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Abstract. Let l be a positive integer, k = 2l or k = 2l + 1 and let n be a

positive integer with n ≡ 1 (mod 2l+1). Potočnik and Šajna showed that if
there exists a vertex-transitive self-complementary k-hypergraph of order n,

then for every prime p we have pn(p) ≡ 1 (mod 2l+1). Here we extend their

result to any integer k and a larger class of integers n.

August 3, 2019

1. Introduction

In 1985 Rao [6] determined a sufficient condition on the order n of a vertex-
transitive self-complementary graph. Following many partial results, Muzychuk [2]
showed in 1999, in an elegant proof, that Rao’s sufficient condition was, indeed,
also necessary.

For a prime p and a positive integer n, let n(p) denote the largest integer i for

which pi divides n. Using this notation, we combine the theorems of Rao and
Muzychuk as follows.

Theorem 1.1 (Rao/Muzychuk). For a positive integer n, there exists a vertex-
transitive self-complementary graph of order n if and only if pn(p) ≡ 1 (mod 4) for
every prime p.

For an interesting discussion of the history of the vertex-transitive self-comple-
mentary graph problem, see [1].

For every integer k ≥ 2, a k-uniform hypergraph, or k-hypergraph, for
short, is a pair (V ;E) consisting of a vertex set V and edge set E ⊆

(
V
k

)
, where(

V
k

)
denotes the set of all k-subsets of V . Clearly a 2-hypergraph is simply a graph.

A hypergraph H is called vertex-transitive if for every two vertices u, v of H
there is an automorphism φ of H for which u = φ(v). In 2009, Potočnik and
Šajna [5] proposed studying the problem analogous to the previous theorem for
k-hypergraphs. In particular, they extended Muzychuk’s necessary condition to
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k-hypergraphs when k = 2l or k = 2l + 1 for some positive integer l. Shortly after,
Gosselin [3] established the sufficiency of the Potočnik and Šajna result.

Theorem 1.2 (Potočnik-Šajna/Gosselin). Let l be a positive integer, k = 2l or
k = 2l + 1 and let n be a positive integer with n ≡ 1 (mod 2l+1). Then there exists
a vertex-transitive self-complementary k-hypergraph of order n if and only if for
every prime p we have pn(p) ≡ 1 (mod 2l+1).

In Theorem 1.2, the only considered values of k are of the form k = 2l or
k = 2l + 1, for some positive integer l. We now consider any integer k ≥ 2 and
look at the binary expansion of k. Then there is a minimum positive integer l such
that k =

∑
i>l ki2

i + 2l or k =
∑

i>l ki2
i + 2l + 1, where ki ∈ {0, 1}, for every i. In

Theorem 1.2, each such ki = 0. Furthermore, in Theorem 1.2, n ≡ 1 (mod 2l+1)
or, equivalently, n =

∑
i>l ni2

i + 1, with ni ∈ {0, 1} for i > l. This suggests our

next theorem which extends the necessary condition of Potočnik and Šajna to any
integer k and a larger class of integers n.

Theorem 1.3. For any positive integer k ≥ 2, let l be a positive integer for which
k =

∑
i>l ki2

i + 2l or k =
∑

i>l ki2
i + 2l + 1. Assume n =

∑
i>l ni2

i + 1, where
ni, ki ∈ {0, 1} for every i, and for every i > l,

ni ≥ ki.

If there exists a vertex-transitive self-complementary k-hypergraph of order n, then
for every prime p we have pn(p) ≡ 1 (mod 2l+1).

2. Proof of Theorem 1.3

If H = (V ;E) is a self-complementary k-hypergaph, then there is a permuta-
tion σ of the set V such that σ(e) is an edge of H if and only if e ∈ E. Such
a permutation is called a self-complementing permutation. The set of all
self-complementing permutations of a self-complementary hypergraph H will be
denoted by C(H). In [7] the following characterization of self-complementing per-
mutations for k-hypergraphs was given.

Theorem 2.1. Let n and k be positive integers, 2 ≤ k < n, with n =
∑

i≥0 ni2
i and

k =
∑

i≥0 ki2
i, where ni, ki ∈ {0, 1}. A permutation σ on the set V = {1, 2, . . . , n}

is a self-complementing permutation of a k-hypergraph with vertex set V if and only
if there exist integers l0, l1; l0 ≤ l1, such that nl1 = kl1 , nl1−1 = kl1−1, ..., nl0+1 =
kl0+1, kl0 = 1, nl0 = 0 and

∑
i>l1

ni2
i vertices of V are contained in cycles of σ of

lengths divisible by 2l1+1.

Theorem 2.1 easily implies the following corollary.

Corollary 2.2. Let n and k, n > k, be positive integers for which there is a positive
integer l such that n =

∑
i>l ni2

i+1 and k =
∑

i>l ki2
i+2l or k =

∑
i>l ki2

i+2l+1,
where ni, ki ∈ {0, 1} for all i, and

ni ≥ ki for i > l.

Then there exists a self-complementary k-hypergraph of order n and every self-
complementing permutation of any self-complementary k-hypergraph of order n has
all cycles of lengths divisible by 2l+1, except one cycle of length 1 (fixpoint).
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The proof of Theorem 1.3 uses the technique of Muzychuk [2]. The proof also
depends on the second Sylow theorem (see [4], for example.) Finally, one may use
the well-known Orbit Decomposition Theorem to prove the following.

Theorem 2.3. If P is p-Sylow subgroup of the normalizer of G then P is a p-Sylow
subgroup of G.

Proof of Theorem 1.3

Suppose that H = (V ;E) is a self-complementary and vertex-transitive k-hyper-
graph of order n, where k and n satisfy the conditions of our theorem. Let p be a
prime; if n(p) = 0, then the result is clear. Thus assume that n(p) > 0. Here we
will find a self-complementary vertex transitive k-subhypergraph H ′ of H of order
pn(p) such that the cycles of a self-complementing permutation of H ′ are cycles of a
self-complementing permutation σ of H and the fixpoint of σ is one of the vertices
of H ′. Then Theorem 1.3 follows by Corollary 2.2.

Let M = Aut(H) be the automorphism group of H. For a subgroup G of M
and a vertex v of H, denote its stabilizer in G by Gv = {σ ∈ G : σ(v) = v} and the
set of the Sylow p-subgroups of G by Sylp(G).

Note that for every σ ∈ C(H) we have σ2 ∈ Aut(H). More precisely, a com-
position of a number of automorphisms and self-complementing permutations is
an automorphism of H if the number of self-complementing permutations is even;
otherwise, the product is a self-complementing permutation of H. The set G =
Aut(H) ∪ C(H) is a group which is generated by Aut(H) ∪ {σ}, where σ is an
arbitrary element of C(H).

Define P to be the set of p-subgroups P of M with the following properties:
There is a vertex v of H and τ ∈ C(H) such that

(1) τ(v) = v;
(2) τPτ−1 = P (τ normalizes P );
(3) Pv ∈ Sylp(Mv).

We will show that P is not empty and any maximal element of P is, in fact, a Sylow
p-subgroup of M .

Choose any v ∈ V , any P ∈ Sylp(Mv) and any σ ∈ C(H). Since H is self-
complementary, C(H) is not empty. Note that if p does not divide |Mv|, then P is
trivial. Since H is vertex transitive, there exists h ∈ M with h(v) = σ(v). Thus
σ̃ := σ−1h is an element of C(H) that fixes v.

By the second Sylow Theorem, there exists g ∈Mv such that σ̃P σ̃−1 = gPg−1;
hence (g−1σ̃)P (g−1σ̃)−1 = P . Set τ := g−1σ̃. Then τ ∈ C(H), τ(v) = g−1σ̃(v) =
g−1(v) = v and Pv = P (since P ∈ Sylp(Mv)). Thus P 6= ∅.

From now on we shall assume that

• P ∈ P is a maximal element of P,
• N is the normalizer of P in M ,
• Q is a Sylow p-subgroup of N containing P (Q exists by the second Sylow

Theorem).

We shall prove that P is a Sylow p-subgroup of M (we shall do it by proving
that Q ∈ P – then Q = P by maximality of P ). It will mean that P is a Sylow
p-subgroup of its normalizer. Hence, by the Orbit Decomposition Theorem, P is
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Sylow p-subgroup of M .

Since P ∈ P, there are τ ∈ C(H) and a vertex v such that τ(v) = v, τPτ−1 = P
and Pv ∈ Sylp(Mv).

It is straightforward to show that τ normalizes N , that is, τNτ−1 = N. Thus,
τN = Nτ.

We next show that τQτ−1 is a Sylow p-subgroup of N .

(1) τQτ−1 ⊂
Q≤N

τNτ−1 =
•
N

Hence τQτ−1 is a subgroup of N

(2) |τQτ−1| = |Q|.
Therefore τQτ−1 is a Sylow p-subgroup of N .

Let U := N(v)(= {h(v) : h ∈ N}), where v is a fix point of τ . Then we have
τ(U) = τ(N(v)) = (τN)(v) = (Nτ)(v), since τN = Nτ by our previous argument.
This implies that τ(U) = N(τ(v)) = N(v) = U.

Recall that, by Corollary 2.2, every cycle c of the antimorphism τ has length
divisible by 2l+1. Since τ(U) = U , for every cycle c of the permutation τ we know
that either all the vertices of c are in U or else, the set of vertices of c is disjoint
with U . Then, U is a set of vertices of a self-complementary vertex-transitive k-
uniform hypergraph with self-complementing permutation τ (restricted to U) and
vertex-transitive group of automorphisms containing N . Moreover, the fix point of
τ (the vertex v) is in U . Hence we have

|U | ≡ 1 (mod 2l+1).

Since τQτ−1 and Q are two Sylow p-subgroups of the group N , there is g ∈ N such
that that τQτ−1 = gQg−1 (second Sylow Theorem). Hence (g−1τ)Q(g−1τ)−1 = Q.

Write σ = τ−1g (we have σQσ−1 = Q and σ ∈ C(H). By the definition of U
and since g ∈ N we have g(U) = U , and hence, σ(U) = U .
Let u be a vertex of H such that σ(u) = u (the vertex u exists by Corollary 2.2).
Since the group M is vertex-transitive, there is h ∈M such that h(v) = u.
Thus the subgroups Mv and Mu and the subgroups Qu and Qv are conjugated by
h , that is,

• Mu = hMvh
−1 and

• Qu = hQvh
−1 .

Hence |Mu| = |Mv| and |Qu| = |Qv|. Consequently, Qu ∈ Sylp(Mu) and Q ∈ P.
By the maximality of P we have Q = P and Q ∈ Sylp(M).

Now we shall show that the orbit P (v) induces a self-complementary and vertex-
transitive k-hypergraph of order pr. Note first that since τP = Pτ and τ(v) = v
we have

τ(P (v)) = P (τ(v)) = P (v)

and therefore the k-hypergraph induced in H by P (v) is self-complementary and
vertex transitive.
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Write |M | = pdq, where q and p are relatively prime. Then |P | = pd. Since M acts
vertex transitively on V we have

|Mv| =
|M |
|M(v)|

=
pdq

prm
= pd−rr,

where r and p are relatively prime.
Hence |Pv| = pd−r. On the other hand, since P ∈ Sylp(M) and Pv ∈ Sylp(Mv) we
have

pd−r = |Pv| =
|P |
|P (v)|

=
pd

|P (v)|
This implies |P (v)| = pr and, by Corollary 2.2, pr ≡ 1 (mod 2l+1), and the proof
is complete.
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