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Abstract15

Abdominal aortic aneurysms (AAA) are localized, commonly occurring aortic di-16

lations. Following rupture only immediate treatment can prevent morbidity and mor-17

tality. AAA maximal diameter and growth are the current metrics to evaluate the18

associated risk and plan intervention. Although these criteria alone lack patient speci-19

ficity, predicting their evolution would improve clinical decision. If the disease is known20
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to be associated with altered morphology and blood flow, intraluminal thrombus de-21

posit and clinical symptoms, the growth mechanisms are yet to be fully understood.22

In this retrospective longitudinal study of 138 scans, morphological analysis and blood23

flow simulations for 32 patients with clinically diagnosed AAAs and several follow-up24

CT-scans, are performed and compared to 9 control subjects. Several metrics stratify25

patients between healthy, low and high risk groups. Local correlations between hemo-26

dynamic metrics and AAA growth are also explored but due to their high inter-patient27

variability, do not explain AAA heterogeneous growth. Finally, high-risk predictors28

trained with successively clinical, morphological, hemodynamic and all data, and their29

link to the AAA evolution are built from supervise learning. Predictive performance30

is high for morphological, hemodynamic and all data, in contrast to clinical data. The31

morphology-based predictor exhibits an interesting effort-predictability tradeoff to be32

validated for clinical translation.33

keywords: abdominal aortic aneurysm; growth; CFD (Computational Fluid Dynam-34

ics); haemodynamics; ILT (Intra-Luminal Thrombus); longitudinal study; risk prediction;35

supervised learning; wall shear stress36
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1 Introduction37

Abdominal aortic aneurysms (AAA) are local dilations of the abdominal aorta which can38

rupture when blood pressure overcomes artery wall resistance. Following rupture only urgent39

treatment can prevent morbidity and mortality. It is the 14th leading cause of death in the40

USA57 with a prevalence of 8.9% for men and 2.2% for women.41

AAA are generally asymptomatic and generally detected through unrelated examinations.42

Risk is assessed using its maximal diameter (Dmax)
47, taken at the outer wall of the aneurysm43

on a plane perpendicular to the lumen centerline16. It includes the lumen, the Intra Luminal44

Thrombus (ILT) and the arterial wall which diameter cannot be distinguish on CT-scans. If45

the Dmax exceeds a statistically-based threshold of 55 mm for men and 45-50 for women13
46

or if AAA Dmax growth exceeds 1cm yr−1 17, patients will undergo open or endovascular47

aneurysm repair. Otherwise a yearly control is performed.48

New guidelines18 define a more complex follow-up and repair decision process, highlight-49

ing the difficulty to predict AAA evolution based on its current diameter. Dmax is an imper-50

fect criterion as the estimated annual rupture rate of 4.0 to 4.9 cm AAA, is non-negligible51

(1.0% per year)48 and 23% of ruptured AAA are less than 5 cm20. In contrast, rupture rate52

in large aneurysms could be lower than expected with annual rupture rate of 3.5% for 5.5 to53

6 cm and 4.1% in 6 to 7 cm AAAs48. These data show the maximal diameter/rupture rela-54

tionship to be nonlinear and inaccurate to predict rupture28. Identifying better performing55

metrics is an active research field34. Risk-linked predictors are usually based on geometric56

shape, mechanical tissue properties and flow topology thanks to the increased availability57

of patient-specific 3D AAA models from computed tomography angiography (CTA). Several58

fields can even be combined in multi-physics and multi-scale modelling making it possible59

to simulate AAA growth29,67 by coupling the biology and mechanics of the disease. Known60

metrics of interests are AAA volume, surface, bulge height, tortuosity and local surface cur-61

vature55,56 as well as mechanical stress, intrinsically relying on tissue properties, strongly62

heterogeneous and nonlinear49 and also patient specific50. From a fluid point of view, blood63

flow is known to play a crucial role in AAA evolution54,5, as well as ILT presence and64
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growth30,7.65

Very few studies focus on local parameters and their variations between two scans. Tzi-66

rakis et al.64 observed on six AAA, a relationship between ILT growth and Time Average67

Wall Shear Stress (TAWSS) and Oscillatory Shear Index (OSI) but not with Relative Res-68

idence Time (RRT), while Arzani et al.4 noticed in ten AAAs a significant relationship69

between ILT deposition and low OSI but not with low TAWSS. Both studies included small70

AAA (Dmax < 53 and < 50 mm respectively). Zambrano et al.71 observed a relationship71

between low Wall Shear Stress (WSS) and the ILT deposition locations. Furthermore on72

their 14 patients, ILT volume accumulation correlated with the AAA growth. The investi-73

gation of the hemodynamic mechanisms underlying AAA expansion is a promising approach74

to understand, and potentially provide more patient-specific tools to characterize, AAA vul-75

nerability. From a solid mechanics point of view, Martufi et al.41 found that ILT thickness76

and wall stress were linked to the local growth rate.77

In summary, although repair criteria alone lack patient specificity, predicting their evo-78

lution would improve clinical decision for follow-up and repair. If the disease is known to79

be associated with altered morphology and blood flow, intraluminal thrombus deposit and80

clinical symptoms, the growth mechanisms are yet to be fully understood. The goal of this81

work is thus to better understand AAA evolution by exploring the potential dependence82

between computed hemodynamics factors and morphological metrics of AAA growth on a83

larger longitudinal study. In this retrospective longitudinal study of 138 scans, morphologi-84

cal analysis and blood flow simulations for 32 patients with clinically diagnosed AAAs and85

several follow-up CT-scans, are performed and compared to 9 control subjects. First, the86

definition of a healthy group, versus low and high risk groups in terms of AAA evolution87

is motivated. The methods also explain the geometrical and blood flow numerical models,88

and define their postprocessing into global and local metrics. Global parameters distinguish-89

ing the different groups are explored, followed by local correlations between hemodynamics90

metrics and AAA growth. Finally, high-risk predictors trained with successively clinical,91

morphological, hemodynamic and all data, and their link to the AAA evolution are built92
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from supervise learning. A schematic representation of the article structure is presented in93

Figure 1.94

[Figure 1 about here.]95

2 Materials and Methods96

This section first describes the patient population and associated definitions. Next, the97

geometrical model construction and blood flow simulation set-up are explained. Finally,98

postprocessing of geometry and CFD results is detailed, defining global and local metrics99

associated with each scan, along with the statistical analysis methods used in this study.100

2.1 Patient population and associated definitions101

This study is HIPAA (Health Insurance Portability and Accountability Act) compliant and102

approved by the local institutional review board (IRB)1. Since all data were anonymized,103

the consent form was waived by the IRB for all patients. Forty-one patients are included in104

the study, thirty-two with diagnosed AAA and nine healthy. Patients are considered healthy105

in the absence of AAA (Dmax < 30 mm) and significant arterial disease. They necessitated106

an abdominal scanner but without peripheral disease, were above 48 year old and were sex-107

matched with the AAA patients. AAA patients were selected from a clinical data base of108

patients having CT follow-up for AAA in our institution. The inclusion criteria for AAA109

patients were: 1. AAA of more than 30 mm, 2. At least one baseline CT and 2 following CT110

scan examinations, 3. All selected CT scans were acquired with contrast injections and with111

a slice thickness of less than 2.5 mm in order to ensure accurate and efficient segmentation112

of the lumen and ILT.113

This retrospective study does not include ruptured AAA. Usually patients with ruptured114

AAA are rarely followed by CT-scan as AAA is usually undiagnosed in such cases. Moreover115

1Approval #12.153 from the research ethics committee of the University of Montreal Health Centre

(CHUM)
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the AAA size (Dmax) can be influenced by AAA deflation following rupture and AAA outer116

wall is more difficult to evaluate in presence of a periaortic hematoma. Dmax value and117

growth are therefore combined as a surrogate risk metric. In the text the term risk will refer118

to this definition and not rupture risk.119

The AAA population is classified in high and low-risk populations based on the recognized120

criteria of AAA size and growth over time (Dmax and Dmax growth). The commonly used121

clinical thresholds to indicate an open or endovascular surgery are a Dmax of 55 mm for122

male and 45-50 mm for women and a growth of more than 5mm in 6 months17. New123

guidelines18 temper these thresholds, indicating the need for more personalized approaches.124

There is less consensus on the growth threshold. Growth rate has been reported to be125

around 2mm yr−1 11,59. The 5mm/year growth threshold has previously been recognized as a126

fast growth criterion25 and this growth variation is above the 95% of the confidence interval127

of Dmax measurement error58. To define high risk at scan time n, we thus choose ’either128

Dn
max is over 50mm for women and 55mm for men, or Dmax variation (Dn+1

max−Dn
max between129

consecutive scans) is above 5mm yr−1’. A patient is considered at low risk if he/she is not at130

high risk. Cases are considered as high risk, as soon as one of the high risk criteria is met.131

For a patient at low risk, if this occurs, the patient switches to high risk for the rest of the132

follow-up scans.133

2.2 Geometrical model construction134

For all scans, lumens are extracted by an active contour method implemented in ITK-135

Snap 70. Aortic models include part of the suprarenal aorta including the ostia of coeliac136

trunk, mesenteric artery and renal arteries, as well as infrarenal aorta, and internal and137

external iliac arteries. ILTs are segmented using ORS Visual 37, which is based on active138

snake segmentation.139
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2.3 Blood flow simulation set-up140

The incompressible Navier-Stokes equations are solved in each aortic model as detailed in34.141

The flow is considered laminar, homogeneous and non-Newtonian, the viscosity following the142

Quemada model40,35. Model parameters are chosen according to the study of Buchanan et143

al.14 based on the rheological data from Kaibara et al.35. Peak Reynolds numbers of 1700-144

2000 at the proximal inlet in the simulations are within the physiological range28 as well145

as the Womersley numbers, ranging from 10 to 1544. A generic flow rate is imposed at the146

inlet43 (see Figure I) with Womersley profile66. The lumen is defined as the space inside the147

aorta, either bounded by the ILT or the arterial wall. Both are considered rigid and a no-slip148

condition for the blood is imposed on the boundary they form. The ILT is thus excluded from149

the computational domain. Complex re-circulation patterns oftentimes exists stretching up150

to the outlet planes. Additionally, reverse flow during diastole27 is likely to create numerical151

instability. Gradient stabilization to control complex backflow in the domain similarly to152

Bertoglio et al.6 is implemented. At outlets, an RCR Windkessel model is applied (see153

Table I in Supplementary materials for parameter value). The domain is discretized using154

a polyhedral mesh with refined boundary layers around 0.8-1 million elements (edge length155

≈ 0.35mm ), and the Navier-Stokes equations are discretized with finite volume methods156

(FVM) implemented in the OpenFOAM toolbox. The convective and diffusive term are157

discretized using a second order Gauss scheme and the time scheme is Crank-Nicholson, also158

second order31,32. The solver is a large time-step transient solver for an incompressible fluid159

for solving pressurevelocity coupling, the PIMPLE (merged PISO-SIMPLE) algorithm. The160

solution is considered converged if:161

• each time step is fully converged under chosen residuals criteria, i.e. 10−6 for pressure162

and 10−8 for velocity; an adaptive time-step was used with the CFL < 1 criteria.163

• the periodic convergence is achieved, typically after 5-7 cardiac cycles.164

• the solution (velocity, WSS) is independent of further mesh refinement, computed using165

the Grid Convergence Index (GCI)52
166
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2.4 Definition of global and local metrics167

Clinical metrics. The clinical metrics are listed in Table 1. Their availability among the168

patient population is reported in the same table.169

Lumen centerline and patch description. Most morphological metrics rely on the computa-170

tion of the centerline of the lumen. The centerline is extracted with VMTK 2, which is based171

on the Voronöı diagram decomposition of the lumen. The subdomain of interest, i.e. the172

lumen between the lower renal artery and the iliac bifurcation, is automatically extracted by173

splitting the surface using the centerline bifurcation information1. It allows a reproducible174

domain split necessary for surface and volume comparison. Once extracted, the lumen is175

split along its rotational (24 divisions or 15◦) and longitudinal axis, with respect to the cen-176

terline curvature (25 divisions), resulting in 600 patches3 (see Figure 2 for the method and177

Figure II in Electronic Supplementary Material for an example). All fields defined on the178

lumen are averaged on each subdivision. Assuming spatial deformation is spatially homo-179

geneous between acquisitions, each averaged field is compared to its value at the next time180

step at the estimated same location. Local change is thus computed on a grid-like array : it181

is the patch-wise variation.182

The statistical analysis is thus divided in the following manner:183

• Unique value for each AAA, (e.g. ILT volume) and its annual variation ; see Table 2184

and Table 3185

• Spatially distributed metrics, such as TAWSS. First, the distribution information is186

reported (extrema, average and standard deviations, see Table 4), and then the patch-187

wise annual variation, also reported as extrema, average and standard deviation. For188

example, the local change of OSImax refers the maximal change of OSI value from one189

patch at time t to the same patch at time t+ 1. See Table 5 and Table 6.190

[Figure 2 about here.]191
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Morphological metrics. To characterize the AAA morphology, we consider (see Table II for192

definition and references): 1) the maximal lumen diameter Dlumen
max , computed as the maximal193

diameter of the AAA luminal sections, defined perpendicular to the lumen centerline, 2)194

the maximal diameter Dmax measured at the outer wall, computed normal to the outer195

wall centerline, 3) the ILT thickness (local and global metric), computed as the Euclidean196

distance between the lumen and the outer AAA wall, 4) the lumen centerline curvature, 5)197

the lumen centerline tortuosity, 6) the Normalized Shape Index (NSI) which characterizes198

the deviation from a sphere (NSI = 1). As the arterial wall is not discernible from the ILT,199

it is considered of constant thickness and subtracted from the measured distance. The wall200

thickness covered by ILT is chosen of a constant value of 1mm33. A few other metrics are201

also considered. The lumen surface and volume are defined by the surface area and the202

volume of the portion of the aortic lumen comprised between the lowest renal and the iliac203

bifurcation. The ILT volume is also computed for the same region of interest, and the total204

aortic volume is the sum of lumen and ILT volumes. The ILT coverage is defined as the205

percentage of the lumen covered with ILT, computed from the number of surface patches206

on which the average ILT thickness was over one millimetre. The local growth criteria, as207

defined in the patch-description paragraph, is the ILT thickness change60.208

Hemodynamics metrics. Finally, to evaluate the flow alteration at the wall, the TAWSS,209

OSI, RRT and Endothelial Cell Activation Potential (ECAP) are computed from the WSS210

at the lumen wall (see Table II), leading to local and global metrics as defined in the patch-211

description paragraph.212

2.5 Statistical analysis213

Global descriptive statistics. First, descriptive statistics are performed to report population214

characteristics with a univariate analysis to compare patient populations Figure 1. The215

population is divided into three groups, as defined in section 2.1: control cases without AAAs,216

cases with AAA but considered at low-risk, and cases with AAA at high-risk. Potential217
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correlation between groups for each variable is computed by a Welch’s t-test. Similar to218

the Student’s t-test, it accounts for the unequal variance between the samples. Samples are219

normally distributed as required by the test. In the results, the tables report the lists of220

variables or global metrics used to describe the AAA and the distribution of their values221

among the healthy (H), low-risk (LR) and high-risk (HR) patients. For each variable, a222

Welch’s t-test is performed between the healthy and low-risk groups (H-LR), the healthy and223

low-risk groups (H-HR) and the low-risk and high-risk groups (LR-HR). When significant224

difference is observed (p < 0.05) between two groups, it is reported in the 4th column.225

Annual variation of hemodynamic parameters and thrombus thickness are computed locally;226

i.e. patch to patch.227

Local descriptive statistics Descriptive statistics are also performed locally (patch-wise) to228

evaluate the relationships between flow and local morphological metrics Figure 1, in terms229

of local Euclidean lumen border distance to the centerline (thereafter called ’distance to230

the centerline’), ILT thickness and patch surface area. Unsupervised outlier detection is231

performed on each dataset with the Local Outlier Factor (LOF) method12. As described232

in Rowland et al. in particular for WSS51, local correlation between a phenomena and a233

bio-mechanical metric is hindered by spatial auto-correlation. One reported alternative is234

bootstrapping26 and performing the statistical test on the new dataset. Here, repeating235

10000 times the non-parametric Spearman test yields reproducible results. Considering the236

large amount of data, distribution of Spearman’s ρ is reported. Indeed, with a large enough237

sample size, a very weak correlation can be significant, when the observed effect is likely not238

real and due to chance in a statistical sense.239

Risk predictor methods. Next, we try to anticipate the behaviour of AAA, i.e. to predict the240

risk based on current information Figure 1. The (predicted) risk criteria is therefore chosen241

to account for the state after the time evaluated tn: the Dmax variation was conserved242

((Dn+1
max −Dn

max)/(t
n+1 − tn)) but the Dmax considered is Dn+1

max. The thresholds defining low243

versus high risks are the same as in section 2.1.244
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To better understand the contribution of the different groups of metrics on risk assess-245

ment, the predictor is first built using each set separately, i.e. Dmax only, clinical, morpholog-246

ical and hemodynamic metrics and then all mixed. The features (input layer) are combined247

using a neural network to classify whether the next time step is at high-risk or not (output248

layer). Back-propagation is used to determine weights. Here, a multi-layer perceptron net-249

work, implemented in Theano 63 is used. The ten features explaining the most the dataset250

variance are chosen based on a Principal Components Analysis (PCA). This prevents having251

too many features compared to the number of samples and the associated risk of overfitting.252

Hyperparameters are automatically tuned61 to maximize the Area Under the Curve (AUC)253

of the Receiver Operating Characteristic (ROC) curve and f1-score.254

To evaluate the five estimators performance and avoid overfitting, we run repeated k-255

fold cross correlation with k = 3 and 10 repetitions. Features finally selected for each set256

are reported in Figure 8. For clinical interpretation of the results, the ROC curves with257

AUC value, and the relative rank of features with respect to the predictability of the target258

variable evaluated by a multi-class AdaBoost 15, are reported. AUCs medians are compared259

with the Delong et al.21 method.260

3 Results261

3.1 Population description262

Healthy population mean age is estimated at 60.4± 12.4 years while AAA patient mean age263

is 73.5±7.4 (p < 0.05). Among the AAA patients, 5 are women (15.6%, mean age 73.6±9.4264

years) and 27 men (84.4%, mean age 73.5 ± 7.0 years, (p = 0.98)) while in the healthy265

group, one is a woman (11.2%, 78 years) and 8 are men (88.8%, mean age 58.4±11.6 years).266

At least three follow-up CT-scans are available and suitable for domain reconstruction for267

AAA patients (mean 4± 1.47, range 3-9). Mean time between follow-up CT is 12.74± 12.41268

months (range : 0.16 to 79.63 months and one case where two CTs were performed on the269

same day) and the mean follow-up duration is 38.62± 22.53 months (range : 6.35 to 111.42270
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months). Clinical data is available for most patients (see Table 1).271

[Table 1 about here.]272

Regarding the healthy group, Dmax is 18.2± 3.71mm (range: 14.5− 27.45mm) whereas273

in AAA patients Dmax is estimated 42.68± 8.39mm (range: 22.65− 67.49mm). At baseline,274

7 (21.9%) AAA Dmax are over the high-risk threshold and 4 (12.5%) have a growth over275

5mm/year ; 2 (6.25%) achieve both. At the last exam, and 16 (50%) are over the high-risk276

Dmax threshold and 9 (28.1%) have reached the high-risk growth threshold at the previous277

follow-up (defined as Dn+1
max − Dn

max) ; 7 (21.9%) achieve both. The lumen of the healthy278

aortas are shown in Figure 3. Most of them present various degrees of tortuosity, their279

length increasing with age69.280

3.2 Distribution of clinical, morphological and hemodynamic pa-281

rameters in the studied population282

[Figure 3 about here.]283

This section first studies how metrics associated with the different scans vary among the284

population and which ones distinguish the different patient groups (see Figure 1). The distri-285

bution of the clinical, morphological and hemodynamic variables among the three groups is286

presented in tables ( Table 2, Table 3, Table 4, Table 5 and Table 6) as well as the correlations287

between groups for each variable.288

139 CT-scans and simulations, from 41 patients, are split into three study groups (healthy289

(H), low (LR) and high-risk (HR)) as defined in the Methods section. The LR and HR groups290

include 59 and 70 cases respectively. Univariate analysis reveals that the Dmax as well as 10291

other variables significantly separate all three groups, some of those being highly correlated,292

such as volumes and diameters. 18 variables could significantly separate the healthy from the293

low-risk group, 18 the healthy from the high-risk group, and 27 the low-risk from the high-risk294

group. For the clinical metrics, all but BMI, separate the groups: pressure for low vs high295
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risks, age, dyslipidemia and statins for healthy vs the other groups. Regarding morphology,296

all metrics defined for healthy and AAAs can separate the three groups, except for the lumen297

shape factor (NSI) which separates healthy from AAA but not low-risk from high-risk AAA.298

Among AAAs, ILT metrics separate low from high risk groups, except ILT coverage and299

minimum ILT thickness. Regarding annual variations, Dmax as expected distinguishes the300

two groups but among all other metrics, only local change of minimum and maximum ILT301

thickness make that difference, hinting on a particular role of ILT in the local growth process302

that we will explore in the next section. For all these morphological metrics, significant303

difference is achieved mostly from mean values but not from their standard deviation (all304

but the Dmax). In contrast, for the fluid-based metrics, Table 4 and Table 6, both average305

values and standard deviations can discern groups (e.g. the ECAPmax and local ECAPmax306

variation). Almost all hemodynamics variables have several metrics that separate healthy307

from AAAs. TAWSSmin, RRTmean, ECAPmax,mean,stdev further separate low from high-308

risk groups. Regarding local changes, minimum metrics always separate the two groups,309

as well as RRTmax and ECAPmax. These results suggest that both instantaneous metric310

values and their changes are important to understand growth.311

[Figure 4 about here.]312

In Figure 4, the segmented lumen and ILT of two patients during their follow-up are313

shown. The one on the left shows no major shape change or growth with time, with a314

fusiform shape and a thin ILT. For the right one, ILT becomes more saccular with time and315

lumen thinner. This major difference in behaviour is plotted in Figure 5 for all patients316

during their follow-up. Dmax, D
lumen
max , lumen tortuosity and shape index plots illustrate the317

important diversity of the population. The difference between groups is detailed in Table 3318

and Table 5.319

[Table 2 about here.]320

[Table 3 about here.]321
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[Table 4 about here.]322

[Table 5 about here.]323

[Table 6 about here.]324

[Figure 5 about here.]325

[Figure 6 about here.]326

[Figure 7 about here.]327

Next, we present results to understand if there is a local correlation between morpholog-328

ical and hemodynamic metrics that could explain local growth Figure 1. Figure 7 describes329

the correlation coefficients between the wall metrics and two morphological metrics, com-330

puted on all patches of each scan : the distance from the lumen wall to the centerline,331

normalized by the proximal i.e. near the renal arteries distance, and the ILT thickness.332

There is a large dispersion between patients and scans (see Figure III for the individual333

data). As a consequence, some exhibit nice correlations (Figure 6a), while others do not334

(Figure 6c). The large dispersion of Spearman’s ρ distribution is illustrated in Figure 6 for335

one metric. Despite a very large dispersion of data for both the distance to the centerline336

and the ILT thickness, visible trends stand out (Figure 7). TAWSS and WSSG strongly337

negatively and OSI positively correlate with the centerline distance. Coherently, RRT and338

ECAP also present strong positive correlation with the distance to the centerline. RRT and339

TAWSS distributions do not include ρ = 0. Regarding ILT thickness, no strong correlation340

emerges. TAWSS negatively correlates with ILT thickness. This finding is coherent with the341

common knowledge of low WSS being linked to thrombogenesis. WSSG and OSI also show342

slightly negative correlation with ILT thickness while no conclusion can be drawn from the343

RRT and ECAP ρ distributions. In fact, all five hemodynamic metrics ρ distributions are344

divided between positive and negative values, sign of a great heterogeneity between scans.345

When the statistics are computed on each patient instead of each scan separately, trends are346

conserved with however lower dispersions (Figure 7, bottom).347
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3.3 Global classification as a risk predictor348

Finally, we study if the AAA evolution can be predicted (Figure 1). The ability of the349

classier to discern future high-risks from low-risks cases is presented in Table 2. Recall that350

this prediction is based on features of the current time. The features are initially divided into351

5 sets: Dmax only, clinical, morphological and hemodynamic separately and then all features352

merged. The relative influence of the individual features on the dataset is also plotted for a353

better understanding of their role.354

For reference, the classification is evaluated with Dmax only and the corresponding AUC is355

0.75±0.08. No feature ranking is present as the entire classification information comes from356

Dmax. For clinical features alone, the AUC is 0.73±0.09 and the most separating features are357

age, psys and pdias. With only morphological features (Dmaxexcluded), the AUC is 0.93±0.09.358

The information mostly comes from the lumen centerline curvature, the ILT volume and359

thickness, and the lumen NSI. Concerning hemodynamic features, the AUC is 0.96±0.10 with360

information mostly gained from OSImean, ECAPstdev, RRTmax and ECAPmax. Finally, with361

all features combined, the AUC reaches 0.98± 0.06: information is mostly gained from ILT362

volume, OSImax, OSImean and WSSGstdev. To evaluate the statistical difference between363

features sets, p-values between AUCs are computed and reported in Table 7. Significant364

differences are observed when all the features are compared to a single feature class, and also365

when the flow features are compared to the Dmax.366

[Figure 8 about here.]367

[Table 7 about here.]368

4 Discussion369

Quantifying AAA rupture risk has been an active field of research for at least the last decade370

without dethroning the Dmax criteria. However, parameters accompanying the disease pro-371

gression have been observed and discussed, including clinical observation, morphology, struc-372
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tural or fluid analysis and a mix of those. High risk AAA are essentially either undiagnosed373

or repaired, hence the scarcity of longitudinal studies with very fast growing aneurysms. If374

metrics such as WSS or arterial wall solid stress alone cannot specifically single out high-risk375

aneurysms, their influence on the temporal evolution of AAA may be more relevant58.376

In this work we have attempted to find potential underlying relationships between clini-377

cally available variables or computed metrics that quantitatively characterize AAA and their378

hazardous growth. An AAA is considered at risk after reaching a threshold Dmax or exceeded379

a Dmax monthly variation threshold. If such relationship exists, one can envision a new com-380

bination of parameters to be a reliable predictor of an AAA evolution from a single scan, and381

thereby enhancing the patient-specific decision-making process about increased surveillance382

or type of treatment.383

4.1 Descriptive statistics384

A total of 129 AAA from 32 patients and 9 healthy aortas were considered. The non-385

newtonian flow was simulated with FVM including backflow stabilization, and all WSS-based386

fields and geometrical metrics were discretized on the patch-parameterized AAA lumen. All387

data were mapped onto the same patch space to be able to compute local time variation of388

metrics. When exploring the local relationships, i.e. patch-wise, both WSSG and TAWSS389

negatively strongly and OSI positively correlate with the local distance from the lumen wall390

to the centerline. This distance is normalized for each scan by the distance at the proximal391

neck of the AAA. This local distance thus contains information on the local dilation of the392

AAA, likely creating low TAWSS and high OSI zones. RRT and ECAP, by construction, have393

an opposite behavior from the OSI and TAWSS. By contrast, it is difficult to conclude for394

the local relationships with the ILT thickness given the variation among scans. Correlations395

with the annual variation of the lumen wall distance to the centerline and ILT thickness396

were not reported, presenting no visible trend. Considering all local variables may not be397

the appropriate measure to understand local growth. However, the risk prediction based on398

hemodynamic features works well (see section 3.3): mean, extrema or standard deviation of399
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the local metrics seem to be the overall drivers for AAA growth. Nonetheless, previous work,400

especially Tzirakis et al.64 found weak relationship between ILT growth and TAWSS (see401

Figure 7). However, data from their study do not reveal correlation with low OSI as weakly402

shown in Figure 7 and Arzani et al.4 did. TAWSS seemed relevant in both studies as well as403

in Zambrano et al.71. These studies considered few patients. To our understanding and as404

Figure 7 illustrates, correlations with local morphological growth are highly heterogeneous405

among patients, even if for a given patient strong relations can emerge. This behavior406

prevents emanation of general correlations. Finding a relevant normalization space between407

all patients may lead to a better understanding of the local growth causes.408

Figure 5 and Figure III illustrate the variety of situations encountered by clinicians when409

following an AAA over a given period of time. When all patient data is overlaid, no group410

separation visibly arises from the curves. However, from Table 2 to Table 6 one can observe411

that many parameters can separate patients; especially 27 of them can discern the high from412

the low-risk group. As expected, the classical Dmax was one of the parameters sensitive413

enough to discern healthy aortas from low-risk AAAs, and also low from high-risk AAAs.414

ILT and total volume present the same capacity, as all three are directly linked. Despite the415

tendency of ILT to fill the AAA cavity, tending to reshape the lumen into a more tubular416

fashion, Figure 5 shows that lumens of AAA at higher risk tend to be more tortuous with417

a larger Dlumen
max . At the same time, while for low-risk AAA the Dlumen

max shows little to no418

growth, the Dmax is continuously increasing. A major hypothesis to explain AAA growth419

is acceleration of the loss of mechanical properties of the aortic wall due to ILT deposition.420

ILT leads to local wall hypoxia and inflammation62, smooth muscle cells apoptosis, elastin421

degradation and MMP-2 (matrix metalloproteinase-2) concentration. Shifting the pressure422

load normally mostly borne by elastin cells to collagen fibers contributes to the wall stretching423

and diameter increase. The shape modification can lead to an increase of the lumen surface424

prone to ILT deposition, thus maintaining the vicious cycle. Figure 5 could indicate that425

some AAA could remain at low-risk provided that their lumen keeps its shape and size426

relatively constant, and the Dmax growth remains below the repair threshold. This could427
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lead to a better understanding of the difficulty to assess AAA risk, given the presence of428

patients with large AAAs who will have a lower proportion of rupture than expected48 and429

relatively small aneurysms that rupture20.430

Currently, sex-adjusted Dmax, absolute value and progression, is obviously significantly431

associated with the high risk population. Surprisingly volume and surface progression, de-432

spite a theoretically higher sensitivity, were not associated with patient risk. Similarly, no433

other morphological metrics annual variation could, despite higher theoretical sensitivity434

such as volume and surface versus diameters. One hypothesis is that the cumulative seg-435

mentation error induces a higher variability than the observed growth, especially for slow436

growing AAAs.437

Low TAWSS and high OSI are linked to atheroprone regions of AAAs and predominate at438

site of rupture10. Di Achille et al.24 combined both to form the ECAP. This metric does not439

offer a mechanistic explanation on ILT deposition but more an imprint on the wall of the near440

wall flow features that are related to thrombus deposition. Additionally, AAA wall is mostly441

covered by ILT, and if not, is highly atherosclerotic; therefore seeking metrics related to the442

wall mechano-adaptation resulting from endothelial cell triggering may not be successful.443

However, low wall shear can inform about two different phenomena : it is the imprint on the444

wall of the local flow alteration, and it also favors activated platelets adhesion. As expected,445

ECAPmax and ECAPmean can separate the population but, interestingly, also ECAPstdev.446

Standard deviations were added for all metrics, motivated by the highly patient specific447

data distribution (see Figure III to Figure VI) and can be considered as an indicator of the448

wall roughness. CT-scan resolution cannot report wall roughness due to atherosclerosis and449

smoothing prior to meshing removes any small scale perturbation. Nonetheless, larger scale450

perturbation persists that cannot be explained. Hypotheses include poor segmentation of451

calcifications, often overestimated on CT-scans, contrast inhomogeneity, recurrent in large452

blood filled cavities such as AAAs or real morphological alteration. Numerically the WSS is453

computed using the vector normal to the wall, at each cell, and is therefore highly dependent454

on surface quality. However, because WSS derived metrics allow to statistically separate455
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groups and being visually consistent (e.g. see the ECAP distribution plot in Figure VI), we456

believe the geometrical perturbation is likely of biological origin.457

Looking at the local change, i.e. patch-wise, is more challenging. Significant variations458

of OSImin, TAWSSmin, WSSGmin, RRTmin and ECAPmin are negative and average values459

are lower for high-risk than for low-risk patients. Whereas for ECAP, mean values increase460

faster for high-risk AAA while ECAPmax is increasing faster but ECAPmin is decreasing461

faster too. This indicates a larger dispersion of the values with time for high-risk AAA than462

for low-risk AAA, explaining the added value of the standard deviation of variables.463

4.2 Risk prediction464

The classification process aimed at building a risk predictor based on information acquired465

at a given time to anticipate if the patient will evolve to a high-risk state or stay at low-risk466

in the foreseeable future. Knowing that many of the evaluated metrics of interest contain467

powerful information to separate the low from the high-risk population, but does not give468

better results than the Dmax if taken alone, a combination of metrics was sought.469

For reference, we started with the Dmax alone as feature to predict the future risk, pro-470

viding a mediocre yet above the average predictor. Clinical information did not perform471

well either but the missing clinical features for some patient may have a large impact on the472

predictor and results shall be taken cautiously. However, age, systolic and diastolic pres-473

sure and BMI are known factors associated with AAA risk. When the morphological and474

hemodynamic features are considered separately, the predictor performs well, even with the475

repetition of the 3-folds splits on a small cohort of patients. Once all features are merged,476

the AUC reaches 0.95. However, despite high values of AUCs for flow and morphological477

features, Table 7 shows that taking either flow metrics or all features leads to a significant478

difference with using the Dmax alone. We believe that the very conservative results of the479

p-values (in Table 7) comes from the variability of the AUCs during the k-fold repetition480

(visible in Figure 8). A larger patient database with a prospective follow-up should confirm481

the clinical relevance of the AUC obtained here. However, morphological features can now482
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be easily obtained by lumen and thrombus segmentation37 for a significant increase in clas-483

sification power. Even if the relation between flow alteration and AAA growth is still poorly484

understood, the combination of flow pattern with morphological analyses clearly improves485

patient risk stratification and should be integrated in future clinical algorithms.486

4.3 Limitation487

This study presents limitations discussed below:488

• Simulation did not include wall deformation due to the pressure variation during the489

cardiac cycle. While FSI models for the aorta exist, the aortic wall was considered490

rigid, in accordance both with previous measurements34 and literature49. Also, in491

the context of diseased aortas, the wall is highly heterogeneous and no non-invasive492

measurement can currently capture such heterogeneous mechanical properties.493

• Boundary conditions are literature-based as this was a retrospective study. Thus,494

no patient-specific measurement was available, as often in such cases. However, flow495

patterns were favorably compared with PC-MRI data on a few patients with AAA34.496

• For some patients theDmax profiles are not monotonically increasing. However, it seems497

to be unlikely that small diameter reduction (∆Dmax < 2mm) is in fact outer wall498

shrinkage. Several possible explanations include: segmentation fluctuation localized499

on artifacts or calcifications; AAA shape change due to the patient positioning in the500

scanner, altering the observed geometry, thus the maximal diameter; the limitation of501

the measurement approach using planes normal to the centerlines in complex shaped502

AAAs. Considering the inter-observer agreement of <3mm on the Dmax
37, the same503

error tolerance is expected by using the same segmentation tool.504

• While flow in healthy aortas remains essentially laminar, complex flow46 and transition505

to turbulence38,65 may occur in AAAs due to the brutal enlargement and could impact506

the studied wall fields.507
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• To characterize AAA growth, metrics were compared patch to patch which does not508

reflect the non-homogeneous and anisotropic growth of AAA. In the absence of local509

wall displacement tracking method, this approach still gives insights on AAA growth.510

• Considering the number of follow-up scans available, the learning approach did not511

considered AAAs as time-series. An approach similar to Lipton et al.39 could eventually512

be implemented on a database with more follow-up scans per patient.513

• The healthy population was 13 years younger than the AAA population on average514

(but with aortas already showing signs of aging, see Figure 3) and clinical data was515

not available for all patients, see Table 1.516

• The database did not include ruptured aneurysms for the reasons described in the517

Methods section. When such data become available for AAA, the link between ’high518

risk’ as defined here by clinicians and rupture prediction should be studied. A very519

recent study in cerebral aneurysms showed adverse morphology and hemodynamics520

to be related to aneurysm rupture22. The corresponding statistical model of rupture521

probability was then successfully validated23. These results combined with our findings522

give hope that such approach should be successful for AAAs as well.523

4.4 Conclusion524

We have presented a retrospective population study on the metrics quantifying the growth525

of AAA, and have built a model to anticipate their further evolution towards rupture. This526

longitudinal study included clinical and imaging data available at different time points for527

a total number of 138 scans from 42 patients. The analysis considered clinical, morpho-528

logical and simulation-based hemodynamic metrics, separately or combined to incorporate529

a diversity of potential growth markers. Different global and local metrics or their time530

evolution were found to separate the healthy, low-risk and high-risk groups. Local hemo-531

dynamics metrics presented in fact a large intra- and interpatient variability: even if for532

some patients a clear relationship could be established between hemodynamics variables533
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and growth, their extrapolation to the whole population is yet to be found. Nevertheless,534

a risk predictor could be built with supervised learning from the clinical, morphological535

and simulation-based hemodynamic metrics. From a clinical point of view, we have shown536

that, compared to the current clinical criteria, morphological metrics describing the lumen537

and ILT shape could already greatly improve risk prediction, and thus potentially patient538

follow-up or treatment decision, at a moderate analysis cost. Blood flow simulations provide539

valuable additional information for the predictor, as well as for understanding the underlying540

relationship between flow alteration and AAA growth. Finally, risk prediction works best by541

combining all metrics. Although the results show the high predictive value of this approach,542

validation of the risk predictors on another set of data is needed before clinical translation.543
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Merriënboer, V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raf-755

fel, D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard,756
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Figure 1: Overview of the study.
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Figure 2: Patching process of the lumen surface. Left: centerline of the vessel lumen,
Center: circumferential discretization, colored by the angular index. Right: centerline-based
longitudinal discretization colored by the abscissa along the centerline.
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Figure 3: Aorta of the 9 healthy patients included in the study as control subjects. Most
present various degrees of tortuosity, due to arteries aging.
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(a)

(b)

Figure 4: Example of different growth dynamics on two patients. The segmented lumen is
in red, while ILT is transparent.
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(a) Dlumen
max (b) Dmax

(c) Lumen centerline tortuosity (d) Lumen NSI

Figure 5: Evolution with time of selected parameters among patients. AAA ending up as
high-risk are represented by red lines while low-risk AAA are in blue. Averaged behaviours
of the two groups are in bold color.
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(a) (b)

(c) (d)

Figure 6: a and c: Bivariate distributions and kernel density plot of ECAP (Pa−1)versus
the normalized distance from the lumen wall to the centerline of two simulations from two
different patients. b and c: Distribution plots of the Spearmans’s ρ from the bootstrap
evaluations. The top and bottom cases illustrate the variety of the bivariate distributions
and correlations encountered in the study.
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(a) All CTs evaluated independently.

(b) Statistics performed on each patient, (one
correlation for all scans of that patient).

Figure 7: Boxplot of the distribution of Spearman’s ρ between local flow and morphological
evaluation metrics. On the left, all scans are evaluated separately and on the right statistics
are patient-wise. The boxes represent the inter-quartile range (IQR) i.e. data between
the 25 (Q1) and 75% (Q3) percentile. Bottom whisker is Q1 − 1.5IQR and top whisker is
Q3 + 1.5IQR. Outliers are not represented for readability. Correlations are computed on
patch-wise data for each scan. The large dispersion of Spearman’s ρ distribution is illustrated
in Figure 6 for one metric.
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Figure 8: Left: ROC curves for the classification of high risk (i.e. risk predictor). Right:
Top 10 features ranked with respect to predictability of the target variable. The gray area
represents the standard deviation (±1 st. dev.) of all ROC generated during the repeated
cross-validation process.
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Figure I: Volumetric flow rate imposed at the inlet of the AAA.

43



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure II: View of patched metrics on an aneurysm. From left to right and top to bottom:
lumen with ILT overlaid, HILT [mm], ILT coverage [.], local distance to the centerline [mm],
OSI [.], TAWSS [Pa], ECAP [Pa−1] and RRT [Pa−1]. The displayed AAA is also visible in
Figure V and Figure VI
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Hmax
ILT

a) lumen - centerline distance

c) d) ECAP

b) RRT

e) WSSG

Figure III: Boxplot of local distribution of various metrics, for all patient, along their follow-
up. Statistical distribution is built from data from all 600 patches.The box represents the
inter-quartile range (IQR) or data between the 25 (Q1) and 75% (Q3) percentile. Bottom
whisker is Q1 − 1.5IQR and top whisker is Q3 + 1.5IQR. Outliers are not represented for
the sake of readability. 45



(a) (b)

(c)

Figure IV: View of local distance (mm) from the lumen to the centerline mapped on the
lumen and averaged on patches for patient 6 (a), 22 (b) and 21 (c). Patient 6 exhibits
a strong and localized growth of the lumen. Patient 21s lumen is pretty tubular with a
constant diameter while patient 22’s diameter is healthy at the proximal neck and over 50
mm at the Dmax location, hence the large dispersion of values seen on the boxplot.
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(a) (b)

(c) (d)

Figure V: For 4 patients, RRT averaged on patches. Patient 10 (a), exhibits a steady growth
with time. Patient 28 (b): RRT standard deviation is relatively small compared to patient
29 (c). For patient 15 (d), RRT decreases before increasing.
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(a) (b)

(c) (d)

Figure VI: ECAP averaged on patches, for 4 patients. ECAP, similarly to the RRT contains
information from OSI and TAWSS. Patient 10 (a), monotonic growth, patient 28 (b) with a
small standard deviation compared to patient 29 (c). Patient 15 (d) ECAP average, decreases
and then increases.
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Clinical metric Availability among patients (%)

Age 71.4

Sex 100

BMI 40.5

psys 61.9

pdias 61.9

Dyslipidemia 69.1

Statins 69.1

Table 1: Percentage of the 42 patients for which clinical data are available, per variable. Age,
BMI (body mass index), psys (systolic pressure) and pdias (diastolic pressure) are continuous
variable and Sex, Dyslipidemia (DLP) and statins are discrete.
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Clinical variables Healthy Low-risk High-risk Statistical significance

Age (yr) 60.40 (12.44) 73.66 (7.03) 73.88 (7.85) H-LR, H-HR

Systolic pressure (mmHg) 129.25 (16.89) 119.80 (11.54) 130.73 (17.24) LR-HR

Diastolic pressure (mmHg) 74.88 (8.67) 68.91 (8.65) 77.21 (13.85) LR-HR

Dyslipidemia (DLP) (%) 0.33 (0.47) 0.84 (0.37) 0.82 (0.38) H-LR, H-HR

BMI 25.92 (4.91) 31.20 (5.73) 28.65 (5.95)

Statins (%) 0.33 (0.47) 0.82 (0.38) 0.80 (0.40) H-LR, H-HR

Table 2: Statistical distribution of the clinical variables among the three groups. When a
significant difference was observed (p < 0.05) between two groups, it was reported in the 4th

column. H-LR means a statistical difference between the High and Low-Risk groups, H-HR
between the Healthy and High-Risk groups and LR-HR between the Low and High-Risk
groups. Standard deviations are given in parentheses.
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Morphological variables Healthy Low-risk High-risk Statistical significance

Lumen surface area (cm2) 60.32 (16.93) 98.74 (23.03) 120.90 (27.10) H-LR, H-HR, LR-HR

Lumen surface area, annual (cm2 yr−1) - 6.51 (13.99) -2.14 (81.85)

Lumen volume (cm) 24.95 (11.58) 57.17 (20.75) 79.62 (34.28) H-LR, H-HR, LR-HR

Lumen volume, annual (cm3 yr−1) - 6.34 (16.24) 7.43 (80.96)

ILT volume (cm) 0.00 (0.00) 38.99 (30.80) 65.90 (44.25) H-LR, H-HR, LR-HR

ILT volume, annual (cm3 yr−1) - 3.28 (22.55) 33.95 (154.98)

Total volume (cm) 24.95 (11.58) 96.17 (41.25) 145.52 (53.53) H-LR, H-HR, LR-HR

Total volume, annual (cm3 yr−1) - 9.38 (14.77) 29.43 (85.82)

Dlumen
max (mm) 18.18 (3.52) 28.89 (5.74) 32.94 (8.04) H-LR, H-HR, LR-HR

Dlumen
max , annual (mm yr−1) - 1.07 (3.85) 2.81 (10.72)

Dmax (mm) 18.18 (3.52) 43.72 (7.37) 54.40 (8.77) H-LR, H-HR, LR-HR

Dmax, annual (mm yr−1) - 1.14 (3.31) 3.61 (4.55) LR-HR

Lumen NSI (-) 1.22 (0.02) 1.18 (0.04) 1.18 (0.05) H-LR, H-HR

ILT coverage (%) - 64.63 (24.92) 67.89 (19.09)

ILT coverage, annual (yr−1) - -2.07 (13.06) 33.92 (237.39)

HILT
max (mm) - 7.89 (4.12) 11.65 (5.31) LR-HR

HILT
min (mm) - 0.31 (0.65) 0.17 (0.46)

HILT
mean (mm) - 3.09 (1.80) 4.05 (2.34) LR-HR

HILT
stdev (mm) - 2.55 (1.36) 3.71 (1.64) LR-HR

Table 3: Statistical distribution of the morphological variables among the three groups.
When a significant difference was observed (p < 0.05) between two groups, it was reported
in the 4th column. H-LR means a statistical difference between the High and Low-Risk
groups, H-HR between the Healthy and High-Risk groups and LR-HR between the Low and
High-Risk groups. Standard deviations are given in parentheses.
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hemodynamic variables Healthy Low-risk High-risk Statistical significance

OSImax (-) 0.36 (0.04) 0.38 (0.04) 0.37 (0.05)

OSImin (-) 0.02 (0.02) 0.02 (0.02) 0.02 (0.03)

OSImean (-) 0.16 (0.04) 0.18 (0.04) 0.17 (0.04)

OSIstdev (-) 0.11 (0.01) 0.11 (0.01) 0.11 (0.02)

TAWSSmax (Pa) 0.66 (0.31) 0.58 (0.28) 0.54 (0.22)

TAWSSmin (Pa) 0.23 (0.08) 0.11 (0.06) 0.09 (0.05) H-LR, H-HR, LR-HR

TAWSSmean (Pa) 0.40 (0.17) 0.27 (0.11) 0.23 (0.10) H-LR, H-HR

TAWSSstdev (Pa) 0.16 (0.09) 0.16 (0.09) 0.16 (0.07)

WSSGmax (Pa m−1) 135.60 (71.51) 124.55 (70.32) 116.32 (61.23)

WSSGmin (Pa m−1) 17.42 (9.48) 9.30 (7.30) 6.79 (7.10) H-LR, H-HR

WSSGmean (Pa m−1) 61.03 (32.52) 44.74 (25.82) 38.89 (23.32)

WSSGstdev (Pa m−1) 61.04 (44.25) 41.97 (24.82) 45.17 (25.02)

RRTmax (Pa−1) 22.64 (17.25) 48.26 (30.80) 58.15 (34.73) H-LR, H-HR

RRTmin (Pa−1) 2.34 (1.33) 2.63 (1.32) 3.12 (1.84)

RRTmean (Pa−1) 8.20 (6.17) 15.68 (8.01) 19.00 (10.00) H-LR, H-HR, LR-HR

RRTstdev (Pa−1) 8.20 (6.51) 21.68 (16.56) 24.22 (15.69) H-LR, H-HR

ECAPmax (Pa−1) 0.66 (0.39) 1.42 (0.76) 1.77 (0.92) H-LR, H-HR, LR-HR

ECAPmin (Pa−1) 0.03 (0.03) 0.02 (0.03) 0.04 (0.06)

ECAPmean (Pa−1) 0.26 (0.19) 0.48 (0.22) 0.59 (0.32) H-LR, H-HR, LR-HR

ECAPstdev (Pa−1) 0.20 (0.11) 0.48 (0.27) 0.59 (0.31) H-LR, H-HR, LR-HR

Table 4: Statistical distribution of the hemodynamic variables among the three groups.
When a significant difference was observed (p < 0.05) between two groups, it was reported
in the 4th column. H-LR means a statistical difference between the High and Low-Risk
groups, H-HR between the Healthy and High-Risk groups and LR-HR between the Low and
High-Risk groups. Standard deviations are given in parentheses.
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Local morphological variables Low-risk High-risk Statistical significance

local change of HILT
max (mm yr−1) 4.55 (4.27) 7.31 (4.58) LR-HR

local change of HILT
min (mm yr−1) -4.96 (6.47) -16.78 (33.77) LR-HR

local change of HILT
mean (mm yr−1) -0.11 (1.60) -1.18 (5.38)

Table 5: Statistical distribution of the local annual variation of ILT thickness among the low
and high-risk groups. When a significant difference was observed (p < 0.05) between two
groups, it was reported in the 4th column. H-LR means a statistical difference between the
High and Low-Risk groups, H-HR between the Healthy and High-Risk groups and LR-HR
between the Low and High-Risk groups. Standard deviations are given in parentheses.
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Local hemodynamic variables Low-risk High-risk Statistical significance

local change of OSImax (yr−1) 0.29 (0.41) 1.26 (3.70)

local change of OSImin (yr−1) -0.29 (0.38) -1.14 (2.67) LR-HR

local change of OSImean (yr−1) 0.00 (0.06) 0.05 (0.47)

local change of TAWSSmax (Pa yr−1) 0.27 (0.36) 1.08 (3.50)

local change of TAWSSmin (Pa yr−1) -0.42 (0.70) -1.47 (3.86) LR-HR

local change of TAWSSmean (Pa yr−1) -0.02 (0.10) -0.04 (0.25)

local change of WSSGmax (Pa m−1 yr−1) 81.56 (108.31) 287.46 (963.86)

local change of WSSGmin (Pa m−1 yr−1) -111.53 (176.19) -350.49 (829.66) LR-HR

local change of WSSGmean (Pa m−1 yr−1)) -3.86 (24.29) 4.27 (109.43)

local change of RRTmax (Pa−1 yr−1) 44.64 (73.56) 245.22 (658.03) LR-HR

local change of RRTmin (Pa−1 yr−1) -44.47 (90.49) -225.57 (538.46) LR-HR

local change of RRTmean (Pa−1 yr−1) 0.64 (6.76) 8.16 (55.48)

local change of ECAPmax (Pa−1 yr−1) 4.61 (7.11) 23.63 (58.92) LR-HR

local change of ECAPmin (Pa−1 yr−1) -0.44 (0.56) -1.85 (3.48) LR-HR

local change of ECAPmean (Pa−1 yr−1) 1.31 (2.35) 7.39 (21.40)

Table 6: Statistical distribution of the local hemodynamic variables among the low and high-
risk groups. When a significant difference was observed (p < 0.05) between two groups, it
was reported in the 4th column. LR-HR means a statistical difference between the Low and
High-Risk groups. Standard deviations are given in parentheses.
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Dmax Clinical Morpho. Flow All

Dmax 0.393 0.008 0.006 0.006

Clinical 0.004 0.004 0.004

Morpho. 0.561 0.207

Hemo. 0.281

All

Table 7: p-values between AUCs from Figure 8 according to Delong et al.21 method. Signif-
icant values (≤ 0.05) are in orange cells.
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Outlets Rp C Rd

Mes. Sup. 6.7 ∗ 103 8.11 ∗ 106 1.13 ∗ 105

Celiac 6.7 ∗ 103 8.11 ∗ 106 1.13 ∗ 105

Renal 1.2 ∗ 104 1.8 ∗ 10−5 4.8 ∗ 104

Int. Iliac 4.55 ∗ 103 1.582 ∗ 10−5 7.7 ∗ 104

Ext. Iliac 4.8 ∗ 103 1.75 ∗ 10−5 8.2 ∗ 104

Table I: Proximal resistance, compliance and distal resistance for the 0D-RCR model, from
Xiao et al.68 (in [CGS] units).
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Metric
notation

Extraction Remarks & litt.

Dlumen
max maximal diameter of the lumen in a plane

orthogonal to the luminal centerline
-

M
or

p
h

ol
og

ic
al

p
ar

a
m

et
er

s

Dmax maximal diameter of the AAA (inc. ILT) in a
plane orthogonal to the luminal centerline

Current clinical
criteria.

HILT thrombus thickness, computed as the Euclidean
distance between the lumen and ILT

-

Lumen
centerline
curvature

inverse of the radius of the local oscillating circle Shum et al.55

Lumen
centerline
tortuosity

ratio between the centerline length and the
endpoints distance.

Shum et al.55

Lumen NSI 1
2.199

√
Area

3√
V olume

Raghavan et al.49

Lumen (ILT)
volume

volume of the lumen (ILT) between the renal
and the iliac bifurcation.

-

Lumen (ILT)
surface area

surface of the lumen (ILT) between the renal
and the iliac bifurcation.

-

ILT coverage percentage of the lumen covered with thrombus.
The observed quantity is the ratio of lumen
outer wall area exposed to ILT to the total area,
not the aortic wall covered in ILT

-

h
em

o
d

y
n

a
m

ic
p

ar
am

. TAWSS 1
T

∫ T
0 |τW |dt Bluestein et al.9

and Arzani et al.4

OSI 1
2

(
1− |

∫ T
0 τW dt|∫ T

0 |τW |dt

)
Arzani al.4

RRT 1
(1−2OSI)TAWSS Himburg et al.36

ECAP OSI
TAWSS Di Achille et al.24

WSSG | ∇WSS | Nagel et al.45

Table II: Description of the various metrics used in the article.
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