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Abstract—Positioning a person or an object has become essen-
tial in many applications. It already exists solutions for outdoor
positioning such as satellite based techniques (i.e. GPS) but indoor
positioning still remains a great challenge for applications like
sports monitoring, contextual visits of museum, Building Infor-
mation Modeling (BIM) or automated drone missions. Classical
approaches using radio communication such as WiFi, Bluetooth,
ZigBee only give an accuracy of approximately 2.5 meters when
the mobile is static, of course worse when moving. Recently some
new radio communication chipsets have emerged based on Ultra
Wide Band (UWB) communications. UWB allows accurate Time
Of Flight (TOF) measurements, and thus distances estimations
between nodes equipped with. A positioning algorithm named
Best Anchor Selection for Trilateration (BAST) based on position
prediction and noise estimation is proposed. Then a wearable,
light and low power Wireless Sensor Network (WSN) prototype
(named Zyggie) including an UWB chipset has been developed
for algorithms comparison. Finally, an experimental testbed using
real cases experiments shows that BAST can give from 1.26 up
to 4.17 times better accuracy than low complexity state of the art
algorithms when the mobile/person is in movement (e.g. tennis
player).

I. INTRODUCTION

Knowing the position of a device in its environment be-
comes an important issue for applications providing services
based on the position. Many solutions have been proposed
going from satellite based techniques (i.e. GPS), video tracking
or radio-electrical waves combining. However, these tech-
niques reach their limit when very high accuracy is required,
especially in indoor environment. There are several approaches
to estimate the location of a mobile in an indoor environment.
Some of them use optical signals such as infrared, laser or
video tracking approaches (like the Vicon system [1]) and
many others use radio signal. As applications we target need
low cost, portable and low power systems which can be
deployed in minutes, radio signal positioning system is the
best candidate.
Last years many radio standards have been explored such
as WiFi [2], [3], Bluetooth [4], ZigBee [5], [6] concerning
indoor positioning. They are all based on the Received Signal
Strength Indicator (RSSI) of a signal between two devices.
Performances are often disappointing due to the lack of
accuracy (approximately 2.5 m) and gets even worse if the
mobile is in Non Line Of Sight (NLOS), in movement or
if there is multipath (walls, objects). A new radio approach
known as Ultra Wide Band (UWB) has recently emerged
which has the ability to do accurate Time Of Flight (TOF)

measurements.
Since 2014, Microsoft has launched an Indoor Localization
Competition co-located with the IPSN Conference. When
looking at the results of the competition [7] we can notice that
more than 50% of the 3D competitors use UWB technology
including the two first competitors. The best UWB competitor
in 2018 has an average error of 27 cm over many fixed points
measurements following a trajectory in a building. However,
most of the presented prototypes are not enough miniaturized
yet to be wearable or use different platforms for the mobile and
anchors. Moreover, some of them use wired together anchors
for network synchronization.
Unlike academic and industrial solutions mentioned above, our
wireless sensor node Zyggie [8] is ultra compact and very light
which really makes it a good candidate for all applications
where weight and size are critical. Both anchors and mobile
have the same architecture and the network synchronization
is done wirelessly via a 2.4 GHz radio frontend. Respecting
low complexity and low memory footprint constraints imposed
by such wireless nodes, the main contribution of this paper
is the development of a positioning algorithm named Best
Anchor Selection for Trilateration (BAST) that outperforms
low complexity state of the art algorithms under low power and
real time computation constraints. BAST also allows to display
output trajectory on portable devices (smartphone, tablet) in
real time. An Android application has been developed for
this purpose. A last contribution is that all experimental
results were obtained using simulations based on real cases
experiments. A serpentine walking trajectory and a real tennis
playing game were acquired several times to evaluate algo-
rithms performance.
The rest of the paper is organized as follows. Section II sum-
marizes the state of the art algorithms applied to a positioning
process knowing distances with reference points. Section III
introduces our new algorithm (BAST) for indoor positioning
of a mobile. In Section IV, the developed prototype node, the
experimental setup with two scenarios (walking in a room and
playing tennis) are explained. In Section V, the results of all
the positioning algorithms are discussed. Finally, conclusions
are drawn and future works are commented in Section VI.

II. RELATED WORK ON POSITIONING ALGORITHMS

A positioning algorithm aims at providing 2D/3D coor-
dinates by combining some distances of a (mobile) node
with respect to some fixed nodes (which positions are known



in advance) named here anchors. In the rest of the paper,
resolution will be presented in 2D. For a 3D resolution, just
add in the system (1) the z contribution. It is possible by
knowing the respective distances of a mobile node to 3 anchors
to solve the following system. The more anchors there are the
more equations in the system there will be. Here is the system
with 3 anchors

d2A1 = (xM − xA1)2 + (yM − yA1)2 + nA1

d2A2 = (xM − xA2)2 + (yM − yA2)2 + nA2

d2A3 = (xM − xA3)2 + (yM − yA3)2 + nA3

, (1)

where the dAi are the distances toward the anchor i, the
xAi and yAi are the coordinates of the anchor i, the nAi

are the noises on the measured distances and xM , yM the
mobile’ coordinates. All the following algorithms have the
same starting point (i.e. the distances) to compute the mobile
coordinates.

A. Weighted Centroid Localization
The Weighted Centroid Localization (WCL) algorithm ex-

plained in [9] consists in finding the solution point m in

m =

(
xM
yM

)
=

N∑
i=1

wAi · aAi =

N∑
i=1

1
dAi
·
(
xAi

yAi

)
∑N

j=1
1

dAj

, (2)

where m is the researched point (mobile’s coordinates), aAi the
coordinates vectors of the N anchors and wAi the weighting
coefficients of each anchor. In our case, these coefficients are
the inverse of the considered distance dAi divided by the sum
of the inverses of dAi. Using WCL, it is also possible to affect
a different weight to each anchor to make its influence higher
in the solution.

B. Gauss-Newton
The Gauss-Newton method [10] is an iterative algorithm

which aims at minimizing the positioning error. Mobile’s
coordinates m are computed iteratively by solving

ml = ml−1 −H−1
l−1 · gl−1 =

(
xM
yM

)
, (3)

where l is the iteration step, H the Hessian matrix and g the
gradient vector. Gauss-Newton algorithm has the advantage to
quickly converge. On the other side, the Hessian matrix uses a
3/2 power on the distances which leads to more computation.

C. Trilateration
Trilateration algorithm consists here in finding a solution

to the previously defined system (1). By doing some transfor-
mations, it is possible to write the system to solve such as
u = V ·m + e with

u =

(
(d2A1 − d2A2)− (x2A1 − x2A2)− (y2A1 − y2A2)
(d2A1 − d2A3)− (x2A1 − x2A3)− (y2A1 − y2A3)

)
,

V =

(
2 · (xA2 − xA1) 2 · (yA2 − yA1)
2 · (xA3 − xA1) 2 · (yA3 − yA1)

)
and

e =

(
nA1 − nA2

nA1 − nA3

)
.

(4)

For this example Anchor number 1 has been chosen for
reference and therefore appears twice in the equations. By
posing

v1 =

(
2 · (xA2 − xA1)
2 · (xA3 − xA1)

)
and v2 =

(
2 · (yA2 − yA1)
2 · (yA3 − yA1)

)
, (5)

the Cramer’s rules give a solution that minimize the Mean
Square Error (MSE) to obtain the mobile coordinates below

xM =
det
(
u v2

)
det (V)

and yM =
det
(
v1 u

)
det (V)

. (6)

Anchors must not be aligned to obtain a solution for xM
and yM due to a null denominator. There exists some other
mathematical ways to solve the system such as Cramer-Rao
Bound (CRB) [11] and Least Squares (LS) [12]. As we
target low complexity computation, only Cramer method was
implemented.

D. Multilateration

Multilateration algorithm [13] uses the previously seen
developments of trilateration and applies it to all of the
combinations of 3 non-aligned anchors. By this way, for a
configuration with N anchors, we obtain CN

3 trilateration
combinations with aligned combinations subtracted. Finally,
we obtain the estimated point by doing the mean (centroid)
of these points. The main drawback of this method is the fact
that the more anchors your system has, the more calculations
need to be done in return of a theoretically better accuracy.

There exist some other trilateration/multilateration variant
based algorithms such as [14]–[17]. Even if proposed
results seem to be of interest, these algorithms are either
too complex in hardware or software implementation to
match our constraints. Indeed we target low cost and energy
efficient real time computation/displaying for mobile indoor
positioning applications (in-building or sports). Authors
from [14] propose to use fuzzy logic to compensate noise
before multilateration processing. Their approach needs rather
complex processing functions (training phases, recursive
filters and coefficient updates). Other techniques are based on
range free scheme as DV-Hop. They do not require complex
computations but need a huge amount of anchors to achieve
a relatively low accuracy. The distance between 2 anchors
is the finest achievable precision [15], [16]. Authors from
[15] can reach 0.85 m of accuracy using a topology of 200
anchors randomly placed in a square of 100 m2. An other
algorithm based on Bayesian filtering [17] gives interesting
results in Indoor Localization Competition of IPSN. This
statistical-based method needs Bayesian and particle filtering
coupled with a maximum-likelihood estimation. Such amount
of computations does not match our previously mentioned
constraints.

III. PROPOSED ALGORITHM: BEST ANCHOR SELECTION
FOR TRILATERATION (BAST)

The BAST algorithm aims at selecting a triplet of anchors
taking into account predicted coordinates for mobile’s position



Algorithm 1 BAST Algorithm
Input: dA, aA,mk−1,mk−2

Output: mk

1: dA ← Filter(dA) . Filter mistaken distances
2: m̂← Predictor(mk−1,mk−2) . Estimate mobile’s coordinates
3: for i← 1, NbAnchors do
4: A1 ← {dAi; aAi} . Create reference anchor object
5: (A2, A3)← NearestNonAlignedAnchors(dA, aA) . Select the 2 nearest non-aligned anchors
6: mi ← Trilateration(A1, A2, A3) . Compute trilateration
7: δMAi

← EuclidianDistance(mi, m̂) . Compute ED
8: end for
9: mmin ← GetMobile(min(δMA)) . Get mobile’s coordinates from minimum ED vector

10: (A1, A2, A3)← GetTriplet(min(δMA)) . Get triplet of anchors from minimum ED vector
11: n← Noise(A1, A2, A3,mmin) . Compute noise distances vector from triplet
12: dATriplet

← Distances(A1, A2, A3)− n . Subtract noise to measured distances vector
13: (A1, A2, A3)← UpdateDistances(dATriplet

) . Update triplet of anchors
14: mk ← Trilateration(A1, A2, A3) . Compute final trilateration

computation. This computation takes noise into account to im-
prove measured distances. BAST steps are explained hereafter
respectively to Algorithm 1.
At first, a filtering process aims at replacing mistaken values in
dA vector due to impossible or disturbed TOF measurements
made by the UWB frontend. Secondly, mobile’s coordinates
are estimated using a one step linear forward predictor (as-
suming a mobile’s constant speed) as defined in

m̂ = 2×mk−1 −mk−2 , (7)

where m̂ are the estimated coordinates and mk−1 and mk−2

the two last computed coordinates from BAST.
Then, the aim of the for loop is to compute the Euclidian
Distance (ED) between mi and m̂ for NbAnchors triplets.
Triplets are built by selecting a first anchor and then the
2 nearest non-aligned ones. Trilaterations are done on these
triplets to get coordinates vector mi. In next step, the triplet
corresponding to the minimal ED of δMA is selected for noise
computation n as defined in

n =

dA1 −
√

(xmmin − xA1)2 + (ymmin − yA1)2

dA2 −
√

(xmmin
− xA2)2 + (ymmin

− yA2)2

dA3 −
√

(xmmin
− xA3)2 + (ymmin

− yA3)2

 , (8)

where mmin corresponds to mobile’s coordinates with minimal
ED. The noise is finally subtracted to the triplet distances
vector and a last trilateration allows to obtain the mobile’s
coordinates mk.

IV. EXPERIMENTAL SETUP

The experimental setup consists here in validating our
algorithm and the state of the art ones by doing some measure-
ments on our developed WSN platform in real environments.
In general WSN and specific Wireless Body Area Network
(WBAN), the unknown location of a node is determined in two
steps. The first one is measurement step where one or more
position-related metrics are measured to allow the computation

of relative distances between each pair of nodes. The second
step called position estimation step (Section II) aggregates
these distance measurements as input of a position estimator
to produce the target/mobile node’s position.

A. Zyggie node architecture

Fig. 1. Zyggie WSN Hardware illustration.

The Zyggie node [8] is a Wireless Sensor Node with UWB
radio capabilities that was developed in our lab. Its architecture
is represented in Fig. 1. Zyggie is composed of:

• An Silicon Labs EFM32 ARM CortexM4 micro-controller
which is the master of the node and also controls the
UWB radio chip,



• An ATMEGA2564RFR2 micro-controller which drives
the 2.4 GHz radio for data exchanges and network syn-
chronization,

• A DecaWave DW1000 UWB radio chip [18] for TOF
measurements,

• An InvenSense Inertial Measurement Unit (IMU) for
acceleration, angular speed and magnetic field captures.

Unlike solutions presented in [7], our node is ultra compact
(37 mm by 63 mm) and only weights 32 g (including battery)
which makes it a real good candidate for all applications where
weight and size are critical. Some experiments with UWB
radio enabled at full speed were done; it leads to a battery life
time of around 5 hours which is enough for sportsman or in
building applications. For both following contexts anchors are
Zyggie nodes and the person to localize was wearing a Zyggie
node on his wrist. Another Zyggie node is connected to a
computer to synchronize the network (i.e. anchors and mobile
nodes) via the 2.4 GHz radio and also to collect distances
measurements via the UWB radio of the mobile node respect
to the anchors. A custom TDMA MAC protocol allocates
time slots to each anchor doing their TOF measurements.
Data are then processed and plotted on the computer/tablet
using the previous presented algorithms. In order to evaluate
algorithms’ performance, two contexts were defined: a quiet
walking context and a fast moving context (i.e. tennis player).

B. Indoor Serpentine Walking Context

For this context, data were acquired in a big room of nearly
243 m2 (26.4 m length by 9.2 m width). The ideal trajectory
was marked on the floor and one step per second (around
3 km/h) was done following this trajectory. To study the im-
pact of the trajectory and the used anchors for the positioning
algorithms, vertical and horizontal serpentine trajectories were
acquired ten times. In order to test our BAST algorithm a six
anchors configuration is used as represented in Fig. 2.

C. Indoor Tennis-man Playing Context

For this context, data were acquired on a tennis court during
real tennis playing conditions. All acquisitions were done in
parallel with a high precision vision positioning system called
Vicon [1]. Data issued from the Vicon system were considered
as the reference to compute the performance of all algorithms.
A four anchors configuration is used and the anchors locations
were at the four corners of the court.

V. RESULTS

Tables I and II present the performance results of all
previously defined algorithms in terms of average error, error
variance, variation of average error and variance and compu-
tation time. BAST serpentine trajectory is plotted in Fig. 2.

• The average error (εS) for the serpentine context is the
mean error of all the recorded walking scenarios,

• The average error (εT ) for the tennis player context is
the mean error of all the recorded playing sequences,

• The average standard deviation (σS and σT ) is the
mean of all standard deviations for both contexts,

• The variation of the average error (∆εS and ∆εT )
and the variation of the standard deviation (∆σS and
∆σT ) are the average gains of BAST compared to other
algorithms,

• The computation time (TcompS and TcompT ) has been
obtained running algorithms on Matlab on a desktop
computer equipped with Intel Xeon processor and 8 GB
RAM.

TABLE I
ALGORITHMS COMPARISON FOR HORIZONTAL SERPENTINE CONTEXT
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εS (m) 0.06 0.17 0.09 0.08 1.15
∆εS ×2.83 ×1.50 ×1.33 ×19.1
σS (m) 0.06 0.19 0.18 0.07 0.92
∆σS ×3.17 ×3 ×1.17 ×15.3
TcompS (ms) 0.59 0.32 0.26 0.32 0.26

TABLE II
ALGORITHMS COMPARISON FOR TENNIS CONTEXT
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εT (m) 1.08 1.36 2.11 1.51 4.50
∆εT ×1.26 ×1.95 ×1.40 ×4.17
σT (m) 0.76 0.98 1.68 1.72 0.96
∆σT ×1.29 ×2.21 ×2.26 ×1.26
TcompT (ms) 0.61 0.32 0.26 0.32 0.26

WCL algorithm is the worst algorithm due to the fact that
all anchors try to attract the solution point towards them.
Consequently, estimated mobile coordinates are not on the real
trajectory.
For both contexts, trilateration works quite well. But the error
can grow a lot when the mobile is not placed inside the virtual
triangle formed by the 3 selected anchors.
As multilateration does the mean of all the available trilat-
erations, the previous mentioned phenomenon appears every-
where on the estimated trajectory which leads to a higher error
for our contexts.
Gauss-Newton results are quite identical as BAST results
for the serpentine context. Gauss-Newton works on the 6
anchors and as previously explained BAST chooses the best
3 anchors for trilateration. When movements are faster as in
the real tennis playing game our BAST algorithm outperforms
all other algorithms by giving at a minimum 1.26 and at a
maximum 4.17 times better accuracy, to the penalty of a nearly
doubled computation time which is still acceptable for real
time executions and displaying.

By analyzing Zyggie IMU results, we have noticed that the



Fig. 2. BAST results: blue dots are anchors, red one is the mobile and green
curve ideal trajectory. The estimated trajectory is in red.

TOF measurements were really drifting when the player hits
the ball due to a high acceleration. We can conclude that for
tennis player, placing a Zyggie node on the wrist may not be
the ideal position. Some new experiments could be done with
the node on the torso, on a foot or some other places.
We have noticed that for some places in the environment
between two consecutive iterations, our BAST algorithm has
to switch between anchors. This is due to the fact that they are
all approximately at the same distance. An improvement could
be to introduce a memory effect of the last 3 selected anchors
(a temporal filter will be developed for this purpose) in order
to decide to switch or not, as the same manner it is done in
phone cellular network when your phone switches from a base
station to another depending on your map position.

VI. CONCLUSION

An enhanced algorithm for mobile indoor positioning was
presented in this paper. Indoor positioning algorithms are
based on distances measurements from a mobile node to
anchor nodes. These distance measurements are issued from
UWB radio exchanges which allow to do TOF computations.
A WSN demonstrator called Zyggie has been developed for
this purpose. Zyggie has the advantage to be wearable (small
form factor), light and low power. Some real experiments were
done using Zyggie in two contexts; a walking context and
a tennis playing game context. Collected data were passed
through BAST and low complexity state of the art algorithms
for comparisons.
In all contexts but especially when the mobile moves fast, the
BAST algorithm outperforms all other algorithms by giving at
a minimum 1.26 and at a maximum 4.17 times better accuracy.
Perspectives can be pointed out from the current work:

• An adaptive selection of the used algorithm could be done
in real time depending on how fast the mobile moves and
how much energy remains in the battery. For instance,
as Gauss-Newton is less complex than BAST and gives
nearly the same performance when the mobile moves
slowly, computation time and energy consumption could
be saved.

• Depending on the application, it can be more than one
mobile to localize (team sports, visitors in a museum for
instance), a multi-user protocol using anchors needs also
to be explored.
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