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Abstract

Under compression, mode I cracking in the loading direction is observed in PMMA rhombus

hole specimens. Except for specimens containing flaws, spontaneous initiation is observed

experimentally with the instantaneous formation of a crack in undamaged specimens. With

increasing hole angle and size, the initiation force decreases whereas the crack arrest length

increases. Similar influences of size and angle are predicted numerically by 2D and 3D

finite element modeling of crack initiation using the coupled criterion, which allows crack

initiation surface, shape and loading level to be determined. Initiation force and crack

length depend on the specimen geometry and on boundary conditions. Compared to the

3D case, 2D modeling provides similar estimates of the crack length in the specimen middle

plane and overestimates the initiation force. The 3D crack shapes predicted numerically

qualitatively look like the crack shapes observed experimentally. A reasonable agreement

between numerical predictions and experimental measurements of initiation force and crack

length is obtained.
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1. Introduction

Crack nucleation in brittle materials can be studied in the framework of Finite Fracture

Mechanics (FFM) [8, 25], which consists in considering finite rather than infinitesimal

crack increments as in classical linear elastic fracture mechanics (LEFM). LEFM allows

the propagation of an already existing crack to be studied but fails to predict its initiation.

To overcome this difficulty, Leguillon [9] proposed to model crack nucleation by coupling
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stress and energy criteria, assuming that a crack of finite size initiates spontaneously at a

prescribed loading. This approach is based on the assumption that the material abruptly

changes from an undamaged to a cracked configuration in very short time and loading

increments, with no steady state between them. The Coupled Criterion (CC) has been

successfully used in order to predict crack initiation in several materials such as composites

[1, 2, 7, 17, 21, 29], ceramics [14, 16, 22], rocks [12], etc. It can also be applied for crack

initiation prediction at interfaces [3, 4, 18, 19, 32] or V-notch configurations [10, 11, 15, 28].

A particular interest of the CC is the possibility to identify material fracture properties

that can not easily be measured experimentally, such as, e.g, the strength and toughness of

some interfaces [3, 4, 13], or the intrinsic strength of ceramic materials [16]. Weißgraeber

et al. [34] proposed an extensive review about the CC which has, until now, mainly been

applied to 2D cases. More recent works about the CC deal with its use in a nonlinear

framework [31, 33] and its application in 3D cases [3, 4, 5, 6, 13, 23, 24, 26].

The CC states that crack initiation requires both a stress and an energy conditions to be

simultaneously fulfilled. Combining both conditions allows the determination of the crack

initiation length (in 2D) or surface (in 3D) and loading level. Depending on the studied

material and loading configuration, the crack initiation length predicted by the CC may

also be an arrest length. This phenomenon corresponds to some configurations for which

the energy criterion is dominant with respect to the stress criterion [1, 2, 35]. In most cases,

however, crack initiation is followed by an unstable crack propagation (as e.g., observed

experimentally in Homalite under mixed mode loading by Pham and Ravi-Chandar [27]),

which may even lead to the final failure of the specimen [4]. In both cases, the CC predicts

that at a given loading (the initiation loading), a crack instantaneously nucleates over a

finite length. Doitrand et al. [6] recently showed that this abrupt crack jump at initiation

in a brittle material can also be captured numerically using cohesive zone models. Although

confrontations between experimental and numerical imposed loading are usually provided

in analysis involving the CC, few works includes comparison of the crack arrest lengths

obtained numerically and experimentally. From an experimental point of view, capturing

the crack arrest length is not a straightforward task since it requires to record the material

state just after initiation. For some configurations, it cannot be provided because of the

instable crack propagation just after initiation triggering the complete specimen failure.
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It may also require the use of micro computed tomography in cases where the emerging

crack length on the specimen edge is not representative of the crack length inside the

material. Romani et al. [30] highlighted spontaneous crack initiation in open hole plaster

specimens using digital image correlation to track the crack length on the specimen edge by

noticing that the slope of the crack length as a function of the imposed loading curve was

almost vertical. However, no comparison between numerical prediction and experimental

measurement of crack length was given.

The objective of the present work is to evaluate the validity of one of the major as-

sumptions made in the CC, namely the hypothesis of a sudden crack jump at initiation,

by means of experimental characterization and numerical modeling of crack initiation in

rhombus hole specimens under compression. Experiments on PMMA specimens with vari-

ous rhombus hole size and angle are presented in Section 2. A recall of the coupled criterion

is provided in Section 3. Crack initiation in rhombus hole specimens is modeled by Finite

Element (FE) both in 2D and 3D in Section 4. The numerical prediction of crack initiation

are compared to the experimental results in Section 5.

2. Experiments on PMMA rhombus hole specimens

The material under investigation is PMMA. A main advantage of this material is its

transparency, which allows cracks inside the material to be optically detected. Several

rectangular specimens, manufactured using laser cutting in order to obtain rhombus holes,

were tested under compression on a 20 kN Zwick testing machine. The choice of com-

pression test on rhombus hole specimens is motivated by the fact that it leads to a crack

arrest after initiation, followed by a stable crack propagation when increasing the applied

load. The specimen geometry is depicted in Fig 1a. Two specimens of each configurations

have been tested. The 40 tested specimens length, width and thickness respectively are

l = 59.5+0.05mm, w =39.5+0.05mm and t =9.5+0.05mm, including five different hole

angles β and four different hole sizes (obtained by varying the vertical half-diagonal length

s× cosβ
2
, s being the rhombus side length). The specimen dimensions are summarized in

Table 1. The experimental set-up is shown on Fig 1b. Swivel platens were used in order

to ensure an uniaxial imposed compression loading. The imposed displacement rate was

0.5mm/min, which is small enough to be as close as possible to an overall quasi-static
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Figure 1: (a) Rhombus hole specimen dimensions, (b) experimental set-up of compression tests and (c)

photograph of a cracked specimen.

loading state. Images of the specimen were acquired at 1 Hz frequency using a Allied

Vision Prosilica GX camera, with a shutter speed of almost one second, which allows cap-

turing a crack that initiates between two image acquisitions. The displacement increment

between two recorded pictures is 8.3 × 10−3mm, which ensures a crack length increment

lower than 0.2mm during the stable crack propagation phase. Therefore, the uncertainty

on the measured crack length is at most 0.2mm.

For each specimen under investigation, cracking occurs at the upper and lower rhombus

V-notch in mode I. A vertical crack takes place in the direction of the compression loading.

An example of a cracked specimen is shown in Fig. 1c. The crack length in the specimen

middle plane have been measured manually from the 2D recorded cracked specimen images.

The uncertainty about the crack measurement is estimated to be at most 0.1mm. It is

worth noting that some of the studied specimen contains flaws near the V-notch that might

Specimens A B C D

s× cos(β
2
) (mm) 7.4 6.4 5.3 4.2

Specimens 1 2 3 4 5

β (deg.) 70 80 90 100 110

Table 1: Specimen dimensions: rhombus hole angle β and half-diagonal length (s × cosβ2 ). For instance,

specimen B3 contains a rhombus hole with 6.4mm vertical half-diagonal and 90 deg. angle.
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Figure 2: Focus on B1 specimen rhombus hole (6.4mm half-vertical diagonal, 70 deg. angle) (a) just before

and (b) at crack initiation. The imposed displacement variation between both states is 8 × 10−3mm.

have been created during specimen manufacturing. For those specimens, crack initiation

occurs near a flaw (cf. Fig. 2), resulting in a rather progressive growth of the crack from

this flaw. This is particularly observed for some specimens exhibiting the smallest angles

(β <90 deg.) However, for most of the specimens, spontaneous crack nucleation is observed

in the undamaged specimens. As shown in Fig. 3, there is a sudden ”jump” between a

state with no crack (Fig. 3a) and a state with a crack of a certain size (Fig. 3b).

The state just after initiation (i.e., the first recorded picture for which a crack is ob-

served) is shown for all the studied specimen in Fig.4. Even if the lower and the upper

cracks do not initiate at the same exact imposed displacement, the lower and upper part

(a) (b)

Initiation 
crack

Figure 3: Focus on B3 specimen rhombus hole (6.4mm half-vertical diagonal, 90 deg. angle) (a) just

before and (b) at crack initiation highlighting the instantaneous initiation of a crack over a finite size. The

imposed displacement variation between both states is 8 × 10−3mm.
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Figure 4: Cracks observed experimentally just after initiation in specimens having different hole sizes

(A-D) and angles (70-110 deg.).

of each specimens have been gathered on the same picture for visualization purpose in

Fig. 4. The present results show a clear evidence of abrupt initiation of a crack over

a finite increment, the crack length in the specimen middle even attaining around 7mm

in the case of the specimen containing the biggest rhombus hole with the largest angle

(Specimen A5). Although it is possible to model a perfectly instantaneous crack initiation

using, e.g., the CC [9], in experiments, ”spontaneous” must of course be understood in

terms of crack initiation occurring during time and loading increments that are small with

respect to the overall test time and imposed loading. For specimens in which spontaneous
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Figure 5: Initiation (a) Force and (b) crack arrest length as a function of the hole angle size (A-D) for

specimens with different hole size (A-D).

crack initiation occurs, the crack front shape is rather curved. The crack size just after

initiation, that will be referred to as crack arrest length in the following, depends on the

rhombus size and angle. The initiation forces and crack arrest lengths (in the specimen

middle plane) as a function of the rhombus angle for different hole sizes are shown in Fig.

5. With increasing hole size and angle, the crack size just after initiation tends to increase

whereas the initiation force decreases. For each specimen, two values of initiation force and

crack arrest length are obtained corresponding to the lower and upper V-notch. For most

of the specimens, the initiations of the lower and upper V-notch cracks do not occur at

the same exact imposed loading. This might be explained by the specimens not being per-

fectly symmetric or by the possible presence of some flaws at the V-notch. These features

might have a more pronounced influence on the first (lower initiation force value) than on

the second (larger initiation force value) crack initiation. Therefore, in the following, the

quantitative comparison of experimental measurements with numerical predictions will be

held with respect to the larger initiation force values (corresponding to the second initiated

crack) obtained experimentally for every specimens.
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3. The coupled criterion

3.1. Crack initiation

Under overall quasi-static loading, crack initiation prediction with the CC [9] consists in

fulfilling simultaneously an energy and a stress conditions. The energy condition requires

that the potential energy change between an undamaged and a damaged state (∆W (S) =

W (0) −W (S), S being the newly created crack surface) is higher than the energy needed

to nucleate the crack Gc × S (where Gc is the material critical energy release rate). The

stress condition states that prior to crack nucleation, the whole area corresponding to the

initiation crack must undergo a high enough stress state. For an isotropic homogeneous

material, this condition consists in comparing the stress normal to the crack plane σnn

to the material strength σc. Under linear elasticity and small deformation framework,

the stress and the potential energy are respectively proportional to the applied load and

the square of applied load, which allows combining both conditions into a single equation

that has to be solved in order to determine the initiation loading level and crack length

[6, 9]. The crack initiation loading level corresponds to the lower loading level for which

both the stress and the energy conditions are fulfilled. In practice, only one calculation

is sufficient in order to compute the stress field and hence the stress criterion whereas

the energy criterion requires several calculations to be computed in order to obtain the

potential energies corresponding to several crack surfaces.

3.2. Stability of the crack propagation

Crack initiation surface (in 3D, or length in 2D) and loading level can be determined

by coupling the stress and the energy conditions. The initiation surface predicted using

the CC may also be an arrest surface, depending on the studied material and loading

conditions [1, 2, 34]. Otherwise, the CC predicts an unstable propagation of the initiated

crack to a bigger surface (called the arrest surface), that may even cause the complete

failure of the specimen [3, 4, 12]. The unstable propagation of the initiated crack can be

determined by computing the differential energy release rate G = −dW
dS

, which does not

require any additional calculations since the potential energy W as a function of the crack

surface S has already been computed so as to determine the initiation configuration. It

can be shown that configurations for which the initiation surface also is an arrest surface
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correspond to stable crack propagation configurations (G = Gc and dG
dS
< 0), which means

that an increase in the loading is required so that the crack can propagate. In the case

of unstable crack propagation (G > Gc or (G = Gc and dG
dS

> 0) ) just after initiation,

the crack propagates without any increase in the loading at least up to a surface Smin

verifying G(Smin) = Gc, which provides a lower bound for crack arrest surface. During

this unstable propagation step, the released energy is higher than the energy required for

the crack propagation (since G > Gc), which allows the crack to propagate further to a

surface Smax if all this energy excess is consumed in propagation rather than dissipated

elsewhere [12, 34]. The surface Smax, whose determination is detailed in [2, 6, 34], is an

upper bound for crack arrest. In experiments, only a part of the energy excess may be

consumed in further crack propagation [12, 35]. Since it is really difficult to quantify the

ratio between the energy excess that is dissipated or used for further crack propagation,

the crack surface observed experimentally may be compared to the lower and upper bound

estimates of the crack surface.

4. Crack initiation modeling

4.1. Finite Element models

The implementation of the CC for crack initiation prediction in PMMA rhombus hole

specimens requires both the stress and the energy conditions described in Section 3 to be

computed. This is done by FE calculations on undamaged and damaged configurations

of rhombus hole specimens, whose dimensions are depicted in Fig. 1a. The FE software

used for the whole analysis is Abaqus v6.13. The mechanical properties used for both

2D and 3D calculations are E = 3000MPa (determined experimentally by tensile test on a

specimen with no hole) , ν = 0.37, σc = 72MPa (properties given by the manufacturer) and

Gc = 250J/m2 (determined by confrontation of numerical and experimental crack advance

as a function of the force in the stable propagation part of the test). The symmetric

configuration of the specimen allows modeling only one specimen quarter (2D) or eighth

(3D). It can be checked numerically that there is no interaction between the upper and

the lower crack therefore modeling the initiation of either one or two cracks lead to similar

results. A displacement along (Oy) direction is prescribed on the specimen top edge (2D)

or face (3D). The stress criterion is computed from a calculation on undamaged specimen
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Figure 6: Typical (a) 2D and (b) 3D meshes of one (a) quarter and (b) eighth of the specimen.

meshed with 4 (2D) and 8 (3D) node elements (Fig. 6). As evoked in [6, 21, 22], the

initiation length (in 2D) predicted by the coupled criterion usually is a fraction of the

material characteristic length Lmat = E×Gc

σ2
c

(in the present analysis, Lmat ≈ 0.145mm),

which requires fine enough meshes to be correctly captured. A 0.5 × 10−3mm minimum

mesh size is imposed near the V-notch, the mesh being progressively unrefined far from it,

which ensures a correct representation of the initiation length or surface as explained in

[6].
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Figure 7: Stress (a) field and (b) isocontours in (Oyz) plane. (c-d) 3D Mesh of one eighth of the specimen

including the crack shape determined using a stress isocontour (in (a-c), a symmetry of the stress field and

mesh with respect to (Oxy) plane is applied in order to display the whole crack).
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The energy criterion is obtained by computing the potential energy of both the un-

damaged and damaged configuration for several crack lengths or surfaces, which requires

the generation of the corresponding crack meshes. In 2D, a crack is only defined by

one parameter, namely its length along (Oy)-axis, so that 2D cracked mesh generation is

straightforward. Cracked mesh generation is more complex in 3D since the crack shape

must be determined a priori. Doitrand and Leguillon [3, 4, 5] proposed to determine the

3D possible crack shapes using the stress criterion isocontours. This approach is particu-

larly convenient since a single parameter is sufficient to describe the 3D crack shape, hence

limiting the number of calculations to perform to solve the coupled criterion. Moreover,

this method ensures a strict fulfillment of the stress criterion over the whole crack surface.

Fig. 7a and b shows the normal stress field and isocontours in the crack plane in the

undamaged configuration (one quarter of the specimen is shown for visualization purpose),

which allows the stress criterion to be computed. It is worth noting that qualitatively, the

cracks obtained based on the stress isocontours present a front that has a curved shape,

similarly to that observed experimentally (cf. Figs. 3 and 4). The same conclusion was

drawn by Doitrand and Leguillon [5] concerning the crack shapes obtained based on the

stress criterion isocontours under mode I+III loading. Fig. 7c and d show a 3D mesh of

one quarter or eighth of the specimen that includes the topology of a crack based on a

stress isocontour level. The 3D cracked configurations are meshed with quadratic 10 nodes

tetrahedrons in order to avoid meshing difficulties. Since the crack is located in a sym-

metry plane, it is quite convenient to generate the cracked configuration by removing the

symmetry conditions on the crack nodes. The energy criterion is obtained by computing

the potential energy change for 15 values of crack surface, each crack shape being based

on a stress isocontours. It can be noted that for each cracked configuration, the potential

energy of the undamaged and damaged configuration are based on the same mesh topology,

the only difference between both cases being the symmetry condition imposed or not on

the crack nodes. Using the same mesh topology allows reducing the numerical errors made

on the calculation of the potential energy change. Both 2D and 3D approaches have been

automatized using python scripts. From a computational point of view, the whole analysis

(model generation, calculations and post-treatment) duration takes around 15 minutes in

2D and one hour in 3D.
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Initiation force (N) Crack arrest length (mm)

No sliding Free sliding No sliding Free sliding

Specimen A, β =70 deg. 11446 12749 [0.3, 0.5] [0.4, 0.7]

Specimen D, β =70 deg. 17138 20373 [0.05, 0.1] [0.07, 0.1]

Specimen A, β =110 deg. 5883 6053 [6.4, 12.6] [7.7, 16.5]

Specimen D, β =110 deg. 9273 10088 [2.9, 6.6] [2.9, 6.5]

Table 2: Initiation force and crack arrest length obtained numerically in 2D with either free sliding or no

sliding boundary conditions for specimens A and D with β =70 deg. or 110 deg. rhombus angle.

4.2. Influence of boundary conditions on crack initiation

The specimen top and bottom faces are in contact with the swivel platens, thus raising

the question whether these faces are free or not to slide along x and z direction. The

initiation force and crack arrest length lower and upper bounds predicted using the CC

with faces free or not to slide are summarized in Table 2 for configurations corresponding

to specimens A and D with 70 deg. or 110 deg. rhombus angle. Taking into account or

not the top and bottom specimen face sliding has an influence on initiation force. The

smaller the specimen hole and hole angle, the lower the differences on the initiation force

between no or free sliding boundary conditions (from around 2% for Specimen A5 to 25%

for Specimen D1). Experimentally no sliding of the specimen on the swivel platen was

observed therefore, in the following, we will consider boundary conditions corresponding

to no sliding of the specimen along top and bottom faces.

4.3. Influence of rhombus angle and size on crack initiation

It has been shown in Section 2 that experimentally, crack arrest length and initiation

force depend on the rhombus hole size and angle. Following the method explained in

Section 3, crack initiation has been computed applying the CC in 2D for the different hole

sizes and angles summarized in Tab. 1. Figure 8 shows the obtained initiation forces and

crack arrest lengths as a function of the hole angle. The trends of initiation force and crack

arrest length as a function of the rhombus angle predicted numerically with the CC are

similar to those obtained experimentally. With increasing rhombus angle or hole size, the

initiation force decreases whereas the crack arrest length decreases. It can also be noted

that the range in crack arrest length is increasing with increasing hole angle.
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Figure 8: (a) Initiation force and (b) crack arrest length as a function of the rhombus angle β for several

hole size.

4.4. Comparison between 2D and 3D models

In the literature, few works concern the comparison between 2D and 3D applications of

the CC. Doitrand and Leguillon [4] compared both approaches in the case of crack initiation

in scarf adhesive joints under traction and bending. The 3D crack shapes based on the

stress isocontours were very close to the extruded 2D crack shapes (i.e, rectangles). Both

2D and 3D predictions led to good qualitative trends compared to experimental results,

a slight better quantitative agreement being obtained in 3D. In the present analysis, it is

clear from Fig. 7 that 3D crack shapes differ significantly from rectangles and qualitatively

look like crack shapes observed experimentally. For instance, for the crack shapes based on

the stress isocontours shown in Fig. 7b, the crack length in the specimen middle plane can

be around twice as large as its length on the specimen edge. The comparison between 2D

and 3D models requires a common parameter describing the crack shape to be determined.

A possibility consists in selecting the crack surface, assuming that the 2D calculations are

representative of a rectangular crack that would cross the whole specimen. The 3D crack

may also be described by its length in the specimen middle plane and compared to the

2D crack length. Fig. 9 shows the 2D and 3D normalized (i) normal stresses σnn

σc
and

(ii) incremental energy release rates Ginc

Gc
(where Ginc = W (0)−W (S)

S
), as a function of either

the crack surface (Fig. 9a) or the crack length in the specimen middle plane (Fig. 9b).
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Figure 9: Normalized incremental energy release rates and normal stresses obtained through 2D and 3D

FE calculations as a function of (a) the crack surface and (b) the crack length in the specimen middle

plane.

Describing 2D and 3D cracks by their surfaces lead to significant differences between the

incremental energy release rates and stresses whereas similar evolutions are obtained if the

crack length in the specimen middle plane is chosen to describe the crack. In particular,

the incremental energy release rate maximum obtained in 3D is correctly represented in

2D only if the crack length corresponds to the 3D crack length in the specimen middle

plane. Therefore, 2D modeling seems to provide a good representation of the 3D crack

advance in the specimen middle plane. Fig. 10 shows the initiation forces and crack

arrest lengths obtained as a function of the rhombus angle for several hole size. The crack

arrest lengths predicted either in 2D or 3D are really close to each other, which supports

the conclusion that 2D modeling provides an appropriate representation of the 3D crack

length in the specimen middle plane. However, crack initiation force is overestimated in 2D

compared to the 3D case. Differences between 4% and 15% are obtained between 2D and

3D initiation forces for the studied configurations. It is worth noting that, in the present

study, the transparency of the material allows measuring the crack length in the specimen

center. However, for non-transparent materials for which the crack length in the specimen

middle plane cannot be directly measured, the crack length measured experimentally on

the specimen edge may be underestimated compared to that in the specimen middle plane.
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Figure 10: (a) Initiation force and (b) crack arrest length upper and lower bounds as a function of the

rhombus angle for (a) several hole size (For visualization purpose, the crack arrest length as a function of

the rhombus angle is only displayed for one hole size with half-diagonal s× cosβ2 = 4.2mm).

In this case, special care must be taken when comparing experimental measurement and

numerical results, especially if 2D modeling is employed.

5. Comparison between numerical and experimental results

The experimental data measured from the tests presented in Section 2 are compared

to the numerical predictions obtained using the CC. Tables 3-6 summarize the initiation

forces measured experimentally and obtained through 2D and 3D CC numerical modeling.

In Table 3-6, the load corresponding to the appearance of the first crack shows anomalies

Initiation force (N) Specimen A CC - 2D CC - 3D

β =110 deg. [5352, 5493] 5883 5457

β =100 deg. [6043, 6481] 6600 6136

β =90 deg. [6295, 6526] 7577 7068

β =80 deg. [6408, 6663] 9088 8246

β =70 deg. [6329, 7756] 11446 10066

Table 3: Initiation force as a function of the specimen rhombus hole angle obtained experimentally and

numerically by 2D and 3D FE modeling for specimens A.
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Initiation force (N) Specimens B CC - 2D CC - 3D

β =110 deg. [6053, 6118] 6643 6333

β =100 deg. [6396, 7228] 7469 6982

β =90 deg. [7581, 8968] 8774 7954

β =80 deg. [7591, 7806] 10395 9289

β =70 deg. [9057, 10174] 12822 11324

Table 4: Initiation force as a function of the specimen rhombus hole angle obtained experimentally and

numerically by 2D and 3D FE modeling for specimens B.

Initiation force (N) Specimens C CC - 2D CC - 3D

β =110 deg. [7126, 7288] 7833 7270

β =100 deg. [7919, 8678] 8722 8003

β =90 deg. [8969, 9347] 10045 9033

β =80 deg. [9595, 10127] 12079 10628

β =70 deg. [11001, 12308] 14842 12886

Table 5: Initiation force as a function of the specimen rhombus hole angle obtained experimentally and

numerically by 2D and 3D FE modeling for specimens C.

Initiation force (N) Specimens D CC - 2D CC - 3D

β =110 deg. [7887, 8652] 9273 8433

β =100 deg. [9331, 12420] 10261 9222

β =90 deg. [9557, 12631] 11833 10517

β =80 deg. [10541, 12339] 13966 12334

β =70 deg. [12312, 12379] 17138 15059

Table 6: Initiation force as a function of the specimen rhombus hole angle obtained experimentally and

numerically by 2D and 3D FE modeling for specimens D.

for some small angle configurations. As already mentionned they are likely due to a bigger

sensitivity to defects in these specimens. Fig. 11 presents the initiation force variation

as a function of the rhombus angle measured experimentally and obtained numerically in

3D. The initiation forces measured for specimens in which crack initiation is influenced

by a flaw (cf. Fig. 2 and Table 3 for instance) are lower than that predicted by the CC.
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Figure 11: Initiation forces (i) measured experimentally and (ii) obtained numerically using the CC (in

3D) as a function of the rhombus hole angles of specimens (a) A, (b) B, (c) C and (d) D.

Since in the model, the influence of possible flaws was not taken into account differences

up to 30% (3D) and 50% (2D) on initiation forces are obtained for these configurations.

However, for specimens in which a spontaneous crack initiation was observed, a reasonable

agreement between numerical predictions and experimental measurements is obtained. Fig.

12 shows the crack arrest lengths as a function of the specimen rhombus angle for the four

studied rhombus hole sizes. It seems that the crack arrest upper bound predicted by the

CC overestimates the crack lengths measured experimentally. However, similar orders of

magnitude are obtained between the crack arrest length measured experimentally and the

crack arrest lower bound predicted by the usual arrest criterion G = Gc and dG
dS

< 0 (cf.

Section 3).
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(a) (b)

(c) (d)

Figure 12: Crack arrest lengths (i) measured experimentally and (ii) lower and upper bounds obtained

numerically using the CC as a function of the rhombus hole angles of specimens (a) A, (b) B, (c) C and

(d) D.

6. Conclusion

The experimental characterization of crack initiation in PMMA rhombus hole speci-

mens allows supporting a major hypothesis assumed when modeling crack initiation with

the coupled criterion: Spontaneous crack initiation is observed experimentally in spec-

imens that do not contain major flaws around the V-notch, which means that a crack

nucleates and propagates in an unstable manner over a finite size in a really short time

and displacement increments. Since crack nucleation followed by unstable propagation to

an arrest length occurs quasi-instantaneously, both phases (initiation and unstable propa-

gation) cannot be distinguished experimentally as easily as in numerical models. Both the
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initiation force and crack size depend on the rhombus hole size and angle. With increas-

ing hole size and angle, the crack size just after initiation increases whereas the initiation

force decreases. For all the tested specimens, the crack front shape is curved. A rather

progressive crack growth is observed in the case of specimens containing a flaw around the

V-notch.

The same initiation force and crack length trends as obtained experimentally depending

on the rhombus hole size and angle are qualitatively well captured by 2D and 3D FE

modeling of crack initiation using the coupled criterion. These quantities depend both on

the specimen geometry and on boundary conditions. Compared to the 3D case, modeling

the problem in 2D provides a good estimate of the crack evolution in the specimen middle

plane. Indeed, the 2D and 3D incremental energy release rates as a function of the crack

surface show significant differences whereas similar evolutions are obtained as a function

of the 2D crack length or the 3D crack length in the specimen middle plane. Moreover, the

crack arrest lengths obtained in 2D and 3D (considering the crack length in the specimen

middle plane) are really close to each other. The main difference between 2D and 3D

results lies in the predicted initiation force, which is overestimated by up to 15% in 2D

compared to 3D results for the studied configurations. Compared to experimental data,

the initiation force predicted using the CC is clearly overestimated for specimens for which

a crack nucleated around a flaw. However, similar order of magnitude are obtained for

the specimens for which a spontaneous crack initiation was observed. The predicted crack

arrest length lower bounds are also in the same order of magnitude as those measured

experimentally.

Rhombus hole specimens are quite convenient to study crack initiation since the stress

singularity created by the V-notch allows considering only a linear elastic behavior of the

material. If circular hole specimens are considered, no singularity emanates from the hole

and larger imposed loading are necessary, which may probably require to take into account

the material nonlinear behavior. This is an interesting perspective since up to now, only

few application of the coupled criterion including material or geometrical nonlinearities

[31, 33] exist.
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