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Reducing fuel consumption is a major driver for the design of future aircraft. The engine integration primary

structure plays a significant role in the integrated engine thrust-specific fuel consumption. A topology optimization

framework was developed to design the primary structure integrating the engine to the aircraft wing considering

mass, stress, and engine performance criteria. The proposed approach had to address several challenges associated

with the use of nonuniform meshes, the integration of the engine model as a super-element, and the presence of

nonconforming mesh interfaces. Analytical adjoint evaluations for all the responses were also derived. The

framework was tested on a simplified engine model providing a consistent solution.

Nomenclature

DOF = degrees of freedom
~Fc = engine retained DOFs condensated load vector
~Kcc = engine retained DOFs condensated stiffness matrix
l�s� = sth-stage blade height
Ns = sth-stage number of angular position
R�s� = sth-stage tip clearance root mean square
TSFC = thrust-specific fuel consumption
ubr = rotor blade tip radial displacement
ucr = casing radial displacement
�K� = stiffness matrix
�P� = engine recovery matrix
fFg = load vector
fr�θ�g = radial unit vector at the angle θ
fUg = displacement vector
ΔTSFC% = TSFC approximative variation induced by

mechanical load
δ0 = initial tip clearance
θ = angular position around the engine stage
fδ�s�g = sth-stage tip clearance variation vector

I. Introduction

A CIVIL aircraft power plant system (PPS) primary structure has
as a primary function to attach the engine to the aircraft wing.

Furthermore the design of all the components of the PPS, (pylon,
engine mounts, and nacelle) has, however, also importance on the
final integrated engine performance. For example, the variation of the
radial clearances at the blade tip of each stage (called tip clearances)
affects engine time on wing, compressor surge margin, and the thrust-
specific fuel consumption (TSFC) [1,2]. Controlling the tip clearance
variation due to enginemaneuvers is for these reasons amajor criterion
consideredduring thePPSdesign. Including engineperformance in the
pylon design loop was investigated by Bettebghor et al. [3]. In that
study both engine casing and pylon sizing optimization were
simultaneously tackled in order to find a better mass distribution
between engine and PPS structures, while achieving a feasible design.
On the other hand, the engine mounts were considered in a fixed
position so that only the engine casing thicknesses influenced directly
tip clearances. In the present paper we consider the optimization of the
PPS structure under a fixed engine architecture. The enginemounts are
considered as part of the design domain. Structural optimization is the
discipline that deals with finding the “best” structure of a product with
respect to its weight and its structural behavior. Depending on the type
of variables chosen to describe the solution, one can have size, shape,
or topology optimization. In the latter, one seeks to achieve the design
solution load path only knowing its design domain volume and its
operating conditions. Since the pioneering work of Bendsøe and
Kikuchi (1988) [4], topology optimization was developed and applied
in several fields and physical problems. Nowadays there are many
available topology optimization approaches, amongwhichwe can cite
solid isotropic material with penalization (SIMP) [5], level set
approaches [6], and evolutionary approaches [7]. In this work we will
mainly focus on the SIMP approach. In [8] one can find an up-to-date
review of the most promising applications of topology optimization to
aerospace structures. Topology optimization has shown its advantages
for the design of aircraft parts like the wing internal primary structure,
wing box, and pylon [9,10]. In particular the engine pylon topology
optimization was treated in [9] considering both structural compliance
under several load cases and aerodynamicdrag. InXue et al. [10] an ant
colony algorithm is deployed tooptimize the front pylonmounts on the
base of average stress under multiple load cases.
In this work we do not focus on pylon aerodynamic performance,

as it was done in [9], since we fixed the design space shape. On the
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other hand, we include the pylon to engine interface inside the design

zone. This gives the solution more freedom, which is also necessary

to have an impact on both engine deformations and PPS primary

structure mass. The design zone is much larger than the one

considered in [10] and we did not employed ant colony algorithm to

tackle the optimization problem.

In this context, the aim of this paper is to develop a topology

optimization framework aimed at finding the optimal wing-engine

attachment structure. Setting up such a framework is challenging for

multiple reasons:
1) To consider a design zone that could both fit aerodynamic shapes

and engine external shape, an irregularmeshneeds to be considered for
the design zone. To achieve mesh-independent solutions, filters are
commonly employed.Nevertheless for such irregularmeshes, a classic
filter matrix can be computationally prohibitive. We propose a
multigrid strategy to alleviate this computational issue.
2) The engine and design zonemeshes may not be consistent at the

interface. We propose to use rescaled localized radial basis function
interpolation [11] approach to tie the two meshes.
3) The full engine plus design zone structural model may be very

large and complex, and thus computationally expensive. Because the
engine model does not change from one optimization iteration to
another, we propose to statically condense it and use it as a super-
element within the optimization framework.
4) To efficiently solve the optimization problem we need the

gradients of the objective function and constraints of the optimization
problem. We propose an adjoint-based gradient calculation for the
responses specific to the considered optimization problem.

The optimization formulation adopted for this work is a mass
minimizationwith both stress and engine deformation constraints. The
fact of including these constraints is beneficial for the total lead time in
the design process. In this way, the solution provided in the topology
optimization phasewill needminor modifications in order to achieve a
feasible design that should satisfy both stress and performance
requirements. This comes, however, at increased computational cost as
the gradients of these two new constraints have to be computed.
The rest of this paper is structured as follows: In Sec. II we

introduce the structural finite element model (Sec. II.A) and
performance model (Sec. II.B) associated with the simplified engine
model used in thiswork. In Sec. II.Cwe present the formulation of the
topology optimization problem. Section II.D reviews stress-
constraint-related issues and describes the adopted strategy to solve
them. In Sec. III we present in detail challenges 1–4 and the proposed
approaches to solve them. The numerical results and discussions are
presented in Sec. IV. Finally Sec. V provides concluding remarks.

II. Formulation

A. Structural Model

The mechanical behavior of both engine and PPS structure is
usually studied using a linear finite element model, integrating
complex load combinations. In our study we introduce a general
engine model that will validate our methodology. This model is a
simplification of an industrial enginemodel that in general can have a
fan casing structure, a core casing structure, and multiple shafts for
rotors. Following assumptions are made regarding the model’s
mechanical behavior. The thermal growth and centrifugal growth of
rotor blades are not considered in our analysis. Only aerodynamic
loads linked with the aircraft maneuvers are considered. These loads
are applied statically and we considered a representative axial thrust
load case in this study. A general 3D solid design zone is integrated
between the wing and the engine (see Fig. 1). This is the zone where
the topology optimization will need to find the optimal material
placement. For simplicity and because this does not have a significant
effect on optimization,we did not consider the air inlet and the nacelle
structure. The engine core casing and the design zonemesh are tied at
some region that will enforce the solution to be linked in some
specific areas to the engine. The connection between engine casing
and design zone mesh will be detailed in Sec. III.B. Eight node brick
elements were used to mesh the design zone, and a full eight-point
integration was employed for elementary stiffness matrix and stress
evaluation. The design zone model is clamped at the wing interface
position. The axial load on the engine is applied with concentrated
forces on the shaft nodes and with distributed loads on the engine
casing. The connection between shaft node and engine casing nodes
at bearing positions are modeled using rigid Kinematic couplings,
that is, rigid connections. The commercial software Abaqus 13.2 was
employed for mesh generation and load case application.

B. Performance Model

The performance function that we considered in this work is a
simplification of the real TSFC variation induced by the considered

X

Y

Z

Fig. 1 Engine anddesign zone (in gray) finite elementmodel. The engine
model is made of 9976 finite elements, 9312 linear quadrilateral elements
with reduced integration, and 664 linear beam elements. The solid design

zone is clamped at the orange points.

Fig. 2 Rotor and stator displacements under maneuvers loads: a) z–y engine section diagram for a given rotor stage. The red structure stands for the
rotor; the blue line for the deformed stator. b) Diagram illustrating radial displacement effect on the total tip clearance. The resulting tip clearance is the
sum of the initial clearance δ0 and its variation induced by the engine deformation calculated as δ�θ� � ucr�θ� − ubr �θ�.



load case. For our purpose, the TSFC is mainly dependent on the
engine tip clearance variations. The tip clearance variation is
described in Fig. 2, and defined in Eq. (1).

δ�θ� � ucr�θ� − ubr �θ� � fr�θ�gT ⋅ �fuc�θ�g − fub�θ�g� (1)

where ucr�θ� and ubr �θ� are the radial displacement of casing and rotor
blade tip, respectively, at the angular position θ, and fr�θ�g is the
radial unit vector at the angle θ. Considering an angular discretization
of the circumference given by the stator mesh in the sth engine stage,
θi�s�, the tip clearance variation at the angular section i is then:

fδ�s�gi � fr�θi�s�gT ⋅ �fuc�θi�s�g − fub�θi�s�g� (2)

That is actually a system of linear relationships that can be
expressed in the matrix form:

fδ�s�g � �γ�s��fUg (3)

where fUg is the displacement vector. To characterize a stage’s
contribution to the overall engine performance, tip-clearance root-
mean-squared (RMS) is evaluated at each stage:

R�s� �
�������������������������
fδ�s�gTfδ�s�g

N�s�

s
(4)

whereN�s� is the number of nodes used for the angular discretization
of the sth stage. In this paper, we use a simple model to link the tip
clearances to the TSFC performance. Note that this relationship is in
general quite complex, but surrogate models can be constructed and
used in such a context, similarly to the analyticalmodelwe use below.
Thevariation in TSFC due to aircraft maneuvers is considered here as
a linear combination of the RMS values per stage:

ΔTSFC% �
Xns
s�1

Rs

l�s�
100 (5)

where ns is the number of stages of the engine and l�s� the stage blade
height.

C. Topology Optimization Formulation

We use the classic SIMPmaterial model [5] to describe thematerial
layout in the topology optimization design zone. In this method, the
solution is described by a density field between zero and one that
locally gives the information on the presenceor the absenceofmaterial
in terms of both mass and Young’s modulus. A solution with gray
elements is always possible but is penalized by thepower interpolation
law used for the Young’s modulus [5]. Let us introduce a pseudo

density field x�fXgg� in the design zone Ω. This field has a physical
meaning of presence or absence of material so that one should take a
value in f0, 1g, reading 0 as absence of material and 1 as presence of
material. For x�fXgg� � 1 one should use the value of local density
and Young’s modulus of the real material E. In the case x�fXgg� � 0
the void can be simulated using a very soft material Young’s modulus
Emin that prevents stiffness matrix singularity and ill-conditioning. To
use efficient gradient-based optimization algorithms, the problem is
commonly relaxed so that x�fXgg� ∈ �0, 1�. The physical interpreta-
tion of results presenting large regions characterized by intermediate

density is not easy as they cannot be interpreted either as full material
or void. For this reason, a simple penalization technique is commonly
employed to prevent the optimization algorithm from converging on
gray solutions. The Young’s modulus as a function of x is written as:

E�x� � Emin � �E − Emin�xp (6)

where the penalty value p penalizes the stiffness of intermediate
densities. The value ofp is usually set to 3 in order to get nearly black-
and-white solutions. The finite element stiffness matrix assembly

procedurewill then use the local valueof theYoung’smodulus in order
to compute the stiffness matrix. In our framework we considered the
Young’s modulus as constant in each finite element so that the
elementary stiffnessmatrix can be computed using thevalue of x in the
element centroid xel and the unit modulus elementary stiffness matrix
�K�1�

el �:
�Kel�xel�� � E�xel��K�1�

el � (7)

The design zone stiffness matrix is assembled summing the
contribution of each elementarymatrix in a classic finite element (FE)
style:

�KDZ�fxg�� � �Nel

el�1
�Kel�xel�� (8)

where� represents the assembly finite element operator andNel is the
number of elements in the design zone. The engine and the design
zone are connected using an elimination approach that we develop in
Sec. III.B. The final stiffness matrix of the entire model can then be
directly assembled as:

�K�fxg�� � �KDZ�fxg�� � �KE� (9)

From here on, we will refer to �K�fxg�� as the stiffness matrix after
the application of boundary conditions and to �KE� as the contribution
of the engine stiffness to �K�fxg��. In the same way one can make the
assembly of the load vector:

fF�fxg�g � fFDZ�fxg�g � fFEg (10)

where fFDZ�fxg�g is the load coming from the design zone that can
dependon the configuration¶ and fFEg is the load vector appliedon the
engine model. The static balance equation will be written as:

�K�fxg��fU�fxg�g � fF�fxg�g (11)

The so computed displacement vector fU�fxg�g is employed for the
evaluation of design zone Von Mises stress (cf. Sec. II.D) and the
TSFC variation (cf. Sec. II.B). Themass of the PPS structure is also an
important parameter that we consider through the volume fraction
defined as:

V�fxg� �
PNel

i�1 xijΩijPNel

i�1 jΩij
� fjΩjgTfxg

fjΩjgTf1g (12)

where jΩij is the volume of the ith element, fjΩjg is the vector
containing thevolumeof each element, and f1g is thevector having the
same length of fxgwith 1 for each row. Thevalue ofV�fxg� is between
0 and 1 andgives the fraction of volume that is filled by activematerial.
The final design should be as light as possible and should reduce the
engine consumption variation induced by aircraft maneuvers. To get
reasonable results the VonMises stress in the design zone should also
be lower than an allowable value. The full problem can thus bewritten
as a nonlinear constrained optimizationproblem [cf. Eq. (13)], seeking
tominimize themass of the PPS structure, while imposing constraints
on TSFC variations and maximum Von Mises stress.8>>>>>>>><
>>>>>>>>:

min
fxg

V�fxg�
s:t:

0≤ xi ≤ 1 ∀ i� 1,2, : : : ,Nel

GT�fU�fxg�g� � ΔTSFC%�fU�fxg�g�−T0

T0
× 100≤ 0

�K�fxg��fU�fxg�g � fF�fxg�g
�σVM�j�fxg,fU�fxg�g�≤ σlim ∀ jjxi�j� > 0

(13)

where the �σVM�j is the Von Mises stress computed in the jth Gauss
point, xi�j� is the pseudo density of the ith element that contains the jth

¶This is the case of acceleration-induced load that depends on the mass of
the solution and so on the configuration given by the design vector fxg.



quadrature point, σlim represents the allowable VonMises stress in the
design zone, and T0 is an allowable overconsumption due to the
maneuver load case. Classical compliance minimization formulation
is cheaper than our proposed formulation, and can be adopted to get
the inspiration for novel designs. Nevertheless the stiffest design will
not always be able to respect both stress and engine consumption
specifications. For this reason the formulation of Eq. (13), which also
includes engine performance and stress constraints,will be considered
for the rest of this study.

D. Stress Constraints in Topology Optimization

Directly including stress-based constraints in topology optimiza-
tion has been an active field of research seeking to guarantee the
design feasibility. Two major challenges arise in the implementation
of stress constraints: the fact that the optimization problem presents
singular optima [12], and the large number of stress constraints to be
considered. The first issue consists in the fact that local optima belong
to degenerate subspaces of the feasible domain that are not reachable
using standard gradient-based optimizations. One way of dealing
with this issue consists in relaxing the constraints (for instance, using
ϵ-relaxation [13], or the q-p approach [14]) and then aggregating
them using a regular approximation of the maximum function (for
instance, the Kreisselmeier–Steinhauser function [15,16] or the p-
norm [17]). Aggregation techniques have the main drawbacks of not
having a precise control on the final design maximum stress. To
control the exact value of maximum stress in the final solution Le
et al. [18] proposed an adaptive approach that helps obtaining designs
with the desired maximum stress. The stress constraint formulation
presented in [19] is adopted in this work. We will first describe the
formulation, and then we will develop adjoint gradient evaluation.
The first step is to evaluate the microscopic stress tensor in each
Gauss point of the design zone. To do that in the stiffness assembly
phase the product of stress deformation matrix �D�jx�1 and of the
displacement-deformation matrix �B� has to be saved in �DB�. This
large sparse matrix reads in terms of input a displacement vector and
provides as an output a stress vector containing six stress tensor
components for each Gauss point of the design zone:

f �σ�fU�fxg�g�g � �DB�fU�fxgg (14)

The Von Mises stress in 3D is then:

σVM �
��������������������������������������������������������������������������������������������������������������������������
σ1�σ1−σ2��σ2�σ2−σ3��σ3�σ3−σ1��3�σ212�σ223�σ231�

q
(15)

The local relaxed stress constraint violation is:

�gi � xi

��σVM�i
σlim

− 1

�
(16)

where σlim is the allowable stress that depends on the material
properties and on the desired safety factor, and xi indicates the density
relative to the element to which the ith Gauss point belongs. The
aggregated stress is finally evaluated by the use of the lower bound
Kreisselmeier–Steinhauser function [15] that approximates the local
relaxed stress constraint violation maximum:

Gl
KS � 1

P
ln
�

1

NG

XNG

i�1

eP �gi

�
(17)

To avoid numerical issues, the formulation of Eq. (17) is rewritten
as:

Gl
KS � �gmax �

1

P
ln
�XNG

i�1

eP� �gi− �gmax�
�
−
ln �NG�

P
(18)

where gmax � maxi gi. We provide in Appendix A some useful
properties of the Gl

KS function.

The satisfaction of stress constraints is thus imposed in problem
(13) as:8>>>>>>>>>>><
>>>>>>>>>>>:

min
fxg

V�fxg�
s:t:

0≤ xi ≤ 1 ∀ i� 1,2, : : : ,Nel

GT�fU�fxg�g�� ΔTSFC%�fU�fxg�g�−T0

T0
×100≤ 0

�K�fxg��fU�fxg�g� fF�fxg�g
Gl

KS�fxg,fU�fxg�g�≤ 0

(19)

III. Challenges and Methodology

This section will describe various challenges related to the
resolution of the optimization formulation of Eq. (19), as well as the
corresponding approaches proposed to solve these challenges. First
in Sec. III.Awewill describe the adopted multigrid strategy aimed at
reducing the computational effort needed for the evaluation of the
filter matrix in nonuniform meshes. The mesh tying between the
engine casing and the solid design zone is then described inSec. III.B.
In Sec. III.C we describe the static condensation approach leading to
the super-element-based framework. Such a framework has main
advantages of reducing the number of DOFs to be kept in the
structural model used in topology optimization. Finally details about
the adjoint computation of both lower bound Kreisselmeier–
Steinhauser function and consumption variation gradients are given.

A. Density Filter for Nonuniform Mesh

Some typical issues associated with topology optimization are
solution mesh dependency, checkerboard patterns, and nonunique-
ness of the solution. Typically mesh dependency and checkerboard-
related issues are solved using mesh-independent filtering
techniques. These techniques can be easily implemented for uniform
structured meshes as is the case in [20] and the majority of SIMP-
based topology optimization studies. The fact of having 1 × 1 square
element can be used to have a straightforward relationship between
the element indexing and their neighbors’ center-to-center distances.
This is not the case for nonuniform unstructured meshes, as the ones
considered here. In Talischi et al. [21] the difficulties induced by
those cases are treated for 2D analysis with unstructured polygonal
meshes. In particular it is shown that, to be more efficient, stiffness
element matrices and filter matrix can be assembled once for all
before the optimization loop. In this study, eight-node 3D finite
elements with tri-linear shape functions were employed and eight
Gauss points per element were considered for stiffness matrix
assembly. On the other hand, only one Gauss point was used in order
to evaluate the filtering convolution integral. As a consequence,
following the same implementation of [21] the filter matrix �H� needs
the evaluation of all distances dij between each couple of element’s
centroid:

Hi,j �
max�0,jΩjj�1 − �dij∕r��PNel

j�1 max�0,jΩjj�1 − �dij∕r��
(20)

whereNel is the element number in design zone, r is filter radius, and
jΩjj is the volume of jth element. The cost for this evaluation in terms
ofmemory andCPU timegrowswithN2

el − Nel∕2. In [21] it is argued
that this operation even if expensive should be done once for all
before the optimization loop and should not be a bottleneck for
overall analysis. Nevertheless, when increasing the number of
elements, this simple operation can encounter memory limits faster
than stiffness matrix inversion. These limitations were also studied
and tackled in the PDE filter proposed by Lazarov and Sigmund [22],
where instead of explicitly computing the filter matrix [H], the
filtered field is found as the solution of a PDE problem. This solution



involves a small memory cost, even if it requires the resolution of a

system of equation with the size the number of nodes twice per

iteration. These resolutions are not very expensive for small

problems. In fact they require a small effort compared with

displacements evaluation. In this workwe propose an alternativeway

of directly computing �H� that reduces the time needed for the

computation of the filtering matrix, but still requires enoughmemory

for the storage of �H�. Note that for reasonably small values of the

filtering radius and for unstructured refined mesh, this proposed

procedure appears advantageous. On the other hand, for large values

of the filtering radius and for the same kind of meshes, the approach

based on the PDE filter by Lazarov and Sigmund [22] is to be

preferred to reducememory requirements. Itmust be noted thatHi,j is

sparse because all distances superior to r do not contribute toHi,j.We

suppose to have a first mesh like the one in Fig. 3a on which we are

able to evaluate all the distances between each element dij and

compare them to r. We also suppose that a refinement of this mesh

can be obtained cutting each element into eight as shown in Fig. 4a.
Let us consider two coarser mesh elements and their partition as

considered in Fig. 4b whose centroid distance is known kACk. The
minimal distance between centroids of the corresponding finer mesh

elements, kBDk, can be related to kACk as:

kACk ≤ kABk � kBDk � jCDk (21)

So that:

kBDk ≥ kACk − kABk − jCDk (22)

The distances kABk and jCDk are also bounded by the radius of
the smallest sphere circumscribed around the biggest coarser mesh

element rc. Therefore Eq. (22) becomes:

kBDk ≥ kACk − 2rc (23)

Note that even if the scheme of Fig. 4b considers cubic elements,

Eq. (23) is valid for general eight-node brick elements. If the distance

between coarsemesh centroids are known, it is possible to set up a test

on these distances that can help to reduce the number of centroid-to-

centroid distances that have to be computed for the finer mesh. In fact

for Eq. (23):

kACk ≥ 2rc � r ⇒ kBDk ≥ r (24)

Then the distance that for sure needs not to be computed in the finer

mesh are the one between elements obtained from coarser mesh at a

distance greater then 2rc � r. On the other hand, we cannot conclude
that each and every distance that one can evaluate in this way will be

smaller than r. The final cost of �H� is then equal to 28Nc � 64N	
c ,

whereNc is the number of elements in the coarse mesh andN	
c is the

number of coarse mesh element pairs at a distance less or equal to

2rc � r. Since Nc � Nel∕8 and for reasonably small r,
N	

c � KNc ≪ �Nc�2, the cost for this procedure grows up with

Fig. 3 Mesh refinement procedure needed formultigrid approach to the evaluation of �H�; the engine reduced element set is colored in yellow. Each node
of these elements is kept in the engine super-element. a) Original design zonemesh, generated in Abaqus and impoted onMatlab by input file parsing. The
mesh counts 7600 eight-node linear 3D solid finite elements and 9126 nodes. b) Design zonemesh after refinement. Each element of the original element is
cut into 8 new elements, which give a total of 7600 × 8 � 60;800 eight-node linear 3D solid finite elements and 66,759 nodes.

Fig. 4 Relation between coarse and finemesh. a) 3Dpartition employed formesh refinement; nodes 1–8 belong to original coarsemesh element. Partition
determines node 9–27 and 8 elements of the finer mesh. b) Scheme of two elements of the original mesh after partition. The relationship between the

minimal distance between two finite element centroids in the finermeshkBDk, the correspondingdistance between the centroids of the coarsemeshkACk,
and the radius of the sphere circumscribed around the biggest coarse mesh finite element rc can be determined considering the vector chain
AC � AB�BD�DC.



�7∕4� 8K�Nel, linearly and not quadratically with the problem size
Nel. One can note that this procedure is also suitable for parallel
implementations, thus further decreasing its numerical cost.

B. Mesh Projection

Another important issue that needs to be addressed is the mesh
inconsistency between engine and design zone. In fact the engine
finite element model in the current practice is built by the engine
manufacturer and is not initially intended for use in a topology
optimization framework. For this reason in order to freely mesh the
design zonewewould like to be able to put these two nonoverlapping
domains in connection trough their interface DOFs.
The first hypothesismade is that only translational DOFs of engine

shell elements have to be considered for kinematic tying. For this
reason the engine condensation was performed around the retained
nodes translational DOFs and not for rotational DOFs, which are
therefore not constrained. The external skin of the engine’s shell
elements needs to have the same displacements as the external
surface of the solid elements. Many techniques can be employed for
dealing with this problem as described in the review [23]. The most
popular approach in the literature in order to solve this problem is the
Mortar method [24], which is well known to have very good
performance in terms of displacement optimality convergence;
however, its implementation is often quite complex. Displacement
continuity has been imposed in this work considering the radial basis
function interpolation approach proposed by the Deparis et al. [11]
based on a B&W compactly supported radial basis function. This
simple collocation approach makes the hypothesis that the
displacement field of one discretized surface (commonly called
master surface) can be used to evaluate, by interpolation, the
displacement field of the other (so-called slave surface). Writing
kinematic continuity in this way, one can have a set of linear
relationships between meshes in the form of:

fucg � �Πcd�fudg, fudg � �Πdc�fucg (25)

where fucg and fudg are, respectively, engine and design zone
interfaceDOFs. These relationships are used to eliminate slaveDOFs
from the problem because they can be evaluated by interpolation
from master DOFs. The choice of master and slave surfaces in
structural finite element analysis is crucial. Commonly, in order to
have better stress and displacement accuracy the surface discretized
with the finest mesh should be considered as slave and the other as
master. In our problem engine retained interface was considered as
master and design zone interface as slave. The final set of balance
equations for the assembled system is obtained imposing residual and
energy balance at the interface. For instance, after eliminating engine
DOFs, the final system of equation reads:� �Koo� �Kod�

�Kdo� �Kdd� � �Πcd�T � ~Kcc��Πcd�
�� fuog

fudg
�

�
� fFog
fFdg � �Πcd�Tf ~Fcg

�
(26)

where o is the index of design zone DOFs not lying on the interface.
Using these techniques the engine-retained nodes stiffness matrix
and load vector can be integrated to the design zone.

C. Super-Element Exploitation

The fact that an industrial engine model has to be integrated in the
finite element analysis poses a real problem in terms of both
implementation efficiency and development time because the
combined engine and design zone structural model may be too
complex and computationally expensive to be solved at each iteration
of the optimization process. To circumvent these issues we will use
super elements, which are a very efficient solution to deal simplywith
very complex models that do not change in the optimization loop
[25]. Here we develop this method on a general structure shown in
Fig. 5. Sorting the structure degrees of freedom into retained (c) and

other degree of freedoms (E), the static balance equation can then be
written in the following form:� �Kcc� �KcE�

�KEc� �KEE�
�� fucg

fuEg
�
�

� fFcg
fFEg

�
(27)

Using the second-line block of equations and solving for fuEg

fuEg � �P�fucg � fu0g (28)

With

�P� � −�KcE��KEE�−1 (29)

fu0g � �KEE�−1fFEg (30)

The �P� matrix is called constrained modal matrix in Nastran and
recovery matrix in Abaqus. fu0g is called fixed interface
displacement on Nastran and has to be computed in a separated
analysis on Abaqus. Substituting Eq. (28) back in the first line block
of Eq. (27):

� ~Kcc�fucg � f ~Fcg (31)

With

� ~Kcc� � �Kcc� � �P��KcE� (32)

f ~Fcg � fFcg � �P�fFEg (33)

In our problem we can make the evaluation of � ~Kcc�, f ~Fcg, and �P�
using a commercial software like Abaqus using the engine model.
The fu0g vector can also be evaluated using a linear perturbation
static analysis of the engine fixing the DOFs of the interface. If the
structure has to be integrated into another model, the retained DOFs
(c) can be used to describe the displacement of the whole assembly.
The stiffnessmatrix of Eq. (27) does not need to be inverted anymore;
the only knowledge of � ~Kcc� and f ~Fcg is sufficient. Considering the
engine interface DOFs as retained DOFs (c), we can make possible
the evaluation of engine and design zone assembly displacements just
considering the retained DOFs stiffness matrix and load vector. This
implies a significant economy in CPU time especially for big and
complex engine models, because the full engine model does not have
to be evaluated at each change of the design zone considered by the
topology optimization. Furthermore, this also implies that the
software used for evaluating the design model can be separate from
the one for evaluating the design zone model and carrying out the
topology optimization. This is important because in practice the
engine model is usually constructed in commercial FE software. In
this work we used Abaqus for the engine model and Matlab for the
design zone model and topology optimization. Accordingly reading
Abaqus .dat and .mtx files from Matlab environment, we can make

Fig. 5 Example of DOF partition: the nodes of the structure are sorted
in retained nodes [whoseDOFs are (c)] and other nodes [whoseDOFs are
(E)]. After the static condensation, a super-element containing only (c)
DOFs will be generated. Nevertheless the suppressed DOFs (E) can still
be computed after static analysis thanks to Eq. (28).



the evaluation of the whole structure just using the Matlab
environment as it is summarized in Fig. 6.
This gives significant flexibility in implementing various

approaches developed for topology optimization. Here we want to
recall that super-element exploitation does not affect model accuracy
as is the case of substructuring.

D. Gradient Adjoint Evaluation

To solve the nonlinear contained optimization problemwe chose to
use Svanberg’s MMA optimization algorithm [26,27]. This
optimization solver takes as input all responses values and
sensitivitieswith respect to designvariables, lower bounds, and upper
bounds, and gives as output the vector of the new optimal candidate.
To do so, a first-order local convex approximation of the original
optimization problem is solved at each optimization iteration. To
efficiently compute these gradients we propose here adjoint-based
evaluations. Let us start by considering a generic response
O�fxg,fU�fxg�g� that depends directly through the displacement
vector on the design variables.**

�
dO

dx

�
�

�
∂O
∂x

�
�

�
dU

dx

��
∂O
∂U

�
(34)

By taking the derivatives of equations (11) by dxi one gets:

d�K�fxg��
dxi

fU�fxg�g � �K�fxg�� dfU�fxg�g
dxi

� dfF�fxg�g
dxi

(35)

Writing the product �d�K�fxg��∕dxi�fU�fxg�g as columns of the
matrix ��dK∕dx�U� and fF�fxg�g∕dxi as the columns of the matrix
�dF∕dx� one can also write††:�

dU

dx

�
T

� �K�−1
�
−
�
dK

dx
U

�
�

�
dF

dx

��
(36)

Defining the adjoint vector as:

fβg � �K�−1
�
∂O
∂U

�
(37)

One can finally rewrite Eq. (34):

�
dO

dx

�
�

�
∂O
∂x

�
�

�
−
�
dK

dx
U

�
T

�
�
dF

dx

�
T
�
fβg (38)

It is straightforward to use Eqs. (37) and (38) to compute

fdGT∕dxg, fdV∕dxg, and fdGl
KS∕dxg. Let us start by the evaluation

of the TSFC variation constraints GT . Since ΔTSFC% has no direct

dependency on the fxg we have:
�
∂GT

∂x

�
� f0g (39)

By the use of Eqs. (3–5):

�
∂GT

∂U

�
� 100

T0

�
∂ΔTSFC%

∂U

�
� 100

T0

Xns
s�1

λ�s�

�
∂R�s�
∂U

�

� 100

T0

Xns
s�1

λ�s�
N�s�R�s�

�γ�s��Tδ�s� (40)

Similarly, since V is only dependent on x:

�
∂V
∂U

�
� f0g (41)

By the use of Eq. (12):

�
∂V
∂x

�
� fjΩjg

fjΩjgTf1g (42)

For the lower bound Kreisselmeier–Steinhauser function

sensitivities we have both dependency on fxg and fU�fxg�g:
�
∂Gl

KS

∂x

�
�

PNG

i�1f∂ �gi∕∂xgeP �giPNG

i�1 e
P �gi

(43)

With f∂ �gi∕∂xg defined as:

�
∂ �gi
∂x

�
j

�
� �σVM�i

σlim
− 1 i ∈ Gj

0 i ∈= Gj
(44)

Gj referred to the jth element Gauss point index. In the same way

one can evaluate:

Fig. 6 Tip-clearance evaluationworkflow.Abaqus is used to generate both the engine and the design zone.A parsing of the input file ismade onMatlab to
import the design zone mesh coordinates and finite elements. The engine model is reduced to a super-element on the interface using Abaqus, and then a

parsing ismade on the .mtx and the .dat files coming, respectively, from the substructuring and the linear load case. The stiffnessmatrix of the design zone is
assembled togetherwith the engine super-element stiffnessmatrix; the same is done for the load vectors. For each iteration of the topology optimization the
assembled problem is solved to determine the design zone displacements and the recovered engine displacements. Finally tip clearance variations are
computed in each stage and employed to compute consumption variation.

**In this section all sensitivities are computed with respect to physical
densities. Filtering should be employed to get sensitivities with respect to
design variables.

††Hereafter the dependency on fxg and fU�fxg�g is neglected for
conciseness.



�
∂Gl

KS

∂U

�
�

PNG

i�1f∂ �gi∕∂UgeP �giPNG

i�1 e
P �gi

�
PNG

i�1f∂�σVM�i∕∂Ug�xi∕σlim�eP �giPNG

i�1 e
P �gi

(45)

FromVonMises stress definition (15) in eachGauss point iwe can
write‡‡:

�
∂�σVM�
∂U

�
� 1

2�σVM�
�
�2σ1 − σ2 − σ3�

�
∂σ1
∂U

�

� �2σ2 − σ3 − σ1�
�
∂σ2
∂U

�
� �2σ3 − σ1 − σ2�

�
∂σ3
∂U

�

� 6

�
σ12

�
∂σ12
∂U

�
� σ13

�
∂σ13
∂U

�
� σ23

�
∂σ23
∂U

���
(46)

In this equation, each vector, f∂σ1∕∂Ug,f∂σ2∕∂Ug,f∂σ3∕∂Ug,
f∂σ12∕∂Ug,f∂σ13∕∂Ug,f∂σ23∕∂Ug corresponds for Eq. (14) to a

column of �DB�T . For this reason Eq. (45) can be written as:

�
∂Gl

KS

∂U

�
� 1PNG

i�1 e
P �gi

�DB�Tf ~Sg (47)

where:

f ~Sg �

8>>>>>><
>>>>>>:

f ~Sg1
f ~Sg2
:

f ~SgNG

9>>>>>>=
>>>>>>;
,

f ~Sgi �
xie

P �gi

2σlim�σVM�i

8>>>>>>>>>>><
>>>>>>>>>>>:

2�σ1�i − �σ2�i − �σ3�i
2�σ2�i − �σ3�i − �σ1�i
2�σ3�i − �σ1�i − �σ2�i

6�σ12�i
6�σ13�i
6�σ23�i

9>>>>>>>>>>>=
>>>>>>>>>>>;

(48)

The results of the sensitivity computations are summarized in

Table 1.
To use Eq. (35) the link between the notation used for Eqs. (19) and

(26) should be specified. We made a partition of vector fUg into “o,”
design zone DOFs not lying on the interface, and “d,” design zone

DOFs introduced with Eq. (26):

fUg �
� fuog
fudg

�
(49)

According to Eqs. (26) and (9–11):

�K� �
� �Koo� �Kod�
�Kdo� �Kdd�

�
�

� �0oo� �0od�
�0do� �Πcd�T � ~Kcc��Πcd�

�

� �KDZ� � �KE� (50)

and

fFg �
� fFog
fFdg

�
�

� f0og
f�Πcd�Tf ~Fcgg

�
� fFDZg � fFEg (51)

By the use of Eqs. (6–8):

d�K�
dxi

� d�KDZ�
dxi

� �
el�i

p�Emax − Emin�xp−1i �K�1�
el � (52)

In the present work we only consider axial loading, and so
�dF∕dx� � 0. For a general uniform acceleration (e.g., inertial loads)
the sensitivities of the load vector could be computed using:

fFDZgi �
Z

ρfiΦi dV � 1

8

Xmi

j�1

xjfiΩjρ (53)

So that:

fFDZg �
1

8
�ρfΩ�fxg (54)

Then: �
dF

dx

�
�

�
dFDZ

dx

�
� 1

8
�ρfΩ� (55)

The adjoint evaluation of sensitivities presented in this subsection
needs the use of Eq. (34) twice, once for the evaluation of fdGT∕dxg
and once for fdGl

KS∕dxg. Therefore the stiffness matrix has to be
inverted for three different right-hand side vectors per each
optimization loop iteration. Taking the formulation described here in
matrix notation also facilitates implementation in the presented
Matlab framework, taking advantage from vectorization.

IV. Numerical Results

The optimization framework developed was applied on a problem
involving the engine model described in Sec. III.A and on the design
mesh represented in Fig. 7a. In Table 2 one can find the optimization
setup details.§§

The mesh refinement procedure introduced in Sec. IV.A was
applied twice to the original mesh imported from Abaqus cf. Fig. 3a.
The final stiffness matrix has 1.5 million DOFs before applying
boundary conditions. The filtering radius was taken as two times the
average element size that is corresponding to twice the average size of
the original mesh. The SIMP penalty value was set to 3 and the stress
constraint aggregation constant to 4. This is a relatively small value
forP that improves optimization convergence, which requires the use

Table 1 Summary table of sensitivity terms needed for Eqs. (37) and (38)
to compute fdO∕dxg

O f∂O∕∂Ug f∂O∕∂xg
V f0g fjΩjg∕fjΩjgTf1g
GT �100∕T0�

P
ns
s�1�λ�s�∕N�s�R�s���γ�s��Tδ�s� f0g

Gl
KS �1∕PNG

i�1 e
P �gi ��DB�Tf ~Sg PNG

i�1f∂ �gi∕∂xgeP �gi∕
PNG

i�1 e
P �gi

‡‡We did not indicate the Gauss point index i for conciseness.

§§MMAmaximum asymptote distance from the current point value has not
a particular name in the mmasubMatlab function provided by Svanberg [27].
It can be found in the lines where lowmin and uppmax variables are computed
as the coefficient thatmultiplies thevariable range.When this value is reduced,
the algorithm behaves more conservatively when approximating the real
functions overestimating their convexity.



of a scaling factor on the stress allowable. In fact for Eq. (59), we can
conclude that �gmax − Gl

KS < �ln �NG�∕P� � �ln �3891200�∕4�≈
3.7936, so that even if Gl

KS ≤ 0 this will only imply that

gmax < 3.7936. Assuming that themaximum relaxed stress constraint
violation is on a material with xi � 1 this means that the actual

maximum Von Mises stress allowable is σmax < �1� 3.7936�×
σlim � σalw � 47.9 MPa, that is, the value of stress that we do not
want to attain even locally. We then set σlim � �σalw∕1�
3.7936� ≈ 10 MPa. The initial design consists of xi � 1,
∀ i � 1,2, : : : ,Nel; the allowed TSFC variation was 0.15%, which

is a 12% improvement from the initial design. Stress constraint

nonlinearities can be a source of MMA convergence difficulties and
sometimes divergence. To tackle this problem we propose to set a

smaller value of theMMAexternalmove limit (here considered as the

maximum difference between the asymptotes distance from the
configuration point). This imposes MMA to produce conservative

local approximations of the original optimization problem that are

less prone to violate optimization constraints. The convergence
history of volume fraction, ΔTSFC%, and of Gl

KS is presented in

Fig. 7b, and the final design configuration is presented in Fig. 8a.
Note that just considering Fig. 7b one could conclude that

convergence was achieved approximately after 50 iterations. This is

because the stress constraints are very nonlinear so that MMA needs
to keep the optimization step very small in order to avoid stress

constraint violation. Stopping the optimization after 50 iteration

would lead to a nonconverged design full of gray elements. In the
same way considering the design variable variation as stopping

criterion could lead again to gray solutions. The optimization was

therefor stopped after 300 design iterations. A KKT norm condition
of 0.001 was also considered but was not achieved in the maximum

number of iterations. The final design is well connected and respects

constraints. We can find two main load paths, one at the front of the
engine and a second at the rear. Moreover engine casing reinforce-
ment structures can be found at the front of the solution to avoid
tip clearance variations. To make displacement and stress plots in
Figs. 8c and 8d the solution was thresholded, that is:

�xPhysi �
�
1 if x Physi ≥ tsh
0 otherwise

(56)

where xPhys are the physical densities and tsh � 0.22, selected in
order to form a well-connected solution. Doing so the final solution
performance is deteriorated as summarized in Table 3.
The thresholded solution still respects VonMises stress constraint;

on the other hand, the allowable fuel consumption constraint is
violated by 1.47% and the final volume fraction is increased by 34%.
Even after this increase, the final volume fraction still represents a
large improvement; the solution was thus considered as acceptable
for the sake of this study.
Von Mises stress color maps, based on the average over Gauss

points, are presented in Fig. 8c. As expected the final design has a
finalmaximumstress that is greater than 10MPa imposed through the
Gl

KS function, but lower than 47.9 MPa as a consequence of the
choice of P. The solutions displacement field 8d is consistent with
boundary conditions and to the load applied to the structure. The final
Von Mises stress is obviously not homogeneous within the solution.
It reaches its maximum in the regions adjacent to the wing and at the
interface with the engine model. Note that the high stresses at the
attachment with the wing are induced by the geometry and loading.
On the other hand, the high stresses at the interface with the engine
model are numerical artifacts of the kinematic tying approach of the
design zone and the engine super-elements. These latter could
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Fig. 7 a) Design zone mesh used for final topology optimization problem. Each element of the original element is cut into 64 new elements, which give a
total of 7600 × 64 � 486;400 eight-node linear 3D solid finite elements and 509,949 nodes. b) Convergence history ofΔTSFC%;V%;Gl

KS × 100 after 300
design iterations.

Table 2 Optimization problem setup

Symbol Name Value

E0 Young’s modulus 210 GPa
ν Poisson ratio 0.29
Nel Number of elements in the design zone 486,400
NDOFs Number of rows of the stiffness matrix 1,529,847
NG Number of Gauss points in the design zone 3,891,200
r Filtering radius 2× mesh average size
p SIMP penalty 3
P Aggregation constant 4
σlim Allowable stress to be used in 16 10 MPa
σalw Maximum local allowable stress 47.9 MPa
T0 Allowable consumption variation 0.15%
fρfg Inertial load f0g

Stopping condition on the Karush-Kunt Tucker residual norm KKTn ≤ 10−3

Stopping condition on the iteration number iter ≥ 300
MMA external move limit for first 2 iterations 0.4
MMA maximum asymptote distance from the current point 0.1

The hypothesis made to get numerical results is listed here.



potentially be reduced by a more complex kinematic tying approach
such as theMortar approach. The structure found by the optimization
algorithm is nearly planar and contained in the x–z plane. This is due
to the load considered here (axial load) and to the symmetry of the
engine model. This solution can therefore be further improved
considering multiple load cases, which will load the structure in
different directions. Changing mesh tying approaches used to deal
with the mesh inconsistency at the interface with the engine could
also potentially improve the solution. The results found are not of
direct practical interest due to several simplifying assumptions
considered in themodels being used (especially the simplified engine
model). Nevertheless the solution is consistent with the model
hypothesis and shows that it is possible to deal with both engine
deformation and stress criteria in the same 3D topology optimization
framework.

V. Conclusions

This work addressed the problem of optimization of the topology
of the engine-wing attachment structure of a typical medium-range
commercial passenger aircraft. The proposed framework for solving
this problem had to overcome several challenges—notably,
irregularity of the design zone mesh, nonconsistent interfaces
between the design zone and the engine model, numerical costs
related to the engine model developed in commercial finite ele-
ment software, engine performance, and stress criteria to be in-
cluded in the topology optimization. Accordingly, in the proposed
framework stress-based and engine relative displacement constraints
were successfully implemented in a mass-driven 3D topology
optimization of pylon and engine mounts for a representative engine

model. The engine model stiffness was integrated in the topology
optimization using a super-element-based framework to reduce
overall optimization time, whereas objective and stress constraint
gradients were efficiently evaluated by the adjoint method.
Considering mesh nonuniformity, super-element integration and
mesh tying techniques make our framework general enough to
consider various related structural and topology optimization
problems, notably including design zone constraints due to external
aerodynamic shapes or the presence of other components. The
generalization of our study to multiple load cases and several other
performance and manufacturing criteria represents a future line of
work. A future line of work is also related to the hyperstatic interface
between engine and design zone that has important consequences on
the feasibility of the solution with respect to both engine installation
and thermal expansion. It will also be interesting to investigate
reducing the optimization overall time needed to pass from a
topology optimization solution to a final design and increase the
robustness of our design with respect to fail safe scenarios.

Appendix A: KS Function Properties

In the following subsection we review essential properties of the
Kreisselmeier–Steinhauser (KS) functions used for the stress
constraints. Given thatP�gi − gmax� ≤ 0, ∀ i, eP�gi−gmax� ≤ 1, ∀ i, and
�1∕P� ln �PNG

i�1 e
P� �gi− �gmax�� − �ln �NG�∕P� ≤ 0 so that one can

concludeGl
KS ≤ gmax and knowing that

PNG

i�1 e
P�gi−gmax� > 1 implies

�1∕P� ln �PNG

i�1 e
P� �gi− �gmax�� > 0 so that:

�gmax −Gl
KS � ln �NG�

P
−
1

P
ln
�XNG

i�1

eP� �gi− �gmax�
�
<
ln �NG�

P
(A1)

As a remarkable result we have:

Gl
KS ≤ �gmax < Gl

KS �
ln �NG�

P
� GKS (A2)

where GKS is the Kreisselmeier–Steinhauser function. Equivalently:

Table 3 Solution responses before and after
thresholding

Response Original solution After thresholding (tsh � 0.22)

ΔTSFC% 0.15 0.1522
V% 2.35 3.15
Gl

KS −4.3 × 10−6 −9 × 10−3

Fig. 8 Topology optimization results. a)Design configuration after 300 iterations; only densities greater than 0.22 are displayed. b) Physical density color
map. c) Von Mises stress color map. d) Displacement magnitude color map.



0 ≤ gmax −Gl
KS <

ln �NG�
P

(A3)

Finally limP→∞�ln �NG�∕P� � 0, which for Eq. (A3) implies:

lim
P→∞

Gl
KS � gmax (A4)

One can also limit the range of variation of gmax using an allowable
tolerance:

jGl
KS − gmaxj < ϵ (A5)

According to Eq. (A1) one can chose a value of P as

P >
ln �NG�

ϵ
(A6)

Onemust also keep inmind that for greater value ofP, theGl
KS can

have very nonlinear behavior. This has some negative consequences
on gradient-based optimization solver. An opposite strategy to deal
with stress nonlinearity was explored in Lian et al. [28]. In this paper
they proposed to increase the number of Gauss pointsNG. According
to Eq. (A1) this strategy increases the distance from the true
maximum function, hence reducing the stress aggregation function
nonlinearities. When using lower bound KS function and p-mean,
this difference is inconvenient because the final maximum stress will
be greater than the one corresponding to KS aggregation, needing
compensation on the stress limit (as suggested in this paper). On the
other hand, usingKS function orp-norm the design is always slightly
oversized so that increasing the aggregation constant could still be
beneficial to the final mass of the solution. A less elegant but still
effective way of accounting for this gap is to change allowable stress
during iterations in the way proposed in Le et al. [18].

Appendix B: Solver Benchmark

In Sec. III.D we showed that in order to compute objective and
constraints sensitivity three inversions of stiffness matrices are
needed per iteration (one for displacement evaluation and the other
two for adjoint vector evaluation). When small problems have to
be tackled, direct approaches are usually preferred to iterative
approaches because of their robustness and accuracy. These methods
work in three phases: 1) the stiffness matrix is reordered to reduce the
decomposition computational burden, 2) the Cholesky decom-

position is computed, and 3) the decomposition is used to compute
linear system solution, making the inversion of an upper and a lower
triangular matrix, once per each right-hand side. The first and the last
steps are quite straightforward and less expensive than the
decomposition computation. For this reason the cost of direct
approaches is less dependent on the number of right-hand side
vectors to be considered. Nevertheless the computational burden of
the direct Cholesky decomposition method is of O�N3

DOFs� for full
matrices and of O�N3∕2

DOFs� for sparse matrices using, for example,
nested dissection [29]. Moreover they can be problematic due to
memory limits for very large problems as stiffness matrix
factorizations need to be computed and stored. For these reasons,
for large sparse matrices iterative methods can be particularly
inexpensive especially when accepting an error on the system
solution [30]. In topology optimization, these methods can take
advantage from the solutions evaluated at the previous optimization
iteration, especially close to convergence. On the other hand, a major
drawback of these approaches is that the computational effort ismuch
more linked with the number of right-hand sides. In fact a first
solution needs to be computed for displacements evaluation, then the
right-hand side of the adjoint problems can be built as it depends on
displacements, and finally the adjoint vectors can be computed
through another iterative process. Even a parallel versionwith respect
to the number of right-hand side vectors could not enable the
evaluation of adjoint in parallel with the displacements for iterative
approaches. Compliance-based problems being self-adjoint do not
suffer of these drawbacks, because displacement vector is also the
adjoint vector for the compliance response. InMatlab several iterative
approaches are implemented in native functions like pcg, cgs, and
minres.Moreover, incomplete factorizations (ichol and ilu functions)
are also implemented in order to provide preconditioners. Several
trade-offs have been assessed for 27,000-DOF problem in Fig. 3a. In
Fig. A1a minres has been used to find the largest residual error
tolerance needed to achieve a correct evaluation of both stress and
ΔTSFC constraint gradients. The reference displacement and
gradient were evaluated with mldivide Matlab native function (i.e.,
with a direct approach) still achievable on small problems. On the
basis of this study a value of 10−5 for the residual error tolerance has
been considered as sufficiently small. Finally in order to select the
algorithm best-suited for our problem, several Matlab native
functions (pcg, bcg, bcgs, bcgsl, cgs, minres, qmr) have been
compared with the same residual tolerance and with maximum
number of iterations big enough to ensure that every method reached
residual error smaller than tolerance value. Incomplete Choleski
factorization (ichol Matlab function) was used to provide a
preconditioner. Ichol drop tolerance and diagonal compensationwere
kept constant to 10−3 and 10−4, respectively. The elapsed time for
each tested function is compared in Fig. A1b for displacement
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Fig. A1 a)minres residual error impact on stress and ΔTSFC constraints sensitivity. b) Displacement evaluation elapsed time [s] using several Matlab
native functions.



evaluation in a configuration constituted by maximal Young’s
modulus everywhere. The preconditioned conjugate gradient pcg and
minres were the fastest algorithms tested initially. To further reduce
the computation time in the most refined mesh 7a, a geometric
multigrid preconditioned conjugate gradient (mgcg) [30,31] was
tested, using three refinement meshes and replacing damped Jacobi
with incomplete Cholesky for the smoothening. The convergence
history of ichol preconditioned minres and mgcg is compared to
compute displacement vector for the mesh in Fig. B1 for the
configuration with all design variables equal to 1 and with a
convergence criteria of 10−5 over the relative residual. Multigrid
preconditioners are way more effective than Matlab native function
iterative solvers (4 vs 386 iterations needed to converge) and were
therefore considered for the topology optimization problem analyzed
in Sec. V.
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