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Abstract. Using touch devices to navigate in virtual 3D environments such as
computer assisted design (CAD) models or geographical information systems
(GIS) is inherently difficult for humans, as the 3D operations have to be per-
formed by the user on a 2D touch surface. This ill-posed problem is classically
solved with a fixed and handcrafted interaction protocol, which must be learned
by the user. We propose to automatically learn a new interaction protocol allowing
to map a 2D user input to 3D actions in virtual environments using reinforcement
learning (RL). A fundamental problem of RL methods is the vast amount of inter-
actions often required, which are difficult to come by when humans are involved.
To overcome this limitation, we make use of two collaborative agents. The first
agent models the human by learning to perform the 2D finger trajectories. The
second agent acts as the interaction protocol, interpreting and translating to 3D
operations the 2D finger trajectories from the first agent. We restrict the learned
2D trajectories to be similar to a training set of collected human gestures by first
performing state representation learning, prior to reinforcement learning. This
state representation learning is addressed by projecting the gestures into a latent
space learned by a variational auto encoder (VAE).

Keywords: Multi-Agent, Deep Reinforcement Learning, H-C Interfaces

1 Introduction

The goal in user interface (UI) design is to propose a communication protocol between
human users and a given machine that is intuitive, quick, precise, and which minimizes
the amount of training required for new users not yet familiar with it. Designing such
an interface is not trivial, as some of these desired properties are contradictory. Fur-
thermore, some of these objectives are difficult to quantify, such as intuitivity of the
interface or, more generally, user satisfaction.

Our work focuses on a specific component of touch user interfaces, which we call
the interaction protocol. This protocol defines the rules that allow the computer to inter-
pret 2D user gestures performed on touch tables into actions in the virtual environment.
In the literature, this interaction protocol refers to the software side of an interaction
technique [14][21]. In this paper, we address the problem of automatically learning a
suitable interaction protocol for graphical user interfaces on touch surfaces, which re-
quires users to manipulate 3D objects, for instance in computer assisted design (CAD)



software or in geographic information systems (GIS). In these situations, the problem is
particularly ill-posed, as the trajectories produced by a user on the flat touch screen are
restricted to a 2D surface, whereas the applications require the user to perform manip-
ulations in a virtual 3D environment. To give a concrete example, inspecting a virtual
mechanical product or navigating in a virtual building or city requires the possibility
to change the camera viewpoint through rotations, translations, zooming, i.e. to manip-
ulate 6 degrees of freedom (3 for the camera position and 3 for the camera direction)
through trajectories of eventually multiple fingers in the 2D plane of the touch table.
There is no universally accepted canonical solution for this kind of problem.

Advanced methods approach this mapping from gestures to actions in a 3D environ-
ment using several parameters: not only the 2D gesture themselves, but also the position
of the camera (view of the user), the state of the 3D environment, etc. [5,7]. Theoreti-
cally, these methods offer more complex manipulation strategies and higher efficiency.
However, the challenge here lies in the combination of precision and efficiency on one
hand, and ease of use and learnability (by humans) on the other hand.

In this work, we propose to learn these interaction protocols automatically from
interactions with humans. The mapping from 2D gestures to actions in the 3D envi-
ronment is performed by a trainable agent whose policy is learned using reinforcement
learning (RL). Such an agent observes user gestures, translates them into actions in the
3D environment and receives a reward, which should be related to user satisfaction in
the optimal case. The motivations behind this choice are two-fold:

– to automatically learn complex interactions protocols instead of handcrafting them;
– to create adaptive user interfaces, where not only the human users (classically)

adapts to the interface, but the computer also adapts to the way the interaction
protocol is imagined by the user through online learning during usage.

The main challenge lies in the requirement of massive amounts of interactions, neces-
sary for current RL algorithms, but which are difficult or impossible to come by when
humans are involved. Requesting users to provide gestures and feedback on satisfac-
tion at each iteration would be overly complicated and not realistic for any complex
application.

In this work, we propose to circumvent this problem by firstly pre-training the RL
agent from interaction with a learned user model which is jointly learned with the target
agent. The interactions of the user model are statistically constrained to natural inter-
actions collected in a static dataset. Secondly, creating loss / reward signals during this
pre-training phase from success measures in standard interaction tasks, e.g. “go to place
X”.

The paper is organized as follows: section 2 discusses related work in reinforce-
ment learning and HCI. Section 3 presents the exact formulation of the HCI problem
as a reinforcement learning problem. Section 4 introduces the main contribution of this
work: the formulation as a cooperative multi-agent problem, where the user model is
jointly learned with the interaction protocol, restricting simulated interactions to nat-
ural ones. Two different experimental sections report evaluations of the approach on
two scenarii of increasing complexity. Section 5 describes experiments on a simple 2D
environment where users manipulate a 2D object on a 2D surface in a similar fashion to
the widely known “Pinch-To-Zoom” interface developed for smartphones and tablets.



The common solution of this type of environment being known, the objective here is to
automatically learn this interaction protocol from interactions instead of handcrafting it.
Finally, section 6 describes experiments on the targeted application, namely learning a
2D to 3D interface protocol involving navigation in 3D environments. This application
features additional complexities, such as the non-unicity of the solution (discussed in
Sec.4) and the impossibility to analytically define an optimal user.

2 Related Work

Our work stands between two active fields of computer science: human-computer inter-
face (HCI) and machine learning (ML). We will shortly describe relevant work in both
areas to paint the background.
Adaptive user interface — The goal of Adaptive User Interfaces (AUI) is to adapt its
visualization and its interactions to fit individual users’ intent better. Machine learning,
in this case, is traditionally used for user intent modelization. For an overview of state-
of-the-art AUI with adaptive visualization, see [1]. To our knowledge, there is no prior
work on learning the interaction protocol of an interface with continous action space.
Reinforcement learning and UI design — Reinforcement learning (RL) is a machine
learning framework in which a software agent learns to solve an environment by taking
actions that maximizes some cumulative reward. RL has seen some specific uses for
AUI design, more precisely for user profiling and representation tasks. In [23], an agent
learns to detect user preferences implicitly from observing user behavior instead of di-
rect feedback. In [11], an agent uses user feedback to display personalized web pages.
Machine learning and 3D interaction design — 3D user interface (UI) design has
been studied for about 20 years [6]. In the 3D UI context, a good overview of current
state-of-the-art 3D UI methods is given in [21]. While ML has been used in user inter-
face and user experience design for about two decades [16][25], using machine learning
for interaction design is to the best of our knowledge an application yet to be explored.
In the UI context, ML is classically used to improve the accuracy of an existing interac-
tion protocol: in [24], a gaussian process regression is used to improve touch accuracy.
In [18][10][8], supervised deep learning is used to improve the recognition rate of some
multi-touch gesture classes.
Reinforcement learning and generative models — Combining the latent representa-
tions of generative models with policy learning was explored in some recent work. In
[13], the encoding part of a modified VAE is used to build disentangled representations
for a RL policy to use in domain adaptation tasks. In [20], a VAE together with an agent
are trained for different purposes: synthesize training data from real observations of the
policy, embed the observations to provide latent representations to the policy and mea-
sure reward signals in the latent space.
Learning from demonstration — In our paper, we are trying to learn a user model
from a small part of all the possible interactions a user can perform. In [22], a model-
based agent is built from examples given by a demonstrator that can either be a genera-
tive model, open loop excitation or an expert.



Fig. 1. Learning user interface protocols from interactions with users as an MDP/RL problem.

3 Learning an interaction protocol as a reinforcement problem

Our goal is to learn an interaction protocol coupling user trajectories with actions in
a 3D application like CAD or GIS while maximizing the user’s satisfaction. We cast
this as an RL problem, where the agent gets observations in the form of finger trajecto-
ries and outputs actions, which correspond to viewpoint changes in a 3D environment.
Because user intentions and gestures can have long term dependencies and depend on
multiple latent factors, this problem could be modeled as a partially observable Markov
decision process (POMDP). Assessing the complexity of such a modelization for a
novel application, we prefer in this paper to consider the problem as a fully observed
Markov decision process (MDP) by stacking two-time instants. This implies consider-
ing that the information given at two following time instants is enough to predict user
intent. The problem is then treated as an MDP with continuous observation and action
spaces. The agent A observes the state in the form of finger trajectories s and receives
a reward r after performing an action a in the application. An agent A learns a policy
π such as a = π(s) to maximize its expected return, i.e., the expectation of cumulated
reward. Fig. 1 illustrates this situation.

In the RL nomenclature, the agent interacts with an environment, which, in our
case, corresponds to, both, the human user and the application, e.g. a CAD or GIS
software (see Fig. 1). The agent observes a state, i.e. the user’s finger trajectories, and
then performs actions that change the viewpoint in the 3D software and which lead to a
new state (new user gestures). The agent also receives feedback in the form of a reward.
It is important to note here that user satisfaction is difficult to measure directly if we do
not want the resort to solutions which estimate emotions from facial expressions. In the
next sections, we will propose proxy metrics which approximate satisfaction.

4 Jointly learning the interface protocol and human behavior

Deep networks require large-scale training datasets, and Deep RL is not an exception.
More so, RL requires dynamic data in the form of interactions, typically millions or
billions when observations are of high dimensions and/or when the regularities are



complex. In robotics, where interactions with physical robots are slow (not faster than
physical time) and expensive, this leads to the tendency of training from simulations,
for instance [2][3] for robot navigation and [26] for grasping, and to the sim-to-real
transfer problems [26].

Similar to robotics, learning from human interactions is limited. It is restricted to
physical real-time, and the effort required from humans during training is to be taken
into account. More so, human time is expensive. For these reasons, we address this
by simulating the environment, which in our case also involves simulating the human
user. However, while simulating robots through handcrafted solutions is feasible, at
least approximately, human behavior is inherently difficult to model. For this reason,
we propose a formulation where human behavior is learned jointly with the interface
task itself. The next two sub sections describe the two main challenges for this task: (i)
restricting the learned user behavior to realistic human gestures (sub section 4.1), and
(ii) solving the joint learning problem (sub section 4.2).

4.1 Learning the manifold of natural human gestures

Let x∈X be an observation in the form of natural two-finger trajectories performed by a
human user. We define an observation as a N -length sequence of 4-tuples, each 4-tuple
consists of a pair of coordinates (x, y), one for each of the two fingers. X=R4N is the
space of observations of length N . The gesture space X thus covers all possible pairs
of 2D trajectories, including trajectories which are anatomically impossible to perform
by human fingers. Our objective is to learn a subspace which corresponds to gestures
naturally performed by humans. To this end, we suppose the existence of a training
dataset of natural gesturesX = {xi}, which have been collected from user interactions.
This training data can be collected without any manual annotation as simple interaction
traces.

We want to build a model capable of producing any natural gesture x from a latent
representation z. Sampling values from z should provide us samples of the manifold
of natural human gestures. This involves learning a distribution p(x|z) and to be able
to evaluate it from a given z. Restricting our simulated user to produce samples of the
latent representation z should therefore restrict it to produce natural gestures.

Several approaches exist for learning generative models of probability distributions
from training data, among which are Generative Adversarial Networks (GANs) [12]
and Variational Auto-Encoders (VAEs) [15]. Our definition of p(x|z) can be related to
the generative part of a GAN or the decoder part of a VAE. In this work, we chose VAEs
for two reasons: they are simpler to train and less sensitive to hyperparameters; and the
latent space is smoother, due to its soft constraint to be close to a multivariate Gaussian.

The VAE is trained on the dataset X , approximating the distribution pθ(x) by mea-
suring the reconstruction error on a sample xi coded by an encoder E into a code zi,
then reconstructed into x̂i using a decoder D. To describe the problem from a proba-
bilistic point of view, the probability pθ(x) of a sample x can be decomposed into a
prior and a likelihood as:

pθ(x) =

∫
pθ(x|z)pθ(z)dz (1)



where the prior on z is defined as a standard Gaussian distribution pθ(z) = N (0, I). In
our case (continuous values), we can assume that the likelihood is Gaussian distributed:

pθ(x|z) = N (x|D(z, φd), σ
2I) (2)

where D(z, φd) is the decoder of the VAE. The integral is difficult to evaluate, but can
be approximated by a point estimate z=qφ(x) from the variational distribution q:

pθ(x) ≈ N (x|D(qφ(x), φd), σ
2I) (3)

qφ(z|x) can be seen as an encoder, noted E(x, φe). In this case, we need to ensure
that qφ(z|x) is a good estimate of the true posterior pθ(z|x). This is done using the
Kullback-Leibler divergence, notedDKL. Considering the approximation error for only
a sample xi, the KL divergence becomes DKL(E(xi, φe)||p(z)). As stated earlier,
pθ(z) = N (0, I). If we use the L2-norm to measure the reconstruction error, the to-
tal error can be written as a variation of the evidence lower bound (ELBO):

ELBOi = ||xi −D(E(xi, φe), φd)||2 − β DKL(E(xi, φe)||N (0, I)) (4)

where β is a parameter allowing us to adjust the tradeoff between the reconstruction
precision and the latent space regularity [19]. We can then update φe and φd by mini-
mizing this error using back-propagation.

4.2 Cooperative Multi-Agent RL

We formulate the task of jointly learning the user interface protocol and human behavior
as a cooperative multi-agent reinforcement (MARL) problem, as shown in Fig. 2. Two
agents are learned jointly, each with its own policy:

– agentAi corresponds to the user interface. Learning its policy is the original goal of
this work, as this agent is responsible for translating 2D finger gestures into actions
in the 3D environment (CAD or GIS software).

– agent Au corresponds to the simulated user, with which agent Ai interacts. The
only purpose of Au is to replace human users during the costly pre-training phase.
In contrast to Ai, Au is discarded after training.

These two agents are trained to maximize the same objective function, sharing the same
reward (detailed in section 4.3), which makes this problem a cooperative multi-agent
problem. Only Ai directly takes action in the virtual 3D environment, whereas Au acts
indirectly by producing the input of Ai.

Learning both agents by maximizing the joint reward without additional constraints
could naturally lead to degenerate solutions, which are efficient (allow to navigate
quickly), but where the gestures exchanged between the two agents are artificial and
not easily and naturally doable by humans. For this reason, we restrict the exchange
between Ai and Au to a representation z learned by the VAE described in section 4.1.
More precisely, after training the VAE, we discard its encoder. The agent Au learns a
policy on an action space which corresponds to the latent representation z. Each action
z is then decoded to a natural gesture x through the decoder of the learned VAE, as



Fig. 2. Cooperative multi-agent RL problem for jointly learning user interface protocol and user
behavior. Generative models are blue and RL policies are green (best viewed in color).

illustrated in Fig. 2. In other words, the policy of the user agent learns to produce ges-
tures by navigating the latent space of the VAE. For readability, for the rest of the paper,
we will refer to the interaction protocol agent as the interface agent Ai, and to the RL
agent sampling in the VAE latent space as the user agent Au. The combination of the
user agent and the decoder will be called user model U .

The method can be more formally described as follows. The task is a sequential co-
operative setup where Au produces the state of Ai and Ai does not get any observation
of the virtual environment. In what follows, we denote st. as the state of an RL agent
at time t, at. as the action at time t and rt. as the resulting reward from action at. . π.
will denote an agent policy. All symbols are indexed by subscripts u or i, which stand,
respectively, for the agent Au and Ai. Let θt be the state of the software environment at
time t, for instance the viewpoint in a building, or the 6D pose of a mechanical object
in a CAD problem. Then, a given time step t in our sequential cooperative MARL setup
will unroll as follows:

stu = θt

atu = D(πu(s
t
u))

sti = atu (5)

ati = πi(s
t
i) = ∆θt

st+1
u = θt+1

rtu = rti = r(ati, s
t+1
u )

where ∆θt is a variation of the parametrization of the object, and rtu=r
t
i is the joint re-

ward at time t. We can note that the constraint onAu actions defined byD is mandatory
for our setup to converge to a cooperative setup. Indeed, supposing that we directly have



sti = πu(s
t
u)), the policy of one of the agents will degenerate to an identity, effectively

lowering the complexity of the problem by getting rid of the intermediate representation
between the two agents. One agent will end up observing and taking actions directly in
the virtual environment, breaking the paradigm of this setup.

4.3 Defining the reward function

The goal of this work is to optimize user satisfaction during interactions, which is not
easily measurable. We can attempt to empirically break it down to a set of less subjective
parts: precision of the interactions, expressiveness, intuitivity and ease of use. The latter
two are difficult to measure directly but can be added as learned soft constraints to the
agent. In this work, we make the assumption that the latent representation learned by the
VAE from interaction logs encodes intuitivity and ease of use, leveraged by restricting
the user agent Au to an action space defined as the latent representation of the VAE.

The former two (precision and expressiveness) are performance metrics related to
the environment the agents are trying to solve. If we restrict ourselves to training from
situations where the objective of the HCI experiment is known, these measures can be
optimized directly by defining an appropriate reward function. As examples we could
imagine asking users questions like “Find Waldo in this building by navigating there”
or “view the carburator of this V6 engine from above allowing to see inside it”. The
downside to this approach is restricting training to situations with known outcomes
and objectives. This still allows learning interfaces in a co-adaptive fashion, in two
consecutive stages: a first off-line training stage on a set of “training users”, followed
by an enrollment training phase, where each user is asked to solve custom scenarii to
adapt the system to its own interface behavior. It does not, however, allow continuous
adaptation during usage with unknown objectives.

We will detail our chosen reward functions in the experimental section. It suffices
to say at this point, that they measure a distance to the goal in the given user defined
task. However, it is important to remember that our true goal is not for the agents to
maximize their rewards, which only partially relate to user satisfaction. Convergence of
cumulated reward is a necessary condition for a good solution, but not sufficient. Only
humans can assess the true quality of these interaction protocols.

4.4 Stabilizing learning with self-supervision

In the standard formulation as described above, during training, the interface agent Ai
learns to interpret actions produced by the user agent Au, while Au does not get any
(unfiltered) information from the interface and as such cannot infer how the interface
will interpret a gesture it produces. Furthermore, since the interface policy πi evolves
during training, the target for the user agent Au is unstable, which makes training diffi-
cult.

We stabilize training by forcing Au to approximate decisions taken by the interface
Ai in the form of self-supervision. We add a second predictor head to Au, which pre-
dicts the output of Ai. This predictor shares common layers with the classical predictor
of the policy πu, which ensures that the learned feature representation benefits both
predictors. The new predictor is supervised with the real output of the interface agent



Ai using the L2 loss Le = ||ai− âi||2. âi is the interface action predicted byAu, and ai
is the interface action predicted by Ai. In practice, this loss only affects the user actor
πu, the critic taking no part in this estimation. This is an external training signal added
to the RL signal coming from the critic estimation of the state-action value function Q.
As a note, adding a coefficient to the new loss to control its impact did not yield any
meaningful improvements.

5 Experiments 1: a simple problem — solving “Pinch-to-Zoom”

As a first proof of concept, we will attempt to solve a well-known continuous HCI,
for which a handcrafted solution does exist, the goal being to verify whether learning
can discover the existing solution. Our choice here is the well known “Pinch-to-Zoom”
interface widely used for smartphones and tablets. The name is a misnomer, since the
interface not only allows to zoom, but also to translate and rotate the content of surface
through 2D gestures made by two fingers. We suppose that a user performs gestures
with exactly two fingers on a touch screen and we investigate the motion between two
different time instants. We denote by l = [lx ly]

T the screen coordinates of a single
finger at the first instant and by l′ = [l′x l

′
y]
T the coordinates at the second instant. If we

need to explicitly identify a finger, we will index finger i with a superscript as in li or
l′i. The coordinates are normalized between [0 0] (top-left) and [1 1] (bottom-right).

The known solution — We will first derive the analytical form of the known solu-
tion before describing the experiments learning it. The gestures performed by the user
are a combination of translation, rotation and scaling. We suppose that the 2D finger
motion on the screen induces the same 2D motion of the manipulated surface, which
can be seen as a special case of affine transformation where the shear component is zero.
It transforms coordinates l into l′ as l′ = Al + t where t = [tx ty]

T is the translation
component and the rotation+scaling matrix can be calculated from the rotation angle α
and the scaling factor σ as follows:

A =

[
cosα − sinα
sinα cosα

] [
σ 0
0 σ

]
=

[
σ cosα −σ sinα
σ sinα σ cosα

]
(6)

The 4 parameters of the motion are thus α, σ, tx, ty , which we will combine into a
parameter vector θ = [σ cosα σ sinα tx ty]

T . If we have motion of two different fin-
gers (l1, l′1) and (l2, l′2), then the following linear relationship between the coordinates
and the parameter vector θ holds: d = Dθ, where d is a vector containing the target
coordinates and D is a matrix containing the source coordinates in a suitable form:

l′1x
l′1y
l′2x
l′2y

 =


l1x −l1y 1 0
l1y l1x 0 1
l2x −l2y 1 0
l2y l2x 0 1



σ cosα
σ sinα
tx
ty

 (7)

Because D is always invertible (except for the degenerated case where both fingers are
at the origin), this linear equation can be solved easily as θ̂ = D−1d.

Learning a solution — We now let an RL agent learn this protocol. Let the state
of the agent be a two-finger motion si = [l1x l1y l2x l2y l′1x l′1y l′2x l′2y ] performed



Fig. 3. An example rollout of the interface policy learned for the “Pinch-To-Zoom” problem. The
rectangle need to be superimposed, finger trajectories are indicated by arrows.

by the user, where superscripts index fingers and subscripts indicate x or y coordinates.
Agent actions ai = [σ cosα σ sinα tx ty]

T are continuous vectors of size 4, which
correspond to the parameters of an affine motion transformation without shear compo-
nent. Note that while this affine transformation has the same functional form as the one
expressed in the analytical solution above, we here describe output motion only (motion
the manipulated object will endure) and not input finger motion. In other words, in this
RL scenario, we do NOT suppose that object motion equals finger motion.

The environment is a simple scenario, where a user is required to move a virtual
surface containing an object (a red rectangle). The goal is to bring this object to a fixed
position by superimposing it on an object which does not move with the manipulated
surface, i.e. a black rectangle “painted” on the glass of the device. The reward function
in this task is the sum of L1- and L2-distances the object vertices and the target vertices:

r = −
∑
i

( ||oi − ti||1 + ||oi − ti||2 )− 0.2 (8)

where oi and ti are the coordinates of i − th vertice of the respective rectangle. Let
us recall that the interface agent does not have access to these positions, else it would
learn to simply ignore user gestures. The constant −0.2 reward is set to continuously
encourage fast solutions. A positive reward of +25 is given if the agent successfully
finishes an episode. These arbitrary values are chosen so that the expectation of the sum
of rewards per episode is close to 0 for an agent close to the optimal solution.

Handcrafted simulation of the user — For this toy problem, the cooperative multi-
agent formulation proposed in section 4 is not necessary. We instead handcraft a solu-
tion simulating a user who is aware of the “Pinch-To-Zoom” protocol, i.e. of the known
analytical solution. We would like to stress that the agent is of course not aware of
the solution. The interface solution expressed in 7 allows us to compute simulated user
trajectories: this can simply be done by considering two diagonally opposed object ver-
tices v1 and v2 and their target position v′1 and v′2. For a sampling time, we can consider
that the user will move the object toward the target while keeping the vertices vi on the
segments [vi, v

′
i] (which is the optimal way to solve the task). It means we can find

intermediate positions of vi on these segments using the linear combination:

vinteri = (1− µ)vi + µv′i , µ = max(1,
0.5

||v′i − vi||2
) (9)



Fig. 4. The 3D navigation user interface. Left: the user/camera view; Right: static bird’s eye
view. Current user gestures are displayed on top left. The goal is to superimpose the green arrow
attached to the camera with the red non moving target arrow.

µ is the user’s gesture velocity. A small µ will mean small relative increments toward
the target. This definition of µ goes in the sense that a human user will tend to do
faster gestures while far from the target and slower, more precise gestures while close
to it. Now that we have two points of the wanted intermediate object position, we can
solve the equation 7 in order to get the transformation of every point of the object to
the intermediate position. At last, we can choose two random points p1 and p2 on the
object, transform them using the computed θ̂ parameters and build the two trajectories
[p1, p

inter
1 ] and [p2, p

inter
2 ]. The state bsi of the agent will be the concatenation of

these two trajectories, resulting in a vector of size 8.
Results — We compare our trained agent to an optimal solution. This optimal solution
is easily modelled as we defined both the analytic solution of a user and of the interface.
On an average of 100 episodes, the optimal solution finishes an episode in 40 steps and
obtains a reward of +0.5 per episode.

After a training of about 300k steps, the interface agent obtains very similar results:
on an average of 100 episodes, it finishes an episode in 41 steps and obtains a reward of
+0.4. It is visually impossible to separate the optimal solution from the learned agent.
An illustration of a rollout in the environment is given in Fig. 3.

6 Experiments 2: 3D navigation from 2D gestures

We now discuss the experiments on the real 3D navigation user interface, for which
no optimal solution is known to exist. As described in the introduction, we want to
learn an agent to map 2D finger gestures to motion in a 3D environment, an ill-posed
problem. To this end, we extended the 2D toy problem to 3D, maintaining the user’s
goal of moving a (now 3D) content to superimpose an object over a non-moving object,
as shown in Fig. 4. As there is no simple handcrafted way to simulate a human user,
we use the multi-agent RL setup described in Sec. 4. The 3D affine transformation to



Fig. 5. Navigating the latent space learned by the VAE. Middle column: zero code z. Lines cor-
respond to different modified latent variables (dim=8). Columns correspond to different values.

be learned by the interface agent can be expressed using homogeneous coordinates in 4
dimensions as a 4×4 matrix φ:

φ =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 , R =

r11 r12 r13r21 r22 r23
r31 r32 r33

 , t =
t1t2
t3

 (10)

As we do not consider scaling (redundant with forward motion), the matrix is totally
parametrized by 6 coefficients: [τx, τy, τz, ρx, ρy, ρz], where τ. and ρ. are, respectively,
translation coefficients and Euler angles on the 3 axis. We limit the Euler angles to
]−π, π] to ensure their unicity given an axis. Such a vector can define transformations
as well as object positions when using a fixed referential in the environment. With this
formalization, The user agent Au gets as observations the camera position vector and
learns a policy over actions which are trajectory vectors [l1x l

1
y l
′1
x l′1y l2x l

2
y l
′2
x l′2y ]. The

interface agent Ai observes the output of Au and learns a policy over residual transfor-
mation vectors of the camera, i.e. st+1

u = stu + ai. We define the reward equivalent to
the 2D problem in section 5, given in equation (8), the difference being that each object
has 2 vertices instead of 3, and that vertices are in 3D space.

VAE training and architectures — We train the latent 2D gesture representation
with a VAE on a dataset of multi-touch interaction gestures, in particular the Itekube-



Fig. 6. Reconstruction examples made by the VAE. The first line displays reconstructed gestures
while the second displays the corresponding original gestures.

7 Dataset [10]. We used all the two-finger gestures from the translation, pinch and
rotation classes. Each gesture of the dataset was sampled using the dynamic sampling
described in [10] to fix the length of the gestures to 10 timesteps. The VAE was trained
for 50 epochs with β=0.07, a batch size of 128, and a learning rate 0.002. The latent
code is of size 8. The encoder and the decoder are both recurrent. Encoder: a one-
layer GRU [9] with a hidden state of size 256 and ReLU activation. It is recurrent
in time and reads inputs of size 4 (two 2D finger positions). Second, two FC layer
predict, respectively, the mean and the stddev of the latent code from the last hidden
state. The decoder is a two-layer GRU: The first layer has a hidden state of size 128
with ReLU activation, the second layer has a hidden state of size 4 (to reconstruct the
position of both fingers at each timestep), no activation. The entire code is fed to it at
every timestep, i.e. the number of unrollings of the GRU will determine the number of
timesteps of the reconstruction. At training time, this number is set to the number of
timesteps of the original data (10), but at inference time, this number can be arbitrarily,
which allows to produce shorter or longer trajectories from the same latent code.

Fig. 5 visualizes the latent representation, and reconstruction examples are given in
Fig. 6. The representations from the latent space are satisfying as we can observe some
high level features and disentanglement: for instance, dimension 0 expresses pinch,
while dimension 2 expresses clockwise rotation.

Multi-agent RL training — We chose the model-free off-policy actor-critic method
Deep Deterministic Policy Gradient (DDPG) [17]. In our setup, an epoch cycle consists
of two phases: (i) a rollout phase on an episode, where all quadruplets [state, action,
reward, new state] are stored in the replay memory of the agents; (ii) a training phase
where quadruplets are randomly sampled from the memory, batched (in sizes of 4096)
and used to train the actor and the critic of the agents. We define an epoch as 100 epoch
cycles. The training is arbitrarily stopped when no improvement on the metrics is ob-
served. A training session takes about 2 days on a Titan-X Pascal GPU.

Join training of both,Au andAi, was not successfull. We suspect the added variance
and the moving value of state-action pairs for both agents as a source of the problem.
Similar to [4], we chose to train them in an alternating manner: during an epoch, only
one agent will be trained, while the weights of the other agents are kept fixed.

Stacking timesteps — We consider two ways for the two agents to communicate.
The simplest one is a two-instant communication: the decoder produces a gesture of
only two time instants, and the interface produces the corresponding action. It is simple,
but leads to non-smooth user gestures difficult to appreciate from a human viewpoint



Mean reward/ep. Mean #steps/ep. Nb. training steps

No Stacking 3.6±1.0 53±1 17.6M±0.4M
+ Stacking 0.5±1.5 56±4 24.6M±6.3M

Theoretical Opt. 5.0 40 N/A

Table 1. Results on the 3D environment. The last line gives theoretical optimal results based on
the interface action amplitude, without considering a naturalness constraint. The Mean reward/ep.
is the mean cumulated reward per episode obtained in the best performing epoch. The Mean nb.
steps/ep. is the mean number of timesteps needed to successfully finish an episode in the best
performing epoch. The Nb. training steps is the number of environment steps that was needed to
attain the best performing epoch. Stacking improves usability but NOT efficiency.

is hard. We also consider stacking time instants: Au produces a complete gesture of 10
timesteps, and Ai must produce the corresponding sequence of actions (9 if there are
10 timesteps). In this case, a step from the RL perspective will contain 10 update steps
of the environment. This decouples the update speed of the agents from the sampling
speed of the finger gestures, referred to as “Stacking” in Table 1.

Architectures — In what follows, FCX refers to an FC layer with X hidden units,
with layer normalization and ReLU activation. The actor of Au is an MLP with two
hidden FC100 layers. The output layer is FC and activated with tanh, predicting a vector
of size 8 (the latent code z expanded by the VAE decoder D). Another FC100 layer is
plugged to the first hidden layer, with an output layer producing the estimate âi. The
critic ofAu is an MLP with two hidden FC100 layers. The policy action is concatenated
to the first hidden layer. A linear FC layer predicts the value Q.

The actor of Ai is an MLP with two hidden FC64, and an output layer with tanh
activation. The output size is either 6 for the standard solution or 6x9=54 for the stacked
solution. The critic of Ai has the same architecture as the critic of Au, except hidden
layers are FC64.

Results — Quantitative results are given in Table 1. Each setup was reproduced
with 3 different random seeds. We consider that a run has converged whenever all 100
episodes of an epoch are successful. Once it has converged, it can still improve by
solving episodes faster. This is measured as the mean number of steps needed to solve an
episode. The mean reward per episode is also correlated to the quality of the interaction
protocol, but should be interpreted differently. Indeed, a run with a lower mean step per
episode but a higher mean reward per episode is most likely less satisfactory than a run
with higher steps but lower reward. This is because the first type of solutions tend to be
less continuous with harsher action changes, while the second is technically slower but
goes in the direction of the objective more smoothly.

“Stacking” and usability — the interaction protocols must also be observed visu-
ally in order to assess their global quality: good interfaces should display distinctive
characteristics, such as a similar curvature between 2d trajectories and 3D movements
of the camera, or well defined classes for similar actions. While stacking does NOT
improve efficiency (as shown in table 1), it makes the protocol usable. The continuous



Fig. 7. An example of 4 back to back frames from the MARL setup learning the 3D navigation
problem with instant stacking. We want to emphasize on the continuous aspect of user gestures
(top-left) and the semantic. We can see that the user agent is currently performing a rotation-like
gesture.

aspect of gestures using instant stacking is illustrated in 7, videos are provided in the
supplementary material.

7 Conclusion

We presented a novel method for automatically learning interaction protocols from nat-
ural interactions. While our application for this paper is limited to touch interfaces, this
setup can virtually be applied to any technology and any software, as long as a large
enough interaction dataset can be collected. We want this work to be a step toward a bet-
ter co-adaptive relation between the human and a computer, allowing for individually
suited interfaces and higher levels of interaction. Future work will model the interaction
protocol as a POMDP, which should allow to better represent long term dependencies
and tackle more complex regularities. The main remaining problem is to fine-tune the
learned models on real human users, which requires large-scale efforts with a large
amount of human partners.
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