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We show that if a group automorphism of a Cremona group of arbitrary rank is also a homeomorphism with respect to either the Zariski or the Euclidean topology, then it is inner up to a field automorphism of the base-field. Moreover, we show that a similar result holds if we consider groups of polynomial automorphisms of affine spaces instead of Cremona groups.

Introduction

The Cremona group in d-variables over a field k is the group of birational transformations of the projective d-space P d k over k. Equivalently, it can be seen as the group of k-automorphisms of the field k(x 1 , . . . , x d ). Cremona groups have been the object of research for over 150 years and considerable progress in the understanding of their structure has been achieved recently. This article concerns group automorphisms of Cr d (k).

An important subgroup of Cr d (k) is the automorphism group Aut(P d k ), which is isomorphic to PGL d+1 (k). Every field automorphism α of k naturally induces a group automorphism on both, Cr d (k) and PGL d (k), which we denote by g → α g. The group automorphisms of PGL d (k) are well-known: every automorphism of PGL d+1 (k) is the composition of an inner automorphism with an automorphism of the form g → α g or g → α g ∨ , where α is a field automorphism of k and g ∨ denotes the inverse of the transpose of g. Note that this result implies in particular, that all group automorphisms of PGL d+1 (k) are Zariski continuous.

In [START_REF] Déserti | Sur les automorphismes du groupe de Cremona[END_REF], Déserti showed that every group automorphism of Cr 2 (C) is inner up to automorphisms induced by a field automorphism of C. It is a natural question, whether the theorem of Déserti holds in all dimensions and for all fields. A difficulty in studying group automorphisms of Cr d (k) for d > 0 is that no easy to handle set of generators of the group is known. However, Cr d (k) can be endowed with the Zariski topology, a topology that extends the Zariski topology of PGL d+1 (k) (see Section 2.1). We generalize Déserti's theorem to arbitrary dimensions and arbitrary fields of chracteristic 0 under the additional assumption that the group automorphisms are also homeomorphisms with respect to the Zariski topology.

Theorem 1.1. Let k be a field of characteristic 0 and let ϕ : Cr d (k) -→ Cr d (k) be a group automorphism that is a homeomorphism with respect to the Zariski topology, where d ≥ 2. Then there exists a field automorphism α of k and an element f ∈ Cr d (k) such that ϕ(g) = f ( α g)f -1 for all g ∈ Cr d (k).

If k = R or k = C, then Cr d (k) can moreover be equipped with the Euclidean topology -a topology that makes Cr d (k) a Hausdorff topological group and which restricts to the standard Euclidean topology on Aut(P d k ) (see Section 2.2). In this setting, Theorem 1.1 also holds if we consider the Euclidean topology instead of the Zariski topology: Theorem 1.2. Let k = C or k = R and let ϕ : Cr d (k) -→ Cr d (k) be a group automorphism that is a homeomorphism with respect to the Euclidean topology, where d ≥ 2. Then there exists a field-automorphism α of k that is Euclidean continuous and an element f

∈ Cr d (k) such that ϕ(g) = f ( α g)f -1 for all g ∈ Cr d (k).
The main ingredients for the proof of Theorem 1.1 and Theorem 1.2 are a result of Cantat and Xie about embeddings of finite index subgroups of SL d+1 (Z), the classification of automorphisms of PGL d+1 (k), and a topological deformation argument.

Déserti's theorem implies that every group automorphism of Cr 2 (C) is Zariski continuous. It is therefore a natural question whether every group automorphism of Cr d (k) is Zariski continuous.

Observe that Theorem 1.1 implies in particular, that if k doesn't have any nontrivial field automorphisms (for instance, if k = Q or k = R), then every continuous isomorphism of Cr d (k) is inner. In this setting, Theorem 1.2 can be seen as an algebraic analogue of [START_REF] Filipkiewicz | Isomorphisms between diffeomorphism groups[END_REF], where it is shown that all group automorphisms of diffeomorphism groups are inner. Following this theme, we look in Section 6 at continuous automorphisms of the group of diffeomorphisms of P d R (R) that are induced by birational transformations.

In Section 5, we consider instead of Cr d (k) its sister, the group of polynomial automorphisms Aut(A d k ), and obtain the following result:

Theorem 1.3. Let k be an infinite perfect field and let ϕ : Aut(A d k ) -→ Aut(A d k ) be a group automorphism that is a homeomorphism with respect to the Zariski topology. Then there exists a field automorphism α of k and an element

f ∈ Aut(A d k ) such that ϕ(g) = f ( α g)f -1 for all g ∈ Aut(A d k ).
The group Aut(A d k ) has the additional structure of an ind-group (see [START_REF] Furter | On the geometry of the automorphism groups of affine varieties[END_REF] for details). Theorem 1.3 implies in particular that every ind-group automorphism of Aut(A d k ) is inner, if k is an infinite perfect field. In the case where k is of characteristic zero and algebraically closed, this fact was proven by Kanel-Belov, Yu, and Elishev [START_REF] Kanel-Belov | On the augmentation topology of automorphism groups of affine spaces and algebras[END_REF]. Again, one can ask the question, whether all group automorphisms of Aut(A d k ) are Zariski continuous. In dimension 2, the question has a positive answer if k is uncountable [START_REF] Déserti | Sur le groupe des automorphismes polynomiaux du plan affine[END_REF]. A partial generalization of [START_REF] Déserti | Sur le groupe des automorphismes polynomiaux du plan affine[END_REF] to higher dimensions has been obtained in [START_REF] Kraft | On automorphisms of the affine Cremona group[END_REF], [START_REF] Stampfli | A note on automorphisms of the affine Cremona group[END_REF], [START_REF] Urech | On automorphisms of the affine cremona group[END_REF].

It could be interesting to generalize Déserti's theorem as well as the results of this paper to more general fields, in particular to finite fields. Another natural question is in as far similar results hold if we drop either the condition of surjectivity or injectivity of the group endomorphisms; these questions have been raised in [START_REF] Déserti | Le groupe de Cremona est hopfien[END_REF], [START_REF] Popov | Three plots about Cremona groups[END_REF], and also [START_REF] Blanc | Quotients of higher dimensional Cremona groups[END_REF].

Topologies on the Cremona groups

Cremona groups carry the so-called Zariski topology, which was introduced by M. Demazure [START_REF] Demazure | Sous-groupes algébriques de rang maximum du groupe de Cremona[END_REF]. Over local fields, this topology can be refined to the Euclidean topology -a construction due to J. Blanc and J.-P. Furter [START_REF] Blanc | Topologies and structures of the Cremona groups[END_REF]. Both topologies restrict to the usual Zariski or Euclidean topology on the group Aut(P d k ). In this section we will briefly recall the definitions and main properties of those topologies.

2.1. The Zariski topology. Let k be a field and X and A irreducible algebraic varieties defined over k. Consider a birational map f : A×X A×X inducing an isomorphism between open dense subsets U and V , where U, V ⊂ A × X have the property that the restriction of the first projection to U and V induces a surjective morphism onto A. Every k-point a ∈ A(k) induces a birational transformation f a of X by mapping x ∈ X to p 2 (f (a, x)), where p 2 : A × X -→ X is the second projection. The map from A(k) to Bir(X) given by a → f a is called a morphism (or k-morphism) from A to Bir(X), and is denoted by A -→ Bir(X).

The Zariski topology is now the finest topology such that the preimages of closed subsets by morphisms are closed: Definition 2.1. A subset F ⊂ Bir(X) is closed in the Zariski topology if for any algebraic k-variety A and any k-morphism A -→ Bir(X) the preimage of F is closed in A(k).

Recall that, once we choose coordinates of P d k , a Cremona transformation is given by [x 0 :

• • • : x d ] [f 0 : • • • : f d ],
where the f i ∈ k[x 0 , . . . , x d ] are homogeneous polynomials of the same degree without a non-constant common factor. The degree of f is then defined to be the degree of the f i . We denote by Cr d (k) ≤n the set of Cremona transformations of degree ≤ n and by Cr d (k) n the set of those of degree n.

J. Blanc and J.-P. Furter give an equivalent construction of the Zariski topology on the Cremona groups [3, §2] by defining a topology on Cr d (k) ≤n and extending it to Cr d (k) as the inductive limit topology. The sets Cr d (k) n can be equipped canonically with the structure of a k-variety such that the elements in Cr d (k) n are exactly its k-points. However, the sets Cr d (k) ≤n , while being closed, can not be given in any reasonable way the structure of an algebraic variety. This is part of the obstruction that Cr d (k) can not be equipped with the structure of an ind-variety when endowed with the Zariski topology [START_REF] Blanc | Topologies and structures of the Cremona groups[END_REF]Theorem 2].

Let G be an algebraic group and G -→ Cr d (k) a morphism which is also a group homomorphism from the group Proof. Assume, for a contradiction, that ϕ(A(k)) is of unbounded degree. Then there exists an infinite sequence of elements {f n } n∈Z>0 ⊂ ϕ(A(k)) such that all the f i are of different degree. This implies that the induced topology on {f n } n∈Z>0 is discrete and so in particular not noetherian. But this yields that the induced topology on ϕ -1 ({f n } n∈Z>0 ) is not noetherian, which is a contradiction, since a subspace of a noetherian space is noetherian.

G(k) of k-points of G to Cr d (k).
2.2. The Euclidean topology. We now introduce the Euclidean topology on Cr n (k) as defined in [3, §5].

Let k[x 0 , . . . , x d ] n be the k-vector space of homogeneous polynomials of degree n and consider the projectivisation

W n (k) = P((k[x 0 , . . . , x d ] n ) d+1 ), which is the set of k-rational points of a projective space W n of dimension r = (d + 1) d+n d -1. An element h = [h 0 : • • • : h d ] ∈ W n (k) induces the rational map of P d k given by ψ h : [x 0 : • • • : x d ] [h 0 (x 0 , . . . , x d ) : • • • : h d (x 0 , . . . , x d )]
, and the set

H n (k) ⊂ W n (k) of elements inducing a birational map of P d k is locally closed in W n (k).
There exists a locally closed subvariety 

H n ⊂ W n such that H n (k) is exactly the set of k-points of H n [3, Lemma 2.4(2)]. The map π n : H n (k) -→ Cr d (k) ≤n , h → ψ h corresponds to a morphism H n -→ Cr d (k). It

A homomorphism of Cr d (k) is determined by its restriction to

Aut(P n k ) In this section, we show that for infinite fields a surjective Zariski or Euclidean continuous homomorphism of Cr d (k) is determined by its restriction to Aut(P d k ). The main ingredients for this result are continuous deformations of arbitrary Cremona transformations to linear maps. Consider the following example: Example 3.1. Let k be a field and pick f ∈ Cr d (k) of degree e. With respect to affine coordinates on the chart x 0 = 0 we can write

f : (x 1 , . . . , x d ) (F 1 , . . . , F d ) ,
where

F i = P i0 + P i1 (x) + • • • + P ie (x) Q i0 + Q i1 (x) + • • • + Q ie (x) ,
for some homogeneous

P ij , Q ij ∈ k[x 1 , . . . , x d ] of degree j.
For t ∈ k \ {0}, we define β t ∈ Aut(P d k ) by

β t : (x 1 , . . . , x n ) → (tx 1 , . . . , tx d ).
The map t → β -1 t f β t defines a k-morphism ρ : A 1 k \{0} -→ Cr d (k) whose image consists of conjugates of f by linear maps. Lemma 3.2. Let k be an infinite field. The k-morphism ρ :

A 1 k \{0} -→ Cr d (k) from Example 3.1 extends to a Zariski continuous map ρ : A 1 k (k) -→ Cr d (k) with ρ0 ∈ Aut(P n k ) if and only if f is a local isomorphism at the point p = [1 : 0 : • • • : 0] and f (p) = p.
The same statement holds if k a local field and if we consider the Euclidean instead of the Zariski topology.

Proof. With respect to affine coordinates x = (x 1 , . . . , x d ) on the chart x 0 = 0 we can write

ρ t (x) = β -1 t f β t (x 1 , . . . , x d ) = F t 1 , . . . , F t d ,
where Now, suppose that ρ extends according to our hypothesis and ρ0 ∈ Aut(P d k ). In particular, the limit of F t i for t -→ 0 is a rational map for all i = 1, . . . , d, which implies that P i0 = 0 and Q i0 = 0. Hence f fixes [1 : 0 : • • • : 0], and ρ0 corresponds to the derivative of f at [1 : 0 : • • • : 0], so f is a local isomorphism at p. Proposition 3.3. Let k be an infinite field and ϕ : Cr

F t i = t -1 P i0 + P i1 (x) + tP i2 (x) + • • • t e-1 P ie (x) Q i0 + tQ i1 (x) + • • • t e Q ie (x) .
d (k) -→ Cr d (k) a group homomorphism which is Zariski continuous. If ϕ| Aut(P d k ) = id Aut(P d k ) , then ϕ = id Cr d (k) .
The same statement holds for any local field k and ϕ Euclidean continuous.

Proof. Let f ∈ Cr d (k) and p ∈ P d k (k) any point such that both f and ϕ(f ) are local isomorphisms at p. We will prove that ϕ(f

)(p) = f (p) or ϕ(f )(p) = p, which implies that ϕ(f ) = f or ϕ(id), since k is infinite.
From this we will then deduce the claim.

We denote q := f (p) ∈ P d k (k). There exists an automorphism α ∈ Aut(P d k ) whose only fixed points in P d k (k) are p and q. Let us observe that the birational transformation α -1 f -1 αf fixes p and is a local isomorphism at p. Denote by ρ : A 1 k \{0} -→ Cr d (k) the morphism defined in Example 3.1 with respect to the map α -1 f -1 αf , i.e. ρ t = β -1 t (α -1 f -1 αf )β t . By Lemma 3.2, ρ extends to a morphism ρ : A 1 -→ Cr d (k) and ρ0 is the derivative of (α -1 f -1 αf ) at p. Lemma 2.4 yields that the corresponding map

A 1 k (k) -→ Cr d (k) is also Euclidean continuous.
Since ϕ is Zariski (respectively Euclidean) continuous, the map ϕ • ρ : A 1 (k) -→ Cr d (k) is also Zariski (respectively Euclidean) continuous. By hypothesis, the restriction of ϕ to Aut(P d k ) is the identity, and so

ϕ(ρ t ) = β -1 t ϕ(α -1 f -1 αf )β t = β -1 t α -1 ϕ(f ) -1 αϕ(f )β t , t = 0 ϕ(ρ 0 ) = ρ0 ∈ Aut(P d k )
Lemma 3.2 implies that the map (α -1 ϕ(f ) -1 αϕ(f )) fixes p and is a local isomorphism at p. In particular, since ϕ(f ) is a local isomorphism at p, we have

α(ϕ(f )(p)) = ϕ(f )(α(p)) = ϕ(f )(p).
By hypothesis, p and q = f (p) are the only fixed points of α, hence

ϕ(f )(p) = p or ϕ(f )(p) = f (p).
This holds for any p in an open dense subset of P d k (k). As k is infinite, ϕ(f ) coincides thus with id P d k or with f . This holds for any f ∈ Cr d (k), so in particular for γf , for any non-trivial γ ∈ Aut(P d k ). Suppose that ϕ(f ) = id. Then id = γ = ϕ(γ) = ϕ(γf ). Since we have by the same argument again that either ϕ(γf ) = γf or ϕ(γf ) = id, we obtain that ϕ(γf

) = γf , which implies f = id. It follows that ϕ(f ) = f for any f ∈ Cr d (k).
We can repeat the proof of Proposition 3. 

Proofs of the main theorems

Group automorphisms of classical groups are well-understood. In [START_REF] Dieudonné | La géométrie des groupes classiques[END_REF] J. Dieudonné gives a complete classification in the case of fields, and we need the classification of group automorphisms of PGL d+1 (k). Let G be PGL d+1 (k) or GL d+1 (k). For any group automorphism ϕ : G -→ G there exists an element h ∈ G and a field automorphism α of k such that ϕ is of the form

ϕ(g) = h( α g ∨ )h -1 or ϕ(g) = h( α g)h -1
where g ∨ = t (g -1 ) is the inverse of the transpose of g. Not all automorphisms of PGL d+1 (k) can be extended to an automorphism of the Cremona group: Lemma 4.2. [24, Corollary A.12] For any field k, the automorphism of PGL d+1 (k) given by g → α g ∨ does not extend to an automorphism of Cr d (k). Theorem 4.3 ([6, Theorem A, Corollary 8.5]). Let d ≥ 1 and Γ ⊂ SL d+1 (Z) a finite index subgroup. Let X C be an irreducible complex quasi-projective variety of dimension dim(X) = n.

(1) If there is an injective group homomorphism ϕ : Γ -→ Aut(X C ), then n ≥ d.

If n = d then there is an isomorphism f :

X C -→ P d C such that f ϕ(Γ)f -1 ⊂ Aut(P d C ). ( 2 
)
If there is an injective group homomorphism ψ : Γ -→ Bir(X C ), then n ≥ d.

If n = d then there is a birational transformation f :

X C P d C such that f ϕ(Γ)f -1 ⊂ Aut(P d C )
. Let p be an odd prime. We denote by Γ p ⊂ SL d+1 (Z) the congruence subgroup mod p, i.e. the kernel of the homomorphism ρ : SL d+1 (Z) -→ SL d+1 (F p ) given by reduction modulo p. Since p is odd by assumption, Γ p intersects the center of SL d+1 (Z) only in the identity and hence, the restriction of the quotient homomorphism GL d+1 (k) -→ PGL d+1 (k) to Γ p is injective and we can consider Γ p as a subgroup of PGL d+1 (k). We can now apply Theorem 4.3 to Γ p and obtain the following: Let p be an odd prime and Γ p ⊂ SL d+1 (Z) the congruence subgroup mod p. We consider Γ p as a subgroup of PGL d+1 (k). In particular, Γ p contains the subgroup of elements of the form

[x 0 : • • • : x d ] → [x 0 + kpx 1 : x 1 : • • • : x d ], k ∈ Z .
For i, j = 0, . . . , d, i = j, define the elementary subgroups

U ij := {[x 0 : • • • : x d ] → [x 0 : • • • : x i + cx j : x i+1 : • • • : x d ] | c ∈ k} ⊂ PGL d+1 (k).
Consider the Euclidean compact subset

E 01 := {[x 0 : • • • : x d ] → [x 0 + cx 1 : x 1 : • • • : x d ] | ||c|| ≤ p} ⊂ PGL d+1 (k)
where || • || denotes the Euclidean norm on k. Every element in the subgroup U 01 can be written as a product of an element in Γ p and an element in E 01 . Since E 01 is compact, ϕ(E 01 ) is of bounded degree [START_REF] Blanc | Topologies and structures of the Cremona groups[END_REF]Lemma 5.13]. By Corollary 4.4, the image ϕ(Γ p ) is of bounded degree as well and we conclude that ϕ(U 00 ) is of bounded degree. Since all the elementary subgroups U ij are conjugate to U 00 in PGL d+1 (k) it follows that ϕ(U ij ) is of bounded degree for any i, j.

Using the Gauss-Algorithm one can see that there exists an integer K ≥ 1 only depending on d such that every element in PSL d+1 (k) can be written as the product of at most K elements contained in some the subgroups U ij . Therefore, ϕ(PSL d+1 (k)) is of bounded degree and hence is regularisable, i.e. there exists a quasi-projective k-variety X k and a birational transformation . Since ϕ is continuous, Proposition 3.3 implies that ϕ = id Cr d (k) , which yields the claim. It can be shown that if k is algebraically closed, then Aut(A d k ) can be naturally equipped with the additional structure of a so-called ind-group, which induces the ind-topology on Aut(A d k ). We refer to [START_REF] Furter | On the geometry of the automorphism groups of affine varieties[END_REF] for a definition and details about this notion. We will only need that an ind-closed subgroup of bounded degree of Aut(A d k ) has the structure of an affine algebraic group such that the induced action on A d 

P d k X k that conjugates ϕ(PSL d+1 (k)) to a subgroup of Aut(X k ) [

Polynomial automorphisms

Denote by

∈ Aut(A d k ) such that f ϕ(T d (k))f -1 ⊂ T d (k) is a dense subgroup. Proof. Let D k be the closure of ϕ(T d (k)) in Aut(A d k )
with respect to the indtopology. Since ϕ(T d (k)) and hence D k are of bounded degree, we obtain that D k is an affine algebraic group acting algebraically on A d k . By the structure theorem for commutative affine algebraic groups over algebraically closed fields (see [

1, Théorème XVII.7.2.1]), D k is isomorphic over k to T r (k) × U s (k)
, where T r is a split torus of dimension r ≥ 0 and U s a unipotent group of dimension s ≥ 0.

First, suppose that char(k) = 2. The image ϕ(T d (k)) contains 2 d elements of order two, hence D k contains at least 2 d elements of order two, and it follows that r ≥ d. Thus D k contains a maximal torus in Aut(A d k ) and as such coincides with its centraliser. So we obtain that s = 0. Now, if char(k) = 2, as ϕ is a homeomorphism with respect to the Zariski topology by hypothesis, and since We leave it as an exercise to the reader to verify that for an infinite field k the centralizer of C(GL 

T d (k) 2 is Zariski dense in T d (k), we have that ϕ(T d (k)) 2 is dense in ϕ(T d (k))
d (k)) in Aut(A d k ) is GL d (k), that Norm Aut(A d k ) (T d (k)) = T d (k) S d and C(T d (k) S d )) = C(GL d (k)).
) (ϕ(T d (k))) = Norm Aut(A d k ) (T d (k)) = T d (k) S d .
As the image of the normaliser is contained in the normaliser of the image, this implies that ϕ(S d ) ⊂ T d (k) S d . Consider the natural projection π :

T d (k) S d -→ S d . Its kernel is equal to T d (k), which is equal to Cent Aut(A d k ) (T d (k)). Then ϕ(S d ) ∩ T d (k) = ϕ(S d ) ∩ Cent Aut(A d k ) (T d (k)) = ϕ(S d ∩ T d (k)) = {id} implies that up to an automorphism of S d the restriction ϕ| S d is a section of π. Therefore, Cent T d (k) S d (ϕ(S d )) = C(GL d (k)). It follows that ϕ(C(GL d (k)) = ϕ Cent T d (k) S d (S d ) ⊂ Cent T d (k) S d (ϕ(S d )) = C(GL d (k)).
As k is infinite and ϕ is injective, the image ϕ(C(GL

d (k))) is dense in C(GL d (k)). It follows that ϕ(GL d (k)) = ϕ Cent Aut(A d k ) (C(GL d (k))) ⊆ Cent Aut(A d k ) (ϕ(C(GL d (k)))) = Cent Aut(A d k ) (C(GL d (k))) = GL d (k).
It remains to show that ϕ(GL d (k)) is dense in GL d (k). For i, j = 1, . . . , d, i = j, we define the elementary subgroups

U ij (k) := (x 1 , . . . , x d ) → (x 1 , . . . , x i + cx j , x i+1 , . . . , x d ) | c ∈ k ⊂ GL d (k). and U ij (k) E ij : (x 1 , . . . , x d ) → (x 1 , . . . , x i + x j , x i+1 , . . . , x d ) Observe that {tE ij t -1 | t ∈ ϕ(T d (k))} ⊆ {tE ij t -1 | t ∈ T d (k)} = U ij (k)
is a dense subset which is also contained in ϕ(GL d (k)). Recall that there exists an integer N ≥ 1 and a surjective morphism

V 1 × • • • × V N -→ GL d (k), (v 1 , . . . , v N ) → v 1 v 2 • • • v N , where each V l is equal to T d (k) or to U ij (k) for some i, j. Since V l := V l ∩ ϕ(GL d (k)) is dense in V l as remarked above, this implies that ϕ(GL d (k)) is dense in GL d (k).
Let G be a group acting on a group A by σ : a → σ a for σ ∈ G, a ∈ A. Recall that the first Galois cohomology H 1 (G, A) is defined as the set of cocycles, i.e. maps ν : G -→ A satisfying ν(στ ) = ν(σ) σ ν(τ ) for all σ, τ ∈ G, up to the following equivalence relation: two cocycles ν and η from G to A are equivalent if there exists an element a ∈ A such that η(σ) = a -1 ν(σ) σ a for all σ ∈ G. Lemma 5.3. Let k be a perfect field and ϕ : GL

d (k) -→ Aut(A d k ) an injec- tive homomorphism. Assume that there is an element f ∈ Aut(A d k ) such that f ϕ(GL d (k))f -1 ⊂ GL d (k) as a dense subgroup, then there exists an element g ∈ Aut(A d k ) such that gϕ(GL d (k))g -1 ⊂ GL d (k). Proof. Let L be the finite field extension such that f is defined over L. In particular, H = f ϕ(GL d (k))f -1 ⊂ GL d (L) ⊂ Aut(A d L ) as a dense subgroup. Let σ ∈ G = Gal(L/k) be any element of the Galois group of L over k. Then σ H = σ (f ϕ(GL d (k))f -1 ) = σ f (ϕ(GL d (k)) σ f -1 = σ f f -1 Hf ( σ f ) -1 .
Using that H and hence also σ H is dense in GL d (L), we may conclude that σ f f -1 normalizes GL d (L) and therefore that σ f f -1 ∈ GL d (L). In other words, there exists an element g σ ∈ GL d (L) such that σ f = g σ f .

We define now the map µ : G -→ GL d (L) by µ(σ) := g -1 σ . It is straightforward to check that µ satisfies the cocycle condition with respect to the Galois action of G on GL d (L). By Hilbert 90 (see for example [20, Lemma 1, Chapter III.1.1]) the first cohomology H 1 (G, GL d (k)) is trivial, i.e. every cocycle is equivalent to the cocycle that is given by mapping every element in G to the identity in GL d (L). In other words, there exists an element a ∈ GL d (L) satisfying a -1 µ(σ) σ a = id for all σ ∈ G. Consider now the polynomial automorphism h = a -1 f . Clearly we have hϕ

(GL d (L))h -1 ⊂ GL d (L). It remains to show that h is defined over k. Since k is perfect, it is equivalent to prove σ h = h for all σ ∈ G. For any σ ∈ G one calculates σ h = σ a -1σ f = a -1 µ(σ) σ f = a -1 µ(σ)µ(σ) -1 f = h. As h and ϕ(GL d (k))
are both defined over k, the group hϕ(GL d (k))h -1 is defined over k as well, so hϕ(GL d (k))h -1 ⊂ GL d (k). Proof. From Lemma 5.1, Lemma 5.2 and Lemma 5.3 we obtain that there exists f ∈ Aut(A d k ) such that f ϕ(GL d (k))f -1 ⊆ GL d (k). Since, by assumption, ϕ is a homeomorphism, Lemma 2.2 implies that ϕ -1 (f -1 GL d (k)f ) is of bounded degree and closed, and is hence an affine algebraic group containing GL d (k). The Krulldimension is preserved by a homeomorphism, thus GL d (k) = ϕ -1 (f -1 GL d (k)f ). If char(k) = 2, then f 2 = id and hence ϕ(f ) 2 = id, which implies that b = 1. Now, suppose that char(k) = 2 and consider t : (x 1 , . . . , x d ) → (2x 1 , x 2 , . . . , x d ). We have tf t -1 = f 2 , so also tϕ(f )t -1 = ϕ(f ) 2 , which again implies b = 1.

After conjugating ϕ with a suitable element of the center of GL d (k), we obtain ϕ(f ) = f . The group GL d (k) acts transitively by conjugation on the set of translations different from id, therefore ϕ| Aff d (k) = id Aff d (k) .

Proof of Theorem 1.3. The theorem follows from Lemma 5.4, Lemma 5.5 and Proposition 3.4.

Lemma 2 . 2 .

 22 Let A be an algebraic variety over a field k and ϕ : A -→ Cr d (k) a Zariski continuous map. Then ϕ(A(k)) is of bounded degree.

Definition 2 . 3 .

 23 is surjective, continuous and closed with respect to the Zariski topology, and is thus a topological quotient [3, Corollary 2.9]. It turns out that the Zariski topology on Cr d (k) is the inductive limit topology given by the closed sets Cr d (k) ≤d endowed with the quotient topology [3, Proposition 2.20]. If k is a local field, we endow the W n (k) and H n (k) with the Euclidean topology and define the Euclidean topology on Cr d (k) to be the inductive limit topology given by the Cr d (k) ≤n endowed with the quotient topology π n : H n (k) -→ Cr d (k) ≤n . Endowed with the Euclidean topology, Cr d (k) is a Hausdorff topological group which is not metrisable, and any compact subset is of bounded degree [3, Theorem 3, Lemma 5.16, Lemma 5.13]. By definition, the Euclidean topology is finer than the Zariski topology and we have the following property: Lemma 2.4 ([5, Lemma 2.11]). Let A be an algebraic variety over a local field k and ρ : A -→ Cr d (k) a k-morphism. Then the corresponding map A(k) -→ Cr d (k) is Euclidean continuous.

First, suppose that

  f fixes p = [1 : 0 : • • • : 0] and is a local isomorphism at p. Then P i0 = 0 and Q i0 = 0 for i = 1, . . . , d and hence ρ 0 corresponds to the derivative (the linear part) of f at [1 : 0 : • • • : 0]. Thus ρ extends to a k-morphism ρ : A 1 -→ Cr d with ρ0 ∈ Aut(P d k ), which is in particular Zariski continuous. If k is a local field then ρ is Euclidean continuous by Lemma 2.4.

  3 word by word by considering Aut(A d k ) instead of Cr d (k) and its subgroup Aff d (k) instead of PGL d+1 (k). This way, we obtain the following statement: Proposition 3.4. Let k be an infinite field and ϕ : Aut(A d k ) -→ Aut(A d k ) a surjective homomorphism which is Zariski continuous. If ϕ| Aff d (k) = id Aff d (k) , then ϕ = id Aut(A d k ) .

Theorem 4 . 1 (

 41 [12, IV. §1.I-III, p.85-89 and IV. §6, p.98]). Let d ≥ 1 and k a field.

Corollary 4 . 4 .

 44 Let d ≥ 2, k a field of characteristic 0 and ϕ : Γ p -→ Cr d (k) an injective group homomorphism. Then the degree of the elements ϕ(Γ p ) is bounded. Proof. Let F ⊂ k be the smallest subfield over which ϕ(Γ p ) is defined. We can consider ϕ(G) as a subgroup of Cr d (F ) ⊂ Cr d (k). Since Γ p is finitely generated, F is a finitely generated extension of Q and as such embeds into C and we may consider ϕ(G) as a subgroup of Cr d (F ) ⊂ Cr d (C). By Theorem 4.3, ϕ(G) is conjugate in Cr d (C) to a subgroup of Aut(P d C ). In particular, ϕ(Γ p ) is of bounded degree. Now, we study continuous embeddings of PGL d+1 (k) into Cr d (k).

Lemma 4 . 5 .

 45 Let k be either the field of real numbers R or the field of complex numbers C and d ≥ 1. Let ϕ : PSL d+1 (k) -→ Cr d (k) be an injective group homomorphism that is Euclidean continuous. Then there exists an element f ∈ Cr d (k) such that the group f ϕ(PSL d+1 (k))f -1 is contained in Aut(P d k ). Proof. The statement is trivial for d = 1, hence we can assume that d ≥ 2.

  Aut(A d k ) the group of polynomial automorphisms of the affine d-space A d k over a field k. The goal of this section is to prove Theorem 1.3. If we choose an embedding of A d k into P d k , we can naturally consider Aut(A d k ) as a subgroup of Cr d (k). The Zariski topology on Aut(A d k ) is the induced topology of the Zariski topology on Cr d (k).

k

  is algebraic[START_REF] Stampfli | Contributions to automorphisms of affine spaces[END_REF] Proposition 3.7].1 In fact, we apply[START_REF] Rosenlicht | Some basic theorems on algebraic groups[END_REF] Theorem 1] to the Zariski closure of ϕ(PSL d+1 (k)) in Cr d (k), which is an algebraic subgroup of Cr d (k).

Lemma 5 . 1 .

 51 Denote by T d (k) ⊂ Aut(A d k ) the diagonal linear transformations. Let k be the algebraic closure of a field k. In what follows, we always consider Aut(A d k ) as a subgroup of Aut(A d k ) through the obvious inclusion. Let k be an infinite field and ϕ : Aut(A d k ) -→ Aut(A d k ) a group automorphism that is a homeomorphism with respect to the Zariski topology. Then there exists f

  and hence in ϕ(T d (k)). This implies in particular that ϕ(T d (k))2 is dense in ϕ(T d (k)), i.e. (D k ) 2 is dense in D k . Now, at the same time, char(k) = 2 implies that (D k ) 2T r (k), and we obtain s = 0. Since ϕ is a homeomorphism, it preserves the Krull dimension, therefore ϕ(T d (k)) and hence also D k has Krull dimension d, it follows also that d = r.So we have that D k is a torus of rank d. From [2, Theorem 2] it follows that D k is conjugate in Aut(A d k ) to the standard torus T d (k) in Aut(A d k ). In particular, there exists an elementf ∈ Aut(A d k ) such that f ϕ(T d (k))f -1 ⊂ T d (k). Since ϕ(T d (k)) is dense in D k , we obtain that f ϕ(T d (k))f -1 is dense in T d (k).Let us denote by GL d (k) ⊂ Aut(A d ) the subgroup of linear automorphisms, by Aff d (k) the subgroup of affine transformations, and by S d ⊂ GL d (k) the subgroup of coordinate permutations. For a group G we denote by C(G) the center of G, and for a set A ⊂ G we denote by Cent G (A) and by Norm G (A) the centraliser and normaliser of A in G, respectively.

Lemma 5 . 2 .

 52 Let k be an infinite field and ϕ :Aut(A d k ) -→ Aut(A d k ) an injective group endomorphism. Assume that ϕ(T d (k)) is contained in T d (k) as a dense subgroup. Then ϕ(GL d (k)) is contained in GL d (k).Moreover, this image is dense. Proof. Since ϕ(T d (k)) is dense in T d (k) by assumption, we have Norm Aut(A d k

Lemma 5 . 4 .

 54 Let k be an infinite perfect field and ϕ :Aut(A d k ) -→ Aut(A d k )a group automorphism that is a homeomorphism with respect to the Zariski topology. Then there exists an elementf ∈ Aut(A d k ) such that f ϕ(GL d (k))f -1 = GL d (k).

Lemma 5 . 5 .

 55 Let k be an infinite perfect field and ϕ : Aut(A d k ) -→ Aut(A d k ) a group automorphism and suppose that ϕ(GLd (k)) = GL d (k). Then ϕ(Aff d (k)) = Aff d (k)and there exists a field automorphism α of k and an element h ∈ GL d (k) such that ϕ(g) = h( α g)h -1 for all g ∈ Aff d (k).Proof. By Theorem 4.1, up to conjugation in GL d (k) and up to a field automorphism of k, we can assume that ϕ| GL d (k) is the identity on GL d (k) or given by g → g ∨ .Letf : (x 1 , . . . , x d ) → (x 1 + a, x 2 , . . . , x d ) for some a ∈ k * . Consider GL d-1 (k) as a subgroup of GL d (k) embedded as g → [(x 1 , . . . , x d ) → (x 1 , g(x 2 , . . . , x d ))]. We write ϕ(f ) : x → (p 1 (x), . . . , p d (x)) for x = (x 1 , . . . , x d ) and polynomials p 1 , . . . , p d ∈ k[x 1 , . . . , x d ]. Observe that f commutes with every element of GL d-1 (k). As ϕ(GL d-1 (k)) = GL d-1 (k), it follows that the same is true for ϕ(f ), and hencep i (x) = x i b for some b ∈ k * for i = 2, . . . , d. Moreover, p 1 (x) is of the form cx 1 + d for some c, d ∈ k. Note that d = 0 because ϕ is injective. It follows in particular, that ϕ(Aff d (k)) = Aff d (k). Consider h : (x 1 , . . . , x d ) → (x 1 + x 2 , x 2 , x 3 , . . . , x d ).Then f commutes with h but ϕ(f ) does not commute with h ∨ . It follows that ϕ| GL d (k) is the identity on GL d (k). Then ϕ(f )h = hϕ(f ), which implies that d = b.

  Proposition 4.6. Let k be a field of characteristic 0 and let ϕ : PGL d+1 (k) -→ Cr d (k) be an injective group homomorphism.If either ϕ is Zariski continuous, or if k = R or k = C and ϕ is Euclidean continuous, then ϕ(PGL d+1 (k)) is conjugate in Cr d (k) to a subgroup of Aut(P d k ). Proof. If ϕ is Zariski continuous, then ϕ(PGL d+1 (k)) is of bounded degree by Lemma 2.2. If k = R or k = Cand ϕ is Euclidean continuous, then Lemma 4.5 implies that ϕ(PSL d+1 (k)) has bounded degree in Cr d (k). Since PSL d+1 (k) has finite index in PGL d+1 (k), hence also ϕ(PGL d+1 (k)) is of bounded degree.In either case there exists a quasi-projective k-variety X k and a birational mapP d k X k which conjugates ϕ(PGL d+1 (k)) to a subgroup of Aut(X k ) [19, Theorem 1] 1 . By Theorem 4.3, X k P d k ,where k is the algebraic closure of k, and hence, by Châtelet's theorem, X k P d Since ϕ is continuous, Proposition 4.6 implies that up to conjugation in Cr d (k), we may assume that ϕ(Aut(P d k )) ⊂ Aut(P d k ). As by assumption ϕ -1 is a continuous group homomorphism as well, we argue analogously that there exists f ∈ Cr d (k) such that f ϕ -1 (Aut(P d

		19, Theorem 1] 1 . By Theo-
	rem 4.3, we have X C	P d C and hence, by Châtelet's theorem, X k	P d k [7, §IV.I,
	p.283].		
	d k )) = k ). With Theorem 4.1 and Lemma 4.2 we conclude that, up to conjuation in Aut(P d Aut(P d

k [7, §IV.I, p.283]. Proof of Theorem 1.1 and Theorem 1.2. The group automorphism ϕ : Cr d (k) -→ Cr d (k) induces an injective group homomorphism ϕ| Aut(P d k ) : Aut(P d k ) → Cr d (k). k ))f -1 ⊂ Aut(P d k ). In particular, we have f Aut(P d k )f -1 ⊂ Aut(P d k ) and so f normalizes Aut(P d k ) and hence f ∈ Aut(P d k ), i.e. ϕ -1 (Aut(P k ) and up to a field automorphism of k, we have ϕ| Aut(P d k ) = id Aut(P d k )
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Birational diffeomorphisms

Let X R be a real projective rational variety, such that the set of R-points X R (R) is non-empty. We can now consider the subgroup BirDiff(X R (R)) ⊂ Bir(X) of birational diffeomorphisms, which is the subgroup of birational transformations without any real indeterminacy points. In [START_REF] Kollár | Cremona transformations and diffeomorphisms of surfaces[END_REF] it is shown that BirDiff(P 2 R (R)) and BirDiff(P 1 R (R) × P 1 R (R)) are dense subgroups of the diffeomorphism groups 

) be a group automorphism that is a homeomorphism with respect to the Zariski topology on the group BirDiff(P d R Then either ϕ is an inner automorphism, or there exists f ∈ BirDiff(P d R (R)) such that ϕ(g) = f g ∨ f -1 for all g ∈ PGL d+1 (R) and this defines ϕ uniquely.

Proof. By Proposition 4.6, there exists f ∈ Cr d (R) such that f ϕ(PGL d+1 (R))f -1 ⊂ PGL d+1 (R). Since PGL d+1 (R) acts transitively on P d R (R), the maps f and f -1 have no base-points in P d R (R), and hence f ∈ BirDiff(P d R (R)). So, we can assume that ϕ(PGL d+1 (R)) = PGL d+1 (R). By Theorem 4.1, up to conjugation in PGL d+1 (R), we have that ϕ| PGL d+1 (R) = id PGL d+1 (R) or ϕ(g) = g ∨ for all g ∈ PGL d+1 (R). By Remark 6.1, ϕ is uniquely determined by its restriction on PGL d+1 (R).

Despite best efforts, the authors were not able to determine whether the automorphism PGL d+1 (R) given by g → α g ∨ extends to an endomorphism of BirDiff(P d R (R)). Remark 6.3. For any field k, we can define the group Bireg(P d k (k)) as the group of elements f ∈ Cr d (k) such that f and f -1 have no base-points in P d k (k). If k is of characteristic zero, the analogous statement of Proposition 6.2 for Bireg(P d k (k)) holds with the same proof as for BirDiff(P d R (R)).