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RIGOROUS ASYMPTOTIC STUDY OF THE SCREENED

ELECTROSTATIC POTENTIAL IN A THIN DIELECTRIC SLAB

DIDIER FELBACQ, EMMANUEL ROUSSEAU
L2C, UNIV MONTPELLIER, FRANCE

Abstract. The screened Coulomb potential plays a crucial role in the binding energies
of excitons in a thin dielectric slab. The asymptotic behavior of this potential is studied
when the thickness of the slab is very small as compared to the exciton Bohr radius.
A regularized expression is given and the exact effective 2D potential is derived. These
expressions may be useful for the computation of the exciton binding energy in 2D or
quasi-2D materials.

1. Introduction

The raise of 2D materials has generated a renewed interest in computing excitons binding
energy in thin structures, such as a slab of dielectric material. In that situation, it has
been well appreciated in the literature that the Coulomb potential is screened and that
it plays a crucial role on the value of the binding energies [2, 3, 4, 5]. Indeed, within
the effective mass approximation, the enveloppe of the exciton wave function satisfies a
Schrdinger equation involving the screened Coulomb potential. Several approaches have
been used to derive an expression for this potential. One of the oldest work on this is an
article by Keldysh [1]. In order to apply this potential to the situation of 2D materials,
several approaching have been put forward in order to obtain a strictly 2D potential. In [1],
the space variables transverse to the material are abruptly put to 0. In [4, 5] the starting
point is a 2D polarisability, whereas in [3] the charge distributions are described as lines of
charge, in order to obtain an effective 2D potential. Therefore, it seems that a direct limit
analysis of the 3D potential when the width of the slab is very small is lacking.

In this note, we propose a multiple scale approach to the study of the screened potential
when the thickness of the slab is very small with respect to the Bohr radius. We obtain
a regularized potential by exhibiting explicitly the singular part, i.e. the bare Coulomb
potential. The 2D effective potential compares very well with the approximation given in
[1].

2. Expression of the screened potential and regularization

2.1. The screened potential. Consider the geometry described in fig.1. Cylindrical
coordinates (ρ, z) are used. We consider the electrostatic interaction between two charges
e located respectively at (ρ0, z0) and (0, z′0). We assume that z0 ≥ z′0. The particles
are situated in a dielectric slab of permittivity εf and width d situated in the interval
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z ∈ [−d/2, d/2]. The slab is surrounded by two semi-infinite medium of permittivities ε1
for z < −d/2 and ε2 for z > d/2. We denote

η1 =
1

2
log

(
εf + ε1
εf − ε1

)
, η2 =

1

2
log

(
εf + ε2
εf − ε2

)
,

and

Yη = [−η/2, η/2]2 and Y = [−1/2, 1/2]2.

The electrostatic potential energy between the particles is defined by: V (ρ, z0, z
′
0) =

e′ϕ̂e(0, z
′
0) = eϕ̂e′(ρ, z0), where ϕ̂q is the potentiel created by particle q.

Figure 1. Scheme of the structure under study. We consider the electro-
static interaction between two electric charges e and e′ located respectively
at position (ρ1, z0) and (ρ2, z

′
0) in a slab of dielectric constant εf . The

slab width is d. It is surrounding by a medium of dielectric constant ε1
(z ≤ −d/2) and a medium of dielectric constant ε2 (z ≥ −d/2).

In the appendix, we give a full derivation of the potential since in [1] the result is stated
without details. After all calculations are performed (see the appendix) the final result is

(1) V (ρ, z0, z
′
0) =

e e′

2π εfd
I(
ρ

d
,
z0
d
,
z′0
d

),

where

(2) I(r, x, y) =

∫ +∞

0
W (u, x, y)J0(ru)du,

and the kernel W is given by

W (u, x, y) =
cosh

[
u(12 + y) + η1

]
cosh

[
u(12 − x) + η2

]
sinh (u+ η1 + η2)

, (x, y) ∈ Y.
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Since the expression was obtained for z0 > z′0 (see appendix), these variables should be
switched when z′0 > z0.

From now on, we assume e = −e′, that is, the second particle is a hole.

2.2. Solving the Schrödinger equation-Defining new coordinates. In a generic
case, the situation considered in fig.1 is a two-body problem. The particles have masses
m1 and m2 and are parametrized in cylindrical coordinates by (ρ0, z0) and (ρ′0, z

′
0) . We

look for a time-independent wave function ψ(ρ0, z,ρ
′
0, z
′) satisfying:

− ~2

2m1
∆0ψ −

~2

2m2
∆′0ψ + V (|ρ0 − ρ′0|, z0, z′0)ψ = Eψ

As usual in this kind of problem, we focus on the relative motion. Here however, we cannot
do this for the height variables z since the potential does depend separately on z0 and z′0.
Therefore, we denote ρ = ρ0 − ρ′0 and we obtain after eliminating the movement of the
center of gravity in the xOy plane:{

−∆|| − κ1∂2z0 − κ2∂
2
z′0

+
2µ

~2
V (ρ, z0, z

′
0)

}
ψ =

2µ

~2
Eψ

where µ = m1m2/(m1 +m2) is the reduced mass, κ1 = µ/m1, κ2 = µ/m2 and ρ = |ρ|.
Let us now normalize the variables relatively to the slab width d. We define the new

variables z0 = z̃d, z′0 = z̃′d. These variables belong to the interval [−1/2, 1/2]. We also
normalize the in-plane variable and define: ρ = rd. Plugging these into the equation leads
to {

−∆|| − κ1∂2z̃ − κ2∂2z̃′ −
2µd2

~2
V (r, z, z′)

}
=

2µd2

~2
Eψ.

These basic transformations allow to introduce the exciton Bohr radius

(3) a0 = 4π~2εf/µe2,
quite naturally.

From now on, we denote η = d/a0 which is the small parameter of our problem. The
final variables are now ζ and ζ ′, satisfying ζ = z̃η, ζ ′ = z̃′η. These new variables belong to
[−η/2, η/2].

The final spectral equation with a small parameter is

(4)
{
−∆|| − η2κ1∂2ζ − η2κ2∂2ζ′ − 4ηI(r, ζ/η, ζ ′/η)

}
ψ = Eηψ,

where: Eη = (2µd2/~2)E.

2.3. Regularization of the potential. It is clear that when the slab has an infinite
width, one should recover the usual Coulomb potential VC(r) = 1/4πεfr. Therefore we
expect that V be a perturbation of VC . In this section, we exhibit the singular part of V .
First, we establish two lemma.

Lemma 1. The kernel of screened Coulomb potential has the following asymptotic behavior

W (u, x, y) ∼ 1

2
e−u|x−y| as u→ +∞.
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Proof. This is quite elementary using the expression of sinh and cosh in terms of the
exponential. �

In order to evaluate the singular part, we need the following result

Lemma 2. The following result holds for <α > |=β|∫ +∞

0
e−αx J0(βx)dx =

β−ν [
√
α2 + β2 − α]ν√
α2 + β2

.

Proof. See [7, p.702] formula (6.23 (3)). �

We are now in a position to exhibit a regularized potential, that is, which is not singular
at the origin

Theorem 1. The following decomposition holds

(5) I(r, x, y) =

∫ +∞

0

(
W (u, x, y)− 1

2
e−u|x−y|

)
J0(ru)du+

1

2
√
r2 + |x− y|2

.

The kernel of the first integral tends exponentially fast towards 0 and it defines a function
that is regular near the origin x = y = 0.

Proof. We substract the asymptotic behavior

I(r, x, y) =

∫ +∞

0

(
W (u, x, y)− 1

2
e−u|x−y|

)
J0(ru)du+

1

2

∫ +∞

0
J0(ru)e−u|x−y|du

Using lemma (2) we get ∫ +∞

0
e−u|x−y|J0(ru)du =

1√
r2 + |x− y|2

and the result follows. �

We have exhibited the screened electrostatic in a dielectric slab as the usual Coulomb
potential plus a correcting term. This term is exponentially small as the slab width is
large compare to the relative distance between the two electric charges. Furthermore our
expression (5) is regularized and do not present any divergence as the height z approaches
zero. This expression is suitable for further numerical calculations aiming to compute the
binding energy of an exciton in a 2D materials. In the following we show how a multiscale
approach allows to obtain the 2D potential when the width of the slab is very small with
respect to the exciton Bohr radius.

3. Asymptotics of the spectral problem

In the previous analysis two scales enter into the problem, namely the slab width d and
the height of the electric charges z0, z

′
0. Working with quantities normalized by the slab

width d helped us exhibiting the regular part of the 2D electrostatic potential. Finding
the exciton binding energy introduces another scale: the exciton Bohr radius a0. We
are interested in problems where the Bohr radius is large as compared to the slab width:
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a0 � d, that is, we focus on two-dimensional problems. Since now two length scales
contribute to the problem, we need to introduce a new parameter η = d/a0 in order to
vary one length-scale independently of the other. Letting η approach zero allows to deal
with a 2D problem, by considering the electrostatic problem for a 2D sheet.

3.1. The multiple scale approach. We are now in a position to obtain the limit behavior
of the Hamiltonian when η tends to 0.

Theorem 2. As η → 0, the asymptotic 2D expansionn to first order in η, of the Hamil-
tonian describing the exciton is given by

(6) −∆|| − 4ηI0(r),

where the effective 2D potential I0 is given by

(7) I0(r) =

∫
Y
I(r, x, y)dxdy.

Proof. Consider the spectral problem{
−∆|| − η2µ/m1∂

2
ζ − η2µ/m2∂

2
ζ′ + ηV (r, ζ/η, ζ ′/η)

}
ψη = Eηψη.

In order to obtain the asymptotic behavior when η → 0, we put this expression in vari-
ational form. To do so we use a test function φ(r, ζ, ζ ′) such that, for each r ∈ [0,+∞[,
the function (ζ, ζ ′)→ φ(r, ζ, ζ ′) belongs to D(Y ), i.e. the Schwartz space of C∞ functions
with compact support in Y .

It holds ∫
Yη×R

∇||ψη∇φ+ η2κ1

∫
Yη×R

∂ζψη∂ζφ+

η2κ2

∫
Yη×R

∂ζ′ψη∂ζφ+ η

∫
Yη×R

V (r, ζ/η, ζ ′/η)ψφ = Eη

∫
Yη×R

ψηφ.

Let us now divide this equality by η2. Using Lebesgue theorem, we know that, for a
continuous summable function f(x, y) defined on Yη, one has: limη→0 η

−2 ∫
Yη
f(x, y) =

f(0, 0). Therefore, we obtain∫
Yη

∂ζψη∂ζφ = O(η2),

∫
Yη

∂ζ′ψη∂ζ′φ = O(η2),

and

1

η2

∫
Yη×R

V (r, ζ/η, ζ ′/η)ψηφdζdζ
′ =

∫
dr

[∫
Y
V (r, x, y)dxdy

]
ψ0
η(r)φ

0(r) + o(1),

where

ψ0
η(r) = ψη(r, 0, 0), φ0(r) = φ(r, 0, 0).

We conclude that, up to order η, the variational relation is∫
∇||ψ0

η∇||φ0 + η

∫
dr

[∫
Y
V (r, x, y)dxdy

]
ψ0
η(r)φ

0(r) = Eη

∫
ψ0
ηφ

0.
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The result follows. �

Figure 2. LogLog plot of the effective 2D potential (8). It is compared to
the Coulomb potential and to the fitted potential (9).

This result shows that contrarily to what could be intuitively believed, the effective
2D potential is not obtained from the 3D one simply by putting z = z′ = 0. Let us
consider more specifically what happens with the strictly Coulomb part of the potential.
The effective potential in that case is

(8) V2D(r) =

∫
Y

1√
r2 + |z′ − z|2

dzdz′

whereas by putting z = z′ = 0 one obtains simply Vc = 1/r. In fig. (8), we have plotted
both V2D and Vc. There it can be seen that, as r tends to +∞, the effective potential
behaves as the Coulomb potential. However, as r tends to 0 it behaves as

(9) VA =
λ

r
,

where λ = 8
3 10−4, an expression that was obtained by fitting.

In [1], the following 2D approximation is introduced (the expression is adapted in order
to take into account the change of unit system)

VK(ρ) =
ee′

2πεd
IK(ρ),
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where

(10) IK(ρ) =

∫ +∞

0

J0(t)dt

t+ ε1+ε2
εf

r
.

Figure 3. LogLog plot of the ratio IK/I0 between the Keldysh potential
(10) and the effective potential (7).

It can be expressed using Struve and Neumann functions [1, 6] but this representation
is of little interest since the integral in (10) can be computed numerically very easily. This
form of the 2D potential was used in several articles, see e.g. [6], in order to compute
the binding energy of excitons. Several authors have derived this expression using various
approaches [3, 5]. Let us compare our result (7) and this potential. Using ε1 = ε2 = 1 and
εf = 10. The ratio IK/I0 is plotted in fig. 3. An excellent agreement is seen on a large
range of values. It is only near the singularity that the potentials differ largely from each
other. Our expression for an effective 2D potential is exact, as it comes from a rigorous
limit analysis. Its validity is not limited to specific values of the variable r. As such it can
take into account precisely the interaction between particles at small distances.

4. Conclusion

We have derived the asymptotic behavior of the Hamiltonian for the exciton wave func-
tion in a thin dielectric slab pf width d. Our approach is based on a limit analysis of the
Hamiltonian using a suitable small parameter η = d/a0, where a0 is the Bohr radius. Our
result compares well with the known results of the literature, although it is not limited to
asymptotic values of the permittivity contrast. The method used here could be extended
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to obtain an expansion of the Hamiltonian with respect to η [8]. We have also provided a
regularized expression for the full 3D potential which makes explicit to what extend this
potential departs from the Coulomb ones. This could be especially useful for implementing
a perturbation analysis.

5. Appendix: Derivation of the screened potential.

5.1. Expression of the Green function.

5.1.1. The equation in the Fourier domain. Let us compute then the potential ϕ(ρ, z; z′0)
created by a unit charge situated at (0, z′0). It satisfies the Poisson equation in the Schwartz
distributions meaning:

(11) −∇ · (ε(z)∇ϕ) = δ(z − z′0)⊗ δ(ρ)

and the conditions at infinity: limz→±∞ ϕ̂ = 0.
By invariance of the medium in the ρ directions, a partial Fourier transform is performed.

The Fourier transform is defined by:

ϕ̂(k, z; z′0) =

∫
ϕ(ρ, z; z′0)e

−ik·ρd2ρ,

and the inverse transform is:

ϕ(ρ, z; z′0) =
1

(2π)2

∫
ϕ̂(k, z; z′0)e

ik·ρd2k

The Fourier transform of ϕ̂ satisfies, in the distributional meaning, the following differ-
ential equation:

(12) − ∂x(ε ∂xϕ̂) + k2εϕ̂ = δ(z − z′0),

where: k = |k|. For simplicity, the dependence of ϕ̂ with respect to k and z′0 is implicit:
we denote ϕ̂(z) instead of ϕ̂(k, z; z′0).

5.2. The boundary conditions. There are four regions to be considered:

(1) z > d/2, −ϕ̂′′ + k2ϕ̂ = 0, hence, taking into account the condition at infinity:

ϕ̂(z) = A2 e
−k(z−d/2),

(2) z′0 < z < d/2, ϕ̂(z) = A+
f e
−k(z−d/2) +B+

f e
k(z−d/2),

(3) −d/2 < z < z′0, ϕ̂(z) = A−f e
−k(z−d/2) +B−f e

k(z−d/2),

(4) z < −d/2, ϕ̂(z) = B1 e
k(z+d/2)

The boundary conditions at the interfaces of each domain are implied by eq.(12): the
function ϕ̂ is continuous everywhere and the function ε∂xϕ̂ is continuous everywhere except
at z′0 where it as a jump: ∂xϕ̂(z+0 )− ∂xϕ̂(z−0 ) = −1/ε.

For ϕ̂ this gives the relations:

• z = d/2, ϕ̂( d2
∣∣+) = ϕ̂( d2

∣∣−):

(13) A2 = A+
f +B+

f ,
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• z = z′0, ϕ̂(z′0|
+) = ϕ̂(z′0|

−):

(14) A+
f e
−k(z′0+d/2) +B+

f e
k(z′0+d/2) = A−f e

−k(z′0−d/2) +B−f e
k(z′0−d/2)

• z = −d/2, ϕ̂(d2
+

) = ϕ̂(d2
−

):

(15) Af− +B−f = B1

For the derivative, we obtain:
• z = d/2,

(16) − ε2A2 = −εfA+
f + εfB

+
f ,

• z = z′0,

(17) − kA−f e
−k(z′0+d/2) + kB−f e

k(z′0+d/2) − (−kA+
f e
−k(z0−d/2) + kB+

f e
k(z0−d/2)) = 1/εf ,

• z = −d/2,

(18) − εfAf− + εfB
−
f = ε1B1

From [(13),(16)] and [(15),(18)],we get:

(19) A+
f =

εf + ε2
εf − ε2

B+
f , A

−
f =

εf − ε1
εf + ε1

B−f

In order to clarify the derivation, we denote:

τ1 =
εf + ε1
εf − ε1

, τ2 =
εf + ε2
εf − ε2

From (13) and (19), we get:

(20) B−f = τB+
f

where

(21) τ =
τ2 e
−k(z′0−d/2) + ek(z

′
0−d/2)

τ−11 e−k(z
′
0+d/2) + ek(z

′
0+d/2)

This last expression can be simplified. Let us denote:

ηn = log(
√
τn), i.e.

√
τn = eηn , n = 1, 2.

From (21), we get:

(22) τ =
√
τ1 τ2

cosh [k(d/2− z′0) + η2]

cosh [k(d/2 + z′0) + η1]

We are looking first for the expression ofB+
f . It is obtained from (17), by using [(19)(20)(22)]:

kτB+
f

[
−τ−11 e−k(z

′
0+d/2) + ek(z

′
0+d/2)

]
− kB+

f

[
−τ2e−k(z

′
0−d/2) + ek(z0−d/2)

]
=

1

εf

this gives, upon using the expression (22) for τ

B+
f =

1

2kεf
√
τ2

Γ, A+
f = τ2B

+
f ,
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where:

(23) Γ =
cosh [k(d/2 + z′0) + η1]

sinh [k d+ η1 + η2]
.

5.3. Expression of the energy of interaction. The electrostatic energy between both
charges is given by:

V (ρ, z0, z
′
0) =

e e′

(2π)2ε0

∫
ϕ̂(k, z0; z

′
0)e

ik·ρd2k,

For z0 ≥ z′0, it holds:

ϕ̂(k, z0; z
′
0) = A+

f e
−k(z0−d/2) +B+

f e
k(z0−d/2) ,

this gives:

ϕ̂(k, z0; z
′
0) =

Γ

kεf
cosh[k(d/2− z0) + η2]

Using (23), it comes:

ϕ̂(k, z0; z
′
0) =

1

kεf

cosh [k(d/2 + z′0) + η1] cosh[k(d/2− z0) + η2]

sinh [k d+ η1 + η2]

and finally:

V (ρ, z0, z
′
0) =

e e′

4π2 εf

∫
cosh

[
k(d2 + z′0) + η1

]
cosh[k(d2 − z0) + η2]

k sinh (k d+ η1 + η2)
eik·ρd2k,

There is a typo in the expression given in the paper by Keldysh: in the integral defining
the energy of interaction, the term e2k·ρ should be replaced by eik·ρ.

Consider the double integral in polar coordinates: (ρ, θ): ρ = ρ(cos θ, sin θ) and k(cosψ, sinψ):
ρ ·k = ρ k cos(θ−ψ). It is possible without loss of generality to take θ = π/2, from invari-
ance of the problem under a rotation around axis Oz.

V (ρ, z0, z
′
0) =

e e′

4π2 εf

∫
kdk

cosh
[
k(d2 + z′0) + η1

]
cosh[k(d2 − z0) + η2]

k sinh (k d+ η1 + η2)

∫ 2π

0
dψ eikρ sin(ψ),

Let us recall the generating series for Bessel functions Jn(ρ):

eiρ sinψ =
∑
n

Jn(ρ)einψ,

we obtain: J0(ρ) = 1
2π

∫ 2π
0 eiρ sinψ dψ, therefore it holds:

V (ρ, z0, z
′
0) =

e e′

2π εf

∫ +∞

0

cosh
[
k(d2 + z′0) + η1

]
cosh[k(d2 − z0) + η2]

sinh (k d+ η1 + η2)
J0(kρ)dk,

Finally, we change to the new variable: u = k/d to get:

(24) V (ρ, z0, z
′
0) =

e e′

2π εfd

∫ +∞

0

cosh
[
u(12 +

z′0
d ) + η1

]
cosh[u(12 −

z0
d ) + η2]

sinh (u+ η1 + η2)
J0(

ρ

d
u)du.
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