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Abstract

In the developing neural tube in chicken and mammals, neural stem cells proliferate and differentiate according to a
stereotyped spatiotemporal pattern. Several actors have been identified in the control of this process, from
tissue-scale morphogens patterning to intrinsic determinants in neural progenitor cells. In a previous study (Bonnet
et al. eLife 7, 2018), we have shown that the CDC25B phosphatase promotes the transition from proliferation to
differentiation by stimulating neurogenic divisions, suggesting that it acts as a maturating factor for neural
progenitors. In this previous study, we set up a mathematical model linking fixed progenitor modes of division to the
dynamics of progenitors and differentiated populations. Here, we extend this model over time to propose a complete
dynamical picture of this process. We start from the standard paradigm that progenitors are homogeneous and can
perform any type of divisions (proliferative division yielding two progenitors, asymmetric neurogenic divisions
yielding one progenitor and one neuron, and terminal symmetric divisions yielding two neurons). We calibrate this
model using data published by Saade et al. (Cell Reports 4, 2013) about mode of divisions and population dynamics of
progenitors/neurons at different developmental stages. Next, we explore the scenarios in which the progenitor
population is actually split into two different pools, one of which is composed of cells that have lost the capacity to
perform proliferative divisions. The scenario in which asymmetric neurogenic division would induce such a loss of
proliferative capacity appears very relevant.

Keywords: CDC25B, Neural tube, Neural progenitors, Spinal cord, Proliferation, Differentiation, Proliferative capacity,
Modeling

Introduction
How can a small number of apparently initially homoge-
neous neural stem cells (NSCs) give rise to the tremen-
dous diversity of differentiated neurons and glia found
in the adult central nervous system (CNS) ? The long-
standing paradigm just claims: by proliferating first, and
then restricting the kind of cells a progenitor can produce
given its situation in time and space. How the progenitors
fate progression occurs in different contexts is still under
scrutiny.
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In Drosophila, NSCs are multi-potent and divide asym-
metrically to generate different types of progenies in a
stereotypical manner. The study of mechanisms by which
a single NSC can generate a wide repertoire of neural
fates in this system is in fast progress [1]. In particu-
lar, several studies have highlighted the deterministic role
of a series of sequentially expressed transcription fac-
tors in the temporal specification of Drosophila NSCs [2],
albeit further studies substantiated that they are possibly
under the control of some extrinsic (especially nutritional)
factors [3].
In the mammalian cerebral cortex, the diversity of neu-

ral progenies has been linked to different types of cortical
progenitors [4]. Beside expressing specific transcription
factors, a set of criteria allows classifying the various
types of cortical progenitors, including the apical or basal
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location of mitosis, their cell polarity and morphological
features and proliferative capacity [5].
In the developing spinal cord, morphogen gradients

have been identified that induce neural progenitor cells to
express specific combinations of transcription factors and
thereby adopt different identities based on their position
along the dorsoventral axis [6–8]. This spatial patterning
system ensures that different types of neurons are gener-
ated in an adequate stereotypical spatial order. Themolec-
ular players that control this spatial specification and their
mode of action have been characterized [7]. However, lit-
tle is known yet about how temporal differentiation of
neural progenitor cells is orchestrated, namely what con-
trols the timing of their transition from proliferation to
differentiation at a given location [9].
Unlike cortical progenitors, spinal progenitors appear as

a homogeneous population. They all divide apically and
display the same morphology: an elongated shape with
cytoplasmic connections to both the apical and basal sur-
faces. Spinal neural progenitors perform three modes of
cell division: proliferative division that generates two pro-
genitors (PP), asymmetric neurogenic division giving rise
to a progenitor and a neuron (PN), and terminal neuro-
genic division producing two neurons (NN). The tempo-
rality of the transitions among the three modes of division
(hereafterMoD) is critical in the control of the temporality
of differentiation. Interestingly, we identified a G2/M cell
cycle regulator, the CDC25B phosphatase whose expres-
sion correlates temporally and spatially remarkably well
with areas where neurogenesis occurs [9, 10]. Moreover,
CDC25B induces the conversion of proliferating neural
progenitor cells into differentiating neurons by promot-
ing sequentially neurogenic divisions, PN and NN [11].
We thus propose that CDC25B acts as a maturating factor
that progressively restricts the mode of division of neu-
ral progenitor cells. Following our previous study on the
maturing role of CDC25B in the control of neurogenesis
[11], our question here is to examine whether this matura-
tion can be due to an accumulating number of progenitors
losing their proliferative capacity.
From that point of view, we note that ventral neural pro-

genitors in the neural tube have been already shown to
display a fate switch, transiting from early motoneurons
production to late oligodendroglial production, under the
control of Shh induction [12]. Here, we consider the pos-
sibility that a similar kind of switch operates sooner in
the same population and sustains the transition from pure
proliferative divisions to neurogenic divisions.
To examine this hypothesis, we start from the model of

MoD transition we have proposed in our previous paper
about the instrumental role that CDC25B plays in the pro-
gression from proliferative to neurogenic divisions [11]. In
the spirit of Lander et al. [13], modeling is used here as
a way to gain clarity in the face of intricacy. To this end,

we have first extended our model presented in [11]. This
model considered MoD as stationary over the 24 hours
of our experiment. We now consider their change over
time in order to extend this model over the full dynam-
ics of ventral spinal cord motoneurons production. This
extension over time uses the data published by Marty’s
team [14] who measured the two essential components
of this system at different times of spinal cord develop-
ment: MoD on the one hand, and dynamics of Progenitors
/ Neurons (P/N) populations on the other hand.
From the modeling point of view, we point out the

importance of being unequivocal about what the experi-
mentally measured entities are in this system, and what
are the conceptual entities we are thinking with. Namely,
we propose below a first model which is based on the
observable entities only (MoD and P/N evolutions). We
use this model to make the link between these observable
entities and check how experimentally measured evolu-
tion of modes of divisions can explain the evolution of
cellular populations of progenitors (P-cells) and neurons
(N-cells).
Next, we explore the idea that the temporality of the

transitions among the three modes of division is based
on a loss of proliferative capacity in some progenitors.
To implement this hypothesis, we have to define two non
observable kinds of progenitors, one of which is unable
to perform proliferative divisions. We identify three sce-
narios compatible with this hypothesis. In order to check
the structural consequences of each scenario, we recon-
struct for each of them what the progression of their MoD
should be if we take as a constraint that they must match
the observable ones, and concurrently produce the correct
evolution of P/N cells.
In the end, we advocate that one scenario is of great

relevance: the hypothesis that asymmetric neurogenic
division would induce the loss of proliferative capacity
in the self-renewed progenitor. We offer a speculative
additional component to the model so that robustness
against small perturbations is secured. We discuss our
findings compared to the model proposed by Marty’s
team to explain their own data [14]. We finally suggest
that lineage tracing may now be the best experimental
avenue to go further in the understanding of how the
progression from proliferative to neurogenic divisions is
timed.

Results
Minimal Model for the Dynamics with three Modes of
Division
We start from the model with fixed MoD proportions we
designed in Bonnet et al. [11], incorporating here the pos-
sibility for the MoD to evolve with time. We consider a
population of cells at time t, some of which are proliferat-
ing progenitors P(t), and others are differentiated neurons
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N(t). The dividing progenitors can undergo three kinds of
division, yielding:

• symmetric proliferative divisions ending with two
progenitors (pp-divisions)

• asymmetric self-renewing divisions ending with one
progenitor and one neuron (pn-divisions)

• symmetric consumptive neurogenic divisions ending
with two neurons (nn-divisions)

Let us denote :

η the rate at which P-cells undergo divisions (in frac-
tion of the P-pool per unit time)

αpp(t) the fraction of dividing cells undergoing pp-
divisions

αpn(t) the fraction of dividing cells undergoing pn-
divisions

αnn(t) the fraction of dividing cells undergoing nn-
divisions

The fractions of pp-, pn- and nn-divisions can evolve
with time, under the constraint that αpp(t) + αpn(t) +
αnn(t) = 1.
The time derivative Ṗ(t) of pool P(t) (resp. Ṅ(t)) is then

given by the balance equation at time t, reading:

{
Ṗ(t) = −η(t)P(t) +2αpp(t)η(t)P(t) + 1αpn(t)η(t)P(t)
Ṅ(t) = +2αnn(t)η(t)P(t) + 1αpn(t)η(t)P(t)

(1)

where in the first equation :

• −η(t)P(t) quantifies the rate at which P-cells
disappear from the pool P(t) because they divide.
The quantity of disappearing P-cells between t and
t + dt is then η(t)P(t)dt

• αpp(t)η(t)P(t) quantifies the fraction of this quantity
that undergoes a pp-division ; it doubles to yield 2 P
and adds up to the pool P(t) (hence the factor 2)

• αpn(t)η(t)P(t) quantifies the fraction of this quantity
that undergoes a pn-division ; it doubles to yield 1 P
and 1 N, so only half (the P part) adds up to the pool
P(t) (hence the factor 1)

Correspondingly in the second equation :

• αnn(t)η(t)P(t) quantifies the fraction of this quantity
that undergoes a nn-division ; it doubles to yield 2 N
and adds up to the pool N(t) (hence the factor 2)

• αpn(t)η(t)P(t) is the fraction of this quantity that
undergoes a pn-division ; it doubles to yield 1 P and 1
N and only half (the N part) adds up to the pool N(t)
(hence the factor 1)

System (1) is a textbook continuous-time representation
of population dynamics. It is a very good approximation of
the evolution of progenitors and neurons, considering that
division events are instantaneous (M-phase is very short
compared to the cell cycle duration), and occur uniformly
in time (asynchronously) [11].
Since αpp + αpn + αnn = 1, system (1) can be rewritten:{

Ṗ(t) = (αpp(t) − αnn(t))ηP(t)
Ṅ(t) = (

1 − (αpp(t) − αnn(t))
)
ηP(t) (2)

so that the general form of the solution for the evolution
of the pools is given by:⎧⎪⎪⎨
⎪⎪⎩

P(t) = P(0) exp
[∫ t

0
(αpp(τ ) − αnn(τ ))η(τ )dτ

]

N(t) = N(0) +
∫ t

0

(
1 − (αpp(τ ) − αnn(τ ))

)
η(τ)P(τ )dτ

(3)

Starting from an initial configuration, P(0) = 1,N(0) =
0 at time t0 and considering a steady rate η(t) = η, the
system evolution will be only driven by the two functions
αpp(t) and αnn(t).

Calibration from data for the embryonic spinal cord
In the embryonic spinal cord, pp-divisions are largely
dominant at the beginning of the process so that prolifera-
tion increases the pool of progenitors for a while, but their
proportion decreases with time so that the process ends
with terminal neurogenic divisions.
Estimations ofMoDwere collected by Saade et al. [14] at

discrete times (Fig. 1a), as well as the corresponding evo-
lutions of the pools of progenitors and neurons (Fig. 1b).
We used these MoD data to calibrate the two continuous
time functions αpp(t) and αnn(t), with αpn(t) being con-
strained to be their complement to 1 (Fig. 1a, Additional
file 1).
From a minimalistic approach, we constrain the shape

of the two functions with a minimal set of parameters.
The pp-divisions display an evolution from αpp(t0) = 1
down to αpp(t → ∞) = 0. This transition will be charac-
terized by a characteristic time τpp, with αpp(τpp) = 0.5,
and a characteristic scale σpp indicating the sharpness of
transition. A standard form for this is:

αpp(t) = 1
2

[
1 − tanh

( t − τpp
σpp

)]
(4)

Least-square error estimation of the two parameters
yields: τpp = 67.0 hpf and σpp = 8.0 hpf. The adjusted
profile fits the data rather well (sq. error = 0.007).
We fit the same kind of tanh profile for the evolution of

nn-divisions from αnn(t0) = 0 to αnn(t → ∞), following:

αnn(t) = 1
2
αnn(t → ∞)

[
1 + tanh

(
t − τnn

σnn

)]
(5)
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Fig. 1 PN Model for the dynamics of Modes of Division (MoD) and evolution of cells population (P,N) in the developing ventral spinal cord. aMoD
measured by [14] (square dots) and [11] (circles, bars are 95% CI). Black : pp-divisions, red : nn-divisions, blue : pn-divisions. Curves report the fitted
continuous time functions. b Evolutions of the pools of progenitors (black) and neurons (red) from [14]. Circle points indicate estimates of P/N
proportion from [11], and scaled to the total amount of cells. Black and red lines report numerical solution of system (3) using MoD shown in a).
Green line reports the analytical solution for the P-pool (Eq. 6). c CDC25B Gain-of-Function promotes neurogenic divisions so that the transition
from proliferation to differentiation is shifted 8 hours sooner (thick lines) than the CTL profiles (thin lines). d Predicted evolution of the pools of
progenitors (black) and neurons (red) under GoF (thick lines) compared to CTL (thin lines). The dots report the proportion of progenitors / neurons
measured in Bonnet et al. in GoF condition [11], scaled to the total amount predicted at their respective times. e CDC25B-�CDK Gain-of-Function
have a differential effect upon neurogenic divisions: pp-divisions are shifted 2 hours sooner and nn-divisions are shifted 4 hours later. As a
consequence, the complementary PN profile is enhanced (compared to the CTL) and lasts longer. f The dynamics of the two pools is very close to
the CTL dynamics and match with the measured proportions given in Bonnet et al. [11]
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We lack the data to fit exactly the plateau value and we
set the reasonable value αnn(t → ∞) = 0.8. Least-square
error estimation of the two parameters yields: τnn = 79.3
hpf and σnn = 14.5 hpf (sq. error = 0.03).
With these profiles for αpp(t) and αnn(t), the evolution

of the P-pool evolves according to (details in Methods
Eq. 18 ):

P(t)
P(0)

= exp
[η

2

([
t − σpp ln

( cosh((t − τpp)/σpp)

cosh(−τpp/σpp)

)]

−αnn,∞
[
t + σnn ln

(
cosh((t − τnn)/σnn)

cosh(−τnn/σnn)

)])]
(6)

Setting P(0) = 1,N(0) = 0 at time t0 = 44 hpf
and η = 1/12 hours [11, 15], this system yields a good
account of the evolution of P,N pools as measured by
Saade et al. [14] (Fig. 1b, original data were rescaled to
correspond to the number of cells per progenitor origi-
nally present). At the beginning, the large bias towards
pp-divisions amplifies the pool of progenitors up to a
maximum value: Pmax[CTL]= 5 per initial progenitor
at around tmaxp[CTL]= 72 hpf. Then, the production
of neurons raises mainly due to pn-divisions, until nn-
divisions become dominant over pn-divisions (at around
82-83 hpf). The pool of progenitors depletes to zero while
nn-divisions increase the pool of neurons up to a plateau
value of N(t → ∞)[CTL]= 17.6 neurons per progen-
itor initially present. We note that this evolution, and
especially N(t → ∞) is highly sensitive to the cho-
sen initial condition (t0,P(t0)). This point is addressed
below.

Incorporating CDC25B experiments
Bonnet et al. [11] have performed a series of experimental
manipulations of the expression of CDC25B phosphatase
in this biological system. Their experimental measures are
the proportions of progenitors / neurons, and a corre-
sponding measure of the modes of division, depending
on the experimental conditions : Control (CTL), Gain
of Function (CDC25B GoF) using the wild-type form of
CDC25B, and Gain of Function using a CDC25Bmodified
to be unable to interact with its known substrates CDKs
(CDC25B�CDK GoF).
Modes of division were measured by Bonnet et al. [11]

at stage HH17, and fit well with the MoDs measured by
Saade et al. [14] at time 72 hpf (Fig. 1-a, circle dots). How-
ever, to make the correspondence between P/N fractions
reported in Bonnet et al. [11] and the P/N evolution mea-
sured in Saade et al. [14], we had to consider that the
former correspond respectively to times 60 hpf and 84
hpf on the time scale in Saade et al. [14] (i.e. 12 h before
and after 72 hpf, keeping the correct interval of 24h in
between).

To check the power of this simple model, we now
explore the hypothesis that CDC25B GoF has only an
effect upon the schedule of MoD transitions. We expect
that GoF should trigger differentiation sooner in time,
and indeed, the measured MoD in the GoF experi-
ment can be fitted by shifting the three time pro-
files 8 hours sooner (Fig. 1-c). Interestingly, at time 72
hpf, this strongly affects αpp and αnn but leaves αpn
unchanged.
The corresponding evolutions of the pools P/N are

strongly affected, since the progenitors lack time to pro-
liferate, reaching now a maximum of Pmax[GoF]= 2.6
per initial progenitor at around tmaxp[GoF]= 64 hpf
(Fig. 1-d). As a consequence, the pool of neurons increases
sooner, but reaches a plateau value nearly half of that
of the CTL condition, N(t → ∞)[GoF]= 9.2 neurons
per initial progenitor. The proportions P/N measured by
Bonnet et al. [11] fit well with this picture.
The case of CDC25B�CDK GoF yields a different pre-

diction. Here, the pp-divisions had to be advanced by 2
hours while the nn-divisions had to be delayed by 4 hours
to correspond to the ones measured by Bonnet et al. [11]
(Fig. 1e). As a result, the main effect of CDC25B�CDK

GoF is to greatly promote pn-divisions, so they appear
sooner and reach a higher proportion. This suggests that
CDC25B�CDK GoF promotes self-renewing neurogenic
pn-divisions, but fails to promote the transition from
pn-divisions to nn-divisions as does CDC25B GoF.
Here again, the predicted dynamics of the two pools fit

well the proportions P/N measured by Bonnet et al. [11]
(Fig. 1f ). Remarkably, since the pn-divisions are neutral to
the balance proliferation / differentiation, these dynam-
ics are almost identical to the CTL case. We note that
the effect of CDC25B-�CDK could not be detected by
measuring only the P/N pools evolution.
Altogether, the model given by the system 1 (PN model)

expresses the dynamics at the population scale, yielding
the evolution of the two kinds of cells: the pool of pro-
genitors, and the pool of neurons. Being formulated at the
population scale, the variables and the parameters repre-
sent averages over a large ensemble of cells. In the biolog-
ical system, those averages can correspond to numerous
scenarios at the cell level. Nonetheless, the model dynam-
ics produced by Eqs. 3, 4, 5 should be taken as a point
of reference because any scenario at the cell scale should
reproduce these dynamics at the population scale. In that
sense, PN model should be regarded as a way to describe
a strong constraint over the set of possible cell-scale sce-
narios and a guide to narrow the research of mechanistic
explanations. In the next section, we will use it as such
in order to explore three scenarios incorporating a loss of
proliferative capacity at the cell scale as a means to time
the progression from proliferative to purely neurogenic
divisions.
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Models with loss of proliferative capacity
PN model is compatible with the simplest interpretation
at the cell level: that each dividing cell is liable to stochas-
tically produce the three possible MoD, in proportion
to what is measured at the population scale. Since the
data show that progenitors MoD display an irreversible
vanishing of pp-divisions with time, we now explore alter-
native models in which we explicitly introduce loss of
proliferative capacity at the cell scale, so that more and
more dividing progenitors cannot perform proliferative
divisions.
This loss of proliferative capacity at the cell scale implies

that the pool of progenitors is actually composed of dif-
ferent kinds of dividing cells. Let’s consider the case with
only two kinds of dividing cells, denoted G and A, where
only cells of type G are able to perform proliferative
divisions (G → (G,G)). A-cells would be produced by
non proliferative MoD of G-cells when they stochastically
adopt the alternative MoD, producing daughter cells with
no proliferative capacity. The total pool of dividing cells
(progenitors in the model 1) becomes P(t) = G(t) + A(t).
The loss of proliferative capacity in cells of type A

implies that they cannot give birth to a cell of type G
nor perform proliferative divisions (A → (A,A)). Hence,
they can only undergo asymmetric self-renewing neuro-
genic division A → (A,N) or symmetric consumptive
neurogenic division A → (N ,N).
The only choice left then is to define the pair of cells

produced by non proliferative MoD of G-cells. The only
four possibilities are:

1 G → (G,A) : asymmetric non-neurogenic division
One cell keeps proliferative capacity (keeps type G)
and one cell loses it (becomes type A).

2 G → (A,A): symmetric non-neurogenic division
The two daughter cells lose proliferative capacity but
keep self-renewing capacity (both become type A).

3 G → (A,N): asymmetric neurogenic division
Both cells lose proliferative capacity, with one cell
keeping self-renewing capacity (becomes type A) and
the other cell will become a neuron.

4 G → (N ,N): symmetric neurogenic division
The two cells will become neurons, with no
proliferative nor self-renewing capacity.

Using the nomenclature established in [5], the types and
effects of those MoD are summarized in Table 1.
We note that the fourth possibility would correspond

to PN model (since no cell of type A would even be pro-
duced), but with such parameters that no asymmetric
division would appear at all. We discard it in the spinal
cord context since asymmetric divisions are observed. We
examine below the three other scenarios, naming them
after the specific non-proliferative MoD of the G-cells:
GGA-model, GAA-model and GAN-model.

Table 1 Description of the MoD in the three models with loss of
proliferative capacity

MoD Type Effect Present in model

G → (G,G) Symmetric proliferative Proliferative GGA, GAA, GAN

G → (G, A) Asymmetric self-renewing Proliferative GGA

G → (A, A) Symmetric consumptive Proliferative GAA

G → (A,N) Asymmetric consumptive Neurogenic GAN

G → (N,N) Symmetric consumptive Neurogenic PN

A → (A,N) Asymmetric self-renewing Neurogenic GGA, GAA, GAN

A → (N,N) Symmetric consumptive Neurogenic GGA, GAA, GAN

In symmetric divisions, the two daughter cells display the same identity. In
asymmetric divisions, the two daughter cells have different identities. In
self-renewing divisions, one of the daughter cells has the same identity as the
mother cell. In consumptive divisions, the two daughter cells differ in identity from
the mother cell. In neurogenic divisions, at least one daughter cell is a neuron

Structural flaw of GGAmodel
Under the GGA model, the MoD are : G → (G,G) and
G → (G,A) for the G-cells. They can then perform
either proliferative divisions or self-renewing divisions. As
a consequence, this model cannot structurally account for
the decreasing of the P-pool after 73 hpf. Even if their
MoDs evolve from proliferative in the beginning to self-
renewing in the end, the early proliferation would lead
to a given amount of G-cells that could not decrease
later and the G-pool would stabilize. When stabilized, it
would continuously produce A-cells at a constant rate by
self-renewing division. Since these A-cells would in turn
differentiate into neurons, that would produce a popula-
tion of neurons growing to infinite: the structure of the
model would trap the dynamics in a perpetual regime of
permanent production of neurons. This model is then to
be rejected because of its structure. Incidentally, we note
that this rejection based on the structure of the model is
an indication that not anymodel with loss of proliferative
capacity could fit the observed dynamics.

Predictions of GANmodel
Writing explicitly the balance of evolution, the dynamics
of GAN model obeys:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ġ(t) = η [−G(t) + 2αGGG(t)G(t)]

Ȧ(t) = η [−A(t) + αGAN (t)G(t) + αAAN (t)A(t)]

Ṅ(t) = η [αGAN (t)G(t) + 2αANN (t)A(t)+αAAN (t)A(t)]

αGGG(t) + αGAN (t) = 1 ; αAAN (t) + αANN (t) = 1
(7)

Let’s denote γG(t) = αGAN (t) and γA(t) = αANN (t).
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Using the fourth line of system (7), system (7) simplifies
to (omitting time dependencies for clarity):⎧⎪⎨

⎪⎩
Ġ = η (1 − 2γG)G
Ȧ = η (γGG − γAA)

Ṅ = η (γGG + (1 + γA)A)

(8)

showing that the evolution is fully determined by γG(t)
and γA(t). To calibrate these two time-continuous func-
tions, we will use the evolutions of MoD in the PN
model for the three conditions (CTL, CDC25B GoF,
CDC25B�CDK GoF).
For this, we establish the correspondence between GAN

model variables and PN model variables :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(t) = G(t) + A(t)

αpp(t) = (1 − γG(t))
G(t)

G(t) + A(t)

αpn(t) = γG(t)
G(t)

G(t) + A(t)
+ (1 − γA(t))

A(t)
G(t) + A(t)

αnn(t) = γA(t)
A(t)

G(t) + A(t)

(9)

To establish this correspondence, we have considered
that the observable α••(t) functions express the propor-
tions of each MoD among a total number of divisions.
They can be regarded as a probability that a given division
is of a given kind of MoD. Hence, to reconstruct a given
observable MoD, we have to multiply the probability that
the corresponding kind of progenitor would adopt this
MoD by the proportion of this kind of progenitors among
the total number of progenitors. For instance, the proba-
bility observing a pp-division, αpp(t) (the observable pro-
portion of proliferative divisions), is the probability that a
given progenitor is of type G (namely G(t)/(G(t) + A(t)))
times the probability that this progenitor performs an
G → (G,G) division (αGGG(t) = 1 − γG(t)). We pro-
ceed this way for the three kinds of observable MoD,
considering that the observed asymmetric divisions αpn
aggregate the asymmetric divisions G → (A,N) by the
G pool and asymmetric divisions A → (A,N) by the
A pool.
As shown in Methods, analytical inversion of the evo-

lution of γG can be matched very well by a tanh ansatz,
so we used the same function for the evolution of γA. To
calibrate γG(t) and γA(t), we used the continuous time
functions fitting the MoD in PN model to fit the two
parameters of this ansatz by a least-square error proce-
dure (full details are given inMethods “GAN calibration”).

The fitted parameters are reported in Table 2, and the
corresponding predictions for the evolutions of cells pop-
ulation are given in Fig. 2.
In the CTL case, we found a remarkable convergence of

theMoD evolutions forG-cells andA-cells and we recover
a perfect prediction for the evolution of P(t) and N(t)
populations.
The typical time of MoD progression is 68hpf for the

G-cells and 65.5hpf for the A-cells, and their progression
rates are practically identical. In the beginning, theG-pool
is mainly proliferating, while G → (G,G) is dominant
over G → (A,N), for about 20 hours (Fig. 2a, green,
γG(t) < 0.5 before 68 hpf). This yields a growth of the G
pool up to a peak at 4.5 G-cells (per initial G-cells) at 68
hpf (Fig. 2b, green). They represent 88% of P-cells at that
time. After that peak, G-cells slowly decreases while pop-
ulating A andN cells throughG → (A,N) divisions. From
that time, A-cells are produced up to a peak from which
terminal neurogenic divisions A → (N ,N) become domi-
nant so the A-pool decreases and neural production ends,
with about 20 neurons per initial progenitor.
We note that theMoD ofA-cells are already very skewed

in favor of A → (N ,N) at the time they begin to be pro-
duced byG → (A,N) divisions (Fig. 2a, blue, γA(t) > 0.65
after 68 hpf). Hence, most A-cells are consumed by termi-
nal divisions as soon as they are produced. Seeing this, we
checked an even simpler scenario with only three modes
of division: G → (G,G), G → (A,N), A → (N ,N) so
a progenitor issued from an asymmetric division (A-cells)
would always differentiate into two neurons at the next
cycle. This yields practically the same results (Additional
file 2: Figure S1).
In the CDC25B GoF case, the 8-hours advanced evolu-

tion of the MoD in PN model directly translates into an
equivalent and parallel 8-hours advanced evolution for G
and A MoD, which is not surprising given the calibration
method.
Contrastingly, the evolution of these MoD differs in

the case of CDC25B�CDK GoF. As expected, the small
advanced αpp profile little affects the progression of G-
cells MoD. However, the 4-hours delayed αnn profile
translates into a threefold larger delay for theA-cellsMoD,
namely they are shifted 11-hours later than in the CTL
condition (76.4 hpf vs 65.4 hpf). As a consequence, the
A → (A,N) MoD becomes operative since it is still

Table 2 Parameters found for the GAN model (in hpf)

CTL CDC25B GoF CDC25B�CDK GoF

τG 68.1 60.1 66.3

τA 65.4 57.6 76.4

σG 8.7 8.7 8.7

σA 8.6 8.6 10.7
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a b

c d

e f

Fig. 2 GAN Model. The fitted evolutions of MoD of G-cells (γG) and A-cells (γA) (left column) and their respective predictions for the evolutions of
populations (right column) are reported for the three experimental conditions. In the two GoF conditions, the thin lines report the CTL condition for
eye-comparison. Under the CTL condition, the evolutions of the two MoD are very similar (a). Under GoF of the wild-type CDC25B, both evolutions
are shifted sooner in time by the same delay (8 h, c). Under GoF of the mutated form of CDC25B, only the evolution of A-cells MoD is affected, being
delayed by 11 hours (e). In the three cases, the fitted MoD predict evolutions of progenitors (P=G+A) and neurons (N) in accordance with the data
(b, d, f)
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around 0.5 when A-cells reach their peak. In the end, the
production of neurons is very similar to the CTL value.
Overall, this structure for introducing a type of cells

with nomore proliferative capacity appears perfectly com-
patible with the available data. Under this model, the
evolutions of the MoD have two striking features: they
show a monotone progression, and they are very similar
to each other, opening the possibility that they could be
under the control of a same regulation process (see below).

Predictions of GAAmodel
The dynamics of this model obey:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ġ(t) = η [−G(t) + 2αGGG(t)G(t)]

Ȧ(t) = η [−A(t) + 2αGAA(t)G(t) + αAAN (t)A(t)]

Ṅ(t) = η [2αANN (t)A(t) + αAAN (t)A(t)]

αGGG(t) + αGAA(t) = 1 ; αAAN (t) + αANN (t) = 1
(10)

Denoting γG(t) = αGAA(t) and γA(t) = αANN (t), system
(10) simplifies to:⎧⎪⎨

⎪⎩
Ġ = η (1 − 2γG)G
Ȧ = η (2γGG − γAA)

Ṅ = η (1 + γA)A
(11)

The correspondences between GAA scenario variables
and the variables in PN model are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αpp(t) = (1 − γG(t))
G(t)

G(t) + A(t)
+ γG(t)

G(t)
G(t) + A(t)

αpn(t) = (1 − γA(t))
A(t)

G(t) + A(t)

αnn(t) = γA(t)
A(t)

G(t) + A(t)

P(t) = G(t) + A(t)
(12)

We used MoD fitted in PN model to calibrate the two
MoD functions γG(t) and γA(t) the same way as we did for
GAN model (full details in Methods “GAA calibration”
section). The fitted parameters are given in Table 3 and
the predicted evolutions are given in Fig. 3.
Under CTL condition, we observe an abrupt and early

switch of the G-cells MoD, from dominant G → (G,G)

MoD before 60 hpf to dominant G → (A,A) MoD after
60 hpf (Fig. 3a, green). As a consequence, the P-pool

Table 3 Parameters found for the GAA model (in hpf)

CTL CDC25B GoF CDC25B�CDK GoF

τG 59.8 51.9 58.1

τA 78.9 69.4 87.2

σG 3.4 3.2 3.4

σA 41.5 48.6 33.8

is made of only G-cells up to that time (Fig. 3b, black
and green curves). After that proliferative burst, G-cells
mainly differentiate into A-cells, and the former become
dominant in the system (Fig. 3b, blue curve). Contrast-
ingly, the MoD of A-cells evolves smoothly (Fig. 3a, blue)
and the characteristic time of their switch is as late as 79
hpf. This leaves time for A-cells to produce neurons by
self-renewing divisions A → (A,N) and to compensate
for the early stopping of proliferative divisions by G-cells.
After 79 hpf, A-cells engage more and more in terminal
differentiation until their extinction.
The evolutions of P = G + A and N pools produced by

these calibrated MoD match very well the measured ones
(Fig. 3b, black and red curves).
In CDC25B GoF condition, the 8-hours advance of

MoD in PN model is directly reflected in the MoD for
the G-cells (Fig. 3c). This is expected given the calibra-
tion procedure, and this is true also for the progression
of the MoD for the A-cell, although their slopes are fur-
ther smoothened. This results into P/N evolutions under
GoF condition that match the profiles under PN model
(Fig. 3d).
In CDC25B�CDK GoF condition, the switch of MoD for

the G-cells happens slightly sooner than in CTL condi-
tion (Fig. 3d, green), so that the total number of A cells
produced by G → (A,A) is a bit lower (and hence so
are P = G + A cells). On the contrary, the switch of
MoD for the A-cells are delayed by about 5 hours (Fig. 3e,
blue). This is consistent with the observation that pn-
divisions in PN model are favored under CDC25B�CDK

GoF condition where they operate for a longer time than
in the CTL condition. Eventually, A-cells are fewer but
self-renew longer and yield the same number of neurons
as in CTL condition in the end.
Overall, this structure for introducing a type of cells

with no more proliferative capacity also appears compat-
ible with the available data for the P/N evolutions. We
note however that theMoD profiles obtained by analytical
inversion do not fit the MoD fitted to the ansatz (details in
Methods “GAA calibration” section).

Models comparison
Since the three models PN, GAA and GAN can be fit-
ted to correctly predict the evolutions of P/N populations,
they can only be discriminated by their capacity to reflect
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a b

c d

e f

Fig. 3 GAA Model. Same conventions as Fig. 2: evolutions of MoD under the three experimental conditions (a, c, e) and corresponding predictions for
progenitors and neurons (b, d, f). Under theGAAmodel, the evolutions of the twoMoDare verydifferent in the CTL condition : G-cells switch to G →(A, A)
MoD early in the process while A-cells keep dividing by self-renewing division A → (A,N) for a long time to compensate the lack of proliferation.
Under GoF, both transitions are shifted sooner in time (by 8 hours). Under GoF of mutated CDC25B, only the evolution of A-cells MoD is affected,
being delayed by 8 hours. In the three cases, the fitted MoD predict evolutions of progenitors (P=G+A) and neurons (N) in accordance with the data
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the measured evolutions of observable MoD, namely to
account for both MoD and P/N evolutions at the same
time. Importantly, we note that the three models do not
differ in degrees of freedom, since they all have four
parameters (two parameters per tanh function), so differ-
ences are only attributable to the difference in their struc-
tures. In Fig. 4, we report the reconstruction of observable
MoD from the hiddenMoD in the GAN andGAAmodels,

along with the MoD directly fitted at the PN level. Visual
inspection is sufficient to prefer GAN model over GAA
model.
GAN and PN models however differ only slightly. We

note a difference at the beginning of the process where nn-
divisions rise up later in GAN model than in PN model
and seem more adequate. This difference is due to the
fact that, in GAN model, nn-divisions are A → (N ,N)

a d g

b e h

c f i

Fig. 4 Compatibility of models PN, GAN and GAA regarding the MoDs. The fitted MoD in the PN model are reported for eye comparison (a, b, c,
same data as in Fig. 1-a, c, e). Observable MoD reconstructed from the evolutions of G/A MoD under GAN (d, e, f) and GAA (g, h, i) models, and for
the three experimental conditions. GAN model perfectly matches the observed MoD. GAA model is to be rejected
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divisions convoluted by the population of A-cells so they
cannot appear before the A-pool has increased. In PN
model, they can happen earlier through nn-divisions of
P-cells that are present from the beginning.
Overall, if the temporality of the transition among the

three modes of division should be controlled by a loss of
proliferative capacity in more and more progenitors, then
the structure of GANmodel should be retained as the best
scenario.

Securing robustness against initial conditions and
perturbations
In the calibration of PN model, we have mentioned that
the obtained dynamics were highly sensitive to the cho-
sen initial condition (t0,P(t0)). This is also true for GAN
model. In terms of dynamical systems theory, PN and
GAN models are non autonomous linear systems of ODE
because we have considered so far that the evolutions of
MoD were decoupled from the evolutions of cells pop-
ulation (MoD were taken as inputs, cells production as
outputs) as if MoD were controlled by an external pro-
cess insensitive to the current amount of cells. In linear
models, the final number of produced neurons must be
proportional to P(t0), hence the sensitivity.
For the sake of completeness of our modeling pro-

posal, we now speculate about formal refinement that
could secure robustness against initial conditions or per-
turbations. To secure robustness, we have to introduce
some feedback control so that the state of the system (the
current amount of P/N or G/A/N cells) would directly
affect the MoD (see e.g. [13]). For instance, the cur-
rent amount of P-cells could favor the progression to
neurogenic divisions, so that the accumulation of P-
cells by initial proliferation would finally promote more
and more nn-divisions. The current amount of N-cells
could as well favor neurogenic divisions, so that few
N-cells in the beginning would promote pp-divisions
(proliferation) while later accumulation of N-cells would
progressively dampen proliferation down. We have sys-
tematically explored every possible combination [16], and
we present here the one that appeared as the most consis-
tent with the data: the one in which the MoD evolutions
are controlled by the total amount of cells.
In the terminology of dynamical systems, the PN model

with feedback (hereafter denoted PN+fb model) becomes
autonomous non linear, following :{

Ṗ(t) = (αpp(P,N) − αnn(P,N))ηP(t)
Ṅ(t) = (

1 − (αpp(P,N) − αnn(P,N))
)
ηP(t) (13)

To establish the form of this feedback control, we plot
theMoD as a function of the total amount of cells all along
the process in PN model (Fig. 5a, black curves). This sug-
gests, here again, using tanh as an ansatz and the control
takes the form:

⎧⎪⎪⎨
⎪⎪⎩

αpp(P,N) = 1
2

[
1 − tanh

(P + N − κpp
spp

)]

αnn(P,N) = 1
2

[
1 + tanh

(
P + N − κnn

snn

)] (14)

The fitted functions are reported in Fig. 5a (red curves),
with κpp = 6.4, κnn = 13.2, spp = 3 and snn = 13.2.
Using system (13) with (14), we recover the dynamics

of MoD and P/N populations (Fig. 5b and c). Importantly,
the MoD are now controlled by the evolution of P/N cells
and are not the result of a direct fitting anymore.
Likewise, the GAN model would become:⎧⎪⎨

⎪⎩
Ġ = η (1 − 2γG(G + A + N))G
Ȧ = η (γG(G + A + N)G − γA(G + A + N)A)

Ṅ = η (γG(G + A + N)G + (1 + γA(G + A + N))A)

(15)

However, plotting the MoD as a function of the total
amount of cells (Fig. 5d, black curves) suggests that both
MoD could be driven by one and the same feedback.
Denoting γ ≡ γG(= γA), GAN+fb is finally:⎧⎪⎨

⎪⎩
Ġ = ηG (1 − 2γ (G + A + N))

Ȧ = η (G − A) γ (G + A + N)

Ṅ = η [A + (G + A) γ (G + A + N)]
(16)

with

γ (G,A,N) = 1
2

[
1 + tanh

(G + A + N − κgan

sgan

)]
(17)

The fitted function is reported in Fig. 5d (red curve),
with κgan = 6.9 and sgan = 3.5. Here again, the MoD are
now controlled by the evolution of G/A/N cells and not
the result of a direct fitting anymore. Using system (16)
with (17), we recover the dynamics of MoD and G/A/N
populations (Fig. 5e and f).
By introducing this feedback control, the dynamics

would gain robustness against (reasonable) perturbations
and converge to the same amount of neurons (three illus-
trations are given in Additional file 3: Figure S2). In the
end, GAN model appears quite relevant as it allows to
robustly account for the whole process with only two
parameters κgan, sgan (in addition to η) and it matches the
data very well.

Discussion
Our question was to test whether the progression from
proliferation to neurogenic divisions can be explained by
a loss of proliferative capacity in an increasing propor-
tion of progenitors. To this end, we have first established
a general restriction-free model with progenitors able to
perform any kind of division (PN model). Fitting the evo-
lution of its MoDs (PP, PN, NN) from data published by
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a d

b e

c f

Fig. 5Models PN and GAN with feedback control. Parametric plots of MoD and total amount of cells for PN model (a) and GAN model (d) (black
curves). Feedback control functions with tanh shape were fitted for the two MoD in PN model (red curves), and only one for GAN model (fitting γG ,
red curve). The corresponding predictions are given for the evolution of MoD (b and e), which now result for the dynamics, and the cells population
(c and f). In GAN model, using only one feedback control for the two MoD recovers perfectly the observed data
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Saade et al. [14], we found smooth MoDs time-profiles
that can account for the evolution of the P and N pools
reported in [14]. We consider that this general model
reflects Sox2 progenitors and HuC/D neurons immunos-
taining together with the biomarkers which allow differ-
entiating proliferative versus neurogenic divisions [14].
We take it as a benchmark to constrain refined scenarios
with heterogeneous progenitors. We note that its general
structure is also compatible with a broad description of
progenitors / neurons evolution in the neocortex [17, 18].
It should hold as well for other neural tube zones, such as
the dorsal area where CDC25B is expressed at the peak
of neuronal production [10, 11]. We characterized the
behavior of this model under CDC25B GoF experiments
carried out by some of us [11] and this gives support to
the hypothesis that the action of this phosphatase could be
to advance MoD progression, acting there as a maturation
factor.
Next we have explored three model structures embed-

ding a loss of proliferative capacity in progenitors, intro-
ducing two different progenitors population with the
structural constraint that one of them cannot do prolif-
erative divisions. For the three models compatible with
this constraint, we have derived the corresponding sys-
tem of evolution equations. One model (GGA) has been
discarded because it could not structurally account for
the observed evolutions. For the two other models (GAN,
GAA), we have established the correspondence between
the evolution of their MoDs and the evolution of the
MoDs observed in the benchmark PN model. This cor-
respondence was used to calibrate their parameters and
compute their predictions. From these two models, only
GAN model appeared to be structurally compatible with
observed MoD and P/N evolutions at the same time. In
this model, the MoD of G and A cells evolve at a common
pace in the CTL condition, opening the possibility that
both are under control of the same regulators. CDC25B
GoF accelerates them the same way while CDC25B�CDK

GoF only delays MoD of A-cells.
We note that our modeling proposition displays an

important difference with the model proposed by Saade
et al. themselves [14] (see also [19]): we do not detect a
strong switch of MoD at the population level. Their basic
model incorporates an all-or-nothing switch at time t∗ �
80 hpf with only proliferative divisions (pp) before t∗ and
only neurogenic divisions (pn or nn) after t∗. This is equiv-
alent to a loss of proliferative capacity that would apply
to progenitors all at once, at time t∗. Translated in terms
of GAN model, all G-cells would instantly become A-cells
at time t∗, whatever their phase in cell cycle. They next
extend this model to allow smoother transitions, division
asynchrony, accelerating cell cycle and a de novo incor-
poration of new progenitors under the induction of Shh.
Even with this smoother model, their fitting yields a sharp

extinction of pp-divisions at 73 hpf (from 60% to 0%within
one hour). It is difficult to determine how this finding is
constrained by the initial choice in their basic model, but
this predicted evolution of the MoD appears at odd with
their experimental observations of MoD and can predict
a meaningful evolution of the P/N populations only due
to the ad hoc additional source that compensates for the
early and sharp extinction of proliferative pp-divisions.
We observe that our model does not incorporate a

source of progenitors so the structures of the models are
different. We also note that the fitting procedures were
not the same. Saade et al. fit the 13 free parameters of
their extended model using an error minimization algo-
rithmwith respect to the experimental data [14] (Extended
Experimental Procedures — Mathematical Modeling). As
we understand this sentence, they fit the MoD profiles
and the source intensity so that the predicted dynamics
of the P/N populations matched as close as possible the
observed evolution. We have proceeded differently: we
have minimized the error between the modeledMoD evo-
lution and the observed MoD evolution, and only then we
have checked how the predicted P/N evolutions match or
not the observed ones. As a consequence of our proce-
dure, the MoD profiles in the PN and in the GAN models
are by construction as close as possible to the observed
MoD, and we have no freely adjustable parameters.
Importantly, both procedures have to set an initial con-

dition (i.e. an absolute time 0 at which we fix the initial
pool of progenitors), and since proliferative processes are
exponential, evolutions of P/N populations are highly sen-
sitive to that choice. We can guess that a small change
(by more or less two hours) of that “time 0” in Saade
et al. model would have a strong effect upon the required
intensity of their additional source. Our first versions of
PN and GAN models are to the same extent sensitive to
the choice of “time 0”. This sensitivity to initial conditions
and timing is due to the fact that these models consider
the evolution of MoD as decoupled from the evolution of
the populations. The crucial point here is that the relative
error for experimental data is the highest at early time,
because there are few progenitors then, and the devel-
opmental stage is only determinable with an error of the
same extent (more or less two hours).
To gain robustness against the indetermination of “time

0”, we have incorporated an hypothetical feedback process
so that the evolution of theMoD could be regulated by the
state of the system at any time. In these second versions
(PN+fb, GAN+fb), there is no need anymore to specify
an absolute time scale for the evolution of MoD since
it is paced by the evolution of the cells population. This
opens new questions about the regulation of CDC25B by
upstream signaling, since the maturation factor should
itself be under the control of a regulator sensitive to the
local amount of cells in the system (e.g. its local extension).
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Finally, we advocate that our GAN models (GAN or
GAN+fb) indeed incorporate a switch mechanism, but it
is specified at the cell level: the switch operates when a
daughter of a G-cell loses its proliferative capacity and
becomes an A-cell. Considering that a A-cell loses its pro-
liferative capacity during the M-phase of its G-parent, it
would only display its new divisionmodes (AAN, ANN) at
its next M-phase. At the population scale, this cell-based
MoD switching would then require at least one cell cycle
time length to fully display. This is the order of time we
observe in the GAN models where the MoD progression
at the population level happens over one cell cycle length
(12 hours). Under the hypothesis of asynchronous divi-
sions, the smooth progression of MoD in GAN models
at the population scale is then compatible with an abrupt
signaling event at the cell scale.
From a modeling standpoint (where modeling is used

as a way to gain clarity in the face of intricacy [13]),
GAN models displays several interesting features com-
pared to PN model. First, CDC25B GoF effect is the same
for both models: it hastens MoD progression to neuro-
genic divisions. Secondly, CDC25B�CDK GoF effect can
be interpreted straightforwardly in GANmodel: the phos-
phatase unable to interact with its CDK substrate just
delays the progression of A-cells MoD (it maintains A-
cells in self-renewing mode for a longer time). By contrast,
CDC25B�CDK GoF effect appears as compound in PN
model, so it would ask for a convoluted explanation for
the differential effect upon advanced pp-divisions and
delayed nn-divisions. Thirdly, GAN model can be con-
sidered as simpler to interpret from a mechanistic point
of view since both types of progenitors display the same
monotone evolution of their MoDs. Introducing feedback
control to secure some robustness, we showed that MoDs
could be under the control of the same signal accumulat-
ing monotonously over time, and reflecting directly the
system size. With this feedback control, GAN+fb could
account for the whole dynamics with only three param-
eters: η which basically represents the unit time of the
dynamics, and the two parameters of the feedback control:
κgan determines the critical size of the total population
above which neurogenic divisions become dominant, and
sgan determines how sharp the feedback is. In contrast,
PN model would call for a specific explanation of the non
monotone evolution of pn-divisions as well as an expla-
nation of the complicated progression among MoDs (five
parameters in PN+fb).
Still, the lack of clear discrimination between PN

and GAN models is interesting because it shows that
the two biological hypotheses (one kind of progeni-
tors able to perform the three kinds of division ver-
sus two kinds of progenitors with a loss of proliferative
capacity in one kind) can produce predictions compat-
ible with both the MoD and populations evolutions.

Since these measures are averages over population, this
calls for alternative experimental strategies to support
further the plausibility of GAN model. Actually, the
two models yield very different predictions if we con-
sider the distributions of content in progenitors/neurons
issued from a single initial progenitors (distribution
of progenitors/neurons within clones, see Methods
“PN and GAN models predictions for clones contents”
section for an illustration). So, the most appealing alter-
native would be to collect data at the cell scale, either by
performing lineage tracing or collecting data about clones
contents.

Methods
Solving P(t) from Eq. 3

P(t) = P(0) exp
[
η

∫ t
0 (αpp(τ ) − αnn(τ ))dτ

]
= P(0) exp

[
η

∫ t
0

(
1
2

[
1 − tanh

(
τ − τpp

σpp

)]

−1
2
αnn,∞

[
1 + tanh

(
τ − τnn

σnn

)])
dτ

]

= P(0) exp
[
η

((
1
2
t − σpp

2
ln

[cosh((t − τpp)/σpp)

cosh(−τpp/σpp)

])

−
(

αnn,∞
2

t + αnn,∞σnn
2

ln
[
cosh((t − τnn)/σnn)
cosh(−τnn/σnn)

]))]
(18)

hence :
P(t)
P(0)

= exp
[

η

2

( [
t − σpp ln

( cosh((t − τpp)/σpp)

cosh(−τpp/σpp)

)]

−αnn,∞
[
t + σnn ln

(
cosh((t − τnn)/σnn)

cosh(−τnn/σnn)

)])]
(19)

GAN calibration
Estimating γG(t) from αGGG(t)
Under the GAN model, we have at any time the structural
correspondence between the two models:

αGGG(t)G(t) = αpp(t)P(t) (20)

Setting G(0) = 1, we have an explicit solution for G(t)
depending on αGGG(t) only:

G(t) = G(0) exp
[
η

∫ t

0
(2αGGG(τ ) − 1)dτ

]
(21)

so we have :

αGGG(t)G(0) exp
[
η

∫ t

0
(2αGGG(τ ) − 1)dτ

]
= αpp(t)P(t)

(22)

We seek a direct expression for αGGG(t) despite αGGG(t)
appears twice, with once in an integral term.
The lhs (left-hand-side) term can be rewritten:
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αGGG(t)G(0) exp
[
η

∫ t

0
(2αGGG(τ ) − 1)dτ

]

=αGGG(t)G(0) exp
[
2η

∫ t

0
αGGG(τ )dτ

]
exp [−ηt]

(23)

Plugging into Eq. 22, and grouping αGGG terms on the
left side, we have:

αGGG(t) exp
[
2η

∫ t

0
αGGG(τ )dτ

]
= 1

G(0)
αpp(t)P(t) exp(ηt)

(24)

The lhs can be read as a time-derivative:

d
dt

(
1
2η

exp
[
2η

∫ t

0
αGGG(τ )dτ

])
= 1
G(0)

αpp(t)P(t) exp(ηt)

(25)

Integrating both sides over [ 0..t] :

∫ t

0
dt′ d

dt′

(
1
2η

exp
[
2η

∫ t′

0
αGGG(τ )dτ

])
=

∫ t

0
dτ

1
G(0)

αpp(τ )P(τ ) exp(ητ)

(26)

Solving the lhs integral:

1
2η

exp
(
2η

∫ t

0
αGGG(τ )dτ

)
− 1

2η
=

∫ t

0
dτ

1
G(0)

αpp(τ )P(τ ) exp(ητ)

(27)

Rearranging terms and taking the ln of both sides :
∫ t

0
αGGG(τ )dτ = 1

2η
ln

(
1 + 2η

G(0)

∫ t

0
dταpp(τ )P(τ ) exp(ητ)

)
(28)

Taking the time derivatives of both sides:

αGGG(t) = d
dt

(
1
2η

ln
(
1 + 2η

G(0)

∫ t

0
dταpp(τ )P(τ ) exp(ητ)

))

= 1
2η

d
dt

ln
(
1 + 2η

G(0)

∫ t

0
dταpp(τ )P(τ ) exp(ητ)

)
(29)

Solving the derivative in the rhs:

αGGG(t) = 1
2η

2η
G(0)

αpp(t)P(t) exp(ηt)

1 + 2η
G(0)

∫ t
0 dταpp(τ )P(τ ) exp(ητ)

(30)

which simplifies to:

αGGG(t) = αpp(t)P(t) exp(ηt)
G(0) + 2η

∫ t
0 dταpp(τ )P(τ ) exp(ητ)

(31)

so we can estimate γG(t) = 1 − αGGG(t) from :

γG(t) = 1 − αpp(t)P(t) exp(ηt)
G(0) + 2η

∫ t
0 dταpp(τ )P(τ ) exp(ητ)

(32)

using the evolution of αpp(t) (Eq. 4) and P(t) (Eq. 6)
obtained in the three experimental conditions.
The results are given in Additional file 4: Figure S3

(green curves).
We note that calibrating γG(t) by this method only

yields a raw unparameterized temporal series. The
obtained results however strongly suggest an hyperbolic
tangent shape (tanh) as an ansatz for this evolution, fol-
lowing:

γ ′
G(t, τG, σG) = 1

2

[
1 + tanh

(
t − τG

σG

)]
(33)

To parametrize γ ′
G, we seek the pair (τ ∗

G, σ
∗
G) that mini-

mizes the error between the evolution predicted by system
(7) and the observed evolutions in the PNmodel (1). Using
Eq. 22, we then seek to minimize the error function:

E(τG , σG) =
∫ T

0
dt

(
α̂pp(t)P̂(t)

− (
1 − γ ′

G(t, τG , σG)
)
G(0) exp

[
η

∫ t

0
(1 − 2γ ′

G(τ , τG , σG))dτ

])2

(34)

We used Nelder-Mead optimization from R-software
’optim’ using time-discretized series with �t = 0.01 hour,
T = 96h.
The tanh ansatz appears to match perfectly the analyti-

cally derived time series (Additional file 4: Figure S3, black
curves), so we parametrize γG with the corresponding
parameters τ ∗

G and σ ∗
G:

γG(t) = 1
2

[
1 + tanh

( t − τ ∗
G

σ ∗
G

)]
(35)

The fitted values for
(
τ ∗
G, σ

∗
G
)
under the three experi-

mental conditions are given in Table 2.

Estimating γA

Considering the parameter for the evolution of population
A, the structural correspondence is:

γA(t)
A(t)

G(t) + A(t)
= αnn(t) (36)

Here, A(t) is governed by:

Ȧ(t) = η [γG(t)G(t) − γA(t)A(t)] (37)

so we can not obtain an explicit solution for A(t) as a
function of γA(t).
Hence, we proceed with the ansatz method, testing a

tanh shape for γA(t), following:

γA(t, τA, σA) = 1
2

[
1 + tanh

(
t − τA

σA

)]
(38)
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Since γG(t) and G(t) are known from section above,
we can then use Eq. 37 to numerically solve the evolu-
tion of population A, once given γA(t, τA, σA). We denote
A(t, τA, σA) this numerical solution.
We then seek the pair (τ ∗

A, σ
∗
A) that minimizes the square

error:

E(τA, σA)=
∫ T

0
dt

(
αnn(t) − γA(t, τA, σA)

A(t, τA, σA)

G(t) + A(t, τA, σA)

)2

(39)

using Nelder-Mead optimization over time-discretized
series (with �t = 0.01 hour, T = 96h).
The fitted values for (τ ∗

A, σ
∗
A) under the three experi-

mental conditions are given in Table 2.
The tanh ansatz seems to be highly relevant since the

predicted evolutions for the evolution of the P,N pop-
ulations are well in accordance with the observed ones
(Fig. 2).

GAA calibration
Estimating γG(t) from αGGG(t)
Under GAA model, we have the structural correspon-
dence between the two models:

αpp(t) = (1 − γG(t))
G(t)

G(t) + A(t)
+ γG(t)

G(t)
G(t) + A(t)

= G(t)
G(t) + A(t)

(40)

Using P(t) = G(t) + A(t), we obtain:

G(t) = αpp(t) (G(t) + A(t)) = αpp(t)P(t) (41)

Setting G(0) = 1, we have an explicit solution for G(t)
depending on γG(t) only:

G(t) = G(0) exp
[
η

∫ t

0
(2αGGG(τ ) − 1)dτ

]
(42)

so we have :

G(0) exp
[
η

∫ t

0
(2αGGG(τ ) − 1)dτ

]
= αpp(t)P(t) (43)

We seek a direct expression for αGGG(t).
From Eq. 43, we have:∫ t

0
αGGG(τ )dτ = 1

2η
ln

[
1

G(0)
αpp(t)P(t) exp(ηt)

]
(44)

Taking the time derivatives of both sides, we obtain:

αGGG(t) = 1
2η

[
α̇pp(t)P(t) + αpp(t)Ṗ(t)

αpp(t)P(t)
+ η

]
(45)

so we can estimate γG(t) = 1 − αGGG(t) from this
expression, using the evolution of αpp(t) (Eq. 4) and P(t)

(Eq. 6) obtained in the three experimental conditions, and
numerical derivation for α̇pp(t) and Ṗ(t).
The results are given in Additional file 5: Figure S4

(green curves). It appeared that the estimated functions
γG(t) violate the constraint of belonging to the interval
[ 0..1]. This is the sign that this model can not at the same
time be adjusted to the MoD of PN model and predict
correct evolutions for the P,N populations.
Notwithstanding, we proceeded with the ansatz method

in order to examine which γG(t) would yield correct pre-
dictions for the P,N populations. Setting a tanh shape
for it,

γG(t, τG, σG) = 1
2

[
1 + tanh

(
t − τG

σG

)]
(46)

we then seek the pair
(
τ ∗
G, σ

∗
G
)
that minimizes the error of

prediction upon α̂pp(t)P̂(t), given by:

E(τG, σG) =
∫ T

0
dt

(
α̂pp(t)P̂(t) − exp

[∫ t

0
dτ η (1 − 2γG(τ , τG, σG))

])2

(47)

WeusedNelder-Meadoptimization over time-discretized
series (with �t = 0.01 hour, T = 96h).
The fitted values for

(
τ ∗
G, σ

∗
G
)
under the three experi-

mental conditions are given in Table 3.

Estimating γA

To estimate γA for model GAA, we proceeded the same
way as for the model GAN, except that we used:

Ȧ(t) = η [2γG(t)G(t) − γA(t)A(t)] (48)

The fitted values for
(
τ ∗
A, σ

∗
A
)
under the three experi-

mental conditions are given in Table 3.
The tanh ansatz can then be adjusted to produce pre-

dicted evolutions of P,N populations in accordance with
the observed ones (Fig. 3).

PN and GANmodels predictions for clones contents.
We illustrate here that even if PN and GAN models yield
the same predictions regarding the averaged populations
of progenitors and neurons they produce, they how-
ever differ in predictions if we consider the distributions
of contents in progenitors/neurons issued from a single
initial progenitors (distribution of progenitors/neurons
within clones). Due to the stochastic nature of the MoD
embedded in the model, each initial progenitor should
indeed produce a stochastic tree of descent. Clone con-
tents are then defined here by the pairs (number of pro-
genitors, number of neurons) obtained after a number C
of cell cycles. For instance, if an initial P-cell undergoes a
first division of PN MoD, it will produce one neuron of
generation 1, and one progenitor of generation 1. If the lat-
ter undergoes a nn-division, it will produce two neurons
of generation 2, so in the end the content of the clone after
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two cell cycles will be (0,3). Another initial P-cell could
undergo a first pp-division producing two progenitors of
generation 1; if one of them undergoes a pp-division, and
the other one undergoes a nn-division, this will end in a
(2,2) clone content at generation 2. We can then compute
the statistical distribution of these contents by repeatedly
sampling the stochastic production of trees of descent.
To build an illustration of the above process in a simple

manner, we consider here MoD that are fixed in time, and
we compute the distribution of clones contents produced
by G-cells after two cell cycles (we used 106 stochastic
samples under each model). To make predictions com-
parable, we fix the MoD under both models including
feedback control at the values they have at the same time
point. We chose that time point as 68 hpf, i.e. the time
at which MoD of G-cells becomes predominantly neuro-
genic in GAN model (the conclusions are independent of
that choice). Hence, the MoD values we used are: αpp =
0.4975 and αnn = 0.135 in PN model, and γG = γA =
0.446 in GAN model. Importantly for the comparison,
both models expectedly predict similar amounts of aver-
aged number of P/N-cells after two generations (P2 =
1.86 and N2 = 1.51 with PN model, and P2 = 1.96 and
N2 = 1.59 with GAN model; in both cases, the observed
proportions of progenitors are 55.2% at generation 2).
The expected clone contents are reported in Table 4

for PN model and in Table 5 for GAN model (in these
tables, empty cells are unreachable contents). The differ-
ent clone contents would not appear with same probabil-
ities under the two scenarios. For instance, clones made
of (P,N) = (0, 3) should appear in 5% of clones under
PN model whereas they should appear in 20% of clones
under GAN model. Even more discriminative, the con-
tent (P,N) = (2, 1) which is the most expected under
PN model should not appear at all under GAN model
(at generation 2 of a G-cell). Further theoretical work is
needed to build completely usable predictions to be com-
pared with experimental data, taking into account asyn-
chronous divisions, timemixing of G/A populations in the
GAN model and MoD evolving with time or by feedback
control.

Table 4 PN predictions for the expected fraction of each clone
contents (P,N) at generation 2

N

P 0 1 2 3 4

0 13.4 04.9 00.9

1 13.4 04.9

2 18.3 13.4

3 18.2

4 12.3

Table 5 GAN predictions for clone contents at generation 2

N

P 0 1 2 3 4

0 19.9

1 24.8

2 11.0

3 27.3

4 17.0

Additional files

Additional file 1: All data and codes used to generate the figures are
contained in the R script DataAndCode.R. (R 72 kb)

Additional file 2: Simplified GAN Model. Same legend as Fig. 2. The
simplified version of GAN model is when a A-cell only performs A → (N,N)

divisions, so γA(t) is forced to the value 1 at any time. This simplified
version yields predictions which are practically identical to GAN
predictions, except a slight difference in the early rise of nn-divisions, and
an incorrect prediction for the MoD under the GoF of mutated CDC25B
experiment (i). (PDF 22 kb)

Additional file 3: Illustrations of robustness against initial condition and
perturbation in PN+fb and GAN+fb models. In all plots, the unperturbed
dynamics P/N populations predicted by PN and GAN models are reported
for eye reference (black thin lines), the perturbed dynamics predicted by PN
and GANmodels are reported to show the sensitivity to perturbation (black
thick lines), and the perturbed dynamics predicted by PN+fb and GAN+fb
are reported to show how the sensitivity is canceled by the introduction of
the feedback control. The perturbations are : (first line) the dynamics starts
with twice as much progenitors, (second line) the dynamics starts with half
as much progenitors, (third line) at time 54 hpf, the population of
progenitors is divided by two, as if one progenitor cell would die at that
time, or equivalently, as if “time 0” would have been set at 54 hpf.
In all cases, the models with feedback control converge to about the same
final amount of neurons. (PDF 21 kb)

Additional file 4: Analytical and least-square fitted γG(t) for GAN model.
Predicted evolution of γG(t) obtained by analytical inversion are reported
in green. Fitted tanh ansatz are reported in black and perfectly overlap.
(PDF 199 kb)

Additional file 5: Analytical and least-square fitted γG(t) for GAA model.
Same conventions as in Additional file 4: Figure S3. In GAA model, the
analytical inversion of γG(t) yields an evolution that violates the constraint
of belonging to the interval [ 0..1] (green curves). Fitted tanh ansatz are
reported in black. (PDF 187 kb)
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