
HAL Id: hal-02302214
https://hal.science/hal-02302214v1

Submitted on 1 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Godot: All the Benefits of Implicit and Explicit Futures
Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen,

Tobias Wrigstad

To cite this version:
Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen, Tobias Wrigstad. Godot:
All the Benefits of Implicit and Explicit Futures. ECOOP 2019 - 33rd European Conference on
Object-Oriented Programming, Jul 2019, London, United Kingdom. pp.1-28. �hal-02302214�

https://hal.science/hal-02302214v1
https://hal.archives-ouvertes.fr


Godot: All the Benefits of Implicit and Explicit
Futures
Kiko Fernandez-Reyes
Uppsala University, Sweden
kiko.fernandez@it.uu.se

Dave Clarke
Storytel, Stockholm, Sweden

Ludovic Henrio
Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, France
ludovic.henrio@ens-lyon.fr

Einar Broch Johnsen
University of Oslo, Norway
einarj@ifi.uio.no

Tobias Wrigstad
Uppsala University, Sweden
tobias.wrigstad@it.uu.se

Abstract
Concurrent programs often make use of futures, handles to the results of asynchronous operations.
Futures provide means to communicate not yet computed results, and simplify the implementation
of operations that synchronise on the result of such asynchronous operations. Futures can be
characterised as implicit or explicit, depending on the typing discipline used to type them.

Current future implementations suffer from “future proliferation”, either at the type-level or at
run-time. The former adds future type wrappers, which hinders subtype polymorphism and exposes
the client to the internal asynchronous communication architecture. The latter increases latency, by
traversing nested future structures at run-time. Many languages suffer both kinds.

Previous work offer partial solutions to the future proliferation problems; in this paper we show
how these solutions can be integrated in an elegant and coherent way, which is more expressive than
either system in isolation. We describe our proposal formally, and state and prove its key properties,
in two related calculi, based on the two possible families of future constructs (data-flow futures and
control-flow futures). The former relies on static type information to avoid unwanted future creation,
and the latter uses an algebraic data type with dynamic checks. We also discuss how to implement
our new system efficiently.

2012 ACM Subject Classification Software and its engineering→ Concurrency control; Software and
its engineering → Concurrent programming languages; Software and its engineering → Concurrent
programming structures

Keywords and phrases Futures, Concurrency, Type Systems, Formal Semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.2

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.1

Funding Part of this work was funded by the Swedish Research Council, Project 2014-05-545.

1 Introduction

Concurrent programs often make use of futures [4] and promises [27], which are handles to
possibly not-yet-computed values, that act like a one-off channel for communicating a result
from (often a single) producers to consumers. Futures and promises simplify concurrent
programming in several ways. Perhaps most importantly, they add elements of structured

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen, and
Tobias Wrigstad;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 2; pp. 2:1–2:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8654-118X
mailto:kiko.fernandez@it.uu.se
https://orcid.org/0000-0002-1970-6607
https://orcid.org/0000-0001-7137-3523
mailto:ludovic.henrio@ens-lyon.fr
https://orcid.org/0000-0001-5382-3949
mailto:einarj@ifi.uio.no
https://orcid.org/0000-0002-4269-5408
mailto:tobias.wrigstad@it.uu.se
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://dx.doi.org/10.4230/DARTS.5.2.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Godot: All the Benefits of Implicit and Explicit Futures

def addition(x: Int, y: Int): Int
x + y

end

def addition(x: Fut[Int], y: Fut[Int]): Int
get(x) + get(y)

end

Figure 1 Left. Data-flow, implicitly typed future, i.e., any argument may be a future value, not
visible to the developer. Right. Control-flow, explicitly typed future, i.e., the function only accepts
future values; synchronisation constructs reduce the future nesting level, e.g., get.

programming to message passing, i.e., a message send immediately returns a future, which
mimics method calls with a single entry and single exit. This simplifies the control-flow logic,
avoids explicit call-backs, and allows a single result to be returned to multiple interested
parties – without the knowledge of the producer – through sharing of the future handle. A
future is fulfilled when a value is associated with it. Futures are further used as synchronisation
entities: computations can check if a future is fulfilled (poll), block on its fulfilment (get),
and register a piece of code to be executed on its fulfilment (future chaining – then), etc.
Promises are similar to (and often blurred with) futures. The main difference is that fulfilment
is done manually through a separate first-class handle created at the same time as the future.

Futures are often characterised as either implicit or explicit, depending on the typing
discipline used to type them. Implicit futures are transparent, i.e., it is not generally possible
to distinguish in a program’s source whether a variable holds a future value or a concrete
value. As a consequence, an operation x + y may block if either x or y are future values.
This is called wait-by-necessity because blocking operations are hidden from the programmer
and only performed when a concrete value is needed. With implicit futures, any function
that takes an integer can be used with a future integer, which makes code more flexible and
avoids duplication (Fig. 1, Left). Explicit futures, in contrast, use future types to distinguish
concrete values from future values, e.g., int from Fut[int], and rely on an explicit operation,
which we will call get, to extract the int from the Fut[int]. The types and the explicit
get make it clear in the code what operations may cause latency, or block forever. The types
also make harder to reuse code that mixes future and concrete values (Fig. 1, Right).

Because implicit futures allow future and concrete values to be used interchangeably, they
can delay blocking on a future until its value is needed for a computation to move forward.
Implementing the same semantics with explicit futures requires considerable effort to deal
with any possible combination of future and concrete values at any given juncture.

Programs built from cooperating concurrent processes, like actor programs, commonly
compute operations by multiple message sends across several actors, each returning a future.
This is implemented by nesting several futures, e.g., f1 ← f2 ← f3 such that f1 is fulfilled by
f2 which is fulfilled by f3. While implicit futures hide these structures by design, explicit
futures suffer from a blow-up in the number of get operations that must be applied to extract
the value, but also in the amount of wrappers that must be added to type the outermost
future value. Notably, this makes tail recursive message-passing methods impossible to type
as the number of type wrappers must mirror the depth of the recursion.

Futures are important for structuring and synchronising asynchronous activities and have
been adopted in mainstream languages like Java [32, 17], C++ [26], Scala [41], and JavaScript
[28]. In the actor world, futures reduce complexity considerably by enabling an actor to
internally join on the production of several values as part of an operation. Alternative
approaches either become visible in an actors interface and require manual “buffering” of
intermediate results as part of the actor’s state, or rely on a receive-like construct and the
ability to pass an actor any message, which loses the benefit of a clearly defined interface.
With the prevalent way of typing futures – as used for example in Java and Scala – a



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:3

programmer must choose between introducing blocking to remove future type wrappers [20],
or break away from typical structured programming idioms when translating a program into
an equivalent actor-based program.

This paper unifies and extends two recent bodies of work on explicit and implicit futures.
Henrio [20] observed that the literature directly ties data flow-driven and control flow-driven
futures to the implicit- and explicit-future dichotomy, respectively (e.g., Fig. 1). This work
explored the design space of data-flow/control-flow and implicit/explicit dichotomy to support
this argument, and developed a combination of data-flow and explicit futures, with a future
type that abstracts nesting, avoids the aforementioned explosion of future wrappers and get
calls for tail recursive methods or pipelines with multiple asynchronous stages, making the
chains of futures completely transparent. Fernandez-Reyes et al. [13] proposed an explicit
delegation operation precisely for handling long (possibly tail recursive) pipelines. Instead of
introducing a new future type that hides nesting, this work identifies common delegation
patterns in actor-based programs, and proposes a delegation operation that avoids creating
unwarranted nested futures. In this system the programmer can control exactly on which
stages in a pipeline should be possible to synchronise, reducing the number of created futures.

We distinguish two kinds of futures. We call control-flow futures the future constructs
that can be implemented by a parametric future type and where each synchronisation blocks
until exactly one asynchronous task finishes, the fact that a single fulfilment instruction
resolves the blocked state explains the control-flow name. We call data-flow futures the
future constructs where the synchronisation consists in blocking until a concrete usable value
is available, consequenty a single synchronisation might wait for the termination of several
asynchronous tasks. Data-flow futures are usually implemented by implicit futures.

Contributions. This paper shows how to integrate data-flow futures and control-flow futures,
and how to seamlessly combine them. We show how data-flow futures can be implemented
using control-flow futures and the converse. Our model provides future delegation, data-flow
futures, and control-flow futures at the same time, giving the programmer precise control
over future access, as well as automatic elision of unnecessary nested futures. More precisely:

We overview three inherent problems with both explicit and implicit futures that limit
their applicability or performance (Section 2).
We discuss existing mitigation strategies based on typically available future operations
or alternatives (Section 3.1) – as well as recent work on data-flow futures [20] and
delegation [13] that aim to address overlapping subsets of these problems – and show
that none addresses all of the problems (Sections 3.2 and 3.3).
We propose Godot (Section 4), the first system that seamlessly integrates data-flow
futures and control-flow futures in a single explicit system. In addition to addressing all
the problems in Section 2, the system improves on the data-flow explicit futures of [20] by
adding support for parametric polymorphism, and improves on the delegation in [13] by
allowing it to be applied automatically for data-flow explicit futures.
We provide two alternative formalisations of Godot (with a common foundation introduced
in Section 4.1). FlowFut shows how to extend a data-flow future language with control-
flow futures; it is mostly aimed at languages with no current future support (Section 4.2).
FutFlow shows how to extend a control-flow future language with data-flow futures; it is
aimed at languages with typical explicit future support (Section 4.3).
We prove progress and type preservation of FlowFut and FutFlow; and
We introduce a type-driven optimisation strategy for eliding the creation of nested
futures (Section 5) and a discussion on the implementation of our system.

In addition to the above, Section 6 discusses related work and Section 7 concludes.

ECOOP 2019



2:4 Godot: All the Benefits of Implicit and Explicit Futures

horisont
uppsala
       2009

Uppsala universitets årsmagasin

Spädbarns sociala  
kompetens

Fler farmaceuter  
i vården

Innovationer inom  
life science

Professorn som  
skapar blixtar 

return (if precomputed(v) then table.lookup(v) else worker ! compute(v))

:: t :: Fut[t]

⊥
∨

⊥

⊥

Figure 2 Type Proliferation making code untypable; ⊥ denotes the absence of a type for a term.

2 Problems Inherent in Explicit and Implicit Futures

Both implicit and explicit futures have limitations. In this section, we overview the problems
that exist with exising futures. We use examples presented in pseudocode, where o ! m and
o.m denote an asynchronous and a synchronous call to a method m of an object o, respectively.

The Type Proliferation Problem. The way explicit futures are generally added to lan-
guages, they end up mirroring the communication structure of a program: the result of an
asynchronous operation is typed Fut[t], the result of an asynchronous operation that returns
the result of another asynchronous operation is Fut[Fut[t]], etc. This breaks abstraction
and makes code inflexible. For example, consider the following code example that returns
values from two different sources. If the answer is precomputed, it is fetched from a table,
otherwise the computation is delegated to some worker (see Figure 2 for details).

return if precomputed(v) then table.lookup(v) else worker ! compute(v)

As denoted by the ⊥ types, this is not well-typed as the branches have different types, without
any join: table.lookup(v) returns a value of type t, whereas worker ! compute(v) returns a
Fut[t]. Thus, such a common pattern will not work straightforwardly in a program. For
similar reasons, tail recursive asynchronous methods are not possible to type as the depth of
the recursion must be mirrored in the returned future type. Last, also an effect of the same
root cause, explicit futures complicate code reuse – forcing code duplication for operations
that should be possible to apply to values of both future and concrete type.

This problem has been previously identified in [16, 20], where the authors showed that
there was no direct encoding from implicit futures to explicit futures because an unbounded
number of control-flow synchronisations and an unbounded parametric type may be needed
to encode a single data-flow future. This is typically the case if one tries to write an
asynchronous tail recursive function. For this reason there is no simple encoding of data-flow
futures with control-flow futures; Section 4.3 will show how, with a boxing operator and a
few changes in the type system, we are able to encode data-flow futures using control-flow
futures and to overcome the type resolution problem.

We call this problem, which applies to explicit futures, the Type Proliferation Problem.

The Future Proliferation Problem. Implicit futures avoid the Type Proliferation Problem
by abstracting whether a variable has been computed or not. However, the way implicit
futures are generally added to languages, a similar problem appears at run-time. While



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:5

tail recursion is possible, running tail calls in constant space is not possible because each
recursive call gives rise to an additional future indirection.

The creation of nested futures f1 ← f2 ← f3 (etc.) introduces additional latency because
the fulfilment of a nest of futures of depth n adds n additional operations, which in worst-case
must be scheduled separately. Moreover, because a future can be fulfilled with an unfulfilled
future, in some implementations, an actor may be falsely deemed schedulable, only to take a
step to block on the unfulfilled nested future. For example, f1 will be “falsely fulfilled” by
the unfulfilled future f2; if the activity blocking on f1 is scheduled to run before f2 and f3
are fulfilled, the operation will block again on f2 or f3 (possibly both).

This problem, which applies to both implicit and explicit futures, was pointed out in [13].
We call it the Future Proliferation Problem.

The Fulfilment Observation Problem. The abstraction of implicit futures further loses
precision. Consider the following code snippet that could be part of a simple load balancer,
that farms out jobs to idle workers, and a call to the load balancer to perform some work.

def perform(job : Job) { return idle_worker() ! do_work(job) }
var f = load_balancer ! perform(my_job)

A call to perform() results in a nested future: the outermost future captures whether the load
balancer has found an idle worker and successfully delegated the job; the innermost future
captures the result of do_work(). With explicit futures we can observe the state of the task:

get(f) −−block until do_work has been called
get(get(f)) −−block until do_work has finished

However, with implicit futures, it is not possible to make this distinction as any access will
block until the innermost value is returned. Thus, we cannot observe the current stage of
such an operation using futures. Concurrent and scheduling library developers need to access
the intermediate steps of computations, and this issue hinders the code that they can write.

Similarly, if an unfulfilled future is stored somewhere, say in a hash table implemented by
an actor, retrieving it is tricky without accidentally blocking on the production of the future
– an unknown operation – rather than the result of hash_table.lookup(). Since a hash table
may store both concrete and future values due to the nature of implicit futures, knowing
when to not call get on the result of a hash table lookup is not discernible by local reasoning.

This has been highlighted in [21, 20] as the major source of difference between existing
implicit and explicit futures. Because of this different behaviour, there is no simple encoding
of control-flow futures with data-flow futures. In Section 4.2 we will show such an encoding
that relies on a slight adaptation of the type system, and a boxing operator.

This problem applies to implicit futures, we call it the Fulfilment Observation Problem.
Following this problem overview, the next section presents existing partial solutions.

3 Current Solutions to Future Problems

This section surveys how existing techniques can be used to partially overcome the problems
outlined in Section 2. In particular, in Sections 3.2–3.3, we give an informal overview of prior
work that this paper amalgamates to address all of the problems in a coherent way.

ECOOP 2019



2:6 Godot: All the Benefits of Implicit and Explicit Futures

3.1 Standard Mitigation Strategies and Problem Avoidance
Manual Unpacking of Futures. Avoiding the Type Proliferation Problem is possible by
manually unpacking and returning the concrete value of each future using the aforementioned
get operation. In the case of the guarded return example, we could write the following:

return if precomputed(v) then table.lookup(v) else get(worker ! compute(v))

This causes the else branch to block its execution until the compute() method has finished
and is notified of the fulfilment of the current future. This has several problems:

Bottleneck. The enclosing actor is blocked from processing other requests while waiting
for worker ! compute(v) to finish. This causes subsequent messages to block, even if they
could be served from precomputed data. Thus, the blocking get introduces a bottleneck.
False Fulfilment. Delaying the return until the concrete value is produced avoids false
fulfilment but instead adds an additional step to the operation which adds and unnecessary
latency. The task of unpacking the innermost future and fulfilling the outermost must now
be scheduled before the client of the outermost future is unblocked. Notably, this changes
fulfilment from pull – clients blocking until the value is available, to push – propagating
fulfilment of a nested future inwards out. (We revisit this in Section 5.)

Some actor languages that use futures provide a cooperative scheduling construct “await”
that allows the current method to be suspended pending the fulfilment of a future without
blocking the currently executing actor. This avoids the bottleneck problem above, but at the
same time introduces race conditions due to the possible interleaving of suspended methods –
these race conditions only appear through side effects [8].

Explicit Spawning of a Task. The explicit creation of a task can be used to solve the
Type Proliferation Problem. In the case of the example, the then branch spawns a task for
something that needed not be asynchronous:

return if precomputed(v) then async(table.lookup(v)) else worker ! compute(v)

This causes the type checker to accept the program at the expense of performance. The
creation of a task involves memory allocation, scheduling of the task, and computation of
the task body, which is a simple asynchronous operation. This is feasible, but not optimal.

Future Chaining to Avoid Blocking and Nesting. Future chaining can be used to avoid
unnecessary blocking in some cases. Future chaining supports the construction of pipelines of
futures which are not nested, but still need to be represented at run-time. For example, here
is how we could add the result of worker ! compute(v) to the table of precomputed values
(so it effectively becomes a cache) without delaying the returning of the result to a client:

var result = worker ! compute(v)
result.then(fun r => this.table.add(v, r))
return result

The then method attaches a callback function that will be run upon the fulfilment of result,
with r bound to the value used to fulfil result. Although the callback registration happens
before the return, the execution of the registered function does not happen until after the
future is fulfilled, meaning it causes no delay.

While chaining can avoid some Type Proliferation, it does not enable tail recursive calls.



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:7

Changing the Program Structure: Replace Return with Message Send. An alternative
solution is to give up on structured programming ideals and instead of returning values back
up the call stack, instruct the producer of a value how to communicate the result to its
consumers. Here is an example of how that might look in the Type Proliferation Problem
example:

if precomputed(v) then client ! receive(table.lookup(v)) −−send result to client
else worker ! compute(v, client) −−pass client id to worker

With this design, a method that previously returned a value must be passed the identity of
the consumer of the result as an argument (possibly a list of consumers) to explicitly send
the result to the consumer(s) according to some agreed-upon protocol. Instead of id(s), it
can take as input some lambda function that know how to communicate the result back to
interested parties. A downside of this solution is that the consumers must be known at the
time of the call. This is in contrast to a caller sharing a returned future with whoever might
be interested in the result after the call is made.

This solution requires the existence of a specific method in the consumer for each operation
and causes an operation to be spread over multiple methods. Submitting multiple jobs for
execution requires manually handling the possibility of the results coming back in any order,
and possibly provide multiple different methods for getting the results.

Returning values differently from synchronous and asynchronous computations increases
complexity for functions and data structures that should be usable in both contexts. This
is typical in, e.g., Cilk [6] where a function can be “spawned” asynchronously or called
synchronously, and in many actor languages (e.g., Joelle [10], ABS [22] and Encore [7]) where
an actor’s interface is asynchronous externally but synchronous internally.

Changing the Program Structure: Use Promises Instead of Futures. Both the Type
Proliferation Problem and the Future Proliferation Problem can be overcome by resorting to
manually handled promises: instead of passing the identity of the recipient around, we pass
around a pointer to a shared space where the result can be stored. Promises are similar to
futures, but are less transparent and, because they are manipulated explicitly both on the
side of the producer and the consumer, lack many of the guarantees of futures: promises
are created and fulfilled manually and are thus not guaranteed to be fulfilled at all, may be
fulfilled more than once, possibly by several actors.1 With this design, workers are passed a
promise created by a client. Upon finishing the work, the worker fulfils the promise.

3.2 Data-flow Explicit Futures
Henrio [20] observed that the traditional dichotomy of implicit and explicit futures was
focusing mainly on typing and not on how futures are synchronised, and proposed an
alternative categorisation: control-flow futures and data-flow futures, depending on how the
synchronisation on futures works. With control-flow synchronisation, each nested future must
be explicitly unpacked using get to return another future or a concrete value. Data-flow
synchronisation is wait-by-necessity as usual for implicit futures: nesting is invisible, and
a get always returns a concrete value, even from a nested future. Separating typing from
synchronisation allows new combinations of future semantics, such as explicit data-flow
futures, which address the Type Proliferation Problem of Section 2.

1 Futures have static fulfilment guarantees, they are implicitly fulfilled, unless the fulfilling computation
gets stuck. Promises have no static fulfilment guarantees, even when the program is not stuck.

ECOOP 2019



2:8 Godot: All the Benefits of Implicit and Explicit Futures

The traditional way of typing explicit futures, by a parametric type, has always led to
control-flow synchronisation on futures while data-flow futures had no future type. Data-flow
synchronisation naturally leads to an alternative type system called DeF, such that the
run-time structure of futures is no longer mirrored by their type. Instead, a Fut[t] type
represents zero or more nested futures – the zero means that a concrete value may appear
as a future value. This allows future-typed code to be reused with concrete values but also
allows tail recursion and methods returning either a concrete value or a future. In the Type
Proliferation Problem, the branches would still have different types (t and Fut[t]), but t
can be lifted to Fut[t], collapsing the Fut[Fut[t]] returned by the entire asynchronous
expression into a Fut[t]. Let the keyword async denote the spawning of an asynchronous
task.

async (if precomputed(v) then table.lookup(v) else worker ! compute(v))

Data-flow explicit futures address the Type Proliferation Problem but it does not address the
Future Proliferation Problem or the Fulfilment Observation Problem.

A Formal Introduction to DeF. For simplicity and to align with upcoming sections, we
adapt Henrio’s DeF calculus to a concurrent, lambda-based calculus. We use an async
construct to spawn tasks and a get construct for data-flow synchronisation on a future. The
types are the basic types K, abstraction and futures.

Expressions e ::= v | e e | return e | async e | get e
Values v ::= c | x | f | λx.e
Types τ ::= K | τ → τ | Fut τ

Evaluation context E ::= • | E e | v E | return E | get E

The operational semantics use a small-step reduction semantics with reduction-based, con-
textual rules for evaluation within tasks. An evaluation context E contains a hole • that
denotes where the next reduction step happens. Configurations consist of tasks (taskf e),
unfulfilled futures (futf ) and fulfilled futures (futf v). When a task finishes, i.e., reduces to a
value v, the corresponding future is fulfilled with v.

We show the most interesting reduction rules in Figure 3: Red-Async spawns a new
computation and puts a fresh future in place of the spawned expression. Red-Get-Val
applies get to a concrete value which reduces to the value itself. Red-Get-Fut applies get
on a future chain of length ≥ 1, reducing it future by future. A run-time test, isfut?(v), is
required to check whether v is a future value or a concrete value.

Figure 3 shows the most interesting type rules. We first have two sub-typing rules:
a concrete value can be typed as a future, and nested future types are unnecessary. By
T-Async, any well-typed expression of type τ can be spawned off in an asynchronous
task that returns a Fut τ . By T-Get, get can be applied to unpack a Fut τ , yielding a
value of type τ .

Summary. Data-flow futures allow the programmer to focus on expressing future-like
algorithms without explicitly manipulating every synchronisation point. A single future
and multiple nested futures are indistinguishable with respect to types and synchronisation.
Because the type system allows the implicit lifting of a concrete value to a (fulfilled) future
value, code that uses futures can be reused with concrete values.



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:9

Reduction rules: e→ e′

(Red-Async)
fresh f

(taskg E[async e]) −→ (futf ) (taskf e) (taskg E[f ])

(Red-Get-Val)
¬isfut?(v)

(taskf E[get v]) −→ (taskf E[v])

(Red-Get-Fut)
isfut?(g)

(taskf E[get g]) (futg v) −→ (taskf E[get v]) (futg v)

Subtyping:
τ <: Fut τ

Fut (Fut τ)<: Fut τ

Typing rules: Γ `ρ e : τ

(T-Async)
Γ `τ e : τ

Γ `ρ async e : Fut τ

(T-Get)
Γ `ρ e : Fut τ
Γ `ρ get e : τ

Figure 3 Reduction and typing rules for data-flow explicit futures.

3.3 Delegating Future Fulfilment
To avoid the Type Proliferation Problem and Future Proliferation Problem of Section 2,
Fernandez-Reyes et al. [13] proposed a delegation construct that delegates the fulfilment
of the current-in-call future to another task in the context of control-flow explicit futures.
This forward construct supports tail-recursive asynchronous methods and allows them to
run in constant space, because only a single future is needed.2 The Fulfilment Observation
Problem is avoided because of the control-flow synchronisation. Library code can distinguish
the futures it manipulates and the concrete values that client programs are interested in.

In contrast to DeF, delegation requires an explicit keyword. This can be seen in the Type
Proliferation Problem example by inserting return in the then-branch and forward in the
else-branch. In the then-branch, the concrete value is returned; in the else-branch, forward
delegates to a worker to fulfil the current future. In both cases, the return type is Fut[t].
This shows how a method’s return type no longer needs to (but may) mirror the internal
communication structure of a method in order to avoid the Fulfilment Observation Problem:

async (if precomputed(v) then return table.lookup(v)
else forward worker ! compute(v))

Delegation and explicit future types address the Future Proliferation Problem and Fulfilment
Observation Problem, but only in part the Type Proliferation Problem – reuse is still limited
by future types, causing code duplication or blocking to remove future types.

A Formal Introduction to Forward. We present the semantics of delegation similarly
through a concurrent, lambda-based calculus, adapted from Fernandez-Reyes’ work. The
syntax reuses the concepts from the previous section and adds the forward construct which
transfers the obligation to fulfil a future to another task and future chaining (then(e, e)),
which registers a piece of code to be executed on its fulfilment. While the latter is not strictly
necessary, its run-time semantics are necessary to express the semantics of forward, so expli-
cit support for future chaining adds very little complexity. The types are the same as in the
previous calculus except that there is no subtyping rule. The typing judgement has an extra
parameter, ρ, which prevents the use of forward under certain circumstances (explained later).

2 This cannot be observed in Fig. 3 because we have omitted the compilation optimisations [13]. This
optimisations follow the same logic as Section 5.

ECOOP 2019



2:10 Godot: All the Benefits of Implicit and Explicit Futures

e ::= . . . | then(e, e) | forward e E ::= . . . | then(E, e) | then(v,E) | forward E

We show the most interesting reduction rules in Figure 4: Red-Get captures blocking
synchronisation through get on a future f . Red-Chain-New attaches a callback e on a
future f to be executed (rule Red-Chain-Run) once f is fulfilled. Chaining on a future
immediately returns another future which will be fulfilled with the result of the callback.
Red-Forward captures delegation. Like return it immediately finishes the current task,
replacing it with a “chain task” that will fulfil the same future as the removed task. This
chain will be executed when the delegated task is finished, i.e., when the future h is fulfilled.

Reduction rules: e→ e′

(Red-Get)
(taskf E[get h]) (futh v)→ (taskf E[v]) (futh v)

(Red-Chain-Run)
(chaing f e) (futf v)→ (taskg (e v)) (futf v)

(Red-Chain-New)
fresh g

(taskf E[then(h, e)])→ (futg) (chaing h λx.e) (taskf E[g])

(Red-Forward)
(taskf E[forward h])→ (chainf h λx.x)

Typing rules: Γ `ρ e : τ

(T-Chain)
Γ `ρ e : Fut τ Γ, x : τ `• e′ : τ ′

Γ `ρ then(e, e′) : Fut τ ′

(T-Forward)
Γ `ρ e : Fut ρ ρ 6= •
Γ `ρ forward e : τ

Figure 4 Reduction and typing rules of forward calculus.

The most interesting type rules deal with future chaining and forward. By T-Forward,
fulfilment of the current future can be delegated to any expression returning a future. The
requirement ρ 6= • prevents the use of forward inside lambda expressions. Otherwise, a
lambda could be sent to another task and run in a context different from its defining context,
which could inadvertently modify the return type of a task, leading to unsoundness. By
T-Forward, any type can be used as the result type. Since forward halts the execution of
the current task, there is no traditional return value from forward, which makes this practice
sound. T-Chain types the chaining on the result of any expression returning a future.

Summary. Delegation allows the programmer to push the fulfilment of the current-in-call
future to another task, thereby avoiding future nesting both in types and at run-time. Here,
the result of get can be another future and a concrete value cannot be used when a future is
expected. While Future Proliferation is avoided, the programmer needs to explicitly insert
delegation points and there are restrictions on code reuse with and without future values.

4 Godot: Integrating Data- and Control-Flow Futures and Delegation

The core contribution of this paper is Godot [5], a system that seamlessly integrates data-flow
explicit futures and control-flow explicit futures, and extends them to increase expressiveness
while reducing the number of future values needed at run-time. The resulting system uses
forward-style implicitly on data-flow futures. For clarity, in the sequel, control-flow futures
will retain the Fut τ type, and data-flow futures will be denoted by Flow τ .



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:11

4.1 Design Space and Formal Semantics
Godot is formalised as two distinct versions of a core calculus using a concurrent, task-based,
modified version of System F: FlowFut that uses data-flow futures as primitives and uses
them to encode control-flow futures (Section 4.2); and FutFlow that uses control-flow futures
as primitives and uses them to encode data-flow futures (Section 4.3). The target audience
for FlowFut is language designers who wish to add Godot to a language without futures.
The target audience for FutFlow is language designers who wish to incorporate Godot in a
language that already supports control-flow futures.

The core calculus contains tasks, control-flow futures and data-flow futures, and operations
on them. For simplicity, we abstract from mutable state, as this would detract from the
main points. We use explicit futures, recall that control-flow futures are typed by Fut τ and
data-flow futures by Flow τ . Operations on data-flow futures are distinguished by a ?, e.g.,
get operates on Fut τ and get* operates on Flow τ , etc.

The calculus consists of two levels: configurations and expressions. Configurations
represent the run-time as a collection of concurrent tasks, futures, and asynchronous chained
operations. Expressions correspond to programs and what tasks evaluate to. A task represents
a unit of work and its result is placed in either a flow or future abstraction, depending on the
type system. A task represents any asynchronous computation, it can for example correspond
to a runnable task in Java, or a message treatment in actor and active object languages.

Chaining operations on either data-flow and control-flow futures attaches a closure to the
future that will be schedulable when the future is fulfilled. Abstracting from mutable state,
we cannot model the consequences of closures with side effects, but we can easily integrate
any pre-existing approach, e.g., [9]. With respect to the simple calculi in Section 3, we
add a return expression which immediately finishes a task with a given return value. This
expression has been added to show how we reduce the creation of futures upon returning
from a task with respect to data-flow futures. The return construct shares limitations with
the forward construct, which we explain in the coming subsections.

The remainder of Section 4.1 introduces parts of the language that are common to both
calculi: run-time configurations, types, and their static and run-time semantics. We delay
the presentation of expressions and values, their static and run-time semantics and the type
and term encodings of one future type in terms of the other to Sections 4.2 and 4.3.

Syntax. The calculus contain run-time configurations, expressions, and values.

config ::= ε | (flowf ) | (flowf v) | (futf ) | (futf v) | (taskf e) | (chainf f e) | config config

Configurations represent running programs. A global configuration config represents the
global state of the system, e.g., (taskf e) (flowf ) represents a global configuration with a
single task running expression e, whose result will fulfil flow f . Partial configurations config
show a view of the state of the program, and are multisets of unfulfilled futures ((flowf ) and
(futf )), fulfilled futures ((flowf v) and (futf v)), tasks (taskf e), and chains (chainf f e),
where the empty configuration is ε and multiset union is denoted by whitespace.

Note that flow and fut configurations do not co-exist. Depending on the calculus, a task
fulfils either a flow or a fut. This distinction is clarified in each respective calculus.

Static Semantics. The types, τ ::= K | τ → τ | X | ∀X.τ | Flow τ | Fut τ , are the
common basic types (K), abstraction (τ → τ), type variables (X), universal quantification
(∀X.τ), flow types (Flow τ) and future types (Fut τ). In the typing rules, we assume that

ECOOP 2019



2:12 Godot: All the Benefits of Implicit and Explicit Futures

(T-UFlow)
f ∈ dom(Γ)

Γ ` (flowf ) ok

(T-TaskFlow)
f : Flow τ ∈ Γ Γ `τ e : τ

Γ ` (taskf e) ok

(T-FFlow)
f : Flow τ ∈ Γ Γ `• v : τ

Γ ` (flowf v) ok

(T-UFut)
f ∈ dom(Γ)
Γ ` (futf ) ok

(T-TaskFut)
f : Fut τ ∈ Γ Γ `τ e : τ

Γ ` (taskf e) ok

(T-FFut)
f : Fut τ ∈ Γ Γ `• v : τ

Γ ` (futf v) ok

(T-ChainFlow)
f : Flow τ ∈ Γ g : Flow τ ′ ∈ Γ Γ `τ e : τ ′ → τ

Γ ` (chainf g e) ok

(T-ChainFut)
f : Fut τ ∈ Γ g : Fut τ ′ ∈ Γ Γ `τ e : τ ′ → τ

Γ ` (chainf g e) ok

(T-Empty)

Γ ` � ok

(T-Config)
Γ ` config1ok defs(config1) ∩ defs(config2) = ∅

Γ ` config2ok writers(config1) ∩ writers(config2) = ∅

Γ ` config1 config2 ok

(T-GConfig)
Γ ` config ok

dom(Γ) = defs(config)
Γ ` config

Figure 5 Well-formed configurations. The helper functions defs(config) and writers(config)
extract the set of futures (data-flow and control-flow) or writers of futures in a configuration.

the types of the premises are normalised. We denote the normalised type τ by ↓τ , i.e., the
type τ with flattened flow types, defined inductively:

↓K = K ↓X = X ↓∀X.τ = ∀ ↓X. ↓τ ↓(τ → τ ′) = ↓τ → ↓τ ′

↓Flow (Flow τ) = ↓Flow τ ↓Flow τ = Flow ↓τ if τ 6= Flow τ ′ ↓Fut τ = Fut ↓τ

Well-Formed Configurations. Type judgements Γ ` config ok express that configurations
are well-formed in an environment Γ that gives the types of futures (Figure 5). Unfulfilled
flow and future configurations are well-formed if their variable f exists in the environment
(T-UFlow, T-UFut). Tasks are well-formed if their body is well-typed with the type of the
future or flow they are fulfilling (T-TaskFlow, T-TaskFut).

The meaning of Γ `ρ e : τ is that e has type τ under Γ inside a task whose static return
type is ρ, where ρ ::= τ | •. Once the concrete syntax is introduced for the two calculi, this
notation is used to express that a return inside e must return a value of type ρ. The special
form • of ρ disallows the use of return. Thus, by (T-FFlow) and (T-FFut), values of fulfilled
flow configurations cannot be lambda expressions containing a return expression. Chained
configurations are well-formed if their bodies are well-typed. Note that the body must be a
lambda function (T-ChainFlow, T-ChainFut).

Configurations are well-formed if all sub configurations have disjoint futures and there
are not two tasks writing to the same future (T-Config, T-GConfig). (The definitions of
auxiliary functions defs() and writers() are straightforward.) These side conditions ensure
that there are no races on fulfilment.

Dynamic Semantics. Configurations consist of a multiset of tasks, data-flow futures and
chained configurations with an initial program configuration (flowfmain) (taskfmain e), where
fmain is fulfilled by the result of e at the end of execution. Configurations are commutative
monoids under configuration concatenation, with ε as unit (Figure 6). The configuration
evaluation rules (Figure 6) describe how configurations make progress, which is either by
some subconfiguration making progress, or by rewriting a configuration to one that will make
progress using the equations of multisets.



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:13

Equivalence relation

config ε ≡ ε config config config′ ≡ config′ config config (config′ config′′) ≡ (config config′) config′′

Configuration run-time

(R-FulfilFlowValue)
¬isflow?(v)

(taskf v) (flowf ) −→ (flowf v)

(R-FulfilFlow)
isflow?(g)

(taskf g) −→ (chainf g λx.x)

(R-FutFulfilValue)
v 6= u v′

(taskf v) (futf ) −→ (futf v)

(R-FlowCompression)
(taskf u g)→ (chainf g λx.x)

(R-ChainRunFlow)
(chaing f e) (flowf v) −→ (taskg (e v)) (flowf v)

(R-ChainRunFut)
(chaing f e) (futf v)→ (taskg (e v)) (futf v)

(R-Config)
config → config′′

config config′ → config′′ config′

(R-ConfigEquiv)
config ≡ config′ config′ → config′′ config′′ ≡ config′′′

config → config′′′

Figure 6 Configuration run-time and configuration equivalence rules modulo associativity and
commutativity. u v represents the encoding of a data-flow future in terms of a control-flow futures.

4.2 FlowFut: Primitive Data-Flow and Encoded Control-Flow Futures
This section presents FlowFut which instantiates the expression syntax of Godot presented
in the previous section. FlowFut has primitive support for data-flow futures and support
for control-flow futures as an extension, using an encoding in terms of data-flow futures.
We first describe a sublanguage that only has data-flow futures before extending it with
control-flow futures. FlowFut illustrates how to extend a language with data-flow future like
ProActive [3], JavaScript, or DeF [20] to support control-flow futures. Note that DeF is the
only language that has explicit data-flow futures but it has currently no implementation.

The FlowFut sublanguage contain expressions and values:

e ::= v | e e | e [τ ] | return e | async* e | get* e | then*(e, e) | � e | unbox e
v ::= c | x | f | λx.e | λX.e | � v

Expressions are values (v), application (e e), type application (e [τ ]), the return of expressions
(return e), spawning an asynchronous task returning a data-flow future (async* e), blocking
on the fulfilment of a data-flow future (get* e) and future chaining to attach a callback on
a future to be executed on the future’s fulfilment (then*(e, e)). To support the encoding
of control-flow futures, a lifting operation that we call boxing is introduced (� e) together
with a dual unboxing operation (unbox e). Values are constants, variables, data-flow futures,
abstraction, and type abstraction. Additionally, a value may be boxed (� v).

Static Semantics. The type system has the common types except the control-flow future
type (Fut τ). In its stead, we use a type encoded in terms of data-flow futures, � τ . We show
explicit flattening rules for the encodings of control-flow futures in terms of data-flow futures.

Types: τ :: = K | τ → τ | X | ∀X.τ | Flow τ | � τ
Previous flattening rules and: ↓� τ = � ↓τ

ECOOP 2019



2:14 Godot: All the Benefits of Implicit and Explicit Futures

(TF-Env)

` ε

(TF-EnvExpr)
x /∈ dom(Γ) Γ ` τ

` Γ, x : τ

(TF-EnvVar)
X /∈ dom(Γ) ` Γ

` Γ, X

(TF-K)
` Γ

Γ ` K

(TF-Flow)
Γ ` τ τ 6= Flow τ ′

Γ ` Flow τ

(TF-Arrow)
Γ ` τ Γ ` τ ′

Γ ` τ → τ ′

(TF-X)
X ∈ Γ ` Γ

Γ ` X

(TF-Forall)
Γ, X ` τ
Γ ` ∀X.τ

(Box)
Γ ` τ

Γ ` � τ

Figure 7 Type formation rules where Γ ::= ε | Γ, x : τ | Γ, X.

(T-Constant)
c has typeK Γ ` K

Γ `ρ c : K

(T-Variable)
x : τ ∈ Γ ` Γ

Γ `ρ x : τ

(T-Flow)
f : Flow τ ∈ Γ ` Γ

Γ `ρ f : ↓Flow τ

(T-ValFlow)
Γ `ρ e : τ

Γ `ρ e : ↓Flow τ

(T-Return)
Γ `τ e : τ τ 6= • Γ ` τ ′

Γ `τ return e : τ ′

(T-Abstraction)
Γ, x : τ `• e : τ ′

Γ `ρ λx.e : τ → τ ′

(T-Box)
Γ `ρ e : τ

Γ `ρ � e : � τ

(T-Unbox)
Γ `ρ e : � τ

Γ `ρ unbox e : τ

(T-Application)
Γ `ρ e1 : τ → τ ′ Γ `ρ e2 : τ

Γ `ρ e1 e2 : τ ′

(T-TypeAbstraction)
Γ, X `• e : τ

Γ `ρ λX.e : ↓∀X.τ

(T-TypeApplication)
Γ, X `ρ e : ∀X.τ ′

Γ `ρ e [τ ] : ↓τ ′[τ/X]

(T-AsyncStar)
Γ `τ e : τ

Γ `ρ async* e : ↓Flow τ

(T-GetStar)
Γ `ρ e : Flow τ
Γ `ρ get* e : τ

(T-ThenStar)
Γ `ρ e1 : Flow τ ′ Γ `τ e2 : τ ′ → τ

Γ `ρ then*(e1, e2) : ↓Flow τ

Figure 8 Typing of expressions where futures are encoded as Fut τ =̂ �Flow τ .

Well-Typed Expressions. The type formation rules are given in Figure 7 and the typing
rules are given in Figure 8. In places where a return may appear, ρ is some τ , the return type
of the task, ρ, otherwise •, which makes return ill-typed. This (or something equivalent) is
necessary – otherwise passing a lambda that contains a return to another task might change
the return type of the task, not of the expression.

The type rules consist of the common System F typing rules: typing of a constant (T-
Constant), typing variables (T-Variable), the abstraction typing rule (T-Abstraction)
that sets the return type of the task to •, preventing return in lambdas, and application (T-
Application). Type abstraction and application are the common ones with the distinctive
flattening of the types (T-TypeAbstraction and T-TypeApplication). The rules
regarding Flow τ types state that an expression of type τ can be lifted to a Flow τ (T-
ValFlow), spawning a task returns a data-flow future type and the spawned task sets
its returned type to that of the expression running asynchronously (T-AsyncStar). The
constructs get* e returns the content of the data-flow future (T-GetStar). Chaining on a
data-flow future adds a callback to expression e1, returning immediately a new data-flow
future (T-ThenStar). Control-flow futures are encoded in terms of data-flow futures with
the � e operator with type � τ , where Fut τ =̂ � τ .

Dynamic Semantics. Configurations are as in the previous section, except using control-
flow futures. Thus, the initial program configuration is (futfmain) (taskfmain e), where fmain is
fulfilled by the result of e at the end of execution. The dynamic semantics are formulated



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:15

(R-β)
(taskf E[λx.e v]) −→ (taskf E[e[v/x]])

(R-TypeApplication)
(taskf E[(λX.e) [τ ]])→ (taskf E[e[τ/X]])

(R-GetStar)
isflow?(g)

(taskf E[get* g]) (flowg v) −→ (taskf E[v]) (flowg v)

(R-GetVal)
¬isflow?(v)

(taskf E[get* v]) −→ (taskf E[v])

(R-AsyncStar)
fresh f

(taskg E[async* e]) −→ (flowf ) (taskf e) (taskg E[f ])

(R-Return)
(taskf E[return v])→ (taskf v)

(R-ChainRunFlow)
(chaing f e) (flowf v) −→ (taskg (e v)) (flowf v)

(R-FulfilFlowValue)
¬isflow?(v)

(taskf v) (flowf ) −→ (flowf v)

(R-ChainVal)
¬isflow?(v) fresh g

(taskf E[then*(v, λx.e)]) −→ (flowg) (taskg (λx.e) v) (taskf E[g])

(R-FulfilFlow)
isflow?(g)

(taskf g) −→ (chainf g λx.x)

(R-ChainFlow)
isflow?(h) fresh g

(taskf E[then*(h, λx.e)]) −→ (flowg) (chaing h λx.e) (taskf E[g])

(R-Unbox)
(taskf E[unbox (� v)]) −→ (taskf E[v])

Figure 9 Run-time semantics.

as a small-step operational semantics with reduction-based, contextual rules for evaluation
within tasks. Evaluation contexts E contain a hole • that denotes the location of the next
reduction step [40].

E ::= • | E e | v E | return E | get* E | then*(E, e) | then*(v,E)
| �E | unboxE | E [τ ]

The reduction rules (Figure 9) are the common β-reduction and type application from System
F. The blocking operation get* v performs a run-time check to test whether the value v is
a data-flow future or simply a value lifted to one. If it is a data-flow future, the value is
extracted (R-GetStar); in case of a value, it is left in place (R-GetVal). Spawning a task
creates a fresh data-flow future and task with a new task identifier, and the operation returns
immediately the created future (R-AsyncStar). Returning from a task just throws away
the execution context (R-Return), so that the task can fulfil its associated future in the
next step. This next step depends on whether the value that fulfils the task is a future or a
concrete value. If the task finishes with a data-flow future, the run-time chains the returned
future to the identity function. This causes the value from the returned future to propagate
to the current-in-call future (R-FulfilFlow). If the return value of a task is not a data-flow
future, then this simply fulfils the current-in-call future (R-FulfilFlowValue). A chained
configuration waits until the dependent data-flow future is fulfilled, then it executes the
callback associated with it (R-ChainRunFlow). Expression-level chaining on data-flow
futures checks at run-time whether target of the chain operation on is a data-flow future or a
lifted value. In the former case, it lifts the chaining from the expression to the configuration
level, returning immediately a new data-flow future (R-ChainFlow). In the latter case,
chaining creates a new task to apply the chained function (R-ChainVal). The reason for

ECOOP 2019



2:16 Godot: All the Benefits of Implicit and Explicit Futures

spawning a new task is to preserve consistent behaviour across chaining on fulfilled and
unfulfilled futures. If chaining on a fulfilled future executed immediately, and synchronously,
we would increase the latency of the current task, or – if FlowFut is implemented in a
language with mutable state – potentially introduce a race condition as it is unclear whether
a chained lambda function executes directly (and synchronously) or not. This design saves a
programmer from such potential hassles.

The unboxing operator unpacks the boxed value (R-Unbox). It is important for encoding
of control-flow futures in terms of data-flow futures, described in the upcoming section.
Boxed values will be introduced in conjunction with the encoding.

Extending FlowFut with Control-Flow Futures. In this section we show how to extend the
language with control-flow futures encoded in terms of data-flow futures. Operations on data-
flow futures transparently traverse any number of (invisible-from-the-typing) nested data-flow
futures until they reach a concrete value or a control-flow future. The inclusion of the
boxed values allow us to straightforwardly encode Fut τ thus: Fut τ =̂ � Flow τ . Using this
encoding, we extend FlowFut with equi-named operations on control-flow futures, dropping
the ? for clarity. It is straightforward to encode each operation using its corresponding
?-version combined together with � and unbox:

get e =̂ get* (unbox e) then(e, e′) =̂ � then*(unbox e, e′) async e =̂ � async* e

A control-flow future is always a boxed value, where the value can be anything including
another future (data-flow or control-flow), or a concrete value. To perform control-flow
future operations, one always needs to unpack the box and use its equivalent data-flow future
operator. When an operator returns a new control-flow future (chaining and spawning a
task), the return value needs to be boxed again.

Similarly, we extend FlowFut with type rules for these operations. These are the same
as their ?-versions except that they use control-flow future types. Chaining takes a control-
flow future and a function acting as callback and returns immediately a new control-flow
future (T-Then). Spawning a task returns immediately a control-flow future (T-Async).
Blocking access on a control-flow future returns the value inside the future (T-Get).

(T-Then)
Γ `ρ e1 : Fut τ ′ Γ `ρ e2 : τ ′ → τ

Γ `ρ then(e1, e2) : Fut τ

(T-Async)
Γ `τ e : τ

Γ `ρ async e : Fut τ

(T-Get)
Γ `ρ e : Fut τ
Γ `ρ get e : τ

Because data-flow futures do not allow observing completion of individual stages of an
operation returning a nested future, we design our system to always “forward-compress” the
return value of a flow, meaning we treat return of data-flow futures implicitly as a forward
from [13], which addresses the Future Proliferation Problem. This brings us to the final
extension of FlowFut with support for forward. Forwarding a control-flow future is just
unpacking it and returning it, whereas forwarding a data-flow future is equivalent to return:

forward e =̂ return (unbox e) forward* e =̂ return e

And the type rules are straightforward: (Note that τ ′ can be any well-formed type as the
expression will not have a usual return type, but instead finish the enclosing task.)

(T-Forward)
Γ ` τ ′ Γ `τ e : Fut τ

Γ `τ forward e : τ ′

(T-Forward-Star)
Γ ` τ ′ Γ `τ e : Flow τ

Γ `τ forward* e : τ ′



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:17

I Theorem (Progress for FlowFut). Given a global configuration config, if Γ ` config ok, then
config is a terminal configuration or there exists a config′ such that config → config′.

I Theorem (Preservation for FlowFut). Given a global configuration config, if Γ ` config ok
and config → config′, then there exists a Γ′ such that Γ′ ⊇ Γ and Γ′ ` config′ ok.

Proof. Both proofs are by induction on the derivation of the shape of config . J

We now move to FutFlow, which has control-flow futures as its primitive form of future.
Section 5 revisits FlowFut and FutFlow, and discusses optimisation and implementation issues.

4.3 FutFlow: Primitive Control-Flow and Encoded Data-Flow Futures

A large number of programming languages implement control-flow explicit futures, natively
(e.g., ABS [22], Encore [7], Joelle [10]) or through standard or third-party libraries (e.g.,
Java [32, 17], Akka [41]). In this section we explain, through the calculus FutFlow, how to
extend such a semantic model to also encompass control-flow futures and delegation. Thus,
in contrast to FlowFut, we now encode data-flow futures in terms of control-flow future types.

The calculus (omitting operations on data-flow futures) contains expressions and values:

e ::= v | e e | e [τ ] | return e | async e | get e | then(e, e) | forward e
v ::= c | x | f | λx.e | λX.e

The key difference to FlowFut is the inclusion of forward as a primitive.

Static Semantics. The type system has the following types: the common basic types (K),
abstraction (τ → τ), type variables (X), universal quantification (∀X.τ), and control-flow
future types (Fut τ).

Types: τ ::= K | τ → τ | X | ∀X.τ | Fut τ

Well-Typed Expressions. The type formation rules are given in Figure 10 and expression
typing is shown in Figure 11 – similar to Section 4.2. Most rules should be straightforward
and have appeared before in similar form. Note lack of ? on operators to highlight the
control-flow nature.

(TF-Env)

` ε

(TF-EnvExpr)
x /∈ dom(Γ) Γ ` τ

` Γ, x : τ

(TF-EnvVar)
X /∈ dom(Γ) ` Γ

` Γ, X

(TF-K)
` Γ

Γ ` K

(TF-Fut)
Γ ` τ

Γ ` Fut τ

(TF-Arrow)
Γ ` τ Γ ` τ ′

Γ ` τ → τ ′

(TF-X)
X ∈ Γ ` Γ

Γ ` X

(TF-Forall)
Γ, X ` τ
Γ ` ∀X.τ

Figure 10 Type formation rules where Γ ::= ε | Γ, x : τ | Γ, X.

ECOOP 2019



2:18 Godot: All the Benefits of Implicit and Explicit Futures

(T-Constant)
c has typeK Γ ` K

Γ `ρ c : K

(T-Variable)
x : τ ∈ Γ ` Γ

Γ `ρ x : τ

(T-Fut)
f : Fut τ ∈ Γ ` Γ

Γ `ρ f : Fut τ

(T-Return)
Γ `τ e : τ τ 6= • Γ ` τ ′

Γ `τ return e : τ ′

(T-Abstraction)
Γ, x : τ `• e : τ ′

Γ `ρ λx.e : τ → τ ′

(T-Application)
Γ `ρ e1 : τ → τ ′ Γ `ρ e2 : τ

Γ `ρ e1 e2 : τ ′

(T-Forward)
Γ ` τ ′ τ 6= • Γ `τ e1 : Fut τ

Γ `τ forward e1 : τ ′

(T-TypeAbstraction)

Γ, X `• e : τ
Γ `ρ λX.e : ∀X.τ

(T-TypeApplication)

Γ, X `ρ e : ∀X.τ ′

Γ `ρ e [τ ] : τ ′[τ/X]

(T-Then)
Γ `ρ e1 : Fut τ ′ Γ `τ e2 : τ ′ → τ

Γ `ρ then(e1, e2) : Fut τ

(T-Async)
Γ `τ e : τ

Γ `ρ async e : Fut τ

(T-Get)
Γ `ρ e : Fut τ
Γ `ρ get e : τ

Figure 11 Typing of expressions.

(R-β)
(taskf E[λx.e v]) −→ (taskf E[e[v/x]])

(R-Async)
fresh f

(taskg E[async e]) −→ (futf ) (taskf e) (taskg E[f ])

(R-ChainRunFut)
(chaing f e) (futf v) −→ (taskg (e v)) (futf v)

(R-Get)
(taskf E[get h]) (futh v) −→ (taskf E[v]) (futh v)

(R-FutFulfilValue)
(taskf v) (futf ) −→ (futf v)

(R-TypeApplication)
(taskf E[(λX.e) [τ ]])→ (taskf E[e[τ/X]])

(R-Forward)
(taskf E[forward h]) −→ (chainf h λx.x)

(R-Return)
(taskf E[return v]) (futf )→ (futf v)

(R-Then)
fresh g

(taskf E[then(h, λx.e)])→ (futg) (chaing h λx.e) (taskf E[g])

Figure 12 Run-time semantics.

Operational semantics. The operational semantics are similar to Section 4.2. Evaluation
contexts E contain a hole • that denotes where the next reduction step happens [40]:

E ::= • | E e | v E | then(E, e) | forward E | E [τ ] | get E | return E

The reduction rules are similar to the FlowFut calculus, but work on control-flow futures (Fig-
ure 12). Beta reduction works in the traditional fashion. The async construct spawns a new
task to execute the given expression, and creates a new control-flow future to store its result
(R-Async). A chained configuration runs as soon as the dependent future is fulfilled and
passes the content of the fulfilled future to the callback expression, running the pending
computation on demand (R-ChainRunFut). Getting a value out of a future blocks the
execution until the future is fulfilled (R-Get). Tasks fulfil their implicit future implicitly,
when there are no more pending expressions to run, or explicitly via the return expression



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:19

(R-FutFulfilValue and R-Return). So far, most forward examples have avoided future
nesting by reusing the current-in-call future with a following asynchronous operation. This
avoids creation of an additional future, meaning nesting is not possible. It is also possible
to use forward to fulfil one existing future with the result of another without nesting or
blocking the current computation: forward h fulfils the current-in-call future with the value
in h by throwing away the remainder of the body of the current task and chaining the
identity function on h. This has the effect of copying the eventual result stored in h into the
current future (R-Forward). Chaining an expression on a future results immediately in a
new future that will eventually contain the result of evaluating the expression, and a chain
configuration storing the expression is connected with the original future (R-Then).

Extending FutFlow with Data-Flow Futures. In this section we show, first, the language
extensions necessary for encoding data-flow futures in terms of control-flow futures and,
second, the encodings.

We extend the calculus with the following expressions and values:

e ::= . . . | match(x : e, x : e, e) | u e v ::= . . . | u v

Expressions can now use a pattern matching operation, which is a common programming
construct [31, 24]. To encode data-flow futures, we define a boxing operation (u e) which uses
pattern matching for unboxing. To keep constructs simple, match and u are not intended as
source-level constructs, so u only works on data-flow futures in the formalism.

The type system has the previous common types with the addition of the u type – used
later for encoding data-flow futures in terms of control-flow futures. As in FlowFut, we show
explicit flattening rules for the encodings of data-flow futures:

Types: τ ::= . . . | u Fut τ

Previous flattening rules and: ↓u Fut (u Fut τ) = ↓u (Fut τ)
↓u Fut τ = u ( ↓Fut τ) τ 6= u Fut τ ′

Additional type rules for these constructs are found below. Notice how the introduction of
the explicit flattening rules require the update of two typing rules (T-TypeAbstraction
and T-TypeApplication). This is necessary to flatten u Fut τ types.

(Dia)

Γ ` τ
Γ ` u τ

(T-TypeAbstraction)

Γ, X `• e : τ
Γ `ρ λX.e : ↓∀X.τ

(T-TypeApplication)

Γ, X `ρ e : ↓∀X.τ ′

Γ `ρ e [τ ] : ↓τ ′[τ/X]

(T-Match)
Γ, x : τ `ρ e1 : τ ′

Γ, x : Fut τ `ρ e2 : τ ′ Γ `ρ e3 : ↓u Fut τ
Γ `ρ match(x : e1, x : e2, e3) : τ ′

(T-ValFlow)

Γ `ρ e : τ
Γ `ρ e : ↓u Fut τ

(T-FlowFut)

Γ `ρ e : Fut τ
Γ `ρ u e : ↓u Fut τ

The match construct has two open terms as first and second arguments, the free variables
are captured at the declaration site; the third argument is a data-flow future type argument.
The first argument is applied if the data-flow future type is actually a value and the second
argument is applied to the value of the data-flow future type if the type was lifted from a
control-flow future. Essentially, match pattern matches on the form of the data-flow future
type. An expression of type τ can be lifted to u Fut τ (T-ValFlow and T-FlowFut).

ECOOP 2019



2:20 Godot: All the Benefits of Implicit and Explicit Futures

The dynamic semantics include now the pattern matching operation, which performs
beta reduction based on the form of the value v (R-Match-Val and R-Match-Fut).

The introduction of the boxing value – used to encode data-flow futures – requires special
care when fulfilling of a task. This is reflected in the updated rule R-FutFulfilValue
and on R-FlowCompression. If the value is not a data-flow future, i.e., v 6= u v′, then
the value fulfils the task’s future; if the value is a data-flow future, then it builds a chained
configuration to ultimately pull the value out, running the identity function.

(R-FutFulfilValue)
v 6= u v′

(taskf v) (futf ) −→ (futf v)

(R-MatchVal)
(taskf E[match(x : e1, x : e2, v)]) −→ (taskf E[e1[v/x]])

(R-FlowCompression)
(taskf u g)→ (chainf g λx.x)

(R-MatchFut)
(taskf E[match(x : e1, x : e2,u g)]) −→ (taskf E[e2[g/x]])

With these new constructs, we can encode data-flow futures in terms of control-flow futures:
Flow τ =̂ u Fut τ . The term u e captures the lifting of a control-flow future value to Flow τ
(T-FlowFut). All operators on data-flow futures are encoded in terms of primitive operators:

async* e =̂ u async e
get* e =̂ match(x : x, x : get x, e)

then*(e, fn) =̂ match(x : fn x, f : u then(f, fn), e)
forward* e =̂ match(x : return x, f : forward f, e)

undiamond e =̂ get* e

The typing rules for operations on data-flow futures are expressed as an extension to the
typing rules of Figure 11. A data-flow future type can be “unlifted” so that we extract
its internal value (T-Undiamond). Any expression can be lifted from some τ or from a
control-flow future type to a data-flow future (rules T-Flow and T-FlowFut).

(T-Async-Star)
Γ `ρ e : τ

Γ `ρ async* e : ↓Flow τ

(T-Get-Star)
Γ `ρ e : ↓Flow τ
Γ `ρ get* e : τ

(T-Then-Star)
Γ `ρ e1 : ↓Flow τ ′ Γ `ρ e2 : τ ′ → τ

Γ `ρ then*(e1, e2) : ↓Flow τ

(T-Forward-Star)
Γ `τ e : ↓Flow τ

Γ `τ forward* e : τ ′

(T-Undiamond)
Γ `ρ e : ↓u Fut τ

Γ `ρ undiamond e : τ

This concludes the presentation of FutFlow. In the next section, we discuss optimisations
in FlowFut and FutFlow, and implementation issues.

I Theorem (Progress for FutFlow). Given a global configuration config, if Γ ` config ok, then
config is a terminal configuration or there exists a config′ such that config → config′.

I Theorem (Preservation for FutFlow). Given a global configuration config, if Γ ` config ok
and config → config′, then there exists a Γ′ such that Γ′ ⊇ Γ and Γ′ ` config′ ok.

Proof. Both proofs are by induction on the derivation of the shape of config . J



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:21

4.4 Godot’s Solutions to Future Problems
We now revisit the problems of Section 2 and show how Godot addresses them.

The Type Proliferation Problem. Because of the data-flow future component, the Type
Proliferation Problem is avoided. Like with DeF, the following statement is typeable (as is
tail-recursive functions) and returns a Flow[t] (the equivalent of Flow τ in code examples):

async (if precomputed(v) then table.lookup(v) else worker ! compute(v))

Because data-flow futures allow implicitly lifting a concrete value of type t to Flow[t], code
using data-flow futures can be trivially reused with concrete values. This addresses the Type
Proliferation Problem, allowing one data-flow future type to represent zero or many run-time
futures. (See Figure 13 for additional details.)

horisont
uppsala
       2009

Uppsala universitets årsmagasin

Spädbarns sociala  
kompetens

Fler farmaceuter  
i vården

Innovationer inom  
life science

Professorn som  
skapar blixtar 

async (if precomputed(v) then table.lookup(v) else worker ! compute(v))

:: t

:: Flow[t]

:: Flow[Flow[t]] which collapses to Flow[t]

:: Flow[t]

:: Flow[t]
∨

Figure 13 Overcoming the Type Proliferation Problem. Compare with Figure 2.

The Future Proliferation Problem. Because of support for delegation, the Future Prolifer-
ation Problem is avoided – but in a way that improves on forward. Since data-flow futures
abstract nesting, we can implicitly turn a return into a forward based on the return type,
and not require the programmer to explicitly choose a forwarding solution. Thus, we can
avoid the quirky looking return in one branch and forward in another, and simply write:

if precomputed(v) then return table.lookup(v) else return worker ! compute(v)

This allows us to hoist the return to write the original statement that would not type with
explicit control-flow futures, while still avoiding creation of unnecessary futures:

return if precomputed(v) then table.lookup(v) else worker ! compute(v)

The Fulfilment Observation Problem. The integration of both kinds of futures in a single
system avoids the Fulfilment Observation Problem by allowing a programmer to opt-in
on control-flow futures where desirable, without imposing a one-size-fits-all solution. The
following function definition uses explicit control-flow futures to allow the observation of
both stages – finding an idle worker and dispatching work to it and completing the job:

def perform(job : Job[t]) : Fut[t] { return idle_worker() ! do_work(job) }
var f = load_balancer ! perform(my_job) −−f is a control−flow future
get(f) −−block until do_work() has been called

ECOOP 2019



2:22 Godot: All the Benefits of Implicit and Explicit Futures

In contrast, this function definition uses data-flow futures and therefore will not allow the
distinction between the two stages, and its return will be treated as a forward:

def perform(job : Job[t]) : Flow[t] { return idle_worker() ! do_work(job) }
var f = load_balancer ! perform(my_job) −−f is a data−flow future
get(f) −−block until do_work() has finished

Notably, the integrated system also supports the nesting of different kinds of futures. For
example, Flow[Fut[Flow[t]]] denotes a value computed by a pipeline of zero or more
asynchronous operations whose individual completedness cannot be distinguished, followed
by a control-flow future corresponding to a single operation whose completedness can be
observed, followed by another pipeline of zero or more asynchronous operations.

Concluding Remarks. In addition to addressing all three problems of Section 2, Godot
overcomes a limitation in the initial DeF proposal for data-flow explicit futures in [20]
by adding support for parametric polymorphism. In fact, DeF did not study parametric
polymorphism and it is not trivial to add, as standard techniques [33] prevent the collapsing
of nested future types. For example, in DeF the following function problematic = (λX.λy :
X. async* y) has type ∀X.X → FlowX and, after type application problematic [FlowK] ::
Flow (FlowK), which forces a programmer to insert multiple get operations to obtain a
concrete value from a data-flow future, which breaks the DeF invariant that a single get is
always enough to access a concrete value. In Godot, the problematic function after type
application has type FlowK, because typing rules normalise flow types and get* guarantees
access to a concrete value.

Using Godot, a programmer can decide to abstract or expose details about how values are
produced through asynchronous operations, by freely choosing between control-flow futures
and data-flow futures or any combination thereof. And in the case of data-flow futures,
profit from how Godot automatically avoids creating unnecessary (unobservable) futures.
As the integration of control-flow futures, delegation, and data-flow futures improves the
individual components (e.g., the support for parametric polymorphism with data-flow futures
and type-driven automatic insertion of forward), Godot is greater than the sum of its parts.
Moreover, as the next sections will show, it is possible to encode either kind of future in the
other, which facilitates their implementation in a programming language. This realisation is
an important aspect of our contributions, which extends beyond “taking the union.”

This section has put in perspective Godot as solution to the Type Proliferation Problem,
Future Proliferation Problem, and Fulfilment Observation Problem through the integration
of control-flow futures and data-flow futures in an explicit system with support for implicit
delegation. The previous sections 4.1–4.3 explain Godot in detail.

5 Discussion

The preceding two sections showed how to encode data-flow futures in a language that only
provides control-flow futures, and the opposite; both approaches rely on small extensions
of the type system and encodings of operations for one type of futures into the other. We
review below the preceding results from an implementation and optimisation point of view.

5.1 Avoiding Future Nesting through Implicit Delegation
We revisit the example from the introduction to the Fulfilment Observation Problem (Sec-
tion 2). We imagine that this method runs in the context of an actor that “load-balances” by



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:23

farming out jobs to the worker returned from the idle_worker(). As discussed previously, this
is a case where control-flow explicit futures insert an additional, possibly unwanted, future
indirection due to the additional asynchronous call handing the work off to some worker.

def perform(job : Job[t]) : Flow[t] { return idle_worker() ! do_work(job) }

as the programmer declared the return type of perform() as Flow[t], the implementation
is less restricted (e.g., we can either delegate to a worker or return a cached result without
the typing problems of Figure 2). The programmer is not interested in any intermediate
stages of the computation, and we can compile the method body replacing return with
forward. This optimisation is crucial for making asynchronous tail-recursive calls run in
constant space.

We model this example and optimisation in FlowFut (or FutFlow) as if the body of
perform() executes inside a task, whose final expression is a return async* with the body of
do_work() inside it. We express this optimisation in FlowFut as follows (rule ReturnAsync):

(ReturnAsync)
fresh j

(taskif E[return async* e])→ (taskjf e)

(ReturnThen)
isflow?(g)

(taskif E[return then*(g, e)])→ (chainf g e)

For clarity, we add identifiers i and j to the tasks to highlight that there is no reuse of a
task (which models delegating work to another concurrent actor), but a reuse of a future
(the semantics of forward). We apply a similar optimisation (rule ReturnThen) when
returning the result of future chaining: task i delegates the fulfilment of f to the chain task,
and the delegating task finishes (and is removed in the calculus).

How Nesting Causes False Fulfilment. As exemplified in the previous section, implicit
delegation avoids the creation of nested futures. We now illustrate why false fulfilment can
happen if we do not avoid future nesting. Consider the implementation of get* and suppose
we had a non-optimised version of FlowFut that has nesting of futures. Formally, we would
have a reduction rule – (flowf ) (taskf g)→ (flowf g) – that fulfils a data-flow future with
another data-flow future. As a consequence, get* must perform a run-time test, and branch
on whether a future is fulfilled by a concrete value or another future:

(R-GetStarFlow-Unopt)
isflow?(g)

(taskf E[get* g]) (flowg v)→ (taskf E[get* v]) (flowg v)

(R-GetStarVal-Unopt)
¬isflow?(g)

(taskf E[get* v′]) → (taskf E[v′])

The key rule above is R-GetStarFlow-Unopt which shows that a get* yielding a future
reduces to another get* , meaning we move to another possibly blocked state. This does not
happen in FlowFut. Indeed, if a task returns a data-flow future g in a way that delegation
could not elide, by R-FulfilFlowValue we use future chaining on g and tell g to fulfil f
on its fulfilment instead having f effectively polling g through the implementation of get* .

5.2 Notes on Implementing Godot
Let us first consider the encodings. Implementing the encoding rules, either as a compilation
phase or even as a library is pretty straightforward except from the following points.

1. Both encodings rely on the existence of a boxing construct. Such a construct can be
easily encoded with a datatype or an object type. However due to the simplicity of the
operations on boxes a native implementation could be more efficient.

ECOOP 2019



2:24 Godot: All the Benefits of Implicit and Explicit Futures

2. The encoding of data-flow futures from control-flow ones requires a pattern matching
operator (or equivalent) that can distinguish data-flow futures from other values, unless
lifting actually creates a fulfilled data-flow future. Standard compiler optimisations are
applicable here, such as synthesising different methods from a single specification, e.g.,
one applies only to values where future types are removed, one applies only to statically
verified actual data-flow futures, and one for all other cases, or combinations.

Second, consider the type system extensions. In both cases, the type system of the
language can be extended with the existing rules without major difficulty. Additionally,
without modifying the type system if the data-flow future language has parametric types it
seems possible to encode control-flow future typing rules: all typing rules necessary to extend
the data-flow future language can be expressed as typing of parametric types and functions.
In the other direction, it is slightly more involved as the type system of the control-flow
future language must implement a form of type collapse rule.

Overall, extending a language with data-flow (resp. control-flow) futures to also support
control-flow (resp. data-flow) futures raises no particular difficulty, and the encodings avoid
adding “native support” for both futures. The compiler and the type checker need a small
number of new, simple constructs. A data-flow future language may have to add chaining
on data-flow futures, or the control-flow future language should add pattern matching that
distinguishes data-flow futures. While all these extensions are minor, they will require some
modicum of language modifications. Consequently, the implementation of Godot as an
external library of a mainstream language is not straightforward: standard type systems
do not perform the implicit lifting required for data-flow futures, and the future chaining
required for data-flow futures rarely exist in control-flow futures. However, if a language with
data-flow futures already supports chaining, which is a common operation, implementing
control-flow futures in a non-intrusive manner – as an external library – seems to raise
no difficulty.

6 Related Work

Section 3 discusses the most closely related work on data-flow explicit futures (DeF) [20] and
future delegation [13] in detail. Earlier work on adapting a static analysis [16] from explicit
to implicit futures revealed the difference between the future accesses, and a translation
of control-flow synchronisation in ABS [22] to data-flow synchronisation in ProActive [21]
showed that control-flow synchronisation could not be simulated purely by implicit futures.

Futures are means for expressing concurrency while enabling synchronisation at the
latest possible time. They were first introduced by Baker and Hewitt in the 70’s [4], and
later rediscovered by Liskov and Shrira as Promises [27] and by Halstead in the context of
MultiLisp [25]. Flanagan and Felleisen did an early formalisation of futures [15] based on
MultiLisp’s futures with focus on the difference between explicit and implicit future access.
In a similar vein, λ(fut) [29] is a concurrent lambda calculus with futures with cells and
handles. Futures in λ(fut) are explicitly created, similarly to MultiLisp. We now consider
futures with respect to the dichotomy between implicit and explicit futures.

Implicit Futures. Implicit futures are indistinguishable from concrete values in source code.
Typically, data-flow synchronisation is based on implicit futures. In MultiLisp [25], the future
construct creates a thread and returns a future that can be manipulated by operations like
assignment, that do not need a real value, but the program would automatically block when
performing an operation requiring the value, i.e., futures are implicitly accessed but explicitly



K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:25

created. Similar constructs can be found in Alice [35], Oz-Mozart [38], and ProActive [3].
The latter is a Java library for active objects in which futures are implicit like in MultiLisp;
futures are implemented with proxies that hide the future and provide a normal object
interface, but accessing a proxy leads to a synchronisation with the availability of the object,
i.e., the fulfilment of the future.

Explicit Futures. Explicit, typed futures appeared with ABCL/f [37] to represent the result
of an asynchronous method invocation, paving the way for active object languages [12].
Explicit futures typically have a parametric future type, and exist in, e.g., Concurrent
ML [34], C++ [26] and Java [39], often as libraries. Explicit futures open for different
ways of synchronising. Hybrid [30] is an early language with forwarding; in this paper,
Nierstrasz formulates a version of the Future Proliferation Problem of Section 2. Creol [23]
features non-blocking polling on futures that enables cooperative multi-threading based on
future availability. De Boer et al. [11] were probably among the first to offer a rich set of
future manipulation primitives for control flow, together with a compositional proof theory.
JCobox [36], ABS [22], and Encore have mostly reused these primitives [36, 22, 7]. Encore
additionally supports creation and manipulation of parallel tasks as sets of futures [14].

Akka [19, 41] is a scalable actor library implemented on top of Java and Scala, in which
futures are used either to allow actor messages to return a value or more automatically in
the messages of typed actors (akin to active objects). The Akka programmer is advised to
use asynchronous reaction on futures, i.e., register code to be executed when the future is
fulfilled. Akka’s map construct is similar to our then chaining construct. JavaScript promises
are data-flow synchronised futures with explicit asynchronous access and no typing. The
data-flow nature of the synchronisation distinguishes JavaScript from the other languages
with explicit futures and is probably related to the absence of future type. Because it is
untyped and promises are explicitly accessed and fulfilled, errors are frequently made when
manipulating these promises; Madsen et al. [28] provide a powerful tool to study these errors.

Futures in the Mainstream. Many modern, statically typed programming languages provide
control-flow futures through libraries to facilitate the creation and control of asynchronous,
concurrent computations. We highlight Completable Futures [32], Listenable Futures [17],
Scala Futures [18] and Akka Futures [1], and the Observable abstraction from the ReactiveX
library [2], where asynchronous computations may return (emit) more than one value.

Future libraries of mainstream languages have considerably richer interfaces than the
future abstractions in our core calculus, but, as far as we can tell, we provide all the necessary
operations to construct most, if not all, of these library interfaces.

Extending existing libraries with support for data-flow futures is an interesting direction
of future work. We take some preliminary steps in this direction in the companion artefact
of this paper which shows how to integrate data-flow futures with Scala futures.

There is an analogy between futures and the observable abstraction from the ReactiveX
library: both are control-flow constructs. Investigating whether the benefits of data-flow
futures can be carried over to observables is an interesting future direction of this work.

Finally, most future libraries establish futures as monads, such as Akka Futures or the
ReactiveX library. The control-flow futures from this paper are monadic, with async as its
unit and get as its join. Data-flow futures are monadic as well, although they work on a
smaller set of types, due to their implicit nature, i.e., they collapse Flow types.

ECOOP 2019



2:26 Godot: All the Benefits of Implicit and Explicit Futures

7 Conclusion

The distinction between implicit and explicit futures is well-known, but recent work highlights
that the relation between the typing and synchronisation discipline plays a more crucial aspect.

Following this observation, we identified three problems with existing future implementa-
tions: the Type Proliferation Problem restricts the expressiveness of control-flow futures; the
Fulfilment Observation Problem limits the synchronisation capacities of data-flow futures;
the Future Proliferation Problem makes both data-flow and control-flow futures inefficient.
This paper defines Godot, a system supporting both data-flow and control-flow futures
simultaneously, and in combination; our system is the first to do so, and also to solve
the three problems above coherently in a single programming model. Godot shows how
to add parametric polymorphism and automatic delegation for data-flow explicit futures,
and demonstrates how to encode each type of future in terms of the other. This facilitates
implementation of the full Godot system, or subsets, in existing programming languages, with
or without support for futures. We believe that our formalisms communicate the core ideas,
while not tying ourselves too closely to one particular kind of language or unit of concurrency.

While we developed two possible encodings, starting from a data-flow language seems a
bit more promising. Indeed, if data-flow futures are the default, the non-expert programmer
is only exposed to futures that do not suffer from Type Proliferation and where Future Prolif-
eration can be avoided automatically. Programs that need control on future synchronisation,
e.g., to implement load balancing or scheduling features, can use the encoding of control-flow
futures and avoid the Fulfilment Observation Problem.

References
1 Akka Futures. https://doc.akka.io/docs/akka/current/futures.html, 2019.
2 Rx Extensions. http://reactivex.io/, 2019.
3 Laurent Baduel, Francoise Baude, Denis Caromel, Arnaud Contes, Fabrice Huet, Matthieu

Morel, and Romain Quilici. Programming, Composing, Deploying for the Grid, pages 205–229.
Springer London, London, 2006.

4 Henry G. Baker and Carl E. Hewitt. The Incremental Garbage Collection of Processes. In
Proc. Symposium on Artificial Intelligence Programming Languages, number 12 in SIGPLAN
Notices, page 11, August 1977.

5 Samuel Beckett. Waiting for Godot. Samuel Beckett: The Complete Dramatic Works, pages
7–89, 1954.

6 Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System. J. Parallel Distrib.
Comput., 37(1):55–69, 1996. doi:10.1006/jpdc.1996.0107.

7 Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen,
Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. Parallel
Objects for Multicores: A Glimpse at the Parallel Language Encore. In Advanced Lectures on
Formal Methods for Multicore Programming - 15th Intl. School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM 2015), volume 9104 of
Lecture Notes in Computer Science, pages 1–56. Springer, 2015.

8 Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asynchronous and deterministic
objects. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 123–134. ACM Press, 2004.

9 Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Tobias Wrigstad, and Albert Mingkun
Yang. Attached and Detached Closures in Actors. In Proc. 8th ACM SIGPLAN Intl. Workshop
on Programming Based on Actors, Agents, and Decentralized Control, AGERE 2018, pages
54–61. ACM, 2018. doi:10.1145/3281366.3281371.

https://doc.akka.io/docs/akka/current/futures.html
http://reactivex.io/
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1145/3281366.3281371


K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:27

10 Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. Minimal Ownership
for Active Objects. In G. Ramalingam, editor, Proc. 6th Asian Symposium on Programming
Languages and Systems (APLAS 2008), volume 5356 of Lecture Notes in Computer Science,
pages 139–154. Springer, 2008.

11 Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future. In
Proc. 16th European Symposium on Programming (ESOP’07), volume 4421 of Lecture Notes
in Computer Science, pages 316–330. Springer, 2007.

12 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crys-
tal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-
Reyes, and Albert Mingkun Yang. A Survey of Active Object Languages. ACM Comput.
Surv., 50(5):76:1–76:39, 2017. doi:10.1145/3122848.

13 Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc Vo. Forward to a
Promising Future. In Giovanna Di Marzo Serugendo and Michele Loreti, editors, Proc. 20th
IFIP WG 6.1 Intl. Conf. on Coordination Models and Languages (COORDINATION 2018),
volume 10852 of Lecture Notes in Computer Science, pages 162–180. Springer, 2018.

14 Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. ParT: An asynchronous paral-
lel abstraction for speculative pipeline computations. In Alberto Lluch-Lafuente and José
Proenca, editors, Proc. 18th IFIP WG 6.1 Intl. Conf. on Coordination Models and Languages
(COORDINATION 2016), volume 9686 of Lecture Notes in Computer Science, pages 101–120.
Springer, 2016. doi:10.1007/978-3-319-39519-7_7.

15 Cormac Flanagan and Matthias Felleisen. The Semantics of future and an application. Journal
of Functional Programming, 9(1):1–31, 1999.

16 Elena Giachino, Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea. Actors may
synchronize, safely! In PPDP 2016 18th International Symposium on Principles and Practice
of Declarative Programming , Edinburgh, United Kingdom, September 2016. URL: https:
//hal.inria.fr/hal-01345315.

17 Google. Listenable Future Explained. https://github.com/google/guava/wiki/
ListenableFutureExplained, January 2018.

18 Philipp Haller, Heather Miller, Aleksandar Prokopec, Viktor Klang, Roland Kuhn, and Vojin
Jovanovic. Futures and Promises. http://docs.scala-lang.org/overviews/core/futures.html,
2016.

19 Phillip Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202–220, 2009.

20 Ludovic Henrio. Data-flow Explicit Futures. Research report, I3S, Université Côte d’Azur,
April 2018. URL: https://hal.archives-ouvertes.fr/hal-01758734.

21 Ludovic Henrio and Justine Rochas. Multiactive objects and their applications. Logical Methods
in Computer Science, Volume 13, Issue 4, November 2017. doi:10.23638/LMCS-13(4:12)2017.

22 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS:
A core language for abstract behavioral specification. In Bernhard Aichernig, Frank S. de Boer,
and Marcello M. Bonsangue, editors, Proc. 9th Intl. Symp. on Formal Methods for Components
and Objects (FMCO), volume 6957 of Lecture Notes in Computer Science, pages 142–164.
Springer Verlag, 2011.

23 Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-oriented
model for distributed concurrent systems. Theor. Comput. Sci., 365(1-2):23–66, 2006. doi:
10.1016/j.tcs.2006.07.031.

24 Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, 2003.

25 Robert H. Halstead Jr. MultiLisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, 1985. doi:10.1145/4472.4478.

26 R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Behavioral Pattern for
Concurrent Programming. Proc. Pattern Languages of Programs, 1995.

ECOOP 2019

http://dx.doi.org/10.1145/3122848
http://dx.doi.org/10.1007/978-3-319-39519-7_7
https://hal.inria.fr/hal-01345315
https://hal.inria.fr/hal-01345315
https://github.com/google/guava/wiki/ListenableFutureExplained
https://github.com/google/guava/wiki/ListenableFutureExplained
https://hal.archives-ouvertes.fr/hal-01758734
http://dx.doi.org/10.23638/LMCS-13(4:12)2017
http://dx.doi.org/10.1016/j.tcs.2006.07.031
http://dx.doi.org/10.1016/j.tcs.2006.07.031
http://dx.doi.org/10.1145/4472.4478


2:28 Godot: All the Benefits of Implicit and Explicit Futures

27 Barbara Liskov and Liuba Shrira. Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems. In Richard L. Wexelblat, editor, Proceedings of
the ACM SIGPLAN’88 Conference on Programming Language Design and Implementation
(PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 260–267. ACM, 1988. doi:10.1145/
53990.54016.

28 Magnus Madsen, Ondrej Lhoták, and Frank Tip. A model for reasoning about JavaScript
promises. PACMPL, 1(OOPSLA):86:1–86:24, 2017. doi:10.1145/3133910.

29 Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A Concurrent Lambda Calculus
with Futures. Theoretical Computer Science, 364(3):338–356, November 2006.

30 Oscar Nierstrasz. Active Objects in Hybrid. In Norman K. Meyrowitz, editor, Proc. Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’87), pages
243–253. ACM, 1987.

31 Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Inc, 2008.
32 Oracle. JDK 10 for java.util.concurrent.Future. https://docs.oracle.com/javase/10/

docs/api/index.html?java/util/concurrent/Future.html, 2018.
33 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
34 John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
35 Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert Smolka.

Alice Through the Looking Glass, volume 5 of Trends in Functional Programming, pages 79–96.
Intellect Books, Bristol, UK, ISBN 1-84150144-1, Munich, Germany, February 2006.

36 Jan Schafer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active objects to concurrent
components. ECOOP 2010–Object-Oriented Programming, pages 275–299, 2010.

37 Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. ABCL/f: A future-based poly-
morphic typed concurrent object-oriented language - its design and implementation. In
Proceedings of the DIMACS workshop on Specification of Parallel Algorithms, pages 275–292.
American Mathematical Society, 1994.

38 Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming.
MIT Press, March 2004.

39 Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for Java. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications (OOPSLA’05), pages 439–453, New York, NY, USA, 2005. ACM
Press.

40 Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

41 Derek Wyatt. Akka Concurrency. Artima, 2013.

http://dx.doi.org/10.1145/53990.54016
http://dx.doi.org/10.1145/53990.54016
http://dx.doi.org/10.1145/3133910
https://docs.oracle.com/javase/10/docs/api/index.html?java/util/concurrent/Future.html
https://docs.oracle.com/javase/10/docs/api/index.html?java/util/concurrent/Future.html
http://dx.doi.org/10.1006/inco.1994.1093

	Introduction
	Problems Inherent in Explicit and Implicit Futures
	Current Solutions to Future Problems
	Standard Mitigation Strategies and Problem Avoidance
	Data-flow Explicit Futures
	Delegating Future Fulfilment

	Godot: Integrating Data- and Control-Flow Futures and Delegation
	Design Space and Formal Semantics
	FlowFut: Primitive Data-Flow and Encoded Control-Flow Futures
	FutFlow: Primitive Control-Flow and Encoded Data-Flow Futures
	Godot's Solutions to Future Problems

	Discussion
	Avoiding Future Nesting through Implicit Delegation
	Notes on Implementing Godot

	Related Work
	Conclusion

