
Learning to recognize touch gestures: recurrent vs. convolutional
features and dynamic sampling

Quentin Debard1,4, Christian Wolf2,1, Stéphane Canu3 and Julien Arné4
1 Univ de Lyon, INSA-Lyon, CNRS, LIRIS, F-69621, France
2 Univ de Lyon, INSA-Lyon, INRIA, CITI, F-69621, France

3 Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, France
4 Itekube, France

Abstract— We propose a fully automatic method for learning
gestures on big touch devices in a potentially multi-user context.
The goal is to learn general models capable of adapting to
different gestures, user styles and hardware variations (e.g.
device sizes, sampling frequencies and regularities). Based on
deep neural networks, our method features a novel dynamic
sampling and temporal normalization component, transform-
ing variable length gestures into fixed length representations
while preserving finger/surface contact transitions, that is, the
topology of the signal. This sequential representation is then
processed with a convolutional model capable, unlike recurrent
networks, of learning hierarchical representations with different
levels of abstraction.

To demonstrate the interest of the proposed method, we
introduce a new touch gestures dataset with 6591 gestures
performed by 27 people, which is, up to our knowledge, the
first of its kind: a publicly available multi-touch gesture dataset
for interaction.

We also tested our method on a standard dataset of symbolic
touch gesture recognition, the MMG dataset, outperforming the
state of the art and reporting close to perfect performance.

I. INTRODUCTION

Touch screen technology has been widely integrated into
many different devices for about a decade, becoming a major
interface with different use cases ranging from smartphones
to big touch tables. Starting with simple interactions, such
as taps or single touch gestures, we are now using these
interfaces to perform more and more complex actions, in-
volving multiple touches and/or multiple users. If simple in-
teractions do not require complicated engineering to perform
well, advanced manipulations such as navigating through a
3D modelisation or designing a document in parallel with
different users still craves for easier and better interactions.

As of today, different methods and frameworks for touch
gesture recognition were developed (see for instance [15],
[27] and [8] for reviews). These methods define a specific
model for the class, and it is up to the user to execute
the correct protocol. Our approach in this paper is to let
users define gestures from a simplified protocol. The main
motivation is to remove burden from the user and put it onto
the system, which shall learn how users perform gestures.
The idea is not new and was first explored in 1991 by
Rubine [26], using Linear Discriminant Analysis (LDA) on
13 handcrafted features. Although other methods discussed
in section II have built on this idea, our goal is to generalize

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

Multi touch
gestures

Fixed length
representation

with partial order

Convolutional
model

Sampling
State transition

preserving
dynamic sampling

Fig. 1: Overview of the method: multi-touch gestures are
dynamically sampled with a transition preserving transform
followed by convolutional or 2D-recurrent representation
learning.

it even further by learning deep hierarchical representations
automatically from training data.

To achieve these goals, our method must capture the
particularities of each gesture class while at the same time
being robust with respect to variations in sampling fre-
quencies, screen size, user preferences. A further constraint
is the computational complexity of the prediction model,
since decoding our model must be possible in real-time
applications.

To address these issues, we propose a new method and
provide several contributions:

• We address the problem of classifying sequential data
characterized by variable amounts of data per time
instant. We propose a convolutional model for this prob-
lem, and show that it is able to outperform classically
used recurrent neural networks on this task. In contrast
to recurrent models, our convolutional model is able
to create hierarchical representations encoding different
levels of abstraction.

• We propose a novel input sampling method which dras-
tically reduces the length of the input sequences while
at the same time preserving important sharp transitions
in the data.

• We propose a new dataset of multi-touch sequential
gestures, which is, up to our knowledge, the first of
its kind. Existing datasets are restricted to symbolic
gestures. The dataset will be made publicly available
on acceptance of the paper.

• We also compare the method against the state of the art
on a standard dataset in touch gesture recognition.

II. RELATED WORK

Automatic human gesture recognition is an extremly prolific
field. Using many different sensors such as RGB cameras,
depth sensors, body sensors, in our case touch surfaces, these
gestures are classified and measured through representations:
geometric features, graphs, state machines, sequences, and
more recently, learned features. The classifying and measur-
ing algorithms are also varied, ranging from Deterministic
Decision Models to Support Vector Machines and Deep
Neural Networks.

Touch gestures — can be distinguished into two types:
• symbols, such as drawings or handwriting. These ges-

tures are spatially complex, but their temporal properties
are of lesser interest.

• interactions, meant to perform an action using the
touch surface as an interface. These actions require
spatial and temporal precision, as the user will expect
the interaction to be as precise and fast as possible.

Touch gestures are traditionally dealt with handcrafted rep-
resentations. The most commonly used methods have been
developed by system designers, using procedural event-
handling algorithms (see for instance [30] or [22]). Different
frameworks such as Gesture Markup Language (GestureML)
were proposed in order to formalize touch gesture inter-
actions. Midas [27] uses a set of logical rules to classify
events on the surface. With the possibility to define custom
operators and priority rules, its gesture definition is exten-
sible to some point, but lacks rotation invariance. Proton++
[15] is another framework, based on regular expressions for
gesture recognition: a gesture is seen as a sequence of events.
However, it only supports a unique gesture at a time, and is
limited by the rigidity of regular expressions.

As efficient and fast as they can be, these methods ar-
bitrarily declare gesture properties, making the user adapt
to them. The gestures are precisely defined and tend to
lack generalization in a different context; this contradicts
our paradigm of minimal user constraint and maximum
generalization.

In contrast to these user-defined gesture frameworks, Ru-
bine in 1991 developed a more flexible gesture definition
[26], using handcrafted geometric features and LDA for
classification. Up to our knowledge, this is the first attempt at
classifying gestures using deep learning. Gesture Coder [21]
takes a similar approach as Proton++, as it defines gestures
using state machines, equivalent to regular expressions on
“atomic actions”. However, these state machines are learnt
from user gestures. [6] uses a graph representation of ges-
tures, then embeds the graph structure into a feature vector.
These feature vectors are then classified using a Support

Vector Machine. We also recommend [8] as a good survey
of the evolution in multi-touch recognition.

Visual / Air gestures — are gestures performed without
any touch surface and captured by video cameras or depth
sensors. We mention these methods here, since a part of
the methods described in the literature can be adapted to
touch gesture recognition. We will only briefly mention
methods using handcrafted representations, which normalize
an articulated pose estimation (skeleton) into a view- and
person-invariant description, followed by machine learning
[32], as well as methods based on deep neural networks
working on pose fused with raw video [24].

Sequential models — are the main methodology for
gesture recognition, gesture data being of sequential nature.
One of the first successful statistical models used are Hidden
Markov Models (HMMs) [25], which are generative proba-
bilistic graphical models with a linear chain structure. The
hidden state of these models is stochastic, therefore, in the
most frequent variants, training and decoding requires to
solve combinatorial problems. Conditional Random Fields
(CRFs) [18] are discriminative counterparts of HMMs. The
modeled distribution is conditioned on the observations,
which allows the model to concentrate its capacity on the
discrimination problem itself.

Recurrent Neural Networks (RNNs) are the connectionist
variant of sequential models introduced in the 80s. Their
hidden state is rich and componential and not stochastic,
which allows to decode the model in a forward pass as a
computation in a direct acyclic graph. An important variant
of RNNs are Long Short-Term Mermory networks (LSTMs)
[12], which models additional long term transitions through
gates in the model, and their simplier variations GRU [7].
Clock-work RNNs, introduced in [16], introduce sampling
and update frequencies into recurrent networks, allowing for
a hierarchical decomposition of the signal. Dense CWRNN
adapt this representation to shift invariant models [23].

III. RECURRENT VS. CONVOLUTIONAL MODELS

Our problem can be cast as a sequential learning problem
with input dimensions varying over time. Each input gesture
is a sequence (unt,i)t=1,Tn of length Tn where n is the
index of the touch gesture, i the finger ID provided by the
touch device and unt,i = (xnt,i , y

n
t,i)

T are the spatial 2D
coordinates of finger i on the touch screen. An example
of such a sequence is illustrated schematically in Figure
2a. Note that a variable amount of fingers may touch the
surface. Therefore, finger ID indexes i ∈ {1 . . . In}, In being
the number of fingers involved in gesture n. Finger IDs are
from an unordered set and provided directly by the touch
hardware. We suppose that finger tracking allows finger IDs
to be identical for the same finger as long as the finger
touches the screen; however, removing a finger and putting
it on the screen again will not generally preserve its ID. A
similar approach was taken in [26]. In the following, gesture
indices n can be omitted for clarity, unless necessary for
comprehension.

Fig. 2: From raw data to gesture representations: (a) a graphical representation of a gesture, where red presses are held
throughout the gesture; grey touches are taps: quick, almost immobile contacts with the surface; blue touches are slides. (b)
the device delivers sequences of 2D coordinates (x, y) over time and for tracked finger IDs; (c) Our sampling procedure
(section IV) selects samples time @instants t at finger state transitions (in red) and additional sample points (blue).

We address the problem of joint learning of a prediction
model for classification together with a feature representation
from training data. The main difficulty we face is the fact that
the data is temporal with a variable number of data points
(fingers) at each time step, which makes it difficult to align
off-the-shelf sequential models like RNNs and their variants
directly on the input feature dimension of the data.

One strategy is to train a model which integrates data
points ut,i for a single time instant t into a fixed length rep-
resentation, through a learned mapping ft = φ(ut,1:It , θφ)
parameterized by θφ (gesture index n has been omitted).
Again, the index 1:It indicates the number of inputs, which
is varying depending on t. This makes it difficult to learn
this mapping with classical models, which suppose that the
data are embedded in a vector space. In our case, each data
point is of fixed length, but the set indexed by 1:It is not.

Handcrafted representations could be designed, to embed
this set of samples into a fixed length representation which
describes the spatial distribution of the points. In the litera-
ture, several representations have been proposed, but we will
only mention Shape Context [4]. In [4], log polar histograms
are computed for a point cloud, which describe the positions
of individual points relatively to other points in the cloud. In
our work, we prefer to automatically learn a suitable feature
representation from data using a sequential model.

It is very important to remark here that a sequential model
is trained on data which is unordered. In other words, the
model is required to ignore the evolution of the data over its
finger ID dimension, since the input data is not ordered in
this dimension. The model will need to learn to embed the
data into a spatial representation, in a similar spirit as Shape
Context histograms. Ensuring invariance to finger order is
therefore important, whose learning can be favored with data
augmentation, i.e. shuffling finger IDs during training.

The resulting features ft can then be integrated tem-
porally using a second sequential model a=ψ(f1:T , θψ),

parametrized by θψ , which operates in the time dimension
and predicts a gesture class a for the sequence. This model is
illustrated in figure 3a, which shows the two mappings φ(.)
and ψ(.) as recurrent networks with respective hidden units h
and h′. Here, features ft are outputs of φ(.) — an alternative
choice would have been to use the hidden representation h
itself as features input to ψ(.).

The model described above corresponds to the basic
requirements of a model responding to the given problem.
In the rest of this section, we will provide two deep neural
models extending this principle, namely recurrent networks
and convolutional neural networks. We will argue the supe-
riority of convolutional features, and in section VI we will
confirm these arguments through experiments.

A multi-dimensional recurrent model — As mentioned
above, touch finger IDs are not ordered; however, fingers
are usually tracked over time by the hardware. Finger IDs
are therefore consistent over time, at least between finger
state transitions. The model described above does not directly
describe transitions of individual finger inputs over time.
Of course the representation mapping φ(.) can theoretically
learn a representation ft, which allows the temporal mapping
ψ(.) to disentangle individual fingers and track their temporal
evolution. In practice, learning this is unnecessarily hard.

A different strategy is to create trainable and direct tem-
poral transitions between successive samples of the same
fingers. This requires to handle transitions in two differ-
ent dimensions: finger ID and time. Using connectionist
learning frameworks, one possible strategy is to use multi-
dimensional RNNs or LSTMs [10][20], a straight-forward
extension of the 1D original models, or closely related vari-
ants like Grid RNNs [14]. In these models, the hidden state
(and also the hidden memory cell in the case of the LSTM
variant of the model) of time t is not only computed from
one single predecessor (t−1) but from several predecessors,
one for each dimension. This is illustrated in figure 3b for

x
y

x
y

x
y

x
y

x
y

x
y

ht,i ht+1,i ht+2,i

ht,i+1 ht+1,i+1 ht+2,i+1

h t ht+1 h t+2

f f f

f f f

a a a

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

ht,i ht+1,i ht+2,i

ht,i+1 ht+1,i+1 ht+2,i+1

ht,i+2 ht+1,i+2 ht+2,i+2

a a a

a a a

a a a

(a) (b)

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

y
y
y
y

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

(c)

(Conv+BN+
pooling)

(Conv+BN+
pooling)

a

' ' '

Fig. 3: Feature representations for sequences: (a) sequential learning of fixed-length representations; (b) MD-RNNs / MD-
LSTMs (gates are not shown); (c) convolutional features for sequential data. Input data is shown in blue, output in red (best
viewed in color).

two dimensions (finger ID and time).
This model can handle data of variable length in time and

of variable numbers of fingers per time instant. However,
when finger state transitions (finger press/release events)
occur, partially empty data rows are created, which need to
be padded, for instance with zero values.

A convolutional model — gestures are characterized
through their short term behavior as well as their (relatively)
long term behavior. A good model should be able to capture
the former as well as the latter, i.e. the statistical long range
dependencies in the input data. In principle, the recurrent
models described above are able to do that. However, since
they satisfy the Markov property (the state of the model at
time t depends only on the state of the model at time t−1
and not on the preceding states), all long range dependencies
need to be captured by the hidden state.

Convolutional Neural Networks (CNNs), on the other
hand, have proven to be efficient in learning hierarchical
hidden representations with increasing levels of abstraction
in their subsequent layers. Traditionally, these models have
been applied to images [19], where filters correspond to
spatially meaningful operations.

Very recently only, they have been reported to be efficient
for learning hierarchical features on sequential data, for
instance for human activity recognition from articulated pose
(skeletons) [3] or for machine translation [9]. In these cases,
the temporal dependencies of the data are not covered by a
unique hidden state, but by a series of feature maps, which
capture temporal correlations of the data at an increasing
level of abstraction. While the first filters capture short term
behavior, the last layers capture long range dependencies.

In this work, we propose a similar strategy for the recog-

nition of touch gestures. The proposed CNN uses 2D spatial
filters. The sequential input data is structured into a 3D
tensor, with the finger ID as first dimension, time as the
second dimension, and input channels as the third dimension
(x coordinates are in the first channel and y coordinates in
the second channel) — as illustrated in figure 3c. The 2D
convolutions therefore capture correlations in time as well as
correlations over finger IDs.

Data preparation — in this work we propose convo-
lutional features for touch gesture recognition, and in the
experimental section we will compare them to MD recurrent
models described above, as well as to the state of the art in
touch gesture recognition.

CNNs require fixed length representations1. We therefore
propose a novel feature preserving dynamic sampling proce-
dure, which will be described in the next section.

IV. TRANSITION PRESERVING DYNAMIC SAMPLING

The input gestures are of variable length, of varying numbers
of fingers per instant, and eventually of varying speed, which
is due to variations in user behavior but also to differences
in sampling rates. In practice, we observed samples rates
between 5 ms and 25 ms. Varying speed can be dealt with
easily and traditionally by delegating it to the model and
to the training procedure using data augmentation, and/or
by using temporal multi-resolution representations. Varying
numbers of fingers is coped with by padding. We define a
maximum number of fingers depending on the application,
as shown in Figure 2, and zero pad the unused entries.

1Fully convolutional architectures withstanding, which are predominant
in segmentation applications.

Algorithm 1: Dynamic sampling of K-points
Input: a gesture U = {ut,i}, t ∈ [0, T]

transition indicators O = {ot}, t ∈ [0, T]
Output: Ordered and indexed set of sample points C

1) C = {0} ∪ {t : ot = 1}

2) While |U ′| < K:
k = arg max

x∈[0,T−1]
|Cx+1 − Cx|

C = C ∪
⌊
k
2

⌋

Variable temporal length is a different issue, and is a hard
problem for convolutional models. In theory it can be dealt
with sequential models, like RNNs and their variants. In
practice, effects like vanishing/exploding gradients [5] tend
to limit these models to relatively short sequences, despite
efforts to tackle these limitations [12][7].

Existing work tends to perform sampling spatially, as for
instance in [29]: because the task in these papers is to classify
symbolic gestures, temporal features such as state transitions
or velocity are of minimal interest. We call state transition the
moment when at least one finger is added onto or withdrawn
from the touch surface. When the task involves interaction
gestures [6] [21], dimension reduction is often done through
feature extraction/embedding, not sampling.

We chose to normalize the data through a feature preserv-
ing transform which compresses it into a fixed length repre-
sentation. State transitions, which are key features in touch
gesture recognition [21], are preserved with this sampling
strategy. For gestures with high temporal content, where
spatiality does not alter much the classification (such as a
press tap, see Figure 4), missing one of these transitions will
most likely result in a misclassification of the gesture. Using
a uniform sampling, quick transitions such as a tap can be
missed.

The goal is to transform a variable length sequence
(unt,i), t = {1..Tn} into a fixed length representation
(u′nt,i), t = {1..K}. We perform this by choosing N sampling
time instants t which are common over the finger IDs i. The
set sampling points should satisfy two properties:

i) the points should be spaced as uniformly as possible
over the time period;

ii) the sampled signal should preserve finger transitions,
i.e. transitions (finger up or finger down) should not be lost
by the transform.

To formalize this, we introduce a transition indicator
variable ot defined as follows: ot=1 if a transition occurs
at time t (finger touch down or finger release), and ot=0
else. Then, the inverse problem, namely creating observed
gesture sequences from a set of given sample points, can
be modeled as a probabilistic generative model, in particular
a Hidden Semi-Markov Model [31] (HSMM) with explicit
state duration modelling. Obtaining samples from the ob-
served sequence then corresponds to decoding the sequence
of optimal states.

In this formulation, the indicator variables ot correspond
to the observations of the model, whereas the hidden state
variables St correspond to the sampling periods. Each
state variable can take values in the set of hidden states
Λ={1..K}, which correspond to the K target samples. The
desired target sampling points correspond to instants t where
changes occur in the hidden state St. The transition function
of the model is a classical forward model (upper case letters
indicate random variables, lower case letters realizations):

q(i,d,j) , P (S[t+1:[=j|S[t−d+1:t] = i) =

=

{
1
S if j=i+ 1
0 else

(1)

The duration probability distribution encodes above property
(i), which aims sampling points equally spaced with a target
period of Tn

K :

pj,d , P (S[t+1:t+d]=j|S[t+1:[= j) =

= 1
Z (d− Tn

K)2
(2)

where Z is a normalization constant.
The observation probabilities encode the hard constraints

on the transitions (above property (ii)):

bj,d(ot+1:r+d) , P (o[t+1:t+d]|S[t+1:t+d] = j) =

=

{
0 if

∑r+d
j=t+1 oj > 1

1
Z′ else

(3)

where Z’ is a normalization constant. In other words, sam-
pling periods spanning over more than 1 transition are
forbidden, which makes it impossible to lose state features.

If the number of transitions is lower than the number K
of desired sampling points, then the Semi-Markov model
parametrized by the above equations2 can be decoded op-
timally using the Viterbi algorithm [31]. Because the com-
plexity is high, we solve the problem faster and heuristically
with a greedy algorithm, which first selects all transition
points for sampling, and then iteratively adds additional
sampling points in the longest remaining sampling intervals
(see algorithm 1).

A drawback of the proposed sampling method is the
variations in the sampling rate over gestures: since the
sampling is not uniform, we lose velocity information if we
only consider spatial coordinates. One possibility would be
to keep time stamp information additionally to coordinates,
making it possible for the model to extract the required local
velocity. In practice, experiments showed that the resulting
gestures are sufficiently equally sampled and adding time
stamps did not improve performance.

V. THE ITEKUBE-7 TOUCH GESTURE DATASET

We introduce a new touch gesture dataset containing 6591
gestures of 7 different interaction classes (illustrated in

2For space reasons, we omitted the initial conditions which ensure that
the optimal sequence begins with state 1 and terminates with state T .

Fig. 4: The classes of the proposed novel multi-touch
gestures dataset. Red presses are held throughout the gesture.
Grey touches are taps: quick, almost immobile contacts with
the surface. Blue touches are slides.

Figure 4) performed by a total of 27 different people. These
persons are from different professional backgrounds and
aged from 12 to 62. The dataset is available at http:
//itekube7.itekube.com.

Samples correspond to finger contacts on the touch sur-
face. A sample contains the finger ID (provided by the
hardware), x and y coordinates and a timestamp. A finger
is tracked as long as it stays in contact with the surface.
Coordinates are normalized with respect to the screen size,
from 0 (top-left) to 1(bottom-right).

The gestures descriptions provided to the users were de-
liberately minimal, in order to grasp as many user variations
as possible. The gestures can be executed anywhere on the
screen, with any orientation, scale or velocity. Users were
asked to perform the gesture naturally, we did not insist on
a very strict definition of the finger state transitions. It means
the user knows the different classes, and performs each one
as he wants as long as we can distinguish the different
classes. In consequence, some classes can be defined by
different transition sequences; for example, on press tap,
some users lift the press finger first, whereas others lift
the tap one first. Some classes are highly correlated: press
tap and press double tap are only distinguishable from their
transitions, press scale and scale differs from one trajectory.
From our experiments, these two classes were usually the
hardest to separate (see Table II).

VI. EXPERIMENTAL RESULTS

We tested our method on 2 different datasets: the Itekube-
7 Touch Gesture Dataset introduced in section V and the
Mixed Multistroke Gestures (MMG) dataset [2]. The latter
dataset contains 9600 gestures from 20 participants in 16
classes. All classes are symbol gestures: the sequence order
has no importance for the classification, we classify the
symbol drawn by all the trajectories. Each class is performed

10 times by a participant at three different speeds, resulting
in 30 occurrences per class per participant.

Experimental setup — Because of hardware variations,
we want our model to be invariant to finger IDs: we should
avoid any correlation between a gesture and the finger ID
provided by the device, which results in a finger order
in the input tensor. To address this problem, we perform
data augmentation on the ID permutations: each gesture
of the training set is augmented by permutating its lines
(corresponding to a single finger trajectory). For our multi-
touch dataset, we set the maximum number of fingers to 3
and thus keep all 6 permutations of each gesture.

The coordinates (x, y) of each datapoint have been nor-
malized on their respective axis between 0 and 1, for
any device. This means that depending on the screen size,
gestures will be relatively larger, smaller or even distorted if
the ratio is different. Normalization proved to be inferior to
data augmentation on this problem; we therefore artificially
increase the scale variation of the dataset. Each gesture
permutation is rescaled two times between 0.5 and 1.5. This
brings the size of the augmented training set to 12 times the
original one. Because of the freedom given to the subjects to
perform gestures, data augmentation on gesture orientation
was not necessary.

Architectures and implementation details — We imple-
mented our model in Tensorflow [1]. All hyper-parameters
have been optimized over the validation set, the test set
has not been used for this. The number of sampled points
set to K=10 was the best trade-off between information
maximization and redundancy minimization for our problem.
• For readability purposes, we refer to convolutional

layers with x feature maps as CONVx layers, and max
pooling layers as POOL. The convolutional model has
the following architecture: a CONV128 layer, a 1×2
POOL layer (max pooling only on the time dimension),
again a CONV128 layer and a 1×2 POOL layer, a
CONV256 layer and a fully connected layer providing
the prediction score for each class. Activation functions
are ReLU[17], all convolutional kernels are 3×3. The
fully connected layer is linear (no activation function).
Dropout is set to 0.5. The network is further normalized
using batch normalization [13]. The model has been
trained for about 400 epochs using a learning rate of
0.001 and an Adam optimizer with decay rates of 0.9
(beta1) and 0.999 (beta2).

• The LSTM used in Table I is the standard version
of [12], trained for 300 epochs. For this model all 3
(x, y) coordinate pairs are concatenated to produce a 6
dimensional feature vector. There are 128 hidden units
for a cell, and a fully connected layer is used to linearly
activate the output.

• For the 2D Spatio-Temporal LSTM we used the vari-
ation of [20], which is itself a variant of the Multi-
dimensional LSTM[10]. [20] uses a “trust-gate”, which
filters the input in order to compensate for noise.
We apply recurrent dropout as defined in [28]. It is
trained for 150 epochs. In our model, each cell pos-

http://itekube7.itekube.com
http://itekube7.itekube.com

Methods Sampling Data Accuracy
augmentation

A LSTM [12] - X 58.71
B LSTM [12] Dynamic X 73.10

C 2D-LSTM [20] - X 60.01
D 2D-LSTM [20] Dynamic X 87.72

E Convolutional model - - 65.96
F Convolutional model - X 73.00
G Convolutional model Uniform X 80.95
H Convolutional model Rand. Uniform X 80.62
I Convolutional model Dynamic - 83.93
J Convolutional model Dynamic X 89.96

TABLE I: Results on the proposed multi-touch dataset:
different sequential models and ablation study.

sesses 64 hidden units and the trust parameter is set to
0.5. An activation layer takes all cell outputs (from the
whole grid) to compute predictions.

For every model, we use mini-batches of 64 gestures. We
use softmax on the output layers, and cross-entropy loss.
Evaluation protocol — We report classification accuracy
on the test set, which has been used neither for training nor
for architecture and hyper-parameter optimization. The split
between test data, validation data and training is subject wise.
No subject (person) is in more than one subset of the data.

All optimizations have been optimized using validation
error, which is measured with the leave-one-subject-out
(LOSOCV) protocol common in gesture recognition (test
data is not used in this protocol). After optimization of
architectures and hyper-parameters, the full combined train-
ing+validation set was used again for retraining the final
model tested on the test set.
Ablation study — In order to assess the effectivness of each
part of the process, we proceed to an incremental evaluation
of our method. All the results are displayed in Table I.
• The two recurrent baselines (LSTM and 2D-LSTM

[20]) perform worse than the convolutional model,
which confirms the reasoning that hierarchical respre-
sentations over time are useful for sequences. How-
ever, 2D-LSTMs do have several interesting properties,
while performing close to the convolutional model (-
2 points). They use only 138,631 trainable weights
in total (against 446,983 of the CNN), and they can

Predicted
1 2 3 4 5 6 7

G
ro

un
d

Tr
ut

h

1 92 6 0 1 0 1 0
2 7 91 0 0 1 1 0
3 6 5 64 9 4 11 1
4 0 1 1 91 6 1 0
5 0 0 0 2 98 0 0
6 0 0 0 1 2 97 0
7 0 1 0 0 0 2 97

TABLE II: Confusion matrix on the test set for our dataset.
Classes are: Press Tap, Press Double Tap, Press Scale, Press
Twist, Rotation, Scale, Translation

Evaluation protocol
Methods Leave-one-out User-independent [2]

Proposed method 98.62 99.38
Greedy-5 [2] N/A 98.0

TABLE III: Results on the MMG Dataset [2].

be unrolled on varying input dimensions. In general,
recurrent models are more easily generalizable while
CNNs tend to perform better for this task.

• We trained a model without transition preserving dy-
namic sampling. To this end, and in order to still have a
fixed length representation for the convolutional model,
the sequences were cropped or padded to 104 points,
which is equivalent to 1200ms. This value is fitting
95% of all the dataset gestures. We observed that longer
gestures were most likely held for too long or noisy.
The architecture was optimized for this experiment
(again on the validation set), which resulted in two addi-
tional convolutional layers with pooling which are able
to cope with these longer sequences. We added 1×3
max-pooling over the time dimension. With 65.96% on
the test set, the model performs much worse than the
version with dynamic sampling. With data augmenta-
tion, the recognition rate rises to 73.00%, but is still far
from the 89.96% we obtain with dynamic sampling.

• Data augmentation is an important part of the method,
which increases the invariance of the respresentation
with respect to the order of the finger IDs delivered by
the device, as well as the scale of the gestures. The best
performing model w/o augmentation scores at 83.93%,
almost 6 points below the best performance with aug-
mentation. Our sampling method was also compared to
a uniform and a randomized uniform sampling. This last
sampling method was defined by uniformly segmenting
the sequence, and then picking a sample from each
segment using a normal distribution.

Compared to a simple LSTM, A stacked LSTM of 472,839
weights only gains 0.55 points, while a CNN of 112,903
parameters loses only 2.97 points compared to our standard
CNN. This confirms that the result gap between the two
models is not correlated to the number of weights.
Comparison with the state of the art — We applied
the method on the MMG dataset, one of the very few
standard datasets of this problem. On this dataset, gestures
are complex drawings with a finger or a stylus, performed
with a varying number of strokes for a same class. This
problem can be seen as symbol recognition. As such, state
transitions are not relevant for this task, because temporality
does not give meaningful information. We therefore detected
geometric transitions as spatial discontinuities (corners) in
the finger trajectories. To this end, we calculated thresholded
angles of the spatial gradient and thresholded derivates of
these angles. We then sampled 48 points of each gesture
using the feature preserving method given in section IV (as
opposed to uniform sampling of 96 points done in [2]).

For this dataset, we chose an architecture similar to the 6-
layers CNN for our own dataset. However, convolutions are
1D, as there is only one stroke at one time on the surface. The
architecture is described as follows: 2x(CONV-128+POOL),
2x(CONV-256+POOL), CONV-512, 1x FC. The first CONV
layer uses a kernel of size 5 while the others use a kernel of
size3. There are a total of 747,536 trainable parameters.

Table III presents the results on this dataset. We used
different evaluation protocols: there is no test set for this
dataset, so we used the LOSOCV protocol described above
for our validation error, as well as the user-independent
protocol used in [2]. In this protocol, a user among 20 is
randomly selected as the test subject, while the training is
performed on the 19 other users. The training is done using 9
samples from every class randomly taken from every training
user. We then classify one random sample of every class from
the test subject. This process is performed 100 times and
classification results are averaged. The obtained performance
of 99.38% is close to perfect recognition and beats the state
of the art of 98.0% given in [2]. This further confirms the
interest of our model and sampling procedure.

Runtime complexity — All computations were done on
Nvidia Titan-X Pascal GPUs. Training the convolutional
models on our dataset takes 1h11min (∼400 epochs). Testing
a single gesture takes 1.5 ms, including the sampling pro-
cedure. To assert the portability of this model, runtime on
CPU (Intel i7-7700HQ) is 5ms, only 3.3 times slower than
on GPU. This is because input tensors are small, resulting
in limited GPU acceleration, I/O being the bottleneck.

VII. CONCLUSION

We have proposed a novel method for multi-touch gesture
recognition based on learning hierarchical representations
from fixed length input. We have also introduced a dynamic
sampling algorithm which preservers sharp features in the
input data. We validated the method on our dataset of inter-
action gestures and on an existing symbolic gesture dataset.
This work is the first step toward a rich and adaptative model
for touch surface interactions. The runtime complexity of the
method allows for the development of real-time applications.

The next challenge is the segmentation of a data stream in
order to recognize multiple gestures at once. This will open
our research to multi-user interactions and long dependency
gestures. In order to process gestures that require an interface
update while they are being performed (holding and moving
an object in an environment for example), we will focus
at some point on early detection processes [11]. Another
perspective is reinforcement learning in order to deal with
complex decisions while adapting to model its environment
and to user styles.

REFERENCES

[1] M. Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] L. Anthony and J. Wobbrock. $n-protractor: a fast and accurate
multistroke recognizer. In Proceedings of Graphics Interface 2012,
GI 2012, pages 117–120, 2012.

[3] F. Baradel, C. Wolf, and J. Mille. Pose-conditioned spatio-temporal
attention for human action recognition. arxiv:1703.10106, 2017.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. TPAMI, 24(24):509–521, 2002.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependen-
cies with gradient descent is difficult. Trans. Neur. Netw., 5(2):157–
166, 1994.

[6] Z. Chen, E. Anquetil, H. Mouchere, and C. Viard-Gaudin. A Graph
Modeling Strategy for Multi-touch Gesture Recognition. Interna-
tional Conference on Frontiers in Handwriting Recognition, 2014-
December:259–264, 2014.

[7] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
rnn encoder–decoder for statistical machine translation. In EMNLP,
pages 1724–1734, 2014.

[8] M. Cirelli and R. Nakamura. A survey on multi-touch gesture
recognition and multi-touch frameworks. ITS ’14, pages 35–44, 2014.

[9] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin.
Convolutional sequence to sequence learning. CoRR, abs/1705.03122,
2017.

[10] A. Graves, S. Fernández, and J. Schmidhuber. Multi-dimensional
recurrent neural networks. ICANN, (1):549—-558, 2007.

[11] M. Hoai and F. De la Torre. Max-margin early event detectors.
International Journal of Computer Vision, 107(2):191–202, 2014.

[12] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, 1997.

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR,
abs/1502.03167, 2015.

[14] N. Kalchbrenner, I. Danihelka, and A. Graves. Grid Long Short-Term
Memory. In ICLR, page 14, 2016.

[15] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. Proton++: A
Customizable Declarative Multitouch Framework. UIST, pages 477–
486, 2012.

[16] J. Koutnı́k, K. Greff, F. J. Gomez, and J. Schmidhuber. A clockwork
RNN. CoRR, abs/1402.3511, 2014.

[17] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. In NIPS, pages 1097–1105.
2012.

[18] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling data. In ICML, 2001.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE,
pages 2278–2324, 1998.

[20] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-Temporal LSTM
with Trust Gates for 3D Human Action Recognition. 2016.

[21] H. Lü and Y. Li. Gesture Coder: A tool for programming multi-touch
gestures by demonstration. SIGCHI Conference on Human Factors in
Computing Systems, pages 2875–2884, 2012.

[22] S. Malik, A. Ranjan, and R. Balakrishnan. Interacting with large
displays from a distance with vision-tracked multi-finger gestural
input. In UIST, pages 43–52, 2005.

[23] N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello,
G. Taylor, and F. Nebout. Learning human identity from motion
patterns. IEEE Access, 4:1810–1820, 2016.

[24] N. Neverova, C. Wolf, G. Taylor, and F. Nebout. Moddrop: adaptive
multi-modal gesture recognition. TPAMI, 38(8):1692–1706, 2016.

[25] L. Rabiner. A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[26] D. Rubine. Specifying gestures by example. In Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’91,
pages 329–337, 1991.

[27] C. Scholliers, L. Hoste, B. Signer, and W. De Meuter. Midas:
A declarative multi-touch interaction framework. In International
Conference on Tangible, Embedded, and Embodied Interaction, TEI
’11, pages 49–56, 2011.

[28] S. Semeniuta, A. Severyn, and E. Barth. Recurrent dropout without
memory loss. CoRR, abs/1603.05118, 2016.

[29] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries,
toolkits or training: a 1 recognizer for user interface prototypes. UIST,
85(2):159, 2007.

[30] M. Wu and R. Balakrishnan. Multi-finger and whole hand gestural
interaction techniques for multi-user tabletop displays. In UIST, pages
193–202, 2003.

[31] S.-Z. Yu. Hidden semi-markov models. Artificial Intelligence,
174:215–243, 2010.

[32] M. Zanfir, M. Leordeanu, and C. Sminchisescu. The Moving Pose: An
Efficient 3D Kinematics Descriptor for Low-Latency Action Recogni-
tion and Detection. In ICCV, 2013.

	INTRODUCTION
	Related work
	Recurrent vs. convolutional models
	Transition preserving dynamic sampling
	The Itekube-7 Touch Gesture Dataset
	Experimental Results
	Conclusion
	References

