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Abstract

With surge of available but unlabeled data, Positive Unlabeled (PU) learning is becoming a thriving challenge.

This work deals with this demanding task for which recent GAN-based PU approaches have demonstrated promising

results. Generative adversarial Networks (GANs) are not hampered by deterministic bias or need for specific

dimensionality. However, existing GAN-based PU approaches also present some drawbacks such as sensitive

dependence to prior knowledge, a cumbersome architecture or first-stage overfitting. To settle these issues, we

propose to incorporate a biased PU risk within the standard GAN discriminator loss function. In this manner,

the discriminator is constrained to request the generator to converge towards the unlabeled samples distribution

while diverging from the positive samples distribution. This enables the proposed model, referred to as D-GAN, to

exclusively learn the counter-examples distribution without prior knowledge. Experiments demonstrate that our

approach outperforms state-of-the-art PU methods without prior by overcoming their issues.

Keywords: Generative Adversarial Networks (GANs), generative models, semi-supervised learning, partially

supervised learning, deep learning

1. Introduction

Nowadays, the number of available labeled datasets dedicated to perception applications has considerably

augmented [Russakovsky et al., 2015], [Yu et al., 2015], [Cordts et al., 2016]. However, when learning methods

trained on these datasets are applied on real data, their performances are likely to deteriorate. Consequently, it

is necessary to use a dataset specialized for the given target application. It turns out that it can be easy to get
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unlabeled data in some applications domains such as autonomous driving. Positive Unlabeled (PU) learning, also

called partially supervised classification [Liu et al., 2002], enables to use these unlabeled data in combination with

labeled samples of our class of interest: the positive class. The interest is that unlabeled data can contain relevant

counter-examples, also called negative examples1. The difficulty is that unlabeled data can also contain a fraction πp

of unlabeled positive examples. Sansone et al. [2018] enumerates several learning problems which can be addressed

in this way such as the challenging information retrieval task.

Several PU learning methods exist, some of them adapted to image classification. They are generally classified

into two categories. The former is censoring PU learning, formalized by Elkan and Noto [2008] and recently

improved by Northcutt et al. [2017]. The latter is case-control PU learning, introduced by Ward et al. [2009],

formalized by du Plessis et al. [2014], and then consecutively improved by Du Plessis et al. [2015] and Kiryo et al.

[2017] to reduce the training computational cost and alleviate the overfitting issue. In the context of the proposed

approach, we focus our attention in this article on the recently presented GAN-based PU approaches. Thus we

classify PU learning approaches into the two following groups suggested by Kiryo et al. [2017]: one-stage and

two-stage PU methods.

One-stage PU methods such as the unbiased PU method (uPU) [Du Plessis et al., 2015] and the non-negative PU

method (nnPU) [Kiryo et al., 2017] consist in training a classifier using an unbiased risk directly on the PU dataset.

These methods have the advantage to need only one training of the classifier. However, they require dataset prior

knowledge and consequently uPU and nnPU need to be combined with an approach estimating the prior knowledge

[Jain et al., 2016], [Ramaswamy et al., 2016], [Christoffel et al., 2016]. Consequently, they are critically sensitive to

slight prior variations per minibatch, as shown experimentally in Section 4.3.1.

Two-stage PU methods prepare during the first stage a Positive Negative (PN) dataset. For example, Rank

Pruning method (RP) [Northcutt et al., 2017] firstly estimates the prior such that it can select only the examples

considered as the most confident, in order to substitute the unlabeled samples for the second-stage training of the

classifier. RP achieves two-stage state-of-the-art performances without prior knowledge. However, it can only

exploit a sub part of the training PU dataset. This can curb its prediction performances on complex datasets like

CIFAR-10. Recently, a new subcategory of two-stage PU methods appeared: GAN-based PU methods. They address

the PU learning challenge by producing, thanks to an adversarial training [Goodfellow et al., 2014], generated

samples from a PU dataset during the first step. Then, they are used to train a standard Positive Negative (PN)

classifier during the second step.

1We use the term example to design a single instance (i.e. item, observation) included in a sample set of data following a given distribution.
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We discuss in more details the above introduced PU methods uPU [Du Plessis et al., 2015], nnPU [Kiryo et al.,

2017], RP [Northcutt et al., 2017], GenPU [Hou et al., 2018] and PGAN [Chiaroni et al., 2018] in the related work

Section 2.

We can nonetheless already make the following remarks, motivating the design of the proposed approach.

Unbiased methods [Kiryo et al., 2017], [Du Plessis et al., 2015], and GenPU [Hou et al., 2018] are by definition

sensitive to the prior knowledge in order to deal with a PU dataset. Conversely, whereas the two-stage censoring

methods, such as RP [Northcutt et al., 2017], do not require prior information, they suffer from generalization

and unstability problems due to their selective process. The PGAN method is the first that does not need prior

knowledge nor a selective process, thus preserving a low sensitivity to prior knowledge combined with a training

stability. However, as mentioned in the PGAN article, it inherently suffers from first-stage overfitting. Based on

these considerations, we propose in this article a novel GAN-based model, referred to as Divergent-GAN (D-GAN),

to overcome the latter issue while preserving the PGAN advantages. To the best of our knowledge, we are the first to

propose a GAN-based method to capture exclusively the unlabeled negative samples distribution from a PU dataset

without prior knowledge. More specifically, our contributions are the following:

• We propose to incorporate a biased PU learning loss function inside the original GAN [Goodfellow et al.,

2014] discriminator loss function. The intuition behind it is to have the generative model solving the

PU learning problem formulated in the discriminator loss function. In this way, the generator learns the

distribution of the examples which are both unlabeled and not positive, namely the negative ones included in

the unlabeled dataset;

• In addition, we study normalization techniques compatibility with the proposed framework. A learning model

which manipulates different minibatches distributions should not use batch normalization techniques [Ioffe

and Szegedy, 2015]. Alternative normalization techniques are discussed and experimented.

Consequently, the proposed D-GAN framework compares favorably with PU learning state-of-the-art performances

on simple MNIST [LeCun et al., 1998] and complex CIFAR-10 [Krizhevsky and Hinton, 2009] image datasets. The

proposed framework code is available 2.

The remaining of this paper is structured as follow. Section 2 presents previous PU learning approaches. Section

3 describes the proposed method. Section 4 presents the corresponding experimental results. Finally, in Section 5,

we draw conclusions and discuss perspectives.

2D-GAN code for RGB images of 64 × 64 pixels is provided in supplementary material for reviewers
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2. Related work

The PU learning problem consists in trying to distinguish positive samples from negative samples by using a PU

dataset. Let X ∈ Rm be the input random variable and Y ∈ {0, 1} its associated label. X can be a positive XP, negative

XN or unlabeled XU sample which respectively follow the distributions pP = p(X|Y = 0), pN = p(X|Y = 1) and

pU = (1 − πP) · pN + πP · pP. The unknown prior πP ∈ (0, 1) represents the fraction of unlabeled positive examples

included in the unlabeled dataset.

Previous works on PU learning [Denis, 1998] consider the entire distribution of the unlabeled examples as

negative. In this way, all the negative examples, present in the unlabeled dataset, are always considered as negative.

However, concerning the positive examples, it implies associating two contradictory labels to the distribution of

positive examples in unknown proportions depending on the πP value. Thus, training directly a classifier with

positive and unlabeled data provokes a bias in the training estimator, which is not present during a standard positive

negative training. This bias can limit prediction performances of the learning model.

Several strategies have been proposed to solve this drawback such as unbiased methods [du Plessis et al., 2014],

[Du Plessis et al., 2015], [Kiryo et al., 2017], pruning method [Northcutt et al., 2017], and more recently GAN based

methods [Hou et al., 2018], [Chiaroni et al., 2018]. However, those strategies still present some issues including

prior knowledge sensitivity, training unsteadiness, or overfitting problems.

We present in this section different state-of-the-art methods and their respective drawbacks that we aim at

overcoming with the proposed GAN-based PU framework.

2.1. Unbiased methods

In order to palliate a biased training, the authors of unbiased techniques [du Plessis et al., 2014], [Du Plessis

et al., 2015], [Kiryo et al., 2017] suggest to avoid the estimator bias by adding some terms in the training loss

function. Then, the classifier behaves as if it is trained with a positive negative dataset. The authors firstly used a

non convex loss function [du Plessis et al., 2014], which then has been adapted for convex loss functions [Du Plessis

et al., 2015] in order to reduce the computational burden. Subsequently, it was proposed to overcome the training

overfitting by adding a binary condition (an ”if” condition) in the training loss function [Kiryo et al., 2017].

These methods exploit the prior πP in the empirical training loss function. However, we observe that the

empirical prior value π̂P per batch of small size (minibatch) is slightly different to πP, as its standard deviation

depends on the minibatch size, such that:

π̂P = πP + α, (1)
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with α ∼ pα(m), where pα is the probability distribution of the noise α depending on the minibatch size m, as shown

in Figure 1. We observe that the worst case scenario is when πP is close to the value 0.5, combined with a small

batch size. The cases where πP is higher than 0.5 behave symmetrically to the cases where πP is smaller than 0.5.
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Figure 1: Standard deviation per minibatch of the global prior πP in function of the minibatch size, for a given uniformly mixed dataset
composed by 60000 examples.

In our case, we want to train a deep learning model using the stochastic gradient descent (SGD) optimization

technique, which is known to be relevant with batches of small size. So the theoretical formulation of unbiased

techniques cannot be maintained using SGD with small batch sizes. We will show empirically that in practice,

unbiased techniques are highly sensitive to the minibatch size in terms of prediction performances, as they are

theoretically sensitive to the prior πP.

It turns out that it is possible to avoid this limitation with two-stage approaches.

2.2. Two-stage approaches

Two-stage approaches mainly consist in preparing during the first-stage a positive negative (PN) training

dataset which then will be used to directly train a standard classifier during the second stage. One interest of those

approaches is that they are not sensitive to the prior knowledge variation. Consequently, they are compatible with

the use of minibatches, and thus are suitable when applying SGD optimization.

2.2.1. Pruning approach

Rank Pruning (RP) method [Northcutt et al., 2017] is a two-stage technique. It first estimates the prior πP and

exploits it to prune the dataset in order to capture only a subset corresponding to the most confident positive and

negative samples. Then, during the second stage it considers this subset as a cleanly labeled positive negative dataset
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to train a classifier. While not requiring prior knowledge in input, RP achieved state-of-the-art results for information

retrieval in the One-vs-Rest task on simple datasets such as MNIST. However, by using a pruning strategy, RP can

miss some relevant training examples not included in the selected subset of training. As a consequence, this can

limit its generalization, as will be shown experimentally on Table 2, where RP is shown to be relatively unstable

when compared to GAN-based approaches in terms of prediction performances. Using only a training subset is also

a weakness on complex datasets like CIFAR-10, where a large training dataset is preferable to obtain better results.

Some approaches have been more recently proposed by exploiting generative adversarial networks (GANs)

benefits, maintaining or increasing the prediction scores over the same PU learning tasks.

2.2.2. GAN-based approaches

GAN-based PU approaches represent a recent subcategory of two-stage PU methods, as proposed in GenPU

[Hou et al., 2018] and PGAN [Chiaroni et al., 2018]. The interest of using GANs is twofold. First, GANs enable

relevant data augmentation, as will be experimentally demonstrated on Table 2. Second, it allows for the use of

high-level feature metrics to evaluate generated samples quality, thanks to the adversarial training. This can ease to

capture a target distribution in a meaningful manner.

In this PU learning context, the generated samples replace the unlabeled ones by learning on the latter as PGAN

[Chiaroni et al., 2018], or on both unlabeled and positive labeled ones as GenPU [Hou et al., 2018]. Both methods

exploit GANs benefits, but the functioning are different and they are not suitable under the same datasets conditions:

• GenPU [Hou et al., 2018] is based on the original GAN convergence [Goodfellow et al., 2014], such that:

πP · pGP + (1 − πP) · pGN −→ pU , with pGP the distribution of positive samples generated by the generator

GP, pGN the distribution of the negative samples generated by the generator GN , and pU the distribution

of real unlabeled samples. In practice, GenPU is an interesting PU method on simple datasets with few

positive labeled samples, and it generates relevant counter-examples. However, training adversarially five

learning models instead of two as in the original GAN framework [Goodfellow et al., 2014] to address

standard PU learning challenge3 is more computational demanding and not necessary to generate relevant

counter-examples. Moreover, using five models amplifies the mode collapse issue, and the corresponding

training optimization functions need three additional hyper-parameters combined with prior knowledge. This

is impractical in the context of real applications where hyper-parameters tuning may be required on limited

computational resources to adapt the model for a given application dataset.

3We use the term standard to refer to the case where we have enough positive labeled examples (at least 100), such that the difficulty is
mainly the ability to exploit counter-examples included in the unlabeled set.
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• PGAN [Chiaroni et al., 2018] is trained to converge towards the unlabeled dataset distribution during the first

step. During the second step, it exploits GANs imperfections for capturing the unlabeled distribution, such

that the generated distribution at the adversarial equilibrium is still separable from the unlabeled samples

distribution by a classifier. It presents a relatively steadier behaviour and better prediction performances than

the two-stage baseline RP method on the complex RGB image dataset CIFAR-10 without prior knowledge.

However, it is less suitable for relatively simpler datasets like MNIST. The problem is that the generated

samples are all considered as negative samples by the classifier. But this is possible only if the generated

samples distribution converges close enough towards the unlabeled samples distribution, while not matching

it. If the PGAN first-stage performs as expected theoretically by [Goodfellow et al., 2014], then the PGAN

classification second stage falls back into the initial PU learning problem.

Our proposed approach, presented in Sec. 3, overcomes previously enumerated PU methods shortcomings, to

address the standard PU learning task, as summarized on Table 1.

Methods D-GAN (proposed) PGAN [Chiaroni et al., 2018] GenPU [Hou et al., 2018] RP [Northcutt et al., 2017] nnPU [Kiryo et al., 2017]

No need of priori knowledge
√ √ √

No first-stage overfitting
√ √ √ √

Generalizable over complex datasets
√ √

Able to generate relevant counter-examples
√ √

Training stability using SGD
√ √ √

Original GAN architecture
√ √

Code availability
√ √ √

Table 1: Summary of presented state-of-the-art methods advantages and drawbacks compared to the proposed D-GAN approach. A void cell
means that the mentioned criterium is not applicable with the corresponding method.

3. Proposed Approach

In this section, we first briefly recall the main reasoning which motivated our research work. Next, we discuss

some features of a biased PU risk. We then propose to incorporate this risk into a generic GAN framework in order

to guide the generator convergence towards the negative samples distribution, denoted as pN , included inside the

unlabeled dataset distribution, denoted as pU . Furthermore, we study regularization techniques to manipulate three

distinct types of minibatches: positive, unlabeled and generated ones.

3.1. Motivation

In PU learning, if a classifier associates a given expected label value with positive examples, and in parallel

associates a second distinct label value with unlabeled examples, then it is proven that the negative non-labeled

examples are exclusively associated with the label of non-labeled examples [Denis, 1998], [Blum and Mitchell,
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1998], [Lee and Liu, 2003]. Concerning GANs, it has been shown that the discriminator learning task influences

directly the adversarial generator behaviour [Mao et al., 2017].

Based on these considerations, this work aims at incorporating a biased PU risk inside the traditional GAN

discriminator cost function. This compels the discriminator D, to separate negative from positive distributions,

which in turn guides the generator G, to exclusively learn the unlabeled counter-examples distribution from a

PU dataset. As a matter of the fact, the proposed method is novel in the way it exclusively generates relevant

counter-examples without prior knowledge information, while preserving a standard GAN architecture.

Thereafter, we present the biased PU risk that we incorporate in the proposed GAN PU discriminator training

loss function.

3.2. Biased PU risk to incorporate

In what follows, we first explain the expected PU functionality to be incorporated into the GAN discriminator

loss function. Biased PU risk setting: Let D : Rm → [0, 1] be the decision function which is, later on, considered

as the discriminator D, of the proposed framework network. We have l(ŷ, y) such that l : [0, 1] × [0, 1]→ R is the

arbitrary cost function with the predicted output ŷ of D for a given example and the corresponding label y as input.

D is trained with a PU risk RPU to predict the label value 1 for the unlabeled examples, and the label value 0 for the

positive labeled ones such that:

RPU(D) = ExU∼pU [l(D(xU), 1)] + ExP∼pP[l(D(xP), 0)]. (2)

Given the composition of the distribution pU , we develop:

RPU(D) = (1 − πP) · ExN∼pN [l(D(xN), 1)] + πP · ExP∼pP[l(D(xP), 1)] + ExP∼pP[l(D(xP), 0)]. (3)

Counter-examples are correctly labeled: Decomposed in this way, the negative examples included in the

unlabeled dataset are associated exclusively to the label value 1 for any πP value, such that the negative training

examples are all correctly labeled.

When there is no overfitting on training positive examples, then one can assume that labeled and unlabeled

positive examples follow the same distribution pP, as mentioned in [Kiryo et al., 2017]. Since expectations are

linear, pP is associated to both contradictory labels 0 and 1 as below:

RPU(D) = ExN∼pN [(1 − πP)l(D(xN), 1)] + ExP∼pP[πPl(D(xP), 1) + l(D(xP), 0)]. (4)
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Positive samples distribution pP is shifted away from the counter-examples distribution pN: When defin-

ing the cost-function l as the binary cross-entropy H (Eq. 5) such that l = H, then we can demonstrate that the second

term in the Equation 4 is equivalent to associating the positive distribution pP with a unified biased intermediate

label value δ. The binary cross-entropy H is defined as:

H(D(X),Y) = −Ylog(D(X)) − (1 − Y)log(1 − D(X)), (5)

where Y is the label value associated with the input X of D. If l = H, then concerning the second term of the

Equation 4, we can demonstrate that:

πPH(D(xP), 1) + 1H(D(xP), 0) = − πPlog(D(xP)) − 1log(1 − D(xP))

= − πPlog(D(xP)) − (1 + πP − πP)log(1 − D(xP))

=(1 + πP) ·
[
−

πP

1 + πP
log(D(xP)) − (1 −

πP

1 + πP
)log(1 − D(xP))

]
=(1 + πP) · H

(
D(xP),

πP

1 + πP

)
=(1 + πP) · H(D(xP), δ),

(6)

with δ = πP/(1 + πP). Consequently, the PU risk becomes:

RPU(D) = ExN∼pN [(1 − πP)H(D(xN), 1)] + ExP∼pP[(1 + πP)H(D(xP), δ)]. (7)

Such a PU risk has been previously called biased or constrained in the literature [du Plessis et al., 2014], [Liu et al.,

2002]. The equivalence between Equations 4 and 7 makes it possible to estimate the restricted interval of possible

values for δ without using prior such that if πP ∈ (0, 1) then:

0 < πP < 1⇔ 0 < δ <
1

1 + 1
. (8)

In other words, δ ∈ (0, 1/2). This confirms that for any πP value between 0 and 1, labeled and unlabeled positive

examples are associated with a label value δ comprised between 0 and 1/2. Therefore, when training D with the risk

RPU , the D prediction related to the unlabeled positive examples is shifted away from the label value 1. From D

prediction output point of view, this risk makes the positive distribution pP diverging from the negative distribution

pN . Thus, D is trained to predict the label value 1 exclusively for the counter-examples.
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3.3. Proposed generative model

The insight in the proposed D-GAN model can be expressed as follows: D addresses to G the riddle: Show me

what IS unlabeled AND NOT positive. It turns out that negative examples included in the unlabeled dataset are

both unlabeled and not positive. Consequently, G addresses this riddle by learning to show the negative samples

distribution to D.

GAN background: We first give a short recall of the original GAN discriminator. It is trained to distinguish

real unlabeled samples distribution pU from generated samples distribution pG with the loss function LDGAN defined

as:

LDGAN (G,D) = ExU∼pU [−logD(xU)] + Ez∼pz[−log(1 − D(G(z)))], (9)

where z stands for the input random vector of the generative model G such that G(z) is a generated sample. z

follows a uniform or normal distribution. It turns out that the binary cross-entropy formulation (Eq. 5) implies

H(D(X), 1) = −log(D(X)) and H(D(X), 0) = −log(1 − D(X)). Consequently, LDGAN can be expressed as follows:

LDGAN (G,D) =ExU∼pU [H(D(xU), 1)] + Ez∼pz[H(D(G(z)), 0)]. (10)

Towards a GAN biased discriminator loss function: The proposed approach aims at training G to learn the

negative samples distribution pN instead of learning the distribution pU . This replaces the standard GAN task

“Show me what is unlabeled ”, by the task “Show me what is both unlabeled and not positive”. We now propose to

incorporate the benefits of a biased PU risk (Eq. 2) into the original GAN discriminator loss function (Eq. 9). To

this end, we define the D-GAN discriminator loss function LD by adding the term ExP∼pP[H(D(xP), 0)] to LDGAN .

Consequently, in the proposed D-GAN framework, the training discriminator loss function LD of D becomes:

LD(G,D) =LDGAN (G,D) + ExP∼pP[H(D(xP), 0)]. (11)

If we develop the term LDGAN , we then obtain:

LD(G,D) =ExU∼pU [H(D(xU), 1)] + Ez∼pz[H(D(G(z)), 0)] + ExP∼pP[H(D(xP), 0)]

=RPU(D) + Ez∼pz[H(D(G(z)), 0)].
(12)

In other words, the RPU risk (Eq. 2) is incorporated inside the D-GAN discriminator loss function. To this extent, D

can be trained to only consider the counter-examples as the most real examples by associating to them exclusively

the label value 1. This can be considered as applying a constrained optimization.
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The generator generates the counter-examples distribution: In contrast, the role of G during the adversarial

training is to generate samples considered by D as 1. As suggested by [Goodfellow et al., 2014], the training loss

function LG of G is such that:

LG(G,D) = Ez∼pz[−log(D(G(z)))]

= Ez∼pz[H(D(G(z)), 1)].
(13)

As developed previously, we recall that D exclusively considers the negative examples as 1 thanks to the RPU

risk presented previously. Thus, if D trainable weights are fixed in the proposed framework, then we propose to

reinterpret in LG the label value 1 as D(xN), as follows:

LG(G,D) = Ez∼pz,xN∼pN [H(D(G(z)),D(xN))]

= Ez∼pz,xN∼pN [−D(xN)log(D(G(z)))],
(14)

such that the distance between the generated samples distribution and pN is minimized. Consequently, this justifies

the convergence of G in the proposed D-GAN framework towards the negative samples distribution pN , for any

πP ∈ (0, 1).

Implementation: The corresponding implementation algorithm 1 of the proposed first-stage D-GAN approach

enables to adversarially train D and G to respectively minimize loss functions LD and LG.

Second-stage: Positive-Generative learning. Once the D-GAN training is completed, the second step can

be carried out. It consists in training a classifier C to distinguish fake generated examples xFN = G(z), which are

ideally equivalent to the real negative samples, from real positive labeled samples as illustrated in Figure 2.

Figure 2: Proposed GAN-based PU approach, xFN represents the generated samples which are similar to real negative samples xN , G is the
generative model, D is the discriminator, C is the classifier used to perform the binary Positive-Negative (PN) classification.

In practice, the worst-case scenario is when D overfits the positive examples during the adversarial training.

Another pitfall is when D cannot encode the complexity of the boundary between positive and negative examples

included in the unlabeled dataset. In such cases, D will consider some unlabeled positive examples as negative ones.
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Algorithm 1 Minibatch SGD training of the D-GAN

GAN training (1st step)
for number of training iterations do

Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pz.
Sample minibatch of m unlabeled examples {x(1)

U , ..., x(m)
U } from data distribution pU .

Sample minibatch of m positive labeled examples {x(1)
P , ..., x(m)

P } from data distribution pP.
Update D by descending its stochastic gradient:

∇θD

1
m

m∑
i=0

[
− logD(x(i)

U ) − log
[
1 − D(G(z(i)))

]
− log

[
1 − D(x(i)

p )
]]

Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pz.
Update G by descending its stochastic gradient:

∇θG

1
m

m∑
i=0

−log
[
D(G(z(i)))

]
end for
Classifier training (2nd step):
for number of training iterations do

Sample minibatch of m positive labeled examples {x(1)
P , ..., x(m)

P } from data distribution pP.
Sample minibatch of m noise samples {z(1), ..., z(m)} from data distribution pz.
Update C by descending its stochastic gradient:

∇θC

1
2 · m

m∑
i=1

[
l(C(x(i)

P ), 1) + l(C(G(z(i))), 0)
]

end for
The gradient-based updates can use any standard gradient-based learning rule. We use Adam in our experiments.

As a consequence, this implies that G will also generate some examples following a subset of the positive samples

distribution. Thus, the D-GAN will tend to behave as the PGAN [Chiaroni et al., 2018], which seems to be the best

solution in this situation.

The next section presents effective regularization techniques to overcome these issues in the context of the

proposed GAN-based PU framework.

3.4. Discriminator regularizations

Nowadays, Batch Normalization (BN) [Ioffe and Szegedy, 2015] is considered as a one of the most relevant

regularization techniques commonly used in deep neural networks architectures. Its utility for GANs training has

been highlighted by [Radford et al., 2015] for the DCGAN architecture in order to stabilize the adversarial training.

Other variants like the Wasserstein-GAN [Arjovsky et al., 2017] or the Loss-Sensitive GAN [Qi, 2017] confirmed

its interest. As developed in [Ioffe and Szegedy, 2015], BN addresses issues like vanishing or exploding gradient

problems, as well as the risk of getting stuck in a poor local minima, by reducing the internal covariate shift problem

of the learning model. A higher learning rate can be used and it can significantly improve the training speed.

Multiple minibatch manipulation incompatibility. BN regularizes the model, in such as way that a training
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example (i.e. single instance) from a given minibatch sample is considered in conjunction with other examples of

this minibatch sample. This is the consequence of estimating the mean and variance normalization parameters one

time per minibatch, and then applying them on each example in the minibatch. When positive examples xP and

unlabeled examples xU are not in the same training minibatch, as this is the case in our discriminator loss function,

this does not enable to link labeled positive examples with the unlabeled positive ones. Consequently, this cannot

produce a distance between positive and negative examples predictions. To counter this problem, we could imagine

to apply BN on a unified minibatch which contains a fraction of each distribution xP, xU and xF . But the BN effect

is greatly influenced by the content of the minibatch on which it is applied. Therefore, the fraction πP of positive

examples included in xU will negatively impact the BN outcome.

Compatible normalization techniques: However, BN benefits in a more traditional training are not negligible.

Hence, we propose to use two alternative techniques in order to replace the BN role in the proposed GAN-based

PU framework. On the one hand, Layer Normalization (LN) [Ba et al., 2016] is a frequently used technique with

sequential networks, as it can be applied for each sequential example independently. With LN, the normalization for

a given example is computed on its resulting output feature map layers, and the mean and variance are computed

independently for each example of a minibatch. On the other hand, Spectral Normalization (SN) [Miyato et al.,

2018] is a recent competing technique for GANs [Miyato et al., 2018] training which can stabilize the training of

D against input perturbations [Farnia et al., 2018] by perfoming a weight normalization. In this way, a training

manipulating multiple types of minibatch distributions preserves SN effectiveness. For these reasons, we propose to

apply LN or SN instead of BN inside our discriminative model structure. The use of these normalization techniques

will be validated in Sec. 4.

Dropout alleviates the positive overfitting problem: As mentionned in the previous section, we can only

deduce Equation 4 if we consider that the positive samples distribution is the same for both labeled and unlabeled

ones. In practice, this assumption holds in the case of a large dataset, such that this overfitting problem concerning

the positive examples disappears. The dropout [Srivastava et al., 2014], [Mordido et al., 2018] generalization

technique is also a solution. In the context of the proposed D-GAN training, we introduce dropout in the top fully

connected layer of D. We enable it during D training steps, and conversely disable it during G training steps. This

improves the evaluation of generated samples which is transmitted from D to G by back-propagation. In the next

section, we will show that dropout alleviates the positive examples overfitting during long D-GAN trainings. This

insures to exclusively generate counter-examples.

The next section presents experimental results demonstrating the usefulness of the proposed approach.
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4. Experimental Results

In this section, we assess the performance of the proposed approach. We first experimentally validate the

expected discriminator prediction behaviour when it is applied on a positive unlabeled dataset (Sec. 4.2.1), and study

the impact of regularization (Sec. 4.2.2). Then, we show the ability of the generator to generate counter-examples

for different types of PU datasets, including two-dimensional points and natural RGB images (Sec. 4.2.3). Finally,

we evaluate the proposed model prediction robustness and compare it with state-of-the-art PU learning methods in

terms of prior noise (Sec. 4.3.1) and first-stage overfitting (Sec. 4.3.2).

4.1. Settings

We detail in this section the settings of the experiments. We have adapted the first-stage discriminator and

generator architectures of the proposed GAN based PU framework depending on the dataset on which they are

applied, as follows:

• 2D point dataset: In order to deal with 2D point datasets, we use a GAN architecture composed of fully

connected layers (FullyConnected). The generator and discriminator architectures are summarized in Figure

3.

• MNIST [LeCun et al., 1998]: In order to deal with grayscale images of dimension 28*28 pixels from the

MNIST dataset, we use a deep convolutional GAN architecture (DCGAN) such that the generator contains

transposed convolutional (DeConv2D) top layers, and the discriminator contains convolutional (Conv2D)

bottom layers as illustrated in Figures 4 (a) and (b).

• CIFAR-10 [Krizhevsky and Hinton, 2009]: In order to deal with RGB images of size 32*32 pixels from the

CIFAR-10 dataset, we use the same DCGAN architecture presented in Figures 4 (a) and (b). We only adapt

the feature maps size depending on the width (w), the height (h), and the number of channels (ch) of input

RGB images.

• celebA [Liu et al., 2015]: In order to deal with RGB images of size 64*64 from the celebA dataset, we use a

deeper convolutional GAN architecture presented in Figure 5.

Concerning the PU dataset initialization from a standard PN dataset, in all the experiments, except the ones in

Sec. 4.3.1, we use the methodology proposed by [Chiaroni et al., 2018]. More specifically, we set ρ = 0.5 which is

the fraction of positive labeled examples of the initial PN dataset that we unlabel such that they are included into the

unlabeled dataset. Then, we set πP which is the fraction that represents these unlabeled positive examples among
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Input: z ∈ R8 ∼ N(0, 1)

FullyConnected (128)
eLU

FullyConnected (2)
Sigmoid

Output: 2D point x ∈ R2

(a) Generator

Input: Image x ∈ R2

FullyConnected (128)
eLU

FullyConnected (1)
Sigmoid

Output: Scalar y ∈ (0, 1)

(b) Discriminator

Figure 3: Fully connected GAN model architecture used for two dimensional points datasets. Minibatch size 64, optimizer Adam. We trained
the model during 100 epochs on 2D point datasets.

the unlabeled dataset. This method is interesting for testing an approach depending on πP, independantly of the

selected fraction 1 − ρ of positive labeled samples.

4.2. Qualitative analysis

We start by studying qualitatively whether the discriminator behaves as expected in practice. More precisely, we

need to verify whether it exclusively associates the counter-examples distribution with the label value 1, and the

positive samples distribution with an intermediate label value between 0 and 1/2.

In Sec. 4.2.1, we start by showing the relation between the PU loss function and the proposed equivalent PN

loss function including a biased label for positive examples, as mentioned in Sec. 3.2. Then, in Sec. 4.2.2, we

investigate which regularization techniques enable to preserve the same behaviour on an image dataset such that the

discriminator does not suffer from overfitting during the epoch training iterations.

4.2.1. Empirical Positive Unlabeled risk analysis

We have previously demonstrated (Eq. 6) that we can reformulate the discriminator PU training loss function

RPU into a PN training loss function, referred to as RPN , by replacing the two opposite labels 0 and 1 associated to

positive samples distribution pP by an intermediate label value δ depending on πP, such that we obtain:

RPU(D) = RPN(D), (15)

with: 
RPU(D) = ExU∼pU [H(D(xU), 1)] + ExP∼pP[H(D(xP), 0)],

RPN(D) = ExN∼pN [(1 − πP)H(D(xN), 1)] + ExP∼pP[(1 + πP)H(D(xP), δ)].
(16)

It turns out that we can verify the same relation empirically. As illustrated in Figure 6 with 2D point samples

following gaussian distributions, if we train the discriminator D with a multilayer perceptron structure using the PU
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Input: z ∈ R100 ∼ N(0, 1)

FullyConnected (1024)
BN

ReLU

FullyConnected (128 × h
4 ×

w
4 )

BN
ReLU

DeConv2D (64 filters 4 × 4)
BN

ReLU

DeConv2D (ch filters 4 × 4)
Sigmoid

Output: Image x ∈ Rh×w×ch

(a) Generator

Input: Image x ∈ Rh×w×ch

Conv2D (64 filters 4 × 4)
SN

LeakyReLU

Conv2D (128 filters 4 × 4)
SN

LeakyReLU

FullyConnected (1024)
SN

LeakyReLU

Dropout (0.5)
FullyConnected (1)

Sigmoid

Output: Scalar y ∈ (0, 1)

(b) Discriminator

Input: Image x ∈ Rh×w×ch

Conv2D (32 filters 5 × 5)
ReLU

Maxpooling (2 × 2)

Conv2D (64 filters 5 × 5)
ReLU

Maxpooling (2 × 2)

FullyConnected (1024)
ReLU

Dropout (0.5)
FullyConnected (2)

Softmax

Output: One hot vector y ∈ (0, 1)2

(b) Classifier

Figure 4: Convolutional GAN model architecture used for 28*28 grayscale MNIST and 32*32 RGB CIFAR-10 image datasets. For MNIST
we set h=28, w=28, ch=1. For CIFAR-10 we set h=32, w=32, ch=3. Minibatch size: 64, optimizer: Adam, strides of 2 × 2 for the generator
Deconv2D and the discriminator Conv2D layers, strides of 1× 1 for the classifier Conv2D layers. We trained the model during 40 epochs and
1000 epochs respectively on MNIST and CIFAR-10 datasets.

loss function RPU , then its predictions outputs for an unlabeled batch sample are partitioned in the vicinity of two

different labels. Positive examples are centered around an intermediate label value corresponding to δ. Conversely,

D output predictions for the negative examples are centered around the label value 1. In addition, we have also

computed the approximated PN risk R̂PN using negative labeled and positive labeled samples, for several δ values

between 0 and 1. We can observe that the global minimum of the PN approximated risk R̂PN as a function of δ

corresponds graphically to the global maximum of the density function corresponding to D output predictions for a

positive set. This coincides also with the equality presented in Equation 15.

To sum up, this illustrates experimentally that if D is trained with the RPU loss function, then it should predict

the label value 1 exclusively for the negative samples, which is the necessary condition to guide the generator during

the adversarial training to learn exclusively the counter-examples distribution.

However, this behaviour is only possible if D does not overfit labeled and unlabeled positive samples. In other

words, D should be able to discriminate unlabeled positive examples from the unlabeled negative ones. Therefore,

in order to generalize the proposed GAN framework to image datasets, we compare in the next section some

state-of-the-art regularization techniques commonly used in deep learning models, in order to select the most

appropriate one.
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Input: z ∈ R100 ∼ N(0, 1)

FullyConnected (512)
BN

ReLU

DeConv2D (256 filters 5 × 5)
BN

ReLU

DeConv2D (128 filters 5 × 5)
BN

ReLU

DeConv2D (64 filters 5 × 5)
BN

ReLU

DeConv2D (3 filters 5 × 5)
tanh

Output: Image x ∈ R64×64×3

(a) Generator

Input: Image x ∈ R64×64×3

Conv2D (64 filters 5 × 5)
SN

LeakyReLU

Conv2D (128 filters 5 × 5)
SN

LeakyReLU

Conv2D (256 filters 5 × 5)
SN

LeakyReLU

Conv2D (512 filters 5 × 5)
SN

LeakyReLU

Dropout (0.5)
FullyConnected (1)

LeakyReLU

Output: Scalar y ∈ (0, 1)

(b) Discriminator

Figure 5: Convolutional GAN model architecture used for 64*64 RGB images of celebA dataset. Minibatch size: 64, optimizer: Adam, 2D
stride of 2 × 2. We trained the model during 100 epochs on the celebA dataset.

4.2.2. Impact of regularizations on the discriminator

We compare in Figure 7 the ability of D to distinguish positive from negative samples distributions included

inside the unlabeled training dataset when D is trained on a PU image dataset without normalization and with BN,

LN, and SN normalizations. We also consider the cases when they are combined with the dropout regularization. In

this experiment, D is trained alone such that it is not adversarially trained with G. This enables to better observe and

anticipate the adversarial behaviour of D, and consequently the behaviour of G during the adversarial training.

We show in Figure 7 the histograms of D predictions concerning the unabeled training examples. As previously

explained in the Section 3.2, if D associates exclusively the label 1 with the distribution pN , then we can observe a

mixture of two distributions in the corresponding histograms. The one on the right corresponds to D predictions

for unlabeled negative examples. The second one on the left corresponds to D predictions for unlabeled positive

examples. It is shifted away from the label 1 and centered around δ. Both distributions cannot be observed with BN.

With LN, we can observe both distributions at the beginning of the training before the appearance of an overfitting

problem for the unlabeled positive examples. Consequently, at the end of the training, both distributions have

merged as with BN. In contrast, SN considerably decreases this overfitting problem. Moreover, the addition of

the dropout further helps, such that the dispersion of D predictions is attenuated. This confirms that BN is not
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Figure 6: Link between the PN loss function suggested (Eq. 15) and the distribution of the discriminator output predictions for an input
training minibatch. For this experiment, D is a multi-layer perceptron. D has been trained to distinguish a 2D gaussian distribution to another
one by using the risk RPU on a PU dataset. (a) Shows a set of 2D points considered as positive samples. (b) Shows a set of 2D points
considered as unlabeled samples. Both curves in (c) and (d) have been normalized to get a better visualization. For (c), pY (yU ) (in blue), with
yU = D(xU ), represents the probability distribution of D predicted outputs for a minibatch of unlabeled samples, with πP = 0.5. R̂PU (D) (in
red) represents the PN risk computed in function of δ with the RPN proposed Equation 16 on a minibatch of positive and negative labeled
samples, once D is trained with RPU risk (Eq. 2). (d) shows the same curves as in (c) but by giving in input a concatenation of an unlabeled
minibatch with a positive labeled minibatch. Unlabeled positive and labeled positive samples provide a unified prediction output distribution.

compatible with the proposed framework. LN can be used for relatively short trainings. And we conclude that the

combination S N + Dropout is the best solution to preserve the distinction between pP and pN for long trainings.

This is consistent with the arguments discussed in Sec. 3.4.

Now that we have validated the discriminator ability to separate positive and negative distributions from

a positive unlabeled dataset, we select the most appropriate regularization techniques SN and dropout to train

adversarially the discriminator and the generator hereafter. The proposed GAN based PU model ability to generate
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Figure 7: D predictions on unlabeled training examples. (a), (b), (c), (d), (e), (f), (g), (h) images show the evolutions of the histograms
of predictions during the training of D. Each horizontal line of pixels represents the histogram of predictions, between 0 and 1 along the
horizontal axis, of D on the entire unlabeled training dataset. Clear hot colors represent a high density of prediction. The vertical axis
indicates the training iterations from 0 to 50 epochs. Figures (i) and (j) represent the corresponding histograms of predictions after 5 and 25
epochs. Settings are with positive class 8 and negative class 3 of MNIST dataset, with πP = 0.5.

relevant counter-examples is assessed in the next section.

4.2.3. Generating counter-examples

From a qualitative point of view, and contrary to the PGAN model, the proposed D-GAN paradigm generates

items which only follow the counter-examples distribution for diverse data types. This is illustrated in Figure 8 for
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2D point datasets and in Figure 9 for image datasets.

Positive Unlabeled Generated

(a) (b) (c)

(d) (e) (f)

Figure 8: Proposed approach applied to two different clusters of 2D points. D and G have a multilayer-perceptron structure with respectively
128 hidden units. From left to right, figures are respectively labeled positive, unlabeled with πP = 0.5, and generated samples. Figures (a),
(b), (c) case is with distributions following circle shapes. Figures (d), (e), (f) case is with a half circle distribution for positive examples, and a
uniform distribution over a defined interval for unlabeled examples.

In Figure 8, we can observe on the top line that the generated sample exclusively follows the distribution of the

counter-examples included in the unlabeled set (i.e. simultaneously not positive and unlabeled). On the bottom

line, we can observe that the generator has learned the distribution of confident complements of the positive sample

distribution over the uniform distribution of unlabeled sample. In addition, we can also observe that a small area

around the positive sample distribution is not captured by the generator. This shows the ability of the proposed

generative model to not overfit the positive sample distribution boundary.

In Figure 9, we can also observe that the generated examples systematically follow the counter-examples

distribution on three image datasets: MNIST, CIFAR-10 and celebA.

In order to enable reproducibility, a D-GAN implementation corresponding to Figure 10 results is available4

and is applied on the LS-GAN model [Qi, 2017]. Our code also includes the method proposed by [Chiaroni et al.,

2018] to establish a PU training dataset from a fully labeled dataset with parameters ρ and πP.

4The code is available in supplementary material.
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Positive Unlabeled Generated

MNIST
(πP = 0.5)

CIFAR-10
(πP = 0.3)

celebA
(πP = 0.5)

Figure 9: Counter-examples generation from Positive Unlabeled image datasets. The two left columns present input positive and unlabeled
training samples xP and xU . The right column presents output generated minibatch samples xG. The first row presents results for MNIST
classification task 5-vs-3 when πP = 0.5. The second row presents results for CIFAR-10 classification task Car-vs-Airplane when πP = 0.3.
The third row presents results for the arbitrary celebA classification task Male-vs-Female when πP = 0.5. Visually, every generated samples
observed hallucinate counter-examples included in the unlabeled training set.

Morevover, as mentioned previously, the regularization technique used in the discriminator has a direct impact

on the samples generated by the generator. Figure 10 shows samples generated by G depending on the normalization

technique used in D. We can observe that in the first row, with πP = 0.3, we naturally obtain around thirty percent

of men faces generated using any normalization techniques with the orginial GAN framework used in PGAN. The

generated images quality seems visually equivalent between BN, LN or SN. As previously explained, in the second
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row, also with πP = 0.3, the proposed D-GAN approach is not compatible with BN. On the contrary, with LN,

it exclusively generates counter-examples: women faces with only few men patterns like facial hairs. Finally, it

exclusively generates women faces with SN. Those results are consistent with Sec. 3.4 and 4.2.2. The D-GAN

trained with πP = 0.5 and BN naturally generates around fifty percents of men faces, as we recall that BN does not

enable to capture the counter-examples distribution. The D-GAN also performs relatively well with SN+Dropout

when πP = 0.5. It exclusively generates women faces. This confirms that the generator behaviour is highly

dependent on the discriminator generalization ability, which in turn depends on normalization techniques used.

This also confirms that the proposed D-GAN framework presents the interesting ability to exclusively hallucinate

counter-examples on a real PU image dataset when it is combined with appropriate discriminator regularizations.

We have shown in this section, from a qualitative point of the view, the discriminator ability to separate positive

and negative distributions from a positive unlabeled dataset, and the generator ability to learn the counter-examples

distribution on various datasets during the first stage. Next, we propose in Sec. 4.3 to quantitatively evaluate the

proposed model through an empirical study by focusing on the second-stage classifier C output predictions.

4.3. Divergent-GAN for Positive Unlabeled learning

In this section, we evaluate empirically our method on standard PU learning tasks such that we can test its ability

to address respective issues of the state-of-the-art methods presented in Section 2.

Concerning these comparative experiments, we use the DCGAN [Radford et al., 2015] architecture.

4.3.1. Robustness to prior noise

Nowadays, the stochastic gradient descent (SGD) method remains a useful deep learning regularization

technique for large-scale machine learning problems [Bottou, 2010]. SGD provides a regularizing effect by using

minibatches [Wilson and Martinez, 2003]. However, a smaller batch size implies a higher prior noise per batch.

Thus, in this section, we empirically study the proposed model robustness to prior noise using small batch sizes.

We reproduce the Even-vs-Odd experiment proposed by [Kiryo et al., 2017] as a function of the batch training

size. It consists of learning to discriminate even digits 0, 2, 4, 6, 8 from odd digits 1, 3, 5, 7, 9. Concerning the

second-stage classifier, we use the multilayer perceptron architecture provided by [Kiryo et al., 2017] 5. We only

replace the bottom fully connected layer of the classifier by a convolutional layer, similarly to the generator top layer

and discriminator bottom layer in the DCGAN [Radford et al., 2015] structure that we use. This avoids compatibility

problems between the generator top convolutional layer output and the bottom classifier layer input. Unwanted

5The code is available at: https://github.com/kiryor/nnPUlearning.
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GAN
(πP = 0.3)

D-GAN
(πP = 0.3)

D-GAN
(πP = 0.5)

Figure 10: Discriminator regularizations impacts on the generated samples from a PU celebA image dataset after 100 training epochs
iterations. The three columns correspond respectively to training experiments with BN, LN, and SN normalization techniques. The first row
presents samples generated using the original LS-GAN discriminator loss function. The two bottom rows present the samples generated by
integrating the proposed model discriminator loss function term ExP∼pP [MS E(D(xP), 0)] in the original LS-GAN loss function, with MS E
the mean squared error metric.

artifacts in output of GANs MLP structure are slightly different from unwanted artifacts observed in output of GANs

convolutional structures.

It turns out that PU approaches using prior such as uPU, nnPU and GenPU make the assumption that the global

training dataset prior πP is fixed and known. But in the same PU context, when the minibatch size decreases, the

dispersion of πP per minibatch consequently increases. Figure 11 (a) shows that using small batch training sizes
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minibatch size std(πP) · 102 Test Accuracy

512 2.22 0.936 0.932 0.921
256 3.2 0.935 0.931 0.906
128 4.31 0.934 0.929 0.9
64 6.51 0.929 0.507 0.804
32 8.62 0.895 0.508 0.508
16 13.06 0.907 0.5 0.5

(b) Detailed scores

Figure 11: Prediction test Accuracy on MNIST for the Even-vs-Odd classification task, as a function of the minibatch size. We choose the
prior value πP = 0.5, as the standard deviation of the real prior per minibatch is the highest in this way (see Fig. 1). This eases to observe
the prior sensitivity. We reproduce the experiment exp-mnist proposed by nnPU. The PU dataset contains one thousand positive labeled
examples, which are even digits. The unlabeled set is composed of the entire initial dataset, thus including also the positive labeled ones.
std(πP) is the standard deviation of the prior per minibatch. uPU and nnPU results have been obtained with the code provided by the authors
of the nnPU article. (b) details the prediction scores used to plot the curves in (a).

causes critical prediction performances collapse issues for unbiased techniques like nnPU and uPU.

On the other hand, our proposed approach without using prior knowledge is drastically less sensitive to this

problem: While nnPU and uPU methods become ineffective in terms of test Accuracy (i.e. Accuracy score around

0.5), the D-GAN still provides a prediction test Accuracy of 0.907 for training minibatches of size 16 in D, G and C

to address the Even-vs-Odd MNIST superclass classification task, as detailed in Figure 11 (b).

We can conclude that the D-GAN outperforms nnPU and uPU in terms of prediction performances such that it

can use minibatches to take advantage of SGD. This capacity is also interesting for incremental learning requirements

where only small sample sizes may be managed at each new training iteration. Moreover, recent studies show that it

is possible to continually train GANs models [Lesort et al., 2018].

Now that we have shown that the proposed model is robust to prior noise, we continue the comparative tests with

the methods which do not use prior knowledge πP in their training cost-functions to address the PU learning task.

4.3.2. One versus Rest challenge

We compare in this section the proposed approach with the PGAN and RP methods that we consider as baselines

for the PU learning task without prior knowledge. More specifically, we evaluate them on the challenging One-

vs-Rest task which consists in trying to distinguish a class from all the other ones. This task is interesting for

binary image classification applications where the labeling effort may be exclusively done on the class of interest,
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the positive class. Another motivation is that One-vs-Rest binary classification brings the tools for multiclass

classification [Shalev-Shwartz and Ben-David, 2014].

One-vs-Rest AVGMNIST AVGCIFAR-10

πP PN PNGAN D-GAN PGAN RP PN PNGAN D-GAN PGAN RP

0.1 0.993 0.988 0.989 (0.01) 0.965 (0.01) 0.967 (0.02) 0.680 0.812 0.815 (0.05) 0.745 (0.08) 0.622 (0.10)
0.3 0.993 0.988 0.983 (0.01) 0.958 (0.01) 0.975 (0.02) 0.680 0.812 0.792 (0.05) 0.760 (0.03) 0.730 (0.07)
0.5 0.993 0.988 0.971 (0.01) 0.946 (0.02) 0.951 (0.04) 0.680 0.812 0.751 (0.04) 0.748 (0.03) 0.716 (0.06)
0.7 0.993 0.988 0.938 (0.02) 0.875 (0.05) 0.933 (0.07) 0.680 0.812 0.721 (0.04) 0.702 (0.03) 0.684 (0.08)

Table 2: One-vs-Rest task with two-stage PU methods without prior, as proposed in PGAN [Chiaroni et al., 2018]: From a fully labeled
PN dataset, we firstly select a fraction ρ of positive labeled examples that we put in the simulated unlabeled set. Then, we add negative
labeled examples in the latter to obtain up to a fraction πP of positive examples in this unlabeled set. Compared to nnPU simulation method,
this simulation method has the advantage to simultaneously and independently control the number of positive labeled examples to keep, and
the fraction πP for the unlabeled set to simulate. PNGAN expression represents GAN-based methods reference for the ideal case where
πP = 0, such that we train during the first stage a GAN exclusively over all the initial cleanly labeled counter-examples set. For each dataset
and depending on the fraction πP, we have tested respectively the ten One-vs-Rest task possibilities and display the corresponding average
test F1-score predictions. The standard deviation is indicated in parenthesis.

Table 2 shows average predictions for the One-vs-Rest task over MNIST and CIFAR-10 datasets. We use the

F1-Score metric for its relevance in such information retrieval and binary classification tasks as highlighted by

[Bollmann and Cherniavsky, 1980], [Shaw, 1986], [Liu et al., 2002]: the F1-score measures the positive examples

retrieval. The PU datasets are simulated as proposed by PGAN such that we can evaluate the results as a function of

several πP fractions. Concerning the second-stage classifier in these experiments, we have used the convolutional

architecture presented in Figure 4 (c). We can observe that the D-GAN globally outperforms PGAN and RP

methods in terms of test F1-Score on both MNIST and CIFAR-10 datasets. Moreover, PNGAN results highlight the

GAN-based methods data augmentation advantage on complex datasets. This justifies the superior scores obtained

by our method compared to RP over the CIFAR-10 dataset.

Reducing the overfitting problem: In addition, we can observe that the proposed model also outperforms

PGAN on MNIST with a significant margin. This is due to the fact that, compared to the PGAN which is trained

to generate unlabeled examples, the proposed approach only generates counter-examples as previously shown

in Figures 8 and 9. Consequently, the proposed first-stage generative model does not learn the positive samples

distribution, and it avoids the PGAN first-stage overfitting issue on simple datasets like MNIST. Figure 12 illustrates

this phenomenon. In Figure 12 (a), without normalization, the D-GAN method gets faster a better Accuracy than

PGAN when both are trained under the same conditions. In Figure 12 (b), the D-GAN with LN, SN or SN+dropout

follows the learning speed of the PGAN with BN, while demonstrating a steadier behaviour once the Accuracy

progression is finished, as it overcomes the PGAN first-stage overfitting problem.

To sum up, in Sec. 4.2, we demonstrate that the proposed approach is effective at capturing and observing the

counter-examples distribution of our class of interest from only positive and unlabeled data, without using the prior
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Figure 12: Second-stage Classifier (architecture presented in Figure 4 (c)) test Accuracy evolution as a function of the first-stage GAN
epochs. 8-vs-Rest MNIST task, with ρ = 0.5 and πP = 0.5. (a) D-GAN and PGAN are trained without normalization layers. (b) D-GAN and
PGAN are respectively trained with LN, SN, SN + dropout, and BN inside the discriminator.

information πP. In addition, comparative experiments in Sec. 4.3 have subsequently highlighted the proposed model

ability to address state-of-the-art PU learning issues such as prior sensitivity and first-stage overfitting. It turns

out that addressing simultaneously thoses issues fosters the proposed approach to outperform PU state-of-the-art

methods in terms of prediction scores without using prior on both simple and complex image datasets.

5. Conclusion

To conclude, we have incorporated into the GAN discriminator loss function a constrained PU risk to deal with

PU learning. In this way, the proposed model generates relevant counter-examples from a PU dataset. It outperforms

state-of-the-art PU learning methods by addressing their respective issues. Namely, it addresses the prior knowledge

dependence of cost-sensitive PU methods and the lack of generalization of selective processes. Moreover, it reduces

the overfitting PGAN first-stage problem, while keeping the practical standard GAN architecture, such that it is

easily adaptable to recent GANs variants. A side contribution of this article is to have identified discriminator

normalizations effects appearing when we manipulate multiple minibatches distributions when dealing with a PU

training dataset.

We believe that the proposed approach stability and prediction performances still have the potential to be

improved by taking the best of the representation learning and weakly supervised learning domains. Recent

promising GAN training approaches [Karras et al., 2018], [Zhang et al., 2018], [Brock et al., 2019] not mandatorily

using BN, may be suitable to extend the proposed approach for higher dimensional image datasets.
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