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Self-supervised learning for autonomous

vehicles perception: A conciliation between

analytical and learning methods
Florent Chiaroni?‡, Mohamed-Cherif Rahal?, Nicolas Hueber†, and Frédéric Dufaux‡

Index Terms

Autonomous vehicle perception, self-supervised learning, semi-supervised learning, scene

understanding.

I. INTRODUCTION

THE interest for autonomous driving has continuously increased during the last two decades.

However, to be adopted, such critical systems need to be safe. Concerning the perception

of the ego-vehicle environment, the litterature has investigated two different types of methods. On

the one hand, analytical methods, also referred to as hand-crafted, are generally designed from

end-to-end. On the other hand, learning methods aim to design their proper representation of the

observed scene.

Analytical methods have demonstrated their usefulness for several tasks, including the keypoints

detection [1], [2], optical flow, depth map estimation, background subtraction, geometric shape

detection, tracking filtering, and simultaneous localization and mapping (SLAM) [3]. Those

methods have the advantage to be explainable from end-to-end. However, it is difficult to apply

them on high dimensional data for semantic scene analysis. For example, identifying the other

users present in an urban scene requires to extract complex patterns from high dimensional data

captured by camera sensors.
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Learning methods are nowadays the most adapted in terms of prediction performances

for complex pattern recognition tasks [4] implied in autonomous vehicles scene analysis and

understanding. However, the state-of-the-art results are often obtained with large and fully labeled

training datasets [5]. Hand-labeling a large dataset for a given specific application has a cost.

Another difficulty is to aprehend from end-to-end the learned representations. To overcome the

former limitation, transfer learning and weakly supervised learning methods have appeared. Some

of them can exploit partially labeled datasets [6], [7], or noisy labeled datasets [8], [9]. Concerning

the latter problem, under mild theoretical assumptions on the learning model, we can interpret the

predicted outputs. For instance, it is possible to automatically detect the training overfitting [10],

to estimate the fraction of mislabeled examples [11], or estimate the uncertainty in the prediction

outputs [12].

Another challenge is to prevent unpredictable events. Indeed, some scenes unseen during

the training can appear frequently in the context of the autonomous vehicle. For instance, an

accident on the road can change drastically the appearance and the location of potential obstacles.

Thus, even if it is possible to predict when the model does not know what it observes, it may be

interesting to confirm it through an analytical process and to adapt the learning model to this

novel situation.

It turns out that self-supervised learning methods (SSL) have shown in the litterature the

ability to address such issues. For instance, the SSL system in [13] won the 2005 DARPA Grand

Challenge thanks to its adaptability to changing environments. SSL for autonomous driving

vehicles perception is most often based on learning from data which is automatically labeled by

an upstream method, similarly to feature learning in [14]. In this paper, we discuss the following

aspects of SSL:

• abilities such as online adaptation to the environment evolution, self-supervised evaluation, un-

necessity of hand-labeled data, fostering of multimodal techniques [13], and self-improvement.

For example, iterative learning reduces progressively the corrupted predictions [15];

• applications enabled by those advantages such as depth map estimation [16], [15], temporal

predictions [17], moving obstacles analysis [18], long range vision [13], [19]. For example,

the SSL system in [19] learns to extrapolate the appearance of obstacles and traversable

areas observable by stereo-vision in a short-range, to identify the long-range obstacles and

traversable areas which cannot directly be detected by stereo-vision.

While the cited SSL techniques are respectively designed for a specific use case application,
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(a) (b) (c)

Fig. 1. Some self-driving cars. (a) is the self-driving car Stanley that won the DARPA Grand Challenge using a SSL

system equipped with a calibrated monocular camera and a LIDAR sensor [13]. (b) is the autonomous mobile robot

LAGR. It integrates another SSL vision approach [19] able to identify online the obstacles and road segmentation from

a short-range stereovision up to a long-range monocular vision. (c) is the car equipped with the perception sensors

used to generate the KITTI dataset [20].

they present some similitudes. In particular, a shared underlying idea is to: Learn to predict,

from a given spatio-temporal information (e.g. a single camera frame [13], [19], [21], [16],

[22]), something (e.g. traversable area segmentation [13], [19], depth estimation [16], or moving

obstacles segmentation [21], [22]) that can be automatically labeled in another way using

additional spatio-temporal information (e.g. stereo-vision camera [19], [16], a temporal sequence

[23], or depth sensor [13]).

We propose to highlight those interdependencies hereafter. In this way, we aim at providing to

the reader some analytical, learning and hybrid tools which are transversal to the final application

use cases. In addition, the limitations of the presented frameworks are discussed, as well as the

perspectives of improvement for self-evaluation, self-improvement, and self-adaptation, in order

to address future challenges, as the research actively evolves in the autonomous driving area.

The outline of this article is as follows. After this introduction, we present in Sec. II and

III some analytical and learning perception tools relevant to SSL. We follow in Sec. IV by the

presentation of existing SSL techniques for some autonomous driving perception applications.

Finally we will end by a discussion focusing on limitations and future challenges in Sec. V.

II. ANALYTICAL METHODS

Before the recent growing interest around deep learning methods, many analytical methods

(without learning) have been proposed, bringing baseline reference tools for multiple challenging

perception tasks in the context of autonomous driving. Some of the most investigated tasks

considered in this article are briefly introduced hereafter:



SUBMITTED - IEEE SIGNAL PROCESSING MAGAZINE - SPECIAL ISSUE ON AUTONOMOUS DRIVING 4

• Keypoints feature detection. Before analyzing the sensor data from a relatively high point

of view, analytical techniques often require to perform spatial or temporal data matching

using feature detection methods. More specifically, these methods consist in detecting and

extracting local features in the sensor data. These hand-crafted features can be small regions

of interest [24]. In order to enable the matching of sensor data, captured from the same

scene with different spatial or temporal points of view, such features need to be as invariant

as possible to scale, translation, and rotation transformations. The most common sensor data

is an image captured by a camera. In this case, competitive feature detectors include SIFT

[1], SURF [25], ORB [26]. When a depth sensor is also available, the depth information

can be exploited in order to further improve feature detection. For instance, the TRISK

method [2] is specifically designed for RGB-D images. More recently, LIDAR has enabled

to capture of point clouds. To tackle this new form of sensor data, some feature detection

techniques are derived from image ones (e.g. Harris and SIFT). Alternatively, some new

approaches such as as ISS [27] are exclusively designed for point clouds. From a practical

point of view, implementations of common image feature detectors can be found in image

libraries as OpenCV1, and in point clouds libraries as PCL2. Feature detectors are exploited

by several autonomous driving perception techniques requiring matching of sensor data,

including optical flow, disparity map, visual odometry, SLAM, tracking techniques.

• Optical flow is a dense [28] or sparse [29] motion pattern. It can be obtained by computing

points or features transformations throughout a temporal images sequence captured from a

static or mobile ego-camera point of view. In the context of autonomous driving perception,

optical flow can be interesting for background subtraction, motion estimation of the ego-

vehicle and surrounding moving obstacles as proposed by Menze et al. [30]. It can also be

used, in the absence of additional information, for relative depth map estimation [31] of the

surrounding static environment.

• Depth map estimation aims at providing image pixels depths, namely the relative or absolute

distance between the camera and the captured objects. Several techniques exist to address

this task. One of the most common and effective approaches is to compute a disparity map

from a stereo-camera. Combined with the extrinsic cameras parameters, such as the baseline

distance separating both cameras, the disparity map can be converted into an inversely

1https://opencv.org/
2http://pointclouds.org/
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proportional absolute depth map. Another approach is to project LIDAR points on some of

the camera image pixels. It also requires extrinsic spatial and temporal calibrations between

both sensors. As mentioned previously, a relative depth map can also be directly deduced

on the move from the optical flow obtained with a moving camera in a static scene. Under

some assumptions, the absolute depth map can then be obtained, for example with additional

accurate GPS and IMU sensors information concerning the absolute pose transformations

of the moving camera. The depth map can also be directly obtained with some RGB-D

sensors. Depth map is interesting for identifying the 3D shape of objects in the scene. More

specifically, in autonomous driving, an absolute depth map is relevant for estimating the

distance between the ego-vehicle and detected obstacles. However, we can note that absolute

depth map estimation is constraining compared to relative depth map, as at least two jointly

calibrated sensors are necessary. Consequently, this has a relative higher financial cost in

production. Moreover, extrinsic calibrations can be sensitive to the ego-vehicle physical

shocks. Finally such sensor fusions can only offer limited long-range depth estimation, due

to fixed baselines with stereo cameras, or sparse point cloud projections with dispersive

LIDAR sensors. Nevertheless, relative depth map can be sufficient to detect obstacles and

traversable areas. For example, considering the traversable area as a set of planes in the

depth map 3D point cloud projection, some template matching techniques can be used [19].

• Geometric shape detection techniques such as Hough transform and RANSAC [32] initially

aimed at identifying some basic geometric shapes such as lines for lane marking detection,

ellipses for traffic lights detection, or planes for road segmentation. In order to deal with

sophisticated template matching tasks, techniques such as the hough transform have been

generalized (GHT [33]) for arbitrary shape detection. Nonetheless, these techniques require

an exact model definition of the shapes to detect. Consequently, they are sensitive to noisy

data and are impractical for detection of complex and varying shapes such as obstacles

encountered in the context of autonomous driving. Indeed, such objects typically suffer from

outdoor illumination changes, background clutter, or non-rigid transformations.

• Motion tracking aims at following some data points, features or objects through time.

Tracking filters, such as the Extended Kalman Filter (EKF), predict the next motion using the

prior motion knowledge. Conversely, objects tracking can be achieved by features or template

matching between consecutive video frames. Pixel points and features tracking is interesting

for dense or sparse optical flow, as well as visual odometry estimation [34]. Obstacle objects
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tracking is very relevant in autonomous driving for modeling or anticipating their trajectories

into the ego-vehicle environment. However, on the whole, while some techniques integrate

uncertainty, they remain limited when dealing with complex real motion patterns. Pedestrians

and drivers behaviour prediction typically requires knowledges about the context. Moreover,

mobile obstacles appearence can drastically change depending on their orientation.

• SLAM techniques. The complementarity between the above enumerated concepts has

been demonstrated through the problem of simultaneously localizing the ego-vehicle and

mapping the surrounding environment (SLAM) [3]. Features matching provides the pose

transformations of the moving ego-vehicle. In turn, 3D scaled projections of depth maps

combined with the successive estimated poses provide the environment mapping. Tracking

filters and template matching can offer some robustness against sensor data noise and drifting

localization estimation, as respectively proposed in EKF SLAM [35] and SLAM++ [36]

approaches.

To summarize, analytical methods can successfully deal with several perception tasks of significant

interest in the context of autonomous driving. In particular, a self-driving vehicle embedding

these techniques is able to carry out physical analysis such as the 3D reconstruction modelling

of the environment, and dynamic estimations concerning the ego-vehicle and the encountered

surrounding mobile obstacles. These techniques have the advantage to be end-to-end explainable

in terms of design. This facilitates the identification and prevention of failure modes. However,

some critical limitations persist nowadays:

• A lack of landmarks and salient features combined with the presence of dynamic obstacles

may entail a severe degradation of the feature detection and matching.

• Severe noisy sensor data induces the same risks.

• It is impossible to achieve dense real-time semantic scene analysis of environments including

a wide range of complex shape patterns.

Learning to recognize and predict complex patterns with generalization abilities aims at overcoming

such issues, as developped in the next section.

III. LEARNING METHODS

Learning methods have demonstrated state-of-the-art prediction performances for semantic

tasks during the last two decades. Autonomous driving is a key application which can greatly

benefit from these recent developments. For instance, learning methods have been investigated
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in this context, for identifying the observed scene context using classification, for detecting the

other road users surrounding the ego-vehicle, for delineating the traversable area surface, or for

dynamic obstacles tracking.

• Classification: It aims at predicting, for a given input sensor sample, an output class label.

In order to deal with high dimensional data containing complex patterns, the first stage is

generally to extract relevant features using hand-crafted filters or learned feature extractors.

For image feature extraction, the state-of-the-art techniques use Convolutional Neural Network

(CNN) architectures. The latter are composed of a superposition of consecutive layers of

trainable convolutional filters. Then, a second stage is to apply a learning classifier on the

feature maps generated as output of these filters. Some commonly used classifiers are the

Support Vector Machine (SVM) and the Multi-Layer Perceptron (MLP). Both require a

training which is most of the time performed in a fully supervised way on labeled data. The

CNN and MLP deep learning models are trained by backpropagating the output prediction

error on the trainable weigths up to the input. Concerning the evaluation of these models, a

test dataset is required, which is labeled as well. The Accuracy metric is commonly used

for evaluating the prediction performances, while the F1-Score, an harmonic mean of the

precision and recall, is relevant for information retrieval. An image classification application

example in autonomous driving is for categorizing the context of the driven road [37].

• Detection: It generally identifies in a visual sensor data the regions of interest, which in

turn can be classified. A commonly used strategy invariant to scales and rotations applies

an image classifier on sliding windows over an image pyramid. Then, several advanced

competitive image detection techniques as Faster R-CNN [38], or Yolo [39] have been more

recently developped, and have been adapted for road users detection [37].

• Segmentation: As its name suggests, this task provides a segmentation of visual sensor data.

Three distinct problems can be considered:

– Semantic segmentation assigns a semantic class label to each pixel. An example is

road segmentation [37]. State-of-the-art methods generally present a fully convolutional

network (FCN) autoencoder (AE) architecture connecting in different ways the encoding

part with the decoding part [40]. A standard AE is a generative model composed of

an encoder and a decoder learning models which are jointly trained to reconstruct as

output the input. In the discussed image segmentation context, it is trained to predict as

output a per-pixel classification of the input image pixels.
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– Instance segmentation aims at detecting and segmenting each object instance. Examples

include foreground segmentation and object detection of potentially moving obstacles

[41].

– Panoptic segmentation [4] is a unification of the two previously mentioned segmentation

tasks.

Some models dealing with these segmentation tasks have been adapted for performing

per-pixel regression tasks such as dense optical flow estimation [42] or depth map estimation

[43].

• Temporal object tracking follows the spatial location of selected objects along a temporal

data sequence. State-of-the-art learning techniques use variants of the Recurrent Neural

Network (RNN) model [44]. Compared to standard filtering techniques, RNNs have the ability

to learn complex and relatively long-term temporal patterns in the context of autonomous

driving.

While demonstrating competitive prediction performances, the above mentioned learning

techniques are fully supervised. In other words, they have in common the limitation to require

large-scale fully annotated training datasets. In order to reduce this issue, some other learning

strategies have been investigated:

• Weakly supervised learning: These techniques can be trained with a partially labeled

dataset [6], and eventually with a fraction of corrupted labels [8], [9]. Advantageously, these

approaches drastically reduce the need of labeled data.

• Clustering: These approaches can be defined as an unlabeled classification stategy, such

that it aims at gathering without supervision the data depending on their features similarities.

A huge advantage is that no labels are required. However, if it is necessary to associate

the clusters obtained with humanly understandable semantic meanings, then a final step of

ponctual hand-labeling per-cluster is required. State-of-the-art methods [45] dealing with

complex real images mix trainable feature extractors with standard clustering methods such

as a Gaussian Mixture Model (GMM) [46].

• Pre-training: Some relevant generic visual feature extractors can be obtained by performing

a preliminary pre-training of the CNN model on unlabeled or labeled data coming from the

target application domain [19] or even from a different one [47].

We note also that in order to aprehend from end-to-end the learned representations, it is possible

to identify the training overfitting [10] of deep learning models without validation test supervision.
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Furthermore, some learning approaches can estimate the prior of a noisy labeled training dataset

[11] or the model uncertainty [12], [48].

Now that some considered analytical and learning methods have been treated separately, the

next section shows the complementarity between these two different types of approaches through

several Self-Supervised Learning (SSL) systems developped in the context of the autonomous

driving vehicle perception.

IV. SSL AUTONOMOUS DRIVING APPLICATIONS

In the context of autonomous driving applications, we can organize the Self-Supervised Learning

(SSL) perception techniques in two main categories:

• High-level scene understanding:

– road segmentation in order to discriminate the traversable path from obstacles to be

avoided

– dynamic obstacles detection and segmentation

– obstacles tracking and motion anticipation predictions

• Low-level sensor data analysis, with a particular focus on:

– dense depth map estimation, which is a potentially relevant input data information for

dealing with the previously enumerated scene understanding challenges.

A. Scene understanding

In order to navigate safely, smoothly, or fast when it is required, a self-driving car must perform

a path planning adapted to the surrounding environment. The planned trajectories must pass trough

traversable areas, while ensuring that surrounding static and dynamic obstacles are avoided. For

this purpose, it is necessary to detect and delineate them in advance, but also to anticipate future

positions of the mobile ones.

1) Traversable area segmentation: A traversable area can be identified by performing its

segmentation over the mapped physical environment. Two different strategies have been successively

applied. The former is mainly dedicated to offroad unknown terrain crossing. It entails fully

self-supervised training (i.e. without hand-labeled data) systems. The latter, that appeared more

recently, is dedicated to urban road analysis. The main difference is that the SSL online systems

developped are initialized with a supervised pre-training on hand-labeled data. This preliminary

step aims at replacing the lack of landmarks on urban asphalt roads having uniform textures, by

prior knowledge.
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SSL offroad systems: a road segmentation is proposed in [49] by exploiting temporal past

information concerning the road appearence on monocular camera images. It considers the close

observable area on the current moncular camera frame in front of the car as a traversable road.

Next, it propagates optical flow on this area from the current frame up to the past captured frames.

Then, it can deduce this close area appearence when it was spatially farther in the past. This

past appearence of the actual close traversable area is exploited for producing horizontal line

templates using the SSD (sum of squared differences) matching measure. It is combined with a

hough transform-based horizon detector to define the image horizontal lines of pixels on which

to apply the horizontal 1-D template matching. Next, with the assumption that the actual distant

traversable area has roughly the same appearence as the actual close area had in the past, the 1D

templates are applied over the current frame to segment the distant traversable area. If the best

template matching measure changes abruptly, then it is supposed that the ego-vehicle is going out

of the road or that the road appearence has suddenly and drastically changed. The approach in

[49] is relevant for providing a long-range road image segmentation using a monocular camera

only. However, a major issue is the critical assumption considering the close area as always

traversable. If the road aspect changes suddenly, then it is impossible with this SSL strategy to

correctly segment this novel road region.

Another SSL road segmentation approach is proposed in [13] dealing naturally with this issue.

Instead of using temporal information with the assumption that the close area is always traversable,

and in addition to the monocular camera, a LIDAR sensor is used for detecting the obstacles close

to the ego-vehicle. Projected on the camera images, LIDAR depth points enable to automatically

and sparsely labelize the close traversable area on images pixels. Then, a learning gaussian mixture

model (GMM) is trained online to recognize the statistical appearence of these sparse analytically

labeled pixels. Next, the learning model is applied on the camera pixels which cannot benefit

from the sparse LIDAR points projection, in order to classify them as road pixels or not. In this

way, the vehicle can anticipate the far obstacles observable in the monocular camera images, but

not in the dispersive LIDAR data. This SSL system enabled the Stanley self-driving car, presented

in Figure 1(a), to win the DARPA Grand Challenge3 by smoothing the trajectories and increasing

the vehicle speed thanks to the anticipation of distant obstacles. This highlighted the interest of

combining multiple sensors in a self-driving car.

More recently, with the growing interest for deep learning methods, Hadsell et al. [19] propose to

3https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
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use a CNN classifier model instead of the earlier template matching or GMM learning techniques.

Moreover, an additional paired camera (i.e. stereo-camera) replaces the LIDAR sensor as in

[13]. As offroad terrain traversable areas are not always completely flat, a multi-ground plane

segmentation is performed in [19], on the short-range point cloud projection, obtained with the

stereo-vision depth map, by using a hough transform plane detector. This technique provides

several automatic labels for image patches which are observable in the short-range region. Then,

addressing the long-range vision segmentation, the authors firstly train a classifier to predict patches

labels automatically estimated within the short-range region. Next, the trained classifier predicts

the same labels on the long-range observable image region patches by using a sliding window

classification strategy. Concerning the prediction performances, the authors have demonstrated that

the online fine tuning of the classifier and the offline pre-taining of its convolutional layers using

an unsupervised autoencoder architecture can improve prediction performances. Moreover, an

interesting point to note is that instead of using uncertainty or noisy labeled learning techniques, the

authors created transition class labels for the boundary image surfaces separating the obstacles from

the traversable area. Finally, from an initial 11-12 meters short range stereo-vision, the developped

SSL system was able to extrapolate a long-range vision up to 50-100 meters. Nonetheless, in order

to estimate the short-range stereo 3D reconstruction, including planar sets of points corresponding

to the offroad traversable area, this approach requires the presence of salient visual features in

the road regions. This may be impractical for instance on the uniform visual texture of asphalt

roads commonly encountered in urban scenarios, as illustrated in Fig. 2.

(a) (b)

Fig. 2. Salient features location on urban ego-vehicle environment. (a) is an arbitrary frame, extracted from the KITTI

dataset [20], illustrating an urban asphalt road with the surrounding environment. (b) shows keypoints detected on the

left input image using SIFT detector. Keypoints distribution is dense on the offroad region observable in the image

right side, and sparse on the asphalt road observable in the image center.

Pre-trained SSL urban road systems: Some other online SSL techniques deal with this issue

by exploiting a classifer pre-trained offline on hand-labeled data [50], [51].

The automatic labeling step previously performed with analytical methods is replaced in [50] by
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an SVM classifier pre-trained offline using a human annotated dataset. In this way, this approach

is also compatible with uniform asphalt road surfaces. However, compared to the previously

presented SSL offroad approaches, it requires hand-labeled data.

A hybrid path segmentation technique is proposed in [51]. It combines a 3D traversability cost

map obtained by stereo-vision, and an SVM classifier pre-trained offline over a human annotated

dataset. Six different ground surfaces are considered to train the classifier: asphalt, big gravel,

small gravel, soil, grass, bushes and stones. The strategy is as follows. SVM predictions refine

online the cost map concerning the flat regions. In turn, the 3D traversability cost map obtained

without supervision is exploited to update online some mis-classifications of the pre-trained

classifier.

To sum up regarding these road segmentation SSL systems, we can notice that while the sensor

data and the analytical and learning models are different for each approach, the online process

remains essentially the same. The first stage always consists in generating automatic labels by

using additional temporal [49], sensor [13], [19], or prior knowledge information [50], [51]. Then,

a second stage trains or updates online a classifier, such that it can be used to provide a long-range

or refine road segmentation. Overall, while the short-range visions based on depth sensors aims

at ensuring the reliable detection of close obstacles, using such SSL vision techniques in static

environments directly enables to anticipate the path planning evolution. Consequently, it is possible

to increase the maximum speed velocity of the self-driving car [13], while preserving smooth

trajectories [19].

Now that we have presented some SSL techniques dealing with limited depth sensors in static

environments, we focus on dynamic obstacles, as they represent the other potential road users

interacting with the ego-vehicle in the shared surrounding environment.

2) Dynamic obstacles analysis: We start by presenting an SSL approach [21] based on a binary

per-pixel segmentation of dynamic obstacles. Then, we present its extension [18] for dynamic

obstacles instance segmentation, such that the different road users can be separated.

SSL for dynamic obstacles per-pixel segmentation: a per-pixel binary segmentation of

dynamic obstacles is proposed in [21], using temporal image sequences captured with a monocular

camera installed on a mobile urban vehicle. The approach firstly separates sparse dynamic

keypoints features from the static ones, by applying a RANSAC technique over the optical

flow between consecutive frames. Then, the automatically produced per-pixel dynamic labels

are transferred as input of a learning Gaussian Process (GP) model. Next, the learned model
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extrapolates this knowledge to label as dynamic the pixels following the same visual propoerties

than the ones previously automatically identified as dynamic. The whole process is achieved during

an online procedure. The system is evaluated on a hand-labeled dataset. This SSL strategy has

the advantage to provide the background subtraction from a moving camera, while extrapolating

a dense per-pixel segmentation of the dynamic obstacles from sparse detected keypoints only.

However, this technique cannot provide per-obstacles analysis as it merely predicts a binary mask

of pixels corresponding to dynamic obstacles.

The technique in [18] extends the previous approach for SSL multi-instance segmentation by

using temporal image sequences captured with a monocular camera installed on a mobile urban

vehicle. The authors apply, over the mobile keypoints detected by [21], a clustering method using

the tracked keypoints information such as their spatial location and motion pattern features. The

multi-instance segmentation of dynamic obstacles is evaluated on a hand-labeled video sequence

of the KITTI dataset [20].

Overall, the authors state that some issues shared with analytical methods persist in their

approache. If the dynamic obstacles shadows are projected on the background, then the latter are

considered as dynamic as well. Moreover, the segmentation of distant dynamic obstacles can be

missed if the corresponding keypoints variations are considered as noise due to the difficulty to

detect the corresponding slight optical flow variations. Furthermore, if a dynamic obstacle, large

or close to the sensor, represents the majority of the image keypoints, then this given obstacle is

likely to be treated as the static background scene.

Nonetheless, it is important to bear in mind that these approaches present state-of-the-art

competitive performances for dynamic obstacles detection and segmentation without training

or pre-training on annotated data. In addition, the method in [18] provides interesting tools to

analyze on the move the dynamic obstacles, for example to separately track them and learn to

predict their intention.

The next focus is on SSL techniques designed for object tracking and temporal predictions in

urban road scene evolution, including dynamic obstacles.

3) Temporal tracking predictions: In order to deal with object appearence changes, a competitive

SSL tracking technique [52] proposes an online adaptive strategy combining tracking, learning,

and object detector real-time modules. However, in the context of autonomous driving, it may be

often necessary to simultaneously track, and even anticipate the trajectories of several surrounding

road users. Moreover, being able to consider the interactions between each road user requires
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under particular circumstances some complex motion pattern analysis.

It turns out that some SSL approaches propose to deal with this challenge by focusing the

prediction effort on the entire scene in a unified way, rather the on every obstacles independently.

The SSL deep tracking system [23]4 learns to predict the future state of a 2D LIDAR occupancy

grid. This is achieved by training an RNN on the latent space of a CNN autoencoder (AE) which

is applied on the input occupancy grid considered as an image. Each cell of the grid is represented

by a pixel, which can be color-coded as occluded, void, or as an obstacle surface. Consequently,

the model can be trained from end-to-end by learning to predict the next occupancy grid states

using the past and current grid states. Solely the prediction output error of non occluded cells

is backpropagated during the training. By definition, this system can perform a self-evaluation

by computing a per-pixel photometric error between the predicted occupancy grid and the real

future observed occupancy grid at the same temporal instant. This technique has the advantage

of being compatible with complex motion patterns compared to Bayesian and Kalman tracking

techniques. In addition, the training process enables to predict the obstacles trajectories even

during occlusions. The major interest of deep tracking is that, as the model learns to predict a

complete scene, it naturally considers interactions between each dynamic obstacle present in the

scene. In [17], the deep tracking model is extended for a real mobile LIDAR sensor by adding a

spatial transformer module in order to take into consideration the displacements of the ego-vehicle

with respect to its environment during objects tracking.

In turn, these tracking approaches provide the tools to collect motion pattern information of

surronding dynamic obstacles such that this information may help to classify obstacles depending

on their dynamic properties [53].

B. Low-level sensor data analysis

We address now the sensor data analysis for low-level information estimation in the context of

autonomous driving. Compared to the previous methods, the attention has mainly focused recently

on SSL depth map estimation from monocular or stereo cameras.

1) SSL Depth map estimation: The self-supervised depth map estimation approach presented in

[16] predicts a depth map from a monocular camera without relying on annotated depth maps. The

pose transformation between both left and right cameras is known. The SSL strategy is as follows.

4Such an approach could be categorized as unsupervised. However, we make the choice in this article to consider

that exploiting during the training an additional future temporal information, not availbable during the prediction step,

is a type of self-supervision.
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First, the left camera frame is provided as input to a fully CNN model trained from scratch to

predict, the corresponding depth map. Second, an inverse warping is performed by combining the

predicted left depth map with the right camera frame in order to output a synthesized frame similar

to the input left frame. In this way, an SSL photometric reconstruction error can be computed in

output of the decoder part. Next, this per-pixel error is directly used to train the encoder weights

using an SGD optimization technique. While not requiring pre-training, nor annotated ground-truth

depths, this approach presents prediction preformances comparable with the state-of-the-art fully

supervised monocular techniques. However, the ground truth pose transformation, related to the

inter-view displacement between both cameras, is required.

Following a similar idea, another technique is proposed in [15]. It is trained to reconstruct, from

a given frame, the second frame taken from a different point of view. It generates a depth map

using a stereo camera during the training step, but also during the prediction step. This makes the

approach more robust, such that it becomes competitive with standard stereo matching techniques.

Moreover, the constraint of preserving two cameras and the pose transformation ground truth for

predictions, enables in counterpart to perform online learning. This may be interesting for dealing

with novel ego-vehicle environments unseen during the training.

In order to overcome the necessity of the pose transformation ground-truth, Zhou et al. [54]

propose to predict, from a temporal sequence of frames, the depth map with a learning model,

and the successive camera pose transformations with another learning model. Both models are

trained together from end-to-end for making the novel view synthesis of the next frame. However,

such a pose transformation estimation implies that the predicted depth map is defined up to a

scale factor.

A more modular technique [47] exploits either temporal monocular sequences of frames as

in [54], the paired frames of a stereo camera as in [15], or to jointly exploit both temporal and

stereo information. This framework also deals with the false depth estimation of moving obstacles

by ignoring, during training, the pixels not varying between two consecutive temporal frames. It

also deals with occluded pixels when the captured point of view changes by using a minimum

reprojection loss.

To summarize, low-level analysis techniques for depth map estimation have demonstrated that

SSL strategies without using ground truth labels can bring state-of-the-art solutions competitive

with fully supervised techniques.

Overall, the SSL techniques presented in this section support the following conclusion. By
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exploiting the complementarity between analytical and learning methods, it is possible to address

several low-level and challenging autonomous driving perception tasks, without necessarily

requiring a fully annotated dataset.

The next section presents self-supervised learning limitations and future challenges for au-

tonomous driving perception applications.

V. LIMITATIONS AND FUTURE CHALLENGES

In the context of autonomous driving, some limitations remain in the presented SSL perception

systems and open future research perspectives:

• Catastrophic forgetting: During the online learning procedure, the trainable weights of the

model may require unnecessary repetitive updates for detecting a given pattern throughout

the environment exploration. In fact, when a learning model is continuously specialized for

dealing with the latest data, the likelihood increases that the model simultaneously forget the

potentially relevant formerly learned patterns. It turns out that it is possible to deal with this

catastrophic forgetting issue when using neural networks [55]. For future research directions,

it may be interesting to combine such incremental learning techniques with the presented

SSL frameworks.

• Concerning the scene depth map estimation solely based on temporal analysis:

– the presence of dynamic obstacles in the scene during the learning stage can result in

poor estimates of the observed scene. As discussed in [21], further research on SSL for

potentially dynamic obstacles delineations on the sensor data may help to deal with this

issue.

– the current state-of-the-art techniques cannot estimate the real depth map without requiring

a supervised scaling factor. The latter is generally obtained by estimating the real metric

values of the pose transformation between two consecutive camera viewpoints. As

proposed in the supervised detector Deep MANTA [56], it may be interesting to recover

automatically this scale factor by using some template matching techniques on the

observable objects of the scene.

• Concerning the online self-evaluation, some of the presented systems require a baseline

reference obtained analytically [19]. However, if we consider that the analytical processes,

considered as ground-truth labeling techniques, are likely to generate some noisy labels, it

may be interesting to investigate some future reasearch on how to evaluate this prior noise

from the learning model point of view [11], and how to deal with it [9].
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