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Calcium isotopic patterns in enamel reflect different
nursing behaviors among South African early hominins
Théo Tacail1,2*, Jeremy E. Martin1*, Florent Arnaud-Godet1, J. Francis Thackeray3,
Thure E. Cerling4, José Braga3,5, Vincent Balter1†

Nursing is pivotal in the social and biological evolution of hominins, but to date, early-life behavior among
hominin lineages is a matter of debate. The calcium isotopic compositions (d44/42Ca) of tooth enamel can provide
dietary information on this period. Here, we measure the d44/42Ca values in spatially located microsized regions in
tooth enamel of 37 South African hominins to reconstruct early-life dietary-specific variability in Australopithecus
africanus, Paranthropus robustus, and early Homo. Very low d44/42Ca values (<−1.4‰), indicative of milk consump-
tion, are measured in early Homo but not in A. africanus and P. robustus. In these latter taxa, transitional or adult
nonmilk foods must have been provided in substantial quantities relative to breast milk rapidly after birth. The
results suggest that early Homo have continued a predominantly breast milk–based nursing period for longer than
A. africanus and P. robustus and have consequently more prolonged interbirth interval.
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INTRODUCTION
Inferring nursing behavior from the fossil record is a difficult task and
has been based on body size determination, dental development, and
geochemical analysis (1–8). High-resolution elemental analysis in den-
tal tissues can provide information on early-life diet. Using laser abla-
tion, Austin et al. (8) have shown that variations of the barium/calcium
ratios (Ba/Ca) in human and macaque tooth enamel reflect breastfeed-
ing and its decline with time. Recently, Tacail et al. (4) demonstrated
that the d44/42Ca values in deciduous tooth enamel of infants with
known dietary histories during childhood vary according to the age
of cessation of suckling. In both cases (4, 8), teeth were cut to locate
incremental microstructure, notably the neonatal line, which serves as
the starting point for age determination.While this approach is relevant
to assess the dental microstructural calendar, it is not compatible with a
large-scale study of rare museum fossil specimens such as hominins.
Here, we spatially microsampled tooth enamel in a large set of South Af-
rican hominins. We analyzed teeth of 12 specimens of Australopithecus
africanus, 18 of Paranthropus robustus, and 7 of early Homo, represent-
ing a total of 84 enamel samples (A. africanus, n = 28; P. robustus, n = 37;
earlyHomo,n= 18; seeMaterials and table S1).We also analyzed teeth of
coexisting mammals including 7 specimens of browsers, 10 of grazers,
and 7 of carnivores, as well as 4 modern teeth of Gorilla gorilla gorilla
for comparison (Materials and table S1).
RESULTS
We report high-precision Ca isotopic values along with strontium/
calcium (Sr/Ca) and barium/calcium (Ba/Ca) ratios (Methods and table
S1). Fractionation between d44/42Ca and d43/42Ca is mass dependent
(fig. S1), conforming to the expected mass-dependent fractionation
slope of ~0.5 (9); hence, only d44/42Ca is discussed here. Several trace
elements (10, 11) and isotopic ratio (12, 13) patterns in the South Af-
rican Plio-Pleistocene fossil dental remains already proved that this
material is extremely well preserved. For mass balance reasons, diagen-
esis is more sensitive for elements with a high water/rock ratio (14).
Here, we monitored diagenesis using uranium and manganese and
did not find any evidence of diagenesis for trace elements (Sr and
Ba), which have a relatively high water/rock ratio, and all the more
for Ca, which has the lowest possible water/rock ratio, being the most
abundant element in hydroxylapatite (fig. S2).
DISCUSSION
The Ca isotopic compositions of dental enamel decrease with ascend-
ing trophic position in fish (15, 16), reptiles (17, 18), and mammals
(19), and the Sr/Ba ratio recapitulates the Sr/Ca and Ba/Ca patterns,
namely, that it slightly increases from grazers to browsers, and ismuch
higher in carnivores (10, 11). Accordingly, here, carnivores have the
lowest d44/42Ca values (−1.75 ± 0.24, ±2 SD) and herbivores have the
lowest Sr/Ba values (1.67 ± 1.14, ±2 SD) of the dataset (fig. S3). Be-
tween these two trophic endmembers, hominins occupy intermediate
positions that are characterized by specific d44/42Ca or Sr/Ba values
(figs. S3 and S4, A and B). In this context, the contentious first molar
KB5223 specimen, considered as earlyHomo by some authors (20) or
asP. robustus by some others (21), falls within the domain ofP. robustus
(fig. S3). Together, the present results suggest that P. robustus con-
sumed more plant-based foods than A. africanus and early Homo
(11). In contrast with previous studies involving faunal assemblages,
the South African hominin d44/42Ca values alone cannot be interpreted
in terms of trophic position. The d44/42Ca values on late-forming teeth,
i.e., second and third molars (fig. S4B), are similar for the three homi-
nins, which apparently contradicts dietary interpretations. A review of
literature data on various foodstuff d44/42Ca values shows that meat
does not differ isotopically from vegetal foodstuffs (fig. S5). A reconcil-
ing explanation is that trophic relationship using the Ca isotopic com-
positions is at work only when the skeleton of the prey is wholly or at
least partly ingested with edible parts (17). Since hominins were un-
likely to have consumed bone when they ate meat, this may explain
why early Homo adults have similar d44/42Ca values to P. robustus
and A. africanus.

The notable lower average d44/42Ca value of earlyHomo compared
to the two other taxa is due to the fact that the deciduous secondmolar,
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http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on S
eptem

ber 1, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

incisor, first molar, and canine (Fig. 1, A to C) are 44Ca depleted rela-
tively to the other tooth types, i.e., third premolar and thirdmolar (Fig.
1, D to F). In earlyHomo, there is a trend fromvery low d44/42Ca values
(~−1.7‰) in the deciduous secondmolar and second incisor to higher
values in canines and, lastly, in the collar enamel of the fourth pre-
molar (Fig. 1, A to D). This evolution roughly follows the mineraliza-
tion calendar in Homo (22, 23). Unfortunately, this observation
cannot be made for P. robustus andA. africanus because the sampling
misses incisor and first molar. Although further investigation is nec-
essary among extant primates, it is interesting to observe that one per-
manent incisor of a modern gorilla also exhibits a low d44/42Ca value
(~−1.6‰; Fig. 1A). Such a tooth type mineralizes early in the lifetime
of gorillas (24). Permanent molars, which mineralize later, display
d44/42Ca values at ~−1‰ (Fig. 1, B, E, and F). Regarding trace ele-
ment data, the enamel Sr/Ca ratio has been reported to increase (25)
and the Ba/Ca ratio to decrease (8) with the introduction of solid foods.
Therefore, the Sr/Ca and Ba/Ca ratios should show an increase and a
decrease, respectively, from anterior to posterior teeth, which is not the
case here.We do not observe any clear pattern between tooth types and
the normalized Ca ratios (figs. S6, A to F, and S7, A to F).

To evaluate the influence of individual age on the d44/42Ca values,
we reconstructed a dental age timeline using the distance betweenmicro-
sampled points relative to enamel cervix and cusp tip (Methods, figs. S8
and S9, tables S2 and S3, and SupplementaryData) (22, 23, 26–28). After
initial secretion, enamel continues tomineralize through thematuration
process, which may blur the elemental and isotopic dietary history. Re-
cently, Smith et al. (29) show that the Ba/Ca ratio cannot be overprinted
for more than a month during enamel maturation. Given the typical
Tacail et al., Sci. Adv. 2019;5 : eaax3250 28 August 2019
300-mm space resolution of the present microsampling approach, the
maturation offset affecting the Ca isotope composition is likely to be
nonsignificant.

Pairing d44/42Ca values with dental ages allows distinguishing
specific patterns of temporal evolution of the main hominin groups
(Fig. 1, G to I). In A. africanus, there is no clear relationship between
the d44/42Ca value and dental age as the slope of the regression line is
close to zero (0.003 ± 0.024, ±2 SE; R2 = 0.002; P = 0.8100; fig. S10A).
In P. robustus, there is a possible slight (0.017 ± 0.018, ±2 SE) but
nonsignificant (R2 = 0.088, P = 0.074) increase of the d44/42Ca value
with dental age (fig. S10B). By contrast, we observed a marked and
significant increase in early Homo, the slope of the regression line be-
tween d44/42Ca values and dental ages being 0.073 ± 0.031 (±2 SE;
R2 = 0.616; P = 0.0003; fig. S10C). These trends remain the same when
the average dental ages and d44/42Ca values for a given tooth are con-
sidered (fig. S10, D to F). The strong correlation between d44/42Ca
values and dental ages observed in early Homo and the existence of
very low d44/42Ca values (<−1.4‰) in the first years of life (Fig. 1I)
suggest that early Homo infants have experienced a marked period of
breastfeeding. Modern western human milk has a variable but very
low d44/42Ca value of −1.67 ± 0.37‰ (±2 SD) (4, 30). These low
values are reflected in tooth enamel of human infants. The very
low d44/42Ca values in tooth enamel of breastfed infants (average of
−1.91 ± 0.13‰, ±2 SD) drift toward more positive values after ces-
sation of suckling (average of −1.58 ± 0.13‰, ±2 SD) (4). P. robustus
and A. africanus do not exhibit these low d44/42Ca values (Fig. 1, G
and H), suggesting that infants of these two hominin taxa were breast-
fed with a lower intensity and/or frequency and a shorter duration
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Fig. 1. Intraindividual and interindividual variability of tooth enamel d44/42Ca values in modern and fossil hominins. (A to F) Distribution of the enamel d44/42Ca
values according to tooth types. The two microsampling spots processed in each tooth are linked, the “upper” spot being on the left side and the “lower” spot on the
right. Error bars are two SDs of the mean. (G to I) Distribution of the enamel d44/42Ca values according to reconstructed dental age. See Methods, table S2, and
Supplementary Data for explanations on the dental age reconstruction. Error bars are 1 SD of the mean. Shadowed areas incorporate the uncertainties on the d44/42Ca values
and on the dental age.
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than those of early Homo. An early diet composed of solid adult food
and sparse suckling bouts is eventually a parsimonious explanation to
account for the Ca isotopic signatures of P. robustus and A. africanus
infants. Such a type of early-life dietary behavior is compatible with
that of extant wild great apes (Fig. 1, A, B, E, and F) (31, 32). But,
positing that the milk of P. robustus and A. africanus mothers had
such a d44/42Ca value that could explain the enamel values of their
infants is unlikely (table S4 and fig. S11). Here, again, the early-life
evolution of the Sr/Ca and Ba/Ca ratios is poorly informative as no
significant correlation is observed with dental age for any hominin
taxon (figs. S6, G to I, and S7, G to I).

In conclusion, the breast milk–based nursing period has been lon-
ger for infants, and consequently, interbirth interval was more pro-
longed for mothers in the gracile lineage than in the robust one. Ca
isotope compositions, associated with a microsampling approach that
allows intratooth time resolution, offer unprecedented perspectives
into the exploration of weaning behaviors during the evolution of
hominid and, more generally, of mammals.
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MATERIALS
Fossil samples
Sampling was performed on hominin and associated fauna tooth spe-
cimens curated at the Ditsong National Museum of Natural History
(formerly the Transvaal Museum) in Pretoria, South Africa, and ex-
ported to France thanks to a SAHRA(SouthAfricanHeritageResources
Agency) permit (ID 1484). The sampling of enamel was performed
using the method described by Tacail et al. (33). Briefly, it consisted
of drilling the enamel surface using a tungsten carbide drill mounted
on a precise position drilling MicroMill device. Resulting holes were
typically 350 to 400 mm wide and 200 to 300 mm deep. Accumulated
powder on the rims of the holes was collected using razorblades and
transferred to clean 7-ml Savillex vials. This procedure allowed ∼60
to 80 mg of hydroxylapatite corresponding to about 22 to 30 mg of Ca
to be recovered. Before each sampling, enamel surface, drill bits, and
razorblades were washed using 99% pure ethanol and blown off using
a compressed air duster.

Modern samples
To obtain some preliminary insights from amodern primate, Ca isotope
variability in the western lowland gorilla,G. gorilla gorilla, was measured
from tooth enamel powder of four individuals obtained in the course of a
previous study (34). The samples originated from La Lopé National Park
in Gabon and were obtained from the osteological collection of the
Station d’Études des Gorilles et Chimpanzés under Autorisation de
recherche du Centre National de la Recherche Scientifique et
Technologique no.

AR0026/11/MENESSIC/CENAREST/CG/CST/CSAR and Auto-
risation d’entrée de l’Agence Nationale des Parcs Nationaux no.
000013/PR/ANPN/SE/CS/AEPN.
METHODS
Sample chemistry
The chemical processing of the samples was performed using the
method described by Tacail et al. (9). Briefly, enamel samples were
dissolved in 300 ml of suprapure 1 M HCl acid, of which 30 ml was
saved for the determination of elemental concentrations, and the re-
maining 270 ml was processed through AG50X-W12 cation exchange
Tacail et al., Sci. Adv. 2019;5 : eaax3250 28 August 2019
resin in 1MHClmedium to dispose samplematrix. Ca and Sr fractions
were collected in 6 M HCl medium. Ca fractions were then separated
from Sr by loading samples onto columns filled with Sr-specific resin
(Eichrom Sr-Spec) in suprapure 3 M HNO3 medium. Blanks for the
whole procedure did not exceed 100 ng of Ca (9).

Concentration measurements
Concentrations of Ca and Sr weremeasured on an inductively coupled
plasma (ICP) atomic emission spectrometer (iCAP 6000 Series ICP,
ThermoFisher Scientific), and concentrationsof Sr andBaweremeasured
on an inductively coupled plasma mass spectrometer (ICP-MS; 7500
CX, Agilent) following the procedure given by Balter and Lécuyer (35).

Isotopic measurements
Calcium isotope abundance ratios (44Ca/42Ca and 43Ca/42Ca) were
measured using amulticollector ICP-MS (NeptunePlus, ThermoFisher
Scientific) following previously described methods (9, 16, 18, 19, 33).
After purification, Ca samples were dissolved in ultrapure 0.05 M
HNO3, and Ca concentration was set at 1.5 ppm for all samples and
standards. All Ca isotope compositions were expressed using the
“delta” notation defined as follows for the 44Ca/42Ca ratio

d44=42Ca ¼ ð44Ca=42CaÞsample

ð44Ca=42CaÞICP Ca Lyon

� 1

" #
� 1000

where (44Ca/42Ca)sample and (44Ca/42Ca)ICP Ca Lyon are the Ca isotope
abundance ratios measured in sample and ICP Ca Lyon reference
standard, respectively. The ICP Ca Lyon standard, used as a bracketing
standard, was a Specpure Ca plasma standard solution (Alfa Aesar) as
previously described (9, 16, 18, 19, 33).

Dental age determination
Before and after sampling, a picture was taken for each tooth con-
taining, when possible, the two microsampling holes. All the pictures
were taken with the same magnification. The pictures were imported
in Adobe Illustrator software. Several points were located on the pic-
tures: (i) the cusp tip of the tooth crown (point A; fig. S8); (ii) the
lowest point on the buccal or lingual enamel (point B; fig. S8); and
(iii) the positions of themicrosampling holes. Themicrosampling hole
close to the cusp tip is annotated “upper” (point U) and that close to
the cervix is annotated “lower” (point L; Tables S1 and S2 and fig. S8).
Then, a line was drawn fromA to B, following the long growth axis of
the enamel. The positions of the points U and L microsampling holes
were projected to that line, parallel to external incremental growth
marks, when visible. The projected U and L positions on the AB line
are marked U′ and L′. Last, the distances fromA to B (tooth height, t),
from the points B to L′ (a), and from the points B to U′ (b) were mea-
sured in arbitrary units and reported on the picture. A complete list of
the pictures showing these measurements is given in the Supplemen-
tary Data. The resulting relative positions (i.e., height of the projection
of a microsampling hole relative to the tooth height,H%)were replaced
in the chronology of dental development of earlyHomo (22, 23, 26, 28),
A. africanus (26, 27), and P. robustus (26, 27). Dental development de-
termination can be based on two different approaches: The first is based
on synchrotron virtual imaging using counts of long-period (Retzius
lines) and short-period (cross striations) internal incremental lines
(26), and the second is based on counts of perikymata (22, 23, 27, 28).
Using the charts provided in these references for a given taxon [early
3 of 5
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Homo: Fig. 10.9 (22), Fig. 4 (23), Table G (26), Table 2 (26), and
Tables 1 and 2 (28); A. africanus and P. robustus: Fig. 4 (27), Table G
(26), and Table 2 (26)], the ages of dental development can be recon-
structed independently. Both approaches yield similar results of crown
initiation age and crown formation time for incisor, canine, premolar,
first, and second molar (fig. S9).

Important uncertainties are associated with reconstructed dental
ages for three main reasons. First, most of the teeth are worn, which
precludes an accurate estimation of the original crown height. Second,
for a given tooth type, the chronological age cusp tip must incorporate
the time taken to form cuspal enamel to the initiation age. Third, the
sampling spots were performed at a more or less constant depth,
but this was not formally controlled and could lead to the sampling
of varying amounts of enamel layers, notably of cuspal enamel. To
integrate all these uncertainties and the variations of the two calendars
of dental age, we therefore consider for each spot the youngest crown
initiation age and the longest crown formation time specific of the
tooth type. The minimum dental age (min) and maximum dental age
(max) for each tooth are summarized in table S2. The relative po-
sitions of the microsampling holes were converted into dental age
using the following equation

Dental age ¼ %H � max�min
100

� �
þmin

The complete list of dental age calculations is given in table S3.
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Fig. S1. Three isotopes plot: d43/42Ca (‰) as a function of d44/42Ca (‰) relative to ICP Ca Lyon.
Fig. S2. Heat map of geochemical data.
Fig. S3. Distributions of the Sr/Ba ratios and d44/42Ca values in the hominins and associated
fossil fauna.
Fig. S4. Distributions Sr/Ba and d44/42Ca values in late-forming teeth.
Fig. S5. Distributions of known or estimated isotope compositions of primary Ca dietary
sources (‰) relative to ICP Ca Lyon.
Fig. S6. Intraindividual and interindividual variability of tooth enamel Sr/Ca values in fossil
hominins.
Fig. S7. Intraindividual and interindividual variability of tooth enamel Ba/Ca values in fossil
hominins.
Fig. S8. Diagram of the measurements for dental age reconstruction for a molar and an incisor.
Fig. S9. Comparison of enamel mineralization calendars in hominins.
Fig. S10. Correlation between age and d44/42Ca values.
Fig. S11. Correlation between diet and milk d44/42Ca values.
Table S1. Geochemical data (Sr/Ca, Ba/Ca, Sr, Ba, U, Mn, d44/42Ca, and d43/42Ca) of hominins,
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Table S2. Chronology of dental development in hominins.
Table S3. Measurement data for hominin dental age determination.
Table S4. Compilation of diet and milk d44/42Ca values available in the literature.
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