption. Therefore,
De Nunzio et al. (2015) propose a formulation as an optimization problem in
which the objective function contains also terms approximating TTS and energy
consumption. In this work, the authors use coordinated actuators, namely speed
limits and signal timing controls. None of the bandwidth maximization strate-
gies presented is based on a traffic model. Hence, they work best in steady-state
under-saturated traffic conditions.

5.4. Dynamic routing

Another solution to reduce emissions and energy consumption is to use dy-
namic routing. This method consists in redistributing the traffic demand over
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the network in a more efficient way by controlling the split ratios. In practice,
the controller predicts the optimal routes for the main traffic flow directions,
and the associated recommendations are communicated to the road users by
the mean of in-vehicle devices, radio, or variable message signs (Treiber and
Kesting, 2013a).

In the literature, the control objective of dynamic routing problems is usu-
ally to reach system-optimum or user-equilibrium. The system-optimum corre-
sponds to the minimum TTS and the user-equilibrium is characterized by a den-
sity distribution for which all used routes between the same origin-destination
pair have the same travel time (Xu et al., 2011).

Dynamic routing could also be used to directly reduce emissions and energy
consumption. For example, Luo et al. (2016) propose a real-time en-route diver-
sion control strategy that minimizes TTS, total emissions and fuel consumption.
The route recommendation provided by variable message signs is considered as
the control variable. The split ratios are calculated from the route recommenda-
tion considering a drivers’ compliance rate which is supposed to be known. The
route diversion control uses MPC based on a parallel Tabu Search algorithm.

Emission pricing can also be used as a dynamic routing method aiming at
influencing route selection in order to reduce emissions and energy consumption.
This method can be static or dynamic. Dynamic road pricing studies based on
emissions and energy consumption are reviewed in Wang et al. (2018).

5.5. Mobile actuators

Most of the strategies presented above are motionless in the sense that traffic
lights, ramp metering, message signs and speed limit signs exert commands at a
fixed location. A new approach is to consider mobile actuators, namely vehicles
that could be controlled to have an impact on the surrounding traffic. Typically,
this corresponds to the injection of some autonomous vehicles in the traffic flow
with the objective of stabilizing it.

Stern et al. (2019) present how this method can reduce the emissions of the
whole traffic by dampening stop-and-go waves. To validate this approach, the
authors present the results of field experiments in which vehicle velocity and
acceleration data are collected. These experiments use a single autonomous
vehicle to dampen traffic waves on a ring road with 20 other human-piloted
vehicles. The results are coherent with the simulations of Wu et al. (2018). Yang
and Jin (2014) present a similar control based on inter-vehicle communication.

Autonomous vehicles present opportunities in terms of traffic stabilization,
emissions, and energy consumption. They also induce a smoother driving and
fewer braking events. But the results presented in Stern et al. (2019) hold for
situations with traffic waves only.

A country-level evaluation of the impact of autonomous vehicles on the en-
vironment can be found in Liu et al. (2019). The authors consider different
scenarios regarding the autonomous vehicle penetration rate by 2050.
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6. Conclusion and outlook

The current situation regarding pollutant emissions and energy consumption
of road transportation is alarming both for environmental and health reasons.
Ecological traffic management appears to be a promising lever in the long-term
to reduce the environmental impact of transportation.

This paper surveys the existing emission and energy consumption models,
as well as the traffic control strategies to reduce them, either by considering
vehicles independently, or by considering traffic flows. The main advantages
and drawbacks of the different approaches are highlighted.

The first step to estimate emissions and energy consumption is to measure,
or simulate, the kinematics of vehicles, that can be either static or dynamic.
Traffic models can be implemented on a microscopic or macroscopic scale. The
complexity of large scale road networks is essentially due to the processing of
junctions, and the choice of temporal and spatial discretizations, which represent
a crucial point.

From the traffic kinematics, emissions and energy consumption can be esti-
mated using either data or physics-based approaches. Thus, many associations
of models are possible. For complexity reasons, some are more suitable than
others. In order to go large scale, the objective is to find a balance between
accuracy and computation time, which depends mainly on the use of the frame-
work (e.g. compatibility with control methods). For example, a question is
whether the additional complexity introduced by a second-order traffic model
significantly improves the accuracy of a first order model in depicting the traffic
behaviors that impact energy efficiency. Similarly, a microscopic approach to
describe large-scale emissions and energy consumption would provide the best
estimations but it would involve a lot of data that can be difficult to obtain
and process, the need to precisely calibrate the model, and a sharp increase in
computation times. However, this approach can be useful for offline validation
purposes.

Traffic management can be carried out by controlling a single vehicle to
reduce its emissions and energy consumption, or by acting on a large spatial
scale with actuators such as speed limits, traffic lights, dynamic routing or
autonomous vehicles. Usually, a multi-objective optimization is considered to
control the traffic with ecological concerns in order to ensure realistic solutions.

Many articles propose traffic control designs that do not aim at reducing
emissions and energy consumption but more classic metrics such as the distance
traveled, the delays or the total time spent in the networks. These methods can
be adapted to multi-objective control problems considering ecological issues,
which offers promising opportunities in this research field. Also, note that some
control designs aiming at improving traffic fluidity can have a positive impact
on environmental metrics as they reduce the number of stops and accelerations.

Some clear trends can be identified in the ecological approach of traffic con-
trol. For example, autonomous vehicles are considered the next major techno-
logical advance in the transport sector. Not only do they have an important
role to play in road safety, but they can also reduce the impact of transport
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on the environment by reducing vehicle ownership and improving energy con-
sumption rate (Liu et al., 2019). However, at system-wide level, the effect of
autonomous vehicles on travel demand and energy efficiency is very uncertain
and might increase the total fuel consumption (Brown et al., 2014; U.S. De-
partment of Energy, 2018). Autonomous vehicles are a lever able to influence
and regulate the surrounding traffic. Analyses of the best penetration rate of
connected and automated vehicles in freeway traffic to improve global energy
performance are recently appearing (Rios-Torres and Malikopoulos, 2018), and
further exploration of the effects in an urban environment should be conducted.

Connected vehicles able to communicate with the infrastructure are also
expected to become more numerous, which would considerably increase the
available data. Moreover, computing capabilities have recently been greatly im-
proved. These aspects are expected to improve the efficiency of control strategies
and make microscopic approaches a more interesting option.

Machine learning methods are also a major trend both for estimation and
reduction purposes of emissions and energy consumption. Neural networks are
becoming more and more precise to estimate emissions and energy consumption
from vehicle operating variables. They are a good alternative to physics-based
approaches because of the high non-linearity of emissions and energy consump-
tion. RL approaches are an important trend in traffic control. They can be
implemented considering different actuator types.

MPC seems to be very popular among traffic control methods as it is compat-
ible with the uncertainties of the traffic models, and it can also handle non-linear
and non-convex optimization.

Some gaps can be identified concerning the ecological approach of traffic
control. One of them is that obtaining large-scale data is difficult because most
vehicles are still not fully connected. The issue of missing data imputation has
been addressed by some authors (Qu et al., 2009).

Moreover, experiments in traffic control are very long and expensive to put
in place. Hence, most approaches are not validated by real experimentation.
However, more and more cities are taking action to reduce pollutant emissions.
For example, many cities are generalizing the speed limit to 30 km/h in most
streets (Bordarie, 2017). Similarly, old diesel vehicles are being banned from
many large cities, especially in Germany (Möhner, 2018). These strong mea-
sures could be associated with a dynamic control of traffic aiming at explicitly
reducing emissions and energy consumption.

Another identified gap is that models intended for large-scale control pur-
poses are limited by computation time. A major issue is their level of detail
(e.g. approximation of the acceleration of macroscopic traffic models, process-
ing of junctions in road networks). This determines the compromise between
accuracy and computation time, which inevitably leads to approximations. In a
hypothetical future in which many vehicles would be connected or autonomous,
the question of data processing from a computational point of view for control
purposes would also certainly arise.

Concerning control strategies, a moot point is to find the metric to optimize
along with the ecological issues. Depending on the objective, many approaches
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are possible (e.g. minimize the travel duration or distance, homogenize the
density or the speed).

An interesting aspect to study would be the impact of traffic congestion
on emissions and energy consumption. For example, it could be interesting to
analyze in detail the most impacting traffic phenomena on emissions and energy
consumption.

The best models for emission and energy consumption reduction for large-
scale road networks are probably yet to be found. To control the traffic with
ecological concerns, one may explore the use of new actuators, or coordinate
them at a large spatial scale.
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