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STABILITY OF SEMI-LAGRANGIAN SCHEMES OF

ARBITRARY ODD DEGREE UNDER CONSTANT AND

VARIABLE ADVECTION SPEED

ROBERTO FERRETTI AND MICHEL MEHRENBERGER

Abstract. The equivalence between semi-Lagrangian and Lagrange-Galerkin
schemes has been proved in [9, 10] for the case of centered Lagrange interpo-

lation of odd degree p ≤ 13. We generalize this result to an arbitrary odd

degree, for both the case of constant- and variable-coefficient equations. In
addition, we prove that the same holds for spline interpolations.

1. Introduction

Born in the 50s in the framework of environmental fluid dynamics, semi-Lagrangian
(SL) schemes have become in recent years a useful tool to treat various PDE models,
mainly of hyperbolic type. In its basic formulation, a SL scheme works by discretiz-
ing a characteristics-based representation formula for the solution of a hyperbolic
equation. In this paper, we will focus on the basic case of the one-dimensional,
variable-coefficient advection equation,

(1.1)

{
vt(x, t) + f(x, t) · ∇v(x, t) = 0 (x, t) ∈ R× (0, T ]

v(x, 0) = v0(x) x ∈ R.

The construction of SL schemes (and in general of large time-step schemes) for
(1.1) stems from the application of the method of characteristics, which will be
briefly recalled here. Let a system of characteristic trajectories X(x, t; s) for (1.1)
be defined by:

(1.2)


d

ds
X(x, t; s) = f(X(x, t; s), s).

X(x, t; t) = x,

Then, the solution of (1.1) is constant along such trajectories, which means that
the following representation formula

(1.3) v(X(x, t; t+ τ), t+ τ) = v(x, t).
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2 R. FERRETTI AND M. MEHRENBERGER

holds for the solution v. Writing (1.3) with τ = −∆t, we have the time-discrete
version

(1.4) v(x, t) = v(X(x, t; t−∆t), t−∆t).

For example, in the constant-coefficient case, f(x, t) ≡ a and (1.4) takes the well-
known form

v(x, t) = v(x− a∆t, t−∆t).

In the typical SL schemes, (1.4) is discretized by replacing the exact upwinding
along characteristics X with its approximation X∆ (obtained for example via a one-
step scheme), and the value of v at the foot of a characteristic with an interpolation:

(1.5) vn+1
j = I[V n]

(
X∆

(
xj , t

n+1; tn
))

where vn+1
j is the approximation of v(xj , t

n+1), V n denotes a vector collecting all

the values vnj , and the interpolation I[V n](x) is computed as

(1.6) I[V n](x) =
∑
i

vni ψi(x)

in which the basis functions ψi are typically constructed on a uniform grid with
step ∆x and satisfy the condition, typical of the so-called cardinal basis functions,

(1.7) ψi(xj) = δij .

Plugging (1.6) into (1.5), we finally obtain

(1.8) vn+1
j =

∑
i

vni ψi
(
X∆

(
xj , t

n+1; tn
))
.

If the error in the approximation of characteristics is O(∆tp) and the interpolation
error is of order O(∆xr), then the consistency rate of (1.5) can be proved by
standard arguments (see [8]) to be O(∆tp + ∆xr/∆t).

Note that, in the constant-coefficient case, (1.5) reduces to

(1.9) vn+1
j = I[V n](xj − a∆t),

and that the scheme may be put in the matrix form

(1.10) V n+1 = ΨV n,

for a matrix1 Ψ with elements ψji = ψi(X
∆(xj , t

n+1; tn)). Even in the simplified
constant-coefficient case (1.9), (1.5) poses serious technical issues in proving stabil-
ity of the scheme as soon as a high-order, non-monotonic interpolation is used. The
usual framework is clearly that of L2 stability, so what we want to prove is that

‖V n‖2 =

(
∆x
∑
i

(vni )
2

)1/2

≤MT

for any n such that n∆t ∈ [0, T ]. In the constant-coefficient case and for symmetric
Lagrange interpolations, a very technical proof via Von Neumann analysis [2] shows
that ‖Ψ‖2 ≤ 1, and hence that the scheme is stable.

A theoretically smoother way of obtaining a stable scheme from (1.4) is to replace
the interpolation by a Galerkin projection, thus obtaining the so-called Lagrange–
Galerkin (LG) schemes, first proposed in [7, 15]. In the LG scheme, once written
the approximate solution at time tk as

∑
i v
k
i φi(x), (1.4) is discretized instead by

1vectors and matrices are considered here as infinite-dimensional
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integrating the product of both sides of (1.4) with a basis of test functions {φj} so
that the equality

(1.11)

∫
R

∑
i

vn+1
i φi(ξ)φj(ξ)dξ =

∫
R

∑
i

vni φi
(
X∆

(
ξ, tn+1; tn

))
φj(ξ)dξ

must hold for any j. More explicitly, for any node index j, condition (1.11) is
enforced as

(1.12)
∑
i

vn+1
i

∫
R
φi(ξ)φj(ξ)dξ =

∑
i

vni

∫
R
φi
(
X∆

(
ξ, tn+1; tn

))
φj(ξ)dξ,

which can be recast in matrix form as

(1.13) MV n+1 = ΦV n,

where M is the mass matrix appearing at the left-hand side of (1.12). The vector
V n+1 is thus defined as the L2-projection of the evolution of V n, resulting from
the approximate characteristics X∆, on the space generated by the basis {φi}, and,
being a projection, it satisfies a uniform stability condition.

In fact, denote (as usual in Galerkin schemes) the numerical solution as vnh(x) =∑
i v
n
i φi(x), and assume first for simplicity to work on the constant-coefficient case,

so that X∆ is a pure translation. Rewriting in an equivalent form (1.12) as

(1.14)

∫
R
vn+1
h (ξ)wh(ξ)dξ =

∫
R
vnh
(
X∆(ξ, tn+1; tn)

)
wh(ξ)dξ,

for a generic test function wh(x) =
∑
i wiφi(x), using wh = vn+1

h as a test function
in (1.14), and applying Hölder’s inequality, we get∥∥vn+1

h

∥∥2

2
=

∫
R
vnh
(
X∆(ξ, tn+1; tn)

)
vn+1
h (ξ)dξ ≤

≤ ‖vnh‖2
∥∥vn+1
h

∥∥
2

and this shows that the scheme is stable in the L2 norm. More in general, the LG
scheme is stable whenever the approximate evolution operator E∆ defined by

E∆(t− tn)vnh(x) = vnh
(
X∆(x, t; tn)

)
satisfies, for t− tn small enough, the bound:∥∥E∆(t− tn)

∥∥ ≤ 1 + C(t− tn),

where the left-hand side is the norm of an operator mapping L2 into itself.
The main implementation issue of LG schemes is the fact that the right-hand

side integrals in (1.12), might not be exactly computable because of the deforma-
tion introduced by the advection X∆(·, tn+1; tn). This fact has generated some
approximate versions of (1.12): in particular, the technique of area-weighting is
based on neglecting the deformation caused by advection in (1.12). This strat-
egy, as proposed in [13], assumes that the grid is structured and quadrilateral, and
that the change of coordinates X∆(ξ, tn+1; tn) is replaced by a rigid displacement
ξ − xj + X∆

(
xj , t

n+1; tn
)
. Note that this approximation leaves the image of xj

unchanged, and represents in some sense a linearization of X∆(ξ, tn+1; tn) for ξ in
the neighbourhood of the point xj .

The integrals in the right-hand side of (1.12) are then approximated as:∫
R
φi
(
X∆

(
ξ, tn+1; tn

))
φj(ξ)dξ ≈

∫
R
φi
(
ξ − xj +X∆

(
xj , t

n+1; tn
))
φj(ξ)dξ,
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resulting in an integral which can now be evaluated exactly. The final form of the
area-weighted LG scheme is then:
(1.15)∑

i

vn+1
i

∫
R
φi(ξ)φj(ξ)dξ =

∑
i

vni

∫
R
φi
(
ξ − xj +X∆

(
xj , t

n+1; tn
))
φj(ξ)dξ,

whose matrix form reads

(1.16) MV n+1 = Φ̄V n.

In case of advection at constant speed, the area-weighted LG scheme is clearly
exact (i.e., Φ̄ = Φ), while in the more general case it can be proven to be an O(∆t)
perturbation of an exact LG scheme, so that

(1.17)
∥∥Φ− Φ̄

∥∥
2
≤ C∆t,

and the scheme turns out to be stable as well. In [13], (1.17) is proved for piecewise
polynomial continuous elements.

Remark 1.1. The estimate (1.17) does not prevent both schemes from being (high-
order) consistent. In fact, the difference

∥∥Φ− Φ̄
∥∥

2
could even be O(1) if the numer-

ical domain of dependence is different among the two schemes, and this is clearly
the case. Following [13], we will use (1.17) only as a stability estimate.

It is sometimes possible to prove stability of the SL scheme by defining a basis
for the LG scheme, such that the Galerkin projection in this basis corresponds to
the interpolation I. A first result in this direction has been given in [9] for the
case of symmetric Lagrange interpolation of odd degree, a widely used recipe in
SL schemes. The paper proves that it is possible to choose a suitable basis {φi}
to obtain M = Id (identity matrix) and Ψ = Φ̄, so that (at least in the constant-
coefficient case) the SL scheme is equivalent to an exact Lagrange–Galerkin scheme,
and therefore stable. Once the interpolation has been recast in the form (1.6), with
a translation invariant basis

(1.18) ψj(x) = ψ
( x

∆x
− j
)
,

the crucial step of the proof consists in showing that the reference basis function ψ
is a positive definite function, or, in other terms, that it has a positive real Fourier
transform. This is done in [9] by symbolic computation, up to a sufficiently high
interpolation degree. In addition, the numerical results in the same work suggest
that the same technique can be applied to cubic cardinal splines. In a later paper
[10], the same framework is adapted to prove stability in the variable-coefficient
case for the symmetric Lagrange interpolation, by considering the SL scheme as
an area-weighted LG scheme. A careful generalization of the proof in [13] allows
to prove (1.17) for a wider class of functions, including the equivalent LG basis
functions associated to the SL scheme.

In this paper, we provide a general proof of positive definiteness for the reference
basis functions, in case of an arbitrary odd degree of interpolation. Moreover, in the
variable-coefficient case, we reconsider the proof given in [10], which seems in fact
to be inapplicable to the case of cubic interpolation, and fix the bug. Last, using
results from the signal analysis literature, we prove the same results also for the case
of cardinal splines interpolation. All the paper will work on the one-dimensional
case, assuming an infinite uniform grid of nodes xj = j∆x. In constant-coefficient
equations, the multi-dimensional case boils down to one-dimensional as shown in
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[9]. In variable-coefficient equations, [10] provides some argument to extend the
proof to a generic dimension.

The paper is structured as follows. In Sec. 2, we show the general proof for both
Lagrange and spline interpolation in constant-coefficient equations. In Sec. 3, we
apply the general result of [10] and obtain stability in the variable-coefficient case.
Last, in Sec. 4 we draw some conclusions and future perspectives.

2. The case of constant advection speed

Here and in what follows, we will denote by ĝ(ω) = F [g(x)](ω) and F−1[h(ω)](x)
respectively the direct and inverse Fourier transforms of functions g(x) and h(ω),
that is,

ĝ(ω) =

∫ ∞
−∞

g(x)e−iωxdx,

F−1[h(ω)](x) =
1

2π

∫ ∞
−∞

h(ω)eiωxdω.

We start by treating the case of constant-coefficient equations, then turn in the
next section to the variable-coefficient case. Our analysis is based on the following
stability result [9, Theorem 3.1], which will be briefly recalled.

Theorem 2.1. Consider the advection equation (1.1) with constant coefficients
(f(x, t) ≡ a), and the scheme (1.5), with the interpolation operator defined by

(1.6)–(1.18). Then, if the function ψ has a real positive Fourier transform ψ̂, the
scheme (1.5) is stable in the 2-norm ‖ · ‖2.

Sketch of the proof. The condition for (1.8) to be equivalent to (1.15) reads Φ =
MΨ. Then, we look for a solution satisfying:{

M = Id

Φ = Ψ,

and, more explicitly,

(2.1)

∫
R
φi(ξ − xj + zj)φj(ξ)dξ = ψi(zj),

where zj = xj − a∆t. Writing ψj by means of (1.18) and φj as

(2.2) φj(x) =
1√
∆x

φ
( x

∆x
− j
)

(for some reference basis function φ), we get

1

∆x

∫
R
φ

(
ξ − xj + zj

∆x
− i
)
φ

(
ξ

∆x
− j
)
dξ = ψ

( zj
∆x
− i
)

that is, after setting η = ξ/∆x− j:

(2.3)

∫
R
φ

(
η +

zj − xj
∆x

+ j − i
)
φ(η)dη = ψ

(
zj − xj

∆x
+ j − i

)
.

This amounts to find a reference function φ with prescribed autocorrelation:

(2.4)

∫
R
φ(η + y)φ(η)dη = ψ(y).
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Moving to the Fourier domain and transforming both sides of (2.4) (see [14], Chap-
ter 9), we have:

(2.5) |φ̂(ω)|2 = ψ̂(ω),

which admits (an infinity of) solutions, if and only if ψ̂(ω) ∈ R+. Therefore, the
scheme (1.5) is equivalent to an L2-stable LG scheme in the form (1.15) with the
basis (2.2).

�

Remark 2.2. We note that, according to a theorem of Riesz (see [9] and the refer-
ences therein), if a function ψ has a real positive Fourier transform, then it must
be continuous. In the two cases considered in this paper, i.e., symmetric Lagrange
and spline interpolation, the reference basis function is Lipschitz continuous in the
first case, and at least twice continuously differentiable in the second.

An obvious definition of the solution φ of (2.4), is

(2.6) φ = F−1
[
ψ̂1/2

]
,

although we will see that this solution might not be suitable for the variable-
coefficient case. In Sec. 3 we will use a different solution, with a faster decay
at infinity.

In the following subsections, we prove positive definiteness for respectively sym-
metric Lagrange and spline interpolation.

2.1. Symmetric Lagrange interpolation. First, we briefly recall the general
setting for this kind of interpolation. In symmetric Lagrange interpolation, the
solution is reconstructed on a given interval (xj , xj+1) by a Lagrange polynomial
constructed on a symmetric stencil of 2(d+1) points xj−d, . . . , xj+d+1. The resulting
polynomial is of degree 2d+ 1, and can be written [9] in the form (1.6)–(1.18), once
the reference basis function ψ is defined as

(2.7) ψ(y) = ψ[2d+1](y) =



d+1∏
k 6=0, k=−d

y − k
−k

if 0 ≤ y ≤ 1

d+2∏
k 6=0, k=−d+1

y − k
−k

if 1 ≤ y ≤ 2

...
2d+1∏
k=1

y − k
−k

if d ≤ y ≤ d+ 1

0 if y > d+ 1

together with the symmetry condition ψ[2d+1](y) = ψ[2d+1](−y) for y < 0. Note
that, in (2.7) and in what follows, we make explicit the interpolation degree 2d+ 1,
and use y to denote the variable in the reference space. The structure (2.7) results
from the piecewise combination of normalized Lagrange basis functions,

(2.8) Ld` (y) =

d+1∏
k=−d, k 6=`

y − k
`− k

,
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so that, for ` ∈ {0, . . . , d} and ` ≤ y ≤ `+ 1,

(2.9) ψ[2d+1](y) = Ld−`(y − `) =

d+1+`∏
k 6=0, k=−d+`

y − k
−k

.

The key assumption of Theorem 2.1, i.e., that for all ω ∈ R,

(2.10) ψ̂[2d+1](ω) =

∫
R
ψ[2d+1](y)e−iωydy ∈ R+,

has been checked in [9] for d ∈ {0, . . . , 6} by symbolic computation and numerical

Fourier transformation. For example, the Fourier transforms φ̂[2d+1] for the cases
of P1 and cubic interpolation (i.e., with d = 0, 1) read

ψ̂[1](ω) =
2− 2 cosω

ω2
=

sin
(
ω
2

)2(
ω
2

)2
ψ̂[3](ω) =

8(6 + ω2)sin
(
ω
2

)4
3ω4

.

We compare in Fig. 1 the reference basis functions ψ[2d+1](y), the LG reference
basis functions φ[2d+1](y) obtained via (2.6), and the solution with fast decay (which
will be defined in Sec. 3), for the cases d = 0, 1.

Our aim here is to prove positive definiteness for arbitrary values of d.

2.1.1. Proof using a result from [12]. In this subsection, we prove (2.10) via the
following technical result from [12, Section 3.2.4].

Lemma 2.3. For all positive integers d and q, and all ω ∈ R, define

S[d]
q (ω) :=

1

q

q−1∑
p=0

d+1∑
`=−d

Ld`

(
p

q

)
exp

(
i

(
`− p

q

)
ω

)
,

with Ld` defined by (2.8). Then, S
[d]
q (ω) is real and non-negative.

Note that, passing to the limit in q, so that p/q → y ∈ R, Lemma 2.3 gives:

(2.11)

∫ 1

0

d+1∑
`=−d

Ld` (y) exp (i (`− y)ω) dy ∈ R+.

Then, (2.10) is derived via the following identity:

Lemma 2.4. We have

ψ̂[2d+1](ω) = Sd(ω) :=

∫ 1

0

d+1∑
`=−d

Ld` (y) exp (i (`− y)ω) dy.
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Figure 1. The cases of P1 (left) and cubic (right) interpolation.
Reference basis functions (upper), solution φ via (2.6) (middle)
and fast decay solution defined by (3.8) (lower).

Proof. Using (2.9) in the Fourier transform ψ̂[2d+1], we obtain

ψ̂[2d+1](ω) = 2

∫ ∞
0

ψ[2d+1](y) cos(ωy)dy

= 2

d∑
`=0

∫ `+1

`

Ld−`(y − `) cos(ωy)dy

= 2

d∑
`=0

∫ 1

0

Ld−`(y) cos(ω(y + `))dy

= 2

0∑
`=−d

∫ 1

0

Ld` (y) cos(ω(y − `))dy.
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Here, we have taken into account the symmetry of ψ[2d+1], which makes the imag-

inary part of ψ̂[2d+1] vanish. Now, for ` = −d, . . . , 0, we have the relationship
Ld` (y) = Ld−`+1(1− y), so that

0∑
`=−d

∫ 1

0

Ld` (y) cos(ω(y − `))dy =

0∑
`=−d

∫ 1

0

Ld−`+1(1− y) cos(ω(y − `))dy

=

0∑
`=−d

∫ 1

0

Ld−`+1(y) cos(ω(1− y − `))dy

=

d+1∑
`=1

∫ 1

0

Ld` (y) cos(ω(`− y))dy.

We finally obtain

ψ̂[2d+1](ω) =

d+1∑
`=−d

∫ 1

0

Ld` (y) cos(ω(y − `))dy,

and this gives

ψ̂[2d+1](ω) = Sd(ω)

for all ω ∈ R.
�

2.1.2. Direct proof. Now, we will give a self-contained proof, which will also provide

a more precise form of the Fourier transform ψ̂[2d+1], useful for deriving further
properties (in particular in the variable-coefficient case, see [10]). In other terms, we
will prove the conjecture made in [9], concerning the form of the Fourier transform

ψ̂[2d+1].

Theorem 2.5. Let ψ[2d+1](y) be defined by (2.7). Then, for all non-negative inte-
gers d, its Fourier transform has the structure

(2.12) ψ̂[2d+1](ω) = p(ω2)
sin
(
ω
2

)2d+2(
ω
2

)2d+2
,

with p(·) a polynomial of degree d with positive coefficients.

Proof. The proof is split into some intermediate lemmas. First, we can express the

derivative of ψ̂[2d+1](ω) = Sd(ω) (from Lemma 2.4) in a compact form, following
[3],[12]:

Lemma 2.6. We have

S′d(ω) = (−1)d
22d+1

(2d+ 1)!
sin2d+1

(ω
2

)
σd(ω),

where

σd(ω) =

∫ 1

0

cos

((
1

2
− x
)
ω

)
wd (x) dx,

with wd(x) =
∏d+1
k=−d(x− k).

Proof. In order to be self-contained, we will recall the proof in the Appendix.
�
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Next, we state some useful properties of the function wd:

Lemma 2.7. Let wd(x) =
∏d+1
k=−d(x − k). Then, for k = 0, . . . , d, the following

properties hold true:

(1) w
(2k+1)
d (0) = − d+ 1

2k + 2
w

(2k+2)
d (0),

(2) w
(2k+2)
d (0) = (2k + 2)(2k + 1)

 d∏
j=1

(x2 − j2)

(2k)
∣∣∣∣∣∣∣
x=0

,

(3) (−1)k+dw
(2k+2)
d (0) > 0.

Proof. In what follows, we use the formula (see [12])

wd(x) = x(x− d− 1)

d∏
j=1

(x2 − j2),

along with the Leibniz formula

((x− α)F (x))(m) =

m∑
`=0

(
m

`

)
(x− α)(`)F (x)(m−`)

= mF (m−1)(x) + (x− α)F (m)(x).

We have therefore

w
(2k+1)
d (0) = (2k + 1)

(x− d− 1)

d∏
j=1

(x2 − j2)

(2k)
∣∣∣∣∣∣∣
x=0

= −(d+ 1)(2k + 1)

 d∏
j=1

(x2 − j2)

(2k)
∣∣∣∣∣∣∣
x=0

,

since g(2k−1)(0) = 0, for g(x) =
∏d
j=1(x2 − j2) (which is an even function). On

the other hand,

w
(2k+2)
d (0) = (2k + 2)

(x− d− 1)

d∏
j=1

(x2 − j2)

(2k+1)
∣∣∣∣∣∣∣
x=0

= (2k + 2)(2k + 1)

 d∏
j=1

(x2 − j2)

(2k)
∣∣∣∣∣∣∣
x=0

,

using this time that g(2k+1)(0) = 0, which proves (1) and (2). As for (3), we have

P (x) =

d∏
j=1

(x2 − j2) =

d∑
k=0

P (2k)(0)

(2k)!
x2k,
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and by identifying the coefficient in x2k, that is, using the relationship between
roots and coefficients in a polynomial, we obtain

∑
1≤j1≤···≤jd−k≤d

j2
1 . . . j

2
d−k = (−1)d−k

P (2k)(0)

(2k)!
,

which gives:

(−1)k+dw
(2k+2)
d (0) = (2k + 2)(2k + 1)(−1)d−kP (2k)(0)

= (2k + 2)(2k + 1)
∑

1≤j1≤···≤jd−k≤d

j2
1 . . . j

2
d−k > 0,

thus proving (3).
�

Finally, we give a suitable expression for ψ̂[2d+1](ω):

Lemma 2.8. We have

ψ̂[2d+1](ω) = Sd(ω) = (−1)d
22d+1

(2d+ 1)!
sin2d+2

(ω
2

) d∑
k=0

w
(2k+2)
d (0)

k + 1

(−1)k

ω2k+2
.

Proof. Assuming ω 6= 0, we then compute σd from Lemma 2.6 by successive inte-
gration by parts, as

σd(ω) =

∫ 1

0

cos

((
x− 1

2

)
ω

)
wd (x) dx

= − 1

ω

∫ 1

0

sin

((
x− 1

2

)
ω

)
w′d (x) dx

=
1

ω2

[
cos

((
x− 1

2

)
ω

)
w′d (x)

]x=1

x=0

− 1

ω2

∫ 1

0

cos

((
x− 1

2

)
ω

)
w′′d (x) dx

= − 2

ω2
cos
(ω

2

)
w′d (0)− 1

ω2

∫ 1

0

cos

((
x− 1

2

)
ω

)
w′′d (x) dx

= − 2

ω2
cos
(ω

2

)
w′d (0)− 2

ω3
sin
(ω

2

)
w′′d (0)

+
1

ω3

∫ 1

0

sin

((
x− 1

2

)
ω

)
w′′′d (x) dx.

Iterating the computation, we obtain

σd(ω) =

d∑
k=0

(−1)k+1

(
2

ω2k+2
cos
(ω

2

)
w

(2k+1)
d (0) +

2

ω2k+3
sin
(ω

2

)
w

(2k+2)
d (0)

)

=

d∑
k=0

2w
(2k+2)
d (0)

2k + 2
(−1)k

(
d+ 1

ω2k+2
cos
(ω

2

)
− (2k + 2)

ω2k+3
sin
(ω

2

))
,
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where we have used Lemma 2.7. Now, we have, for k = 0, . . . , d,(
sin2d+2

(ω
2

) 1

ω2k+2

)′
= (d+ 1) sin2d+1

(ω
2

)
cos
(ω

2

) 1

ω2k+2

−(2k + 2) sin2d+2
(ω

2

) 1

ω2k+3

= sin2d+1
(ω

2

)( d+ 1

ω2k+2
cos
(ω

2

)
− 2k + 2

ω2k+3
sin
(ω

2

))
.

Thanks to Lemma 2.6, this gives

S′d(ω) = (−1)d
22d+1

(2d+ 1)!

d∑
k=0

w
(2k+2)
d (0)

k + 1
(−1)k

(
sin2d+2

(ω
2

) 1

ω2k+2

)′
,

and hence, by integration, we obtain

Sd(ω) = (−1)d
22d+1

(2d+ 1)!
sin2d+2

(ω
2

) d∑
k=0

w
(2k+2)
d (0)

k + 1

(−1)k

ω2k+2
,

as limω→∞ Sd(ω) = 0.
�

To complete the proof of Theorem 2.5, we only need to use property (3) of
Lemma 2.7 to identify

p(ω2)(
ω
2

)2d+2
=

22d+1

(2d+ 1)!

d∑
k=0

w
(2k+2)
d (0)

k + 1

(−1)k+d

ω2k+2
,

for some polynomial p ∈ Pd with positive coefficients.
�

2.2. Cardinal splines. First, we briefly recall that a spline interpolant of odd
degree n for a given vector V is piecewise polynomial on all intervals [xj , xj+1],
satisfies the interpolation condition I[V ](xj) = vj , and is continuous along with
its first n − 1 derivatives at any node. On an infinite uniform grid, the reference
basis function for this interpolation is defined (see the classical reference [4]) by the
properties

ψ
∣∣∣
[j,j+1]

∈ Pn,

ψ(0) = 1,

ψ(j) = 0 (j ∈ Z, j 6= 0),

ψ(p)(j−) = ψ(p)(j+) (j ∈ Z, p = 0, . . . , n− 1).

This reference basis function is also termed as cardinal spline (of degree n), since
it satisfies (1.7).

It has been noted in [9] that, at least numerically, cubic cardinal splines seem to
suit the framework under consideration. We show here that cardinal splines have
a positive Fourier transform, not only in the cubic case, but for any odd degree n.

In fact, this property is well-known in signal analysis, in which cardinal splines
are considered a suitable filter for sampled signals reconstruction. Then, it turns
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Figure 2. The case of cubic spline interpolation. Reference basis
function ψ (left) and solution φ (right).

out (see [1]), that a cardinal spline of degree n has a Fourier transform given by

ψ̂(ω) =

(
sin ω

2
ω
2

)n+1

+∞∑
k=−∞

(
sin(ω/2− kπ)

ω/2− kπ

)n+1

and is therefore positive for any odd value of n. For reader’s convenience, we show
both SL and LG reference basis functions in Fig. 2, for the case of the cubic spline.

We finally note that it is also possible [1, 18] to give a more explicit form of

ψ̂(ω), in which the summation in the denominator is finite. This form, however,
does not lend itself easily to prove positivity, except for the lowest degrees.

3. The case of variable advection speed

For the case of variable advection speed, in addition to the positivity of ψ̂, further
assumptions have to be checked to ensure stability. Once a suitable solution φ of
(2.4) is selected (there are infinitely many), the following result is proved in [10,
Theorem 4]:

Theorem 3.1. Assume that the vector field f is uniformly Lipschitz continuous
w.r.t. x and that X∆ is a consistent approximation of X, that is,

X∆
(
ξ, tn+1; tn

)
= ξ −∆tf(ξ, tn+1) +O(∆t2).

Assume moreover that:

(i) The function φ(y) satisfies the decay condition

(3.1) |φ(y)| ≤ Cφ
1 + |y|3

(ii) Its derivative is in the form

(3.2) φ′(y) = φ′s(y) +

∞∑
k=−∞

wkδ(y − yk),

where the regular and the singular part satisfy the bounds

(3.3) |φ′s(y)| ≤ Cs
1 + y2

,
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(3.4) |wk| ≤
Cw

1 + k2
,

and the singularities yk have the expression

(3.5) yk = αk + β.

Then, there exists a time step ∆t0 > 0 such that the scheme (1.15) (and hence,
(1.8)) is L2-stable for ∆t ∈ (0,∆t0).

Remark 3.2. As we already noticed, defining the reference function φ via (2.6) may
not lead to a satisfactory solution in variable-coefficient equations. In particular, in
the Lagrange case we are not able to define a solution which could satisfy the decay
assumptions, still remaining continuous (the typical situation is shown in Fig. 1).
In order to include the case of symmetric Lagrange interpolation, we must therefore
allow the solution φ of (2.4) to have jump-type discontinuities as stated in (3.2).

Remark 3.3. Stability requires an additional restriction on the time step, whose role
is to ensure that approximate characteristics do not cross one another. Under the
consistency assumption made in the Theorem, and for ∆t less than some maximum
time step ∆tM , there exists CX > 0 (dependent on ∆tM but not on xj ,∆t,∆x)
such that

(3.6) X∆
(
xj+1, t

n+1; tn
)
−X∆

(
xj , t

n+1; tn
)
≥ (1− CX∆t)∆x.

For example, CX equals the Lipschitz constant of f for the Euler scheme (although
it might depend on ∆tM for other schemes). Once (3.6) is satisfied, taking ∆t <
∆t0 = min{∆tM , 1/CX} ensures that the right-hand side of (3.6) is positive, and
hence that approximate characteristics do not overlap. Note that this restriction on
∆t does not depend on ∆x, and is therefore expected to be less severe in comparison
with the usual stability conditions of more conventional Eulerian schemes. For
example (see the discussion of this point in [16]), for SL schemes in Numerical
Weather Prediction the bounds on time step might turn out to be one order of
magnitude larger then the corresponding bounds for the Eulerian case.

In some sense, Theorem 3.1 is a generalization of [13, Theorem 3.4] to possibly
discontinuous basis functions. Since the SL scheme is equivalent to an area-weighted
LG scheme, Theorem 3.1 proves that (1.15) is an O(∆t) perturbation of (1.12), in
the sense of (1.17). The proof stems from the bound∥∥Φ− Φ̄

∥∥
2
≤
(∥∥Φ− Φ̄

∥∥
1
·
∥∥Φ− Φ̄

∥∥
∞

)1/2
,

and uses the decay assumptions (3.1)–(3.4) to show that the sum of magnitudes of
the elements of the difference matrix Φ− Φ̄ on both rows and columns are bounded
by an O(∆t).

Given that the function φ is characterized via its Fourier transform by solving

(2.5), the decay assumptions above could be rewritten in terms of properties of φ̂.
The basic results on the relationship between smoothness and decay of the Fourier
(or inverse Fourier) transform are reviewed, for example, in [5, Chapter 6] and [17,
Chapter 4]. In particular:

• It is known that φ decays like |y|−k provided φ̂(k) ∈ L1(R). Therefore,

assumption (3.1) is satisfied if φ̂′′′ ∈ L1(R).
• The singular part (sum of evenly spaced Dirac distributions) in φ′ is gener-

ated by a periodic component in F [φ′] = iωφ̂(ω). Once this periodic part
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is detected, and once we have defined iωφ̂s as the difference between iωφ̂
and its periodic component, the decay assumption (3.3) requires its second
derivative with respect to ω to be in L1(R).

• Assumption (3.4) is satisfied provided the periodic component of iωφ̂(ω)
has locally L1 second derivative with respect to ω.

We carry on the proof again on the two cases of symmetric Lagrange interpolation
and cardinal splines.

3.1. Symmetric Lagrange interpolation. We rewrite ψ̂(ω) as

(3.7) ψ̂[2d+1](ω) =
a0 + a2ω

2 + · · ·+ a2dω
2d

ω2d+2

(
sin

ω

2

)2d+2

,

where the polynomial contains only positive terms of even degree. Following [10],
the solution in the ω-domain is defined as

(3.8) φ̂[2d+1](ω) =

√
a0 + a2ω2 + · · ·+ a2dω2d

ω|ω|d
· sin ω

2

∣∣∣sin ω
2

∣∣∣d .
To check the basic assumptions, we also need to compute F

[
φ[p]′

]
:

F
[
φ[2d+1]′

]
(ω) = iωφ̂[2d+1](ω)

= i

√
a0 + a2ω2 + · · ·+ a2dω2d

|ω|d
· sin ω

2

∣∣∣sin ω
2

∣∣∣d
= i

(√
a0 + a2ω2 + · · ·+ a2dω2d

|ω|d
−
√
a2d

)
sin

ω

2

∣∣∣sin ω
2

∣∣∣d
+i
√
a2d sin

ω

2

∣∣∣sin ω
2

∣∣∣d
= iC(ω) + iD(ω).

which is the sum of a term vanishing for ω → ±∞, plus a periodic term giving the
asymptotic behaviour.

As explained above, in order to satisfy the assumptions stated above, we have
to check that

(1) The term C(ω) has its second derivative in L1(R).
(2) The term D(ω) has a locally L1 second derivative.
(3) The transform (3.8) has its third derivative (w.r.t. ω) in L1(R).

Note that, in the derivative

φ′(y) = F−1 [iC(ω) + iD(ω)] ,

it can be clearly recognized that the first term provides the regular part, whereas
the second term (which is periodic in ω) gives a sequence of Dirac distributions.

Point (1). The algebraic term in brackets, along with its first and second derivative,
is O(ω−2). The trigonometric term has bounded derivatives up to the order 2 for
d = 1 (cubic interpolation) and strictly higher for d > 1. Therefore, the regular
part of the derivative (which is the inverse transform of iC(ω)) converges with a
proper rate, that is,

|φ′s(y)| = O(y−α),

with α = 3 for d = 1, and α > 3 for d > 1.
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Point (2). Due to its smoothness in the ω-domain, the singular part of φ′(y) (which
is the inverse transform of iD(ω)) also converges with a proper rate, and more
precisely,

|wk| = O(k−α),

with the same α as above.

Point (3). Here, we single out two cases: one for d ≥ 2 and the second for d = 1.
The case d ≥ 2. In this case, we can use the estimates on the derivative φ′ to obtain
estimates on the function φ. In fact, since both the regular and the singular part
of the derivative converge with order α, we can infer that, for y → ±∞,

|φ(y)| = O(y1−α)

and this proves point 3 for any α > 3, i.e., for any d > 1.
The case d = 1. In this case, the argument used above would provide a convergence
rate of O(y−2), which is not enough. Therefore, an ad hoc technique must be used.
In this specific case, we have

(3.9) ψ̂[3](ω) =
8(6 + ω2)sin

(
ω
2

)4
3ω4

so that the corresponding LG base function has a transform given by

(3.10) φ̂[3](ω) =

√
8

3
(6 + ω2)

sin ω
2

∣∣sin ω
2

∣∣
ω|ω|

Here, we have that the transform does not satisfy the requirement to have a L1

third derivative, therefore we will prove directly the decay estimate on φ[3](y).

To estimate φ[3](y), we split φ̂[3](ω) in two parts in the form

φ̂[3](ω) = µ̂(ω) + ν̂(ω)

where

µ̂(ω) =

{
φ̂[3](ω) ω ∈ [0, 2π]

0 ω > 2π

ν̂(ω) =

{
0 ω ∈ [0, 2π]

φ̂[3](ω) ω > 2π.

The transform µ̂ has its third derivative in L1, which means that its inverse trans-
form µ is bounded and decays with order O(y−3). Concerning the transform ν̂, we
claim that it behaves like

η̂(ω) =

√
8/3

ω
sin

ω

2

∣∣∣sin ω
2

∣∣∣ .
In fact, we have, for ω ∈ [2π,+∞):

ν̂(ω)− η̂(ω) =


√

8
3 (6 + ω2)

ω2
−
√

8/3

ω

 sin
ω

2

∣∣∣sin ω
2

∣∣∣
=

16

ω2
(√

16 + 8
3ω

2 +
√

8
3ω
) sin

ω

2

∣∣∣sin ω
2

∣∣∣ .(3.11)
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In (3.11), the rational term is C∞, and has a rate of decay of O(ω−3), whereas
the trigonometric term has a locally L1 third derivative. Therefore, the inverse
transform of (ν̂ − η̂)(ω) is bounded and decays with order O(y−3).

To prove that the decay of the inverse transform η(y) (and hence of φ[3](y)) is
of O(y−3), we need therefore to estimate the decay, for y →∞, of integrals of the
form

(3.12)

∫ +∞

2π

1

ω
sin

ω

2

∣∣∣sin ω
2

∣∣∣ cos(ωy)dω

The integral (3.12) can be computed by splitting the domain in subintervals [2kπ, (2k+
1)π]. A computation as such gives
(3.13)∫ +∞

2π

1

ω
sin
(ω

2

) ∣∣∣sin(ω
2

)∣∣∣ cos(ωy)dω =

+∞∑
k=1

(−1)k
∫ 2(k+1)π

2kπ

1

ω
sin2

(ω
2

)
cos(ωy)dω,

where each elementary integral can be symbolically computed as2∫ 2(k+1)π

2kπ

1

ω
sin2

(ω
2

)
cos(ωy)dω = −1

2
Ci (2kπy)(3.14)

+
1

4
Ci (2kπ(y − 1)) +

1

4
Ci (2kπ(y + 1))

+
1

2
Ci (2(k + 1)πy)− 1

4
Ci (2(k + 1)π(y − 1))

−1

4
Ci (2(k + 1)π(y + 1))

and Ci denotes the cosine integral defined by

Ci (z) := −
∫ +∞

z

cos t

t
dt.

In order to estimate (3.14), we can apply the following asymptotic expansion [6]
for the cosine integral:

Ci (z) =
sin z

z
+ 1!

cos z

z2
+ 2!

sin z

z3
+ 3!

cos z

z4
+R(z),

with a remainder R(z) given by

R(z) = −4!

∫ +∞

z

cos t

t5
dt,

which decays fast enough for our purposes. Using this expansion in (3.14), we
obtain∫ 2(k+1)π

2kπ

1

ω
sin2

(ω
2

)
cos(ωy)dω =

(
sin(2kπy)

2kπ
− sin(2(k + 1)πy)

2(k + 1)π

)
·

·
(
− 1

2y
+

1

4(y − 1)
+

1

4(y + 1)

)
+O

(
k−2y−4

)
,

2This can be checked, for example, via the Maple code

assume(k,integer);

assume(k>0);

int(sin(om/2)**2*cos(om*y)/om,om=2*k*Pi..2*(k+1)*Pi);
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where the only explicit part comes from the first term in the expansion. We verify
that the first term has the right order of convergence. First, note that

− 1

2y
+

1

4(y − 1)
+

1

4(y + 1)
=

1

2y(y2 − 1)

so that the dependence on y has the right form. We further have to prove that the
series

(3.15)

+∞∑
k=1

(−1)k
(

sin(2kπy)

2kπ
− sin(2(k + 1)πy)

2(k + 1)π

)
has a finite sum w.r.t. k, uniformly in y. In fact, collecting similar terms, we have
(3.16)

+∞∑
k=1

(−1)k
(

sin(2kπy)

2kπ
− sin(2(k + 1)πy)

2(k + 1)π

)
= − sin(2πy)

2π
+ 2

+∞∑
k=2

(−1)k
sin(2kπy)

2kπ
,

in which the series at the right-hand side is a known Fourier series corresponding
to a ramp-like periodic function. It turns out therefore that the integral (3.13) is
finite for any ω uniformly w.r.t. y, and that it satisfies∫ +∞

2π

1

ω
sin
(ω

2

) ∣∣∣sin(ω
2

)∣∣∣ cos(ωy)dω = O
(
y−3

)
.

Last, we collect all the information on the inverse transform

F−1
[
φ[3](y)

]
= µ(y) + (ν − η)(y) + η(y),

so that, taking into account that all terms decay with rate O(y−3), we can conclude
that the assumption on the order of decay for φ[3](y) is also satisfied.

3.2. Cardinal splines interpolation. We rewrite here the transform of the n-th
order cardinal spline, which is given by

(3.17) ψ̂(ω) =

(
sin ω

2
ω
2

)n+1

+∞∑
k=−∞

(
sin(ω/2− kπ)

ω/2− kπ

)n+1
.

As long as it is well-defined, this is a C∞ function. Therefore, in order to prove its
smoothness, we need to give a positive lower bound on the denominator. To this
end, we can denote the denominator by X(ω) and write

X(ω) =

+∞∑
k=−∞

(
sin(ω/2− kπ)

ω/2− kπ

)n+1

=

+∞∑
k=−∞

(
(−1)k sin(ω/2)

ω/2− kπ

)n+1

= sin(ω/2)n+1
+∞∑

k=−∞

(
1

ω/2− kπ

)n+1

≥
(

sinω/2

ω/2

)n+1

,(3.18)

where we have bounded from below the last series (which has positive terms) with
a single term corresponding to k = 0. By its definition, X(ω) is 2π-periodic and
even. Therefore, it suffices to bound from below the rightmost term of (3.18) for
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ω ∈ [−π, π], and, since this is an even function decreasing w.r.t. |ω|, its minimum
on [−π, π] is attained at ω = ±π. Thus, we have

X(ω) ≥
(

2

π

)n+1

,

and since the denominator is uniformly positive, the transform (3.17) is bounded
and C∞.

Taking the square root, the required solution of (2.4) would then be

(3.19) φ̂(ω) =

(
sinω/2

ω/2

)n+1
2

X(ω)1/2
.

In order to show that both φ(y) and φ′(y) have the correct decay at infinity, consider

now the Fourier transform of the derivative φ( n+1
2 )(y), i.e.,

(3.20) F
[
φ( n+1

2 )(y)
]

= (iω)
n+1
2 φ̂(ω) = (2i)

n+1
2

(sinω/2)
n+1
2

X(ω)1/2
.

Note now that the rightmost expression in (3.20) is periodic and C∞. Hence, its
inverse Fourier transform is made of a double sequence of Dirac distributions, with
weights decreasing faster than any algebraic order. Note also that, since n ≥ 3, this
structure occurs for the second derivative in cubic splines, and for higher derivatives
on higher order splines. For the cubic spline case, this corresponds to the equivalent
basis function obtained in [9] via numerical inversion, and shown in Fig. 2.

By successive integrations, taking into account that

lim
y→±∞

φ(y) = 0,

we finally obtain that the function φ along with all its derivatives up to the order
n+1

2 − 1 (i.e., at least its first derivative) decay at infinity faster than any algebraic
order. The decay assumptions are therefore satisfied for both φ and φ′.

4. A numerical example

The unconditional stability of SL schemes is a well-known feature, and has been
widely shown in the literature (see e.g., [8, Chapters 5–6] for an extensive set of
numerical tests with different ∆x/∆t relationships). On the other hand, it could
be worth to investigate whether or not the technical assumptions of Theorem 3.1
are optimal. A first test in this direction has been presented in [10] to show that in
lack of the decay assumptions (3.1) and (3.3) (e.g., in the case of the sinc wavelet),
the scheme, although formally stable in the constant-coefficient case, may show
instabilities with space-dependent coefficients.

Here, we take into consideration the restriction (3.6) on the time step ∆t. In
computational practice, the time step is often chosen in terms of accuracy rather
than stability; moreover, when characteristics are computed via a fixed point equa-
tion, a natural bound on the time step is required to obtain a contraction mapping.
In the variable-coefficient case, we show here that (3.6) (which is usually less re-
strictive that the standard CFL condition for Eulerian schemes) can be mandatory
also for stability reasons.
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Figure 3. Plot of f(x) = − cos(16πx) (left) and L2 norm of the
solution at T = 100, versus the number Nt of time steps (right).
Discretization with ∆t = T/Nt, for Nx = 256, ∆x = 1/Nx, and
d = 8, characteristics approximation with Euler (dashed line) and
RK2 (continuous line).

We take x ∈ [0, 1] with periodic conditions, t ∈ [0, T ] with T = 100, v0(x) =
sin(2πx) and f(x, t) = f(x) = − cos(16πx). We use both the Euler and the Heun
(RK2) scheme for computing characteristics:

X∆
E

(
xj , t

n+1; tn
)

= xj − f(xj)∆t,

X∆
RK2

(
xj , t

n+1; tn
)

= xj − f
(
xj −

∆t

2
f(xj)

)
∆t,

and the interpolation I[V ] is computed with d = 8. The function f is shown in
the left plot of Fig. 3, while in the right plot we show the 2–norm of the numerical
solution at t = T , as a function of the number of time steps, for characteristics
computed with both Euler (dashed line) and RK2 (continuous line).

In this example, we have Lf = 16π, and according to (3.6) we expect the scheme
to be stable for ∆t = T/Nt < 2/Lf in the Euler case, and with a very similar
bound in the RK2 case. In practice, this corresponds to Nt & 2500. Note that this
is confirmed by the second plot of Fig. 3: the scheme shows somewhat erratical
instabilities up the the value Nt ≈ 2500, then becomes stable. We actually observed
similar results also when coarsening or refining the space grid.

We finally note that, in the SL case, we obtain stability for ∆t . 0.04, about
an order of magnitude larger then the conventional CFL condition for a 3-point
scheme.

5. Conclusions

We have generalized the stability proof given in [9, 10] to arbitrary interpolation
degrees and extended to the case of cardinal splines. We note that this proof entails
a further result of stability for arbitrary order Godunov and flux-form SL schemes,
as discussed in [11]. This provides a fairly general theoretical study, at least in
the linear case and in one space dimension, for SL schemes. On the other hand, a
rigorous extension to the multidimensional case still seems out of reach.
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Among the theoretically unsolved numerical recipes for SL schemes, a partial
result of stability still holds for the case of piecewise quadratic finite element in-
terpolations. The stability theory for this case will be the object of a forthcoming
study.

Appendix A. Proof of Lemma 2.6

Proof. We recall the proof in [12]. We have

S′d(ω) =

∫ 1

0

d+1∑
`=−d

i (`− y)Ld` (y) exp (i (`− y)ω) dy.

Note that the roots of (y − `)Ld` (y) are k = −d . . . , d+ 1, so that

(y − `)Ld` (y) =

∏d+1
k=−d(y − k)∏d+1

k=−d, k 6=`(`− k)
=

1∏d+1
k=−d, k 6=`(`− k)

wd(y),

as the leading coefficient of that polynomial, which is the coefficient in front of
y2d+2, is equal to 1∏d+1

k=−d, k 6=`(`−k)
. Thus, we get

S′d(ω) = −i
∫ 1

0

wd(y)

d+1∑
`=−d

exp (i (`− y)ω)∏d+1
k=−d, k 6=`(`− k)

dy

= −i
d+1∑
`=−d

exp (i`ω)∏d+1
k=−d, k 6=`(`− k)

∫ 1

0

wd(y) exp (−iyω) dy

= −i
d+1∑
`=−d

exp (i(`− 1/2)ω)∏d+1
k=−d, k 6=`(`− k)

∫ 1

0

wd(y) exp (i(1/2− y)ω) dy,

where the term 1/2 has been introduced for symmetry reasons. Indeed, we have,
as wd(1− y) = wd(y),∫ 1

0

wd(y) exp (i(1/2− y)ω) dy =

∫ 1

0

wd(y) exp (−i(1/2− y)ω) dy,

so that this quantity is real, and

(A.1)

∫ 1

0

wd(y) exp (i(1/2− y)ω) dy =

∫ 1

0

wd(y) cos ((y − 1/2)ω) dy = σd(ω).

Therefore, it remains to show that

(−1)d
22d+1

(2d+ 1)!
sin2d+1

(ω
2

)
= −i

d+1∑
`=−d

exp (i(`− 1/2)ω)∏d+1
k=−d, k 6=`(`− k)

.

First, we have

d+1∏
k=−d, k 6=`

(`− k) = −
d+1∏

k=−d, k 6=`

(k − `)

= −(−1)`−1+d+1
`−1∏
k=−d

(`− k)

d+1∏
k=`+1

(k − `)

= (−1)d+1−`(d+ `)!(d+ 1− `)!
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On the other hand,(
2i sin(ω2 )

)2d+1

(2d+ 1)!
=

2d+1∑
`=0

(−1)2d+1−` exp(i`ω2 ) exp(−i(2d+ 1− `)ω2 )

(2d+ 1− `)!`!

=

2d+1∑
`=0

(−1)1−` exp(i(`− d− 1/2)ω)

(2d+ 1− `)!`!
,

so that (
2i sin(ω2 )

)2d+1

(2d+ 1)!
=

d+1∑
`=−d

(−1)d+1−` exp(i(`− 1/2)ω)

(d+ 1− `)!(d+ `)!

=

d+1∑
`=−d

exp(i(`− 1/2)ω)∏d+1
k=−d, k 6=`(`− k)

.

This implies

i(−1)d22d+1

(
sin(ω2 )

)2d+1

(2d+ 1)!
=

d+1∑
`=−d

exp(i(`− 1/2)ω)∏d+1
k=−d, k 6=`(`− k)

,

which coincides with (A.1).
�
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