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, nous présentons un modèle qui répond aux attentes de l'institution de microfinance (IMF) et celle des emprunteurs et qui incorpore toutes les caractéristiques des populations pauvres, à savoir la tolérance en cas de défaut partiel et la possibilité d'avoir un prêt progressif de façon automatique. C'est un modèle d'apprentissage qui offrira aux institutions de microfinance un outil d'aide à la décision plus adapté à leur réalité. Il est basé sur une chaîne de Markov qui comprend plusieurs états associés à la situation économique de l'emprunteur. Notre modèle comporte trois classes d'états dont une classe d'états bénéficiaires, une classe d'états exclus et une classe d'état demandeur. Il existe trois types de bénéficiaires : B 1 est l'état d'être bénéficiaire à l'instant t = 1; B 2 est l'état d'être bénéficiaire à l'instant t = 2 et, après avoir passé sans défaut les deux états B 1 et B 2 , l'emprunteur entre dans l'état d'inclusion financière I, c'est à dire être bénéficiaire permanent. Quant aux états d'exclus, A T . . . A 2 représentent les (T -1) états d'exclusion financière. La troisième classe d'état concerne l'état initial A 1 de demandeur de prêt. Tous les futurs bénéficiaires potentiels de prêt se placent donc dans cet état A 1 . Nous avons modélisé le comportement d'un emprunteur par un paramètre λ dépendant de α qui est la probabilité de réussite de l'emprunteur. A l'instant initial, λ = 1+α 1-α , cette quantité change dès que l'emprunteur passe d'un état à un autre avec une nouvelle probabilité de réussite α différente de celle de l'instant précédent et ainsi de suite. La décision de l'agence d'accorder un crédit dépend entièrement du paramètre λ qui est comparé aux valeurs-seuils subjectives fixées. La chance γ d'avoir un prêt (γ: probabilité de demande de crédit accordée) pour un emprunteur est fonction du paramètre λ, avec γ = 1 -1 λ , λ = 0.

ABSTRACT.

Starting from the generalized model of Osman Khodr and Francine Diener [3], we present a model that meets the expectations of the microfinance institution (MFI) and that of borrowers and that incorporates all the characteristics of poor populations, know the tolerance in case of partial default and the possibility of having a progressive loan automatically. It is a learning model that will offer microfinance institutions a decision support tool more suited to their reality. It is based on a Markov chain which includes several states associated with the economic situation of the borrower including three types of beneficiaries : B 1 is the state of being beneficiary at initial time t = 1, B 2 is the state of being beneficiary at time t = 2, and I is the state of financial inclusion which means permanent beneficiary, A 1 the state of applicant and A T . . . A 2 represent (T -1) states of exclusion. We have modeled the behavior of a borrower by a parameter λ dependent on α which is the probability of success of the borrower. At the initial moment, λ = 1+α 1-α , this quantity changes as soon as the borrower passes from one state to another with a probability of success different from α. The agency's decision to grant credit depends entirely on the parameter λ which is compared to the set subjective threshold values. The chance γ of having a loan (γ: probability of requesting credit granted) for a borrower depends on the parameter λ, with γ = 1 -1 λ , λ = 0.

Introduction

L'institution de microfinance (IMF) est un levier important pour l'essor économique des populations pauvres. Malgré cela, certaines populations sont encore desservis du système et d'autres, déjà clients, entrent dans un cercle vicieux d'endettement. Vu sous cet angle, n'est-il pas nécessaire qu'elle doit remettre en cause leur modèle d'octroi de crédit pour atteindre non seulement cet ultime objectif mais aussi sa pérennité ? Inspiré par la méthode de prêt étudiée par l'économiste G. A. Tedeschi [START_REF] Tedeschi | Here today, gone tomorrow : can dynamic incentives make microfinance more flexible[END_REF], Osman Khodr et Francine Diener [START_REF] Osman Khodr | Mathematical models for individual and group lending in microfinance[END_REF] ont construit un modèle de prêt individuel en utilisant l'esprit des prêts successifs comme une incitation dynamique. En effet, dans le modèle de Osman Khodr et Francine Diener, l'IMF est menacée de deux types de non remboursement : défauts stratégiques ou défauts résultant d'un choc économique. D'après ce modèle, le contrat de prêt prévoit des incitations pour décourager les emprunteurs de suivre des défauts stratégiques tout en considérant un choc économique inévitable. Ce modèle présente les incitations au remboursement comme l'interaction répétée entre emprunteur et prêteur : chaque remboursement de prêt à l'échéance entraîne un nouveau contrat de prêt tout en excluant l'emprunteur défaillant, pendant un certain temps, de l'activité de prêt. Lansana Bangoura [START_REF] Bangoura | Contrat de crédit, risque moral, sélection adverse et incitation à l'effort pour le remboursement en Microfinance[END_REF] souligne l'importance de celle-ci pour mieux gérer le crédit et pour palier aux difficultés rencontrées par l'institution de microfinance (IMF). A cet égard, il propose comme solution éventuelle la prime monétaire à l'effort liée aux remboursements de prêt.

Le comportement de l'emprunteur est imprévisible. Cette imprévisibilité rend la réalité plus complexe. Mais un modèle est bon s'il rend cette complexité plus simple et compréhensible. Le modèle généralisé de Osman Khodr et Francine Diener ne tient pas compte des toutes les techniques plus avantageuses pouvant être appliquées dans l'activité de prêt. Leur modèle n'incorpore aucun élément de flexibilité de la décision : modèle à tolérance zéro pour le défaillant (exclusion pendant une certaine période) que ce soit défaillance partielle ou défaillance totale, et modèle à un prêt de même taille pour toutes les étapes futures de l'emprunteur en succès. Il est donc question ici d'étendre le modèle existant pour une large couverture et protection des participants. Ainsi, notre objectif est de construire un modèle de prêt individuel répondant aux attentes de l'IMF (incitation dynamique) et celles des emprunteurs (sécuriser leur quotidien par le biais d'une offre souple et adaptée à leur capacité pour parer au risque permanent de tomber dans l'état d'indigence). Ce modèle prendra en compte toutes les caractéristiques des populations pauvres et les stigmatisera. A travers ce modèle, nous espérons offrir aux institutions un outil d'aide à la décision plus adapté à la réalité du quotidien. Nous considérons ici la prime à l'effort non monétaire présentée dans les travaux de Lansana Bangoura comme une augmentation automatique du montant de crédit et la baisse du taux d'intérêt. Tout comme le modèle de Khodr et Diener, nous allons recourir à la théorie de chaîne de Markov que nous ne la présenterons pas ici pour aboutir au résultat escompté.

Des hypothèses décrivant tous les états possibles à l'échéance et les différentes procédures appliquées selon le résultat d'investissement seront présentées dans la prochaine section dont nous avons repris, parmi elles, trois hypothèses de Khodr et Diener. Nous présenterons en troisième section notre modèle de prêt individuel. Nous terminerons notre travail par la présentation du profit espéré des participants suivi d'une discussion.

Hypothèses

Outre les hypothèses émises dans le modèle de Khodr et Diener, quant à notre modèle, d'autres hypothèses ont été ajoutées :

-(H1) : L'IMF ne finance que les activités existantes. Toute demande de crédit pour un projet nouveau n'est pas recevable.

-(H2) : La richesse brute espérée au temps t et étant à l'état s w t (s) = (w 1 (s), w 2 (s), . . . , w t (s)) est une variable aléatoire dépendante de l'état s de la nature.

-(H3) : Le taux d'intérêt r, (0 < r ≤ 1) peut être réduit à un taux faible pour un emprunteur qui entre dans le cercle du bénéficiaire permanent (état I). Notons r ce taux d'intérêt réduit pour un état s = I de la nature.

-(H4) [START_REF] Osman Khodr | Mathematical models for individual and group lending in microfinance[END_REF] : L'emprunteur est en succès s'il rembourse la totalité de son prêt, chargé d'un taux d'intérêt r fixé au moment du contrat et bénéficie automatiquement d'un nouveau prêt d'une unité supplémentaire ou de la même unité pour la période suivante.

-(H5) [START_REF] Osman Khodr | Mathematical models for individual and group lending in microfinance[END_REF] : L'emprunteur est en échec s'il n'a pas remboursé, par conséquent, il ne bénéficiera pas d'un nouveau prêt durant T (T ≥ 1) périodes suivantes.

-(H6) [START_REF] Osman Khodr | Mathematical models for individual and group lending in microfinance[END_REF] : Après l'exclusion, il demande un nouveau prêt et sa chance dépend du nombre de demandeurs admissibles et de la limite du nombre d'emprunteurs dans le portefeuille de prêt. Nous notons γ (0 ≤ γ ≤ 1), la probabilité que sa demande soit acceptée la première période qui suit la phase d'exclusion, alors que 1γ est la probabilité que sa candidature sera reportée pour la période suivante, et ainsi de suite.

-(H7) : C'est uniquement dans le premier contrat que l'IMF tolère, au plus, d(1 ≤ d ≤ 3) défauts partiels de remboursement moyennant une somme forfaitaire p de pénalité pour chaque défaut. Si l'emprunteur dépasse le nombre d de défauts autorisés, il sera exclu pendant un bout de temps. Dans le cas contraire, une reconduction d'un nouveau prêt de même taille sera possible.

De ces hypothèses et du fait que l'emprunteur prévoit son futur à partir de son état présent mais non pas de son passé, nous modélisons les différents états d'un emprunteur par une chaîne de Markov. L'utilisation du processus markovien nous permet d'évaluer le profit inter temporel espéré de l'emprunteur.

Le modèle

Travaux connexes

De nombreux économistes ont oeuvré sur l'incitation dynamique en matière de prêt. Parmi eux, nous citons Hulme et Mosley [START_REF] Hulme | Finance Against Poverty[END_REF], Armendariz de Aghion et Morduch [START_REF] De | Microfinance beyond group lending[END_REF], et Ghosh et Van Tassel [START_REF] Ghosh | Microfinance, subsides and dynamic incentives[END_REF] qui, dans leurs études, ont construit exclusivement des modèles à deux périodes. Lansana Bangoura [START_REF] Bangoura | Contrat de crédit, risque moral, sélection adverse et incitation à l'effort pour le remboursement en Microfinance[END_REF] construit un modèle de contrat de crédits optimal en s'appuyant sur une prime à l'effort pour atténuer le problème d'aléa moral et de sélection adverse. Tedeschi [START_REF] Tedeschi | Here today, gone tomorrow : can dynamic incentives make microfinance more flexible[END_REF], quant à lui, a adapté la dynamique à deux étapes de Green et Porter [START_REF] Green | Non-cooperative collusion under imperfect price information[END_REF] pour construire un modèle prenant en compte toutes les étapes futures de l'emprunteur. De leur côté, Nahla Dhib, Francine Diener et Marc Diener [START_REF] Dhib | Modélisation mathématique du flux espéré d'un microentrepreneur[END_REF] ont présenté un modèle à quatre états qui modélise mathématiquement avec la chaîne de Markov l'évaluation de l'impact du microcrédit pour atteindre un grand nombre d'individus à faible revenu. Convaincus que certains aspects à ce sujet feront l'avancée de la recherche dans le domaine de modélisation mathématique en microfinance, Osman Khodr et Francine Diener [START_REF] Osman Khodr | Mathematical models for individual and group lending in microfinance[END_REF] ont généralisé le modèle de Tedeschi [START_REF] Tedeschi | Here today, gone tomorrow : can dynamic incentives make microfinance more flexible[END_REF] et le modèle à quatre états de Nahla Dhib, Francine Diener et Marc Diener [START_REF] Dhib | Modélisation mathématique du flux espéré d'un microentrepreneur[END_REF] tout en renouvelant de façon automatique le prêt et ce en gardant une même taille, dans le cas où l'emprunteur ne fait pas défaut et rien sinon. Osman Khodr et Francine Diener ont mis dans leur modèle l'accent sur la détermination de contrat optimal entre l'emprunteur et le prêteur. Ils supposent de ce fait que, dans toutes les étapes futures, les cocontractants entretiennent une activité qui dure pour plusieurs périodes.

Comme il s'agit d'une extension du modèle de Osman Khodr et Francine Diener [START_REF] Osman Khodr | Mathematical models for individual and group lending in microfinance[END_REF], notre modèle se démarque par sa capacité à mieux expliquer les comportements que devront avoir, d'une part, l'IMF dans ses démarches d'octroi de crédit et de construction d'une relation stable de confiance avec son client, et d'autre part, l'entrepreneur pour pouvoir profiter la possibilité de financement progressif et continu de son activité.

Objectif principal

Nous essayons de construire un modèle permettant aux institutions de microfinance :

-De réduire davantage le temps de travail exorbitant et le fréquent déplacement sur terrain qui entraînent un coût opérationnel élevé, voire très élevé. Donc taux d'intérêt pratiqué très élevé ; -De pallier à l'exclusion financière pour résoudre les défaillances du marché en matière de financement du système bancaire traditionnel ; -De réduire la sélection adverse. Tout ceci concourt, d'une part, à inciter les agents économiques (emprunteurs) à faire face à ses engagements, d'autre part, à donner une opportunité de financement à toutes les activités économiques génératrices de richesse des agents économiques tout en pratiquant un taux d'intérêt faible. A cet égard, Alex Counts, président de la Fondation Grameen disait : « les actifs les plus importants des institutions de microfinance ne sont pas leurs portefeuilles, mais la bonne qualité de leurs relations avec les plus pauvres de ce monde ».

Présentation du modèle

En entrepreneuriat, il est universellement admise que l'utilisation des fonds empruntés ou des fonds combinés (fonds propre et fonds emprunté) génère de rentabilité par rapport à celle des fonds propres. Ainsi, pour entreprendre une activité génératrice de revenu, l'obtention de crédit de financement est une condition sine qua none de réussite. Par contre, décrocher un contrat d'emprunts, c'est prendre des risques liés au projet à financer. Ces risques sont des aléas (états de la nature) parfois prévisibles et imprévisibles qui interfèrent dans la décision d'octroi de crédit et façonnent le comportement des emprunteurs à faire face à leur responsabilité et à leur engagement.

Espace d'états et probabilités de transition

Espace d'états

Fournir un modèle mathématique pour décrire les événements des expériences aléatoires est l'un des objectifs ultimes de la théorie de probabilités. Sous sa forme contemporaine, la formulation de cette théorie de probabilités contient trois ingrédients inséparables : l'espace d'états (demandeur, bénéficiaire, exclu), les événements (demande accordée, demande ajournée,renouvellement accepté), et la loi de probabilité ou simplement la probabilité de transition d'un état à un autre. Ces ingrédients sont appelés "espace de probabilités ou espace probabilisé" que nous allons noter (Ω, F, P).

Définition 1. L'espace d'états appelé aussi univers, noté Ω, est l'ensemble des résultats possibles de l'expérience aléatoire.

Dans toute la suite, nous considérons une suite (X t , t ≥ 1, t ∈ T ) de variables aléatoires indexées par un paramètre t qui décrit un sous-ensemble T de N, définies sur un même espace de probabilités (Ω, F, P), et à valeurs dans un ensemble, appelé espace d'états de la nature, qui sera noté S que nous cherchons à modéliser.

Notons S cet espace d'états de la nature. A chaque état s ∈ S de la nature, deux cas de figures peuvent se présenter, soit l'emprunteur rembourse son emprunt, soit il fait défaut. Notre modèle prévoit une tolérance en cas de défaut partiel ( Hypothèse H7), mais la défaillance totale lui coûte une exclusion pendant plusieurs périodes et lui place dans un état de demandeur. Ainsi, les états S de la nature se présentent comme suit :

S = {B 1 , B 2 , I, A T , A (T -1) , . . . , A 1 }. (1) 
B 1 , B 2 et I représentent les états où l'emprunteur bénéficie de crédits de financement. Ceux de A T , A (T -1) , . . . représentent les états où l'emprunteur est exclu du système de financement pendant T périodes. A 1 est l'état initial du système (c'est l'état où l'emprunteur demande pour la première fois un crédit de financement de son projet, ou il demande sa réintégration dans le système après une exclusion causée par les aléas de la nature).

Probabilités de transition

Nous allons voir qu'il est fondamental de connaître la probabilité d'être dans un état y à l'instant suivant sachant que nous sommes dans un état x à l'instant présent. Ceci justifie la définition suivante. Définition 2. Soit (X t , t ≥ 1) une chaîne de Markov définie sur l'espace probabilisé (Ω, F, P), à valeurs dans S. Pour tout entier t ≥ 1 et tous états B 1 , B 2 , I, A T , A (T -1) , . . . , A 1 ∈ S, nous appelons probabilités de transition de l'état A 1 vers l'état B 1 la donnée des

P (X t+1 = B 1 |X t = A 1 , X t-1 = A t-1 , ..., X 2 = A t ) = P (X t+1 = B 1 |X t = A 1 ).
Puisqu'une transition a nécessairement lieu d'un état vers un autre état, nous avons évidemment p x,k ≥ 0 et k∈S p x,k = 1 pour tous états x, k ∈ S. Une matrice P indexée par S et satisfaisant les propriétés cidessus est appelée matrice de transition que nous allons aborder dans la sous section suivante. Explicitons ces probabilités de transition de notre modèle dans le paragraphe ci-après.

Au départ, nous supposons que chaque emprunteur candidat se place dans l'état initial A 1 qui est l'état d'un demandeur de prêt.C'est un état récurrent du fait qu'en ayant accédé à cet état,l'emprunteur y reste et y reviendra sûrement. Avant d'accorder un prêt, l'IMF procède à l'étude minutieuse du dossier de l'emprunteur et estime par la suite une probabilité α de réussite future du projet de l'emprunteur candidat. Après avoir estimé cette probabilité, l'IMF prend sa décision d'octroi de crédit par le biais d'un paramètre λ, avec λ = 1+α 1-α , α = 1. Comparé celui-ci aux valeurs-seuils subjectives fixées selon la politique de l'agence, deux cas peuvent se présenter. Soit, l'emprunteur candidat atterrit dans l'état B 1 qui représente l'état bénéficiaire du premier prêt avec une probabilité de transition γ (P A 1 ,B1 = γ), où γ = 1 -1 λ , λ = 0, soit, il reste dans l'état A 1 avec une probabilité 1γ (P A 1 ,A 1 = 1γ). Cette probabilité γ, une fois déterminée, pour chaque emprunteur et pour tout temps t ∈ T , est unique jusqu'à ce que l'emprunteur sera exclu de l'activité de prêt. Arrivant à l'état B 1 , le bénéficiaire réalisera son projet et exprimera à la fin de son premier contrat son souhait d'une nouvelle demande de financement. Tout comme la première demande, le renouvellement de son contrat passe donc par une réévaluation de son futur projet. Ainsi, l'IMF ré-estime la probabilité α tout en procédant de la même manière qu'à la première demande.

Cette probabilité α sera indicée par l où l indique que l'emprunteur a fait au plus d défauts partiels de remboursement (d est le nombre de défauts partiels autorisés par l'IMF) ou indicée par h dans le cas où l'emprunteur rembourse entièrement le capital emprunté sans faire défaut. α l (P B1,B1 = α l ) est donc la probabilité de rester dans l'état B 1 et α h (P B1,B2 = α h ) est la probabilité de transition de l'état B 1 vers B 2 qui représente l'état où l'emprunteur bénéficie un second prêt de même unité qu'au précédent ou plus d'une unité supplémentaire selon les besoins de l'entrepreneur (u(B 2 ) ≥ u(B 1 ) où u(B 1 ) désigne l'unité prêtée à l'état B 1 ) (d'après l'hypothèse H5).

Pour tout instant t ≤ 2, si l'emprunteur fait au plus d défauts partiels de remboursement, la probabilité α l est strictement positive et la probabilité α h vaut zéro. L'emprunteur reste donc dans l'état B 1 . Par contre, pour tout instant t > 2 et en supposant que l'emprunteur a fait éventuellement d défauts partiels de remboursement dans son premier contrat, les deux probabilités α l et α h sont strictement positives dont la somme vaut α (α = α l + α h ). Autrement dit, nous attribuons à l'emprunteur une probabilité strictement positive P B1,B1 = α l de son projet lors de son renouvellement de contrat vers le même état B 1 . Et puis en le quittant, la probabilité de transition P B1,B2 = α h de l'état B 1 vers l'état B 2 est strictement supérieure à α l (α h > α l ). Étant en B 2 , l'emprunteur exprimant toujours son besoin de financement pour accroître son activité poursuit son chemin vers l'état I. Celui-ci est l'état où il entre automatiquement dans le cercle du bénéficiaire permanent avec une probabilité de réussite de son projet d'extension P B2,I = β. A l'état I, l'emprunteur pourra y demeurer avec une probabilité P I,I = 1θ. Les états B 1 , B 2 et I ont les caractéristiques d'un état transitent car si après y avoir accédé, l'emprunteur peut ne plus y revenir. Au stade où l'emprunteur arrive à l'état I, l'IMF peut limiter le temps de travail alloué à l'étude du dossier et le déplacement sur terrain de toute demande de ré-financement. Un défaut partiel dans l'état B 2 ou dans l'état I ou un dépassement du nombre de défauts d de remboursement autorisés dans l'état B 1 fera l'emprunteur sortir de l'activité de prêt et atterrira dans l'état fermé A T (P (A T ) = 1, T ∈ N) où il sera exclu pour T périodes. La formule de détermination de la probabilité de réussite est unique. Seulement, l'appellation change selon le cas où nous déplaçons dans un état vers un autre. La probabilité α valorise donc le résultat du projet de l'entrepreneur. Ainsi, elle est déterminée par la donnée de la fonction y(W t (s), r) du bénéfice net espéré, d'une unité prêtée u(s) à un état possible s investie dans le projet, avant impôt de l'entrepreneur : α = y(Wt(s),r)

u(s) = Wt(s)-(1+r+C) u(s) [2] 1 .
Selon Osman Khodr [4], nous citons : "Plusieurs chercheurs considèrent que le portefeuille d'emprunts est constitué de deux types d'emprunteurs, les emprunteurs de types risqués avec une probabilité de réussite α risq et les emprunteurs de types sûrs avec une probabilité de réussite α sur . Osman Khodr suppose de son côté que la proportion d'emprunteurs risqués dans le portefeuille est φ et celle d'emprunteurs sûrs est (1-φ). Il considère alors que α représente la probabilité moyenne de réussite d'un emprunteur dans le portefeuille d'emprunts et aboutit à la formule suivante : α = φα risq + (1φ)α sur ". Dans cette optique, la probabilité α est estimée du point de vue macroscopique, c'est-à-dire au niveau global. Quant à nous, elle est estimée du point de vue microscopique, c'est-à-dire au niveau individuel.

Matrice de transition et graphe de Markov

Un des avantages d'une chaîne de Markov est le fait de pouvoir travailler soit avec son graphe ou avec sa matrice de passage soit avec les deux simultanément. Comme la décision d'octroi de crédit ne dépend que du passé récent du bénéficiaire, le recours exclusif à la théorie markovienne comme outil méthodologique a été d'une grande aide. A cet égard et d'après la sous-section précédente, nous avons attribué à chaque état s ∈ S de la nature une probabilité appelée la probabilité de la chaîne de Markov décrivant tous les états possibles du bénéficiaire pendant le contrat.

Matrice de transition

Définition 3. Étant donné une chaîne de Markov (X t , t ≥ 1) définie sur l'espace probabilisé (Ω, F, P), à valeurs dans S, nous lui associons une matrice appelée matrice de transition, notée P = p(x, y) pour tous x, y ∈ S, dont les coefficients,p(x, y) = P [X 2 = y|X 1 = x], sont les probabilités de transiter de l'état x vers l'état y.

Ainsi, la matrice stochastique P de la chaîne d'un état à un autre se présente comme :

P =                α l α h 0 1 -α 0 0 • • • 0 0 0 0 β 1 -β 0 0 • • • 0 0 0 0 1 -θ θ 0 0 • • • 0 0 0 0 0 0 1 0 • • • 0 0 0 0 0 0 0 1 • • • 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 • • • 1 0 0 0 0 0 0 0 • • • 0 1 γ 0 0 0 0 0 • • • 0 1 -γ               
La matrice de transition représente les proportions de bénéficiaires et de demandeurs de prêt dans les différents états de la nature. Nous cherchons de plus à savoir comment ces proportions évolueront dans le temps. D'ailleurs, les institutions qui mettent aux dispositions des entrepreneurs les moyens de financement de leur micro entreprise cherchent un système d'équilibre d'octroi de crédit. Ce système d'équilibre permet à l'agence de ne pas mettre trop d'accent sur un paramètre au détriment d'un autre ( par exemple, pour une IMF donnée, augmenter la probabilité α peut se résumer à n'accorder de prêt que lorsqu'elle peut s'assurer une forte chance de réussite du projet mais cela se fera aux dépens de la probabilité γ puisqu'il faudrait alors rejeter un plus grand nombre de demandes de crédit). Or le rejet d'une plus grande proportion de demandes dévie les IMF de leur raison d'être : promouvoir l'accès au financement de toute la population pauvre. D'ailleurs, le revenu que réalisera un emprunteur sur une unité investie est généralement incertain ( Hypothèse H2).

Graphe de transition

A partir de la matrice de transition d'une chaîne de Markov, nous construisons un graphe. Ce dernier donne les mêmes informations que la matrice mais, comme toute représentation graphique, a l'avantage d'être plus parlant. 

avec α = α h + α l et α h > α l

Outil d'aide à la décision d'octroi de crédit

Notre modèle vise à offrir non seulement la possibilité à l'emprunteur, de choisir le remboursement effectif pour une garantie du droit de reconduction automatique du prêt mais aussi un outil d'aide à la décision pour l'institution de microfinance. A cet égard, nous cultivons chez l'emprunteur un comportement favorable à l'incitation dynamique au remboursement moyennant un droit d'admission au prêt suivant et éventuellement un droit au taux d'intérêt réduit. De l'autre côté, l'IMF voit un allégement de ses charges d'exploitation liées aux activités de prêt. C'est donc une stratégie "gagnant-gagnant" pour les deux camps : emprunteur et prêteur. Ainsi, avec une suite de variables aléatoires markoviennes {X t } t≥1 définie sur l'espace probabilisé (Ω, F, P), à valeurs dans l'espace d'états S, ce comportement est étudié suivant les états qui se présentent dans la séquence (X 1 , X 2 , • • • , X t ) de t transitions. Soient A et B deux partitions de l'ensemble S d'états de la nature. Le sous ensemble A regroupe les états où l'emprunteur sera exclu ou ajourné pendant une certaine période, avec A = {A T , A (T -1) , . . . , A 1 }. Celui de B regroupe les trois états où l'emprunteur bénéficie de crédit, avec B = {B 1 , B 2 , I}. L'ensemble d'états de la nature S est donc la réunion des sous ensembles A et B, c'est-à-dire S = B ∪ A. Dans la séquence (X 1 , X 2 , • • • , X t ) de t transitions, considérons l'évènement "Bénéficiaire-Bénéficiaire" qui est une transition où l'emprunteur a pu bénéficier un prêt et y rester selon ses besoins de financement. Soit Ω = BB cet évènement. N Ω est le nombre de cas favorables d'être bénéficiaire et de rester bénéficiaire jusqu'à un certain temps t ≥ 1. Autrement dit, le nombre de fois d'être en succès dans la même séquence. Et N B qui est le nombre de cas possibles où l'emprunteur décroche un contrat de prêt est le nombre de fois d'avoir un prêt dans la séquence ci-dessus. Ainsi, nous supposons que nous pouvons modéliser par un paramètre λ le comportement d'un emprunteur. Ce paramètre λ est entièrement déterminé par la donnée de la formule suivante : λ = NΩ NB , avec N B = 0. Comme l'état B est transient, en partant de B, la probabilité de ne jamais y retourner est strictement positive (voir le graphe de transition). Autrement dit, presque sûrement la chaîne retourne seulement à l'état B un nombre fini de fois.

Définitions et propositions

Afin d'aboutir à l'outil d'aide à la décision que nous allons essayer de mettre à la disposition de l'institution de microfinance, des définitions et propositions rappelant les aspects théoriques d'une chaîne de Markov se succèdent ci-après. Définition 5. Soit (X t , t ≥ 1) une chaîne de Markov définie sur l'espace probabilisé (Ω, F, P), à valeurs dans S. Soit τ une variable aléatoire à valeurs dans N ∪ {+∞}. τ est un temps d'arrêt si pour tout t, l'évènement ( τ = t) dépend uniquement du passé, autrement dit si l'évènement ( τ = t) est entièrement déterminé par la suite de variables aléatoires markoviennes (X 1 , X 2 , . . . , X t ). 

Définition 6. Soient B = {B 1 , B 2 , I}, A = {A T , A (T -1) , . . . , A 1 } et S = B ∪ A, donc B ⊂ S . Avec la convention que l'inf de l'ensemble vide vaut +∞ (ici τ = +∞ si X t = B,
(N B = k) = P B [τ = ∞](1 -P B [τ = ∞]) k-2 . Soient A = {A T , A (T -1) , . . . , A 1 } et B = {B 1 , B 2
, I} deux sous-ensembles de S. En effet, à l'instant initial, la chaîne qui est à l'état A 1 , A 1 ⊂ A choisit un nouvel état selon la loi initiale µ. Sous cette loi, notons B cet état où l'emprunteur bénéficie de crédit pour la première fois dans l'institution de microfinance et y demeure bénéficiaire de crédit, sous réserve de ne pas dépasser le nombre de défauts partiels de remboursement autorisé au premier contrat, pendant une durée de loi géométrique sur N * de paramètre q = q(B, B). Lorsque cette durée est écoulée,c'est-à-dire, soit l'emprunteur n'éprouve plus le besoin de renouveler son contrat de prêt, soit il fait d défauts de remboursement, la chaîne choisit aléatoirement un nouvel état A avec la probabilité, notée q(B, A), où q(B, A) = (1q(B, B)), sous la condition q(B, B) = 1. En arrivant en A où l'emprunteur cessera d'être un bénéficiaire de crédit de financement et sera de suite exclu de l'activité de prêt, elle choisit la durée de son séjour suivant la loi géométrique de paramètre 1q(B, B). Rappelons que nous disons qu'une variable aléatoire X suit une loi géométrique de paramètre a si pour tout k

∈ N * , P[X = k] = a(1 -a) k-1 . Dans ce cas, E = 1
a , son espérance mathématique. Pour k ≥ 2 et en supposant que nous avons {τ = k}, le temps d'arrêt τ apporte l'information précise qu'à l'instant où k prend la valeur τ , ({τ = k}),la chaine change de comportement. Alors, si nous avons : {τ = k}, ce qui équivaut à dire, en termes d'appartenance que

{X 1 ∈ A, • • • , X k-1 ∈ A, X k ∈ B}. Sachant que la chaine est en A pour (k -1) périodes, c'est-à-dire X 1 ∈ A, • • • , X k-1 ∈ A dotée de la probabilité non nulle 1 -q(B, B), et qu'elle saute en B pour {τ = k}, ce qui revient à dire X k ∈ B avec la probabilité q = q(B, B), alors P B (τ = k) =P B (X 1 ∈ A, • • • , X k-1 ∈ A, X k ∈ B) =(1 -P B [τ = ∞]) k-2 P B [τ = ∞] =(1 -q) k-2
q Et par passage à l'espérance, nous avons : 

E(τ B ) = k≥2 k(1 -q) k-2 q = k≥1 (k + 1)(1 -q) k-1 q =q( k≥1 k(1 -q) k-1 + k≥1 (1 -q) k-1 ) =q( 1 q 2 + 1 q ) = q+1 q D'où, par passage à la limite, N B -→ q q+1 quand k → ∞. Lemme 1. : Soit B = {B 1 , B
B k = min{t : t > E B k-1 , X t-1 / ∈ B, X t ∈ B}. Alors, pour tous k et m dans N, nous avons E B k = min{m : m > E B k-1 , X k-1 / ∈ B,
{X E B k ∈ B, • • • , X E B k +i-1 ∈ B, X E B k +i / ∈ B}. La variable aléatoire X E B k +D B
k est le lieu où la chaîne saute en sortant de B et atterrit en A (changement de comportement).

Nous avons alors :

P B (X E B k ∈ B, • • • , X E B k +i ∈ B, X E B k +i+1 / ∈ B/E B k < ∞) =P B (D B k = i + 1/E B k < ∞) =q k (B, B)(1 -q(B, B))
Ainsi, son espérance mathématique est donnée par :

E(D B k ) = k≥1 kq k (B, B)(1 -q(B, B)) =(1 -q)q k≥1 kq k-1 = (1-q)q (1-q) 2 = q
1-q D'où, par passage à la limite, N Ω -→ q 1-q quand k → ∞.

La prise de décision

Comme nous avons défini λ = NΩ NB , le paramètre λ prend donc sa valeur par la donnée du paramètre q = q(B, B). Ainsi, λ = q+1 1-q , q = 1. Après avoir vérifié la réalité sur terrain tout en réunissant les données comptables de l'emprunteur pour estimer la probabilité de réussite future de son projet, l'institution de microfinance peut procéder à la détermination de la valeur du paramètre q. Dorénavant, nous utiliserons pour la suite le symbole α qui s'apparente à la probabilité q(q = q(B, B) = α).

Ainsi, en fixant deux seuils λ min et λ max , l'agence de microfinance prendra sa décision de la manière suivante :

1) si λ < λ min , soit l'emprunteur déjà bénéficiaire de crédit sera exclu de l'activité de prêt pendant T périodes suivantes (Hypothèses H5 et H6) ; soit l'emprunteur candidat verra sa demande rejetée.

2) si λ > λ max , l'emprunteur bénéficiera d'un nouveau prêt d'un montant supérieur selon ses besoins et/ou bénéficiera d'un taux réduit (Hypothèses H3 et H4).

3) si λ ∈ [λ min , λ max ], soit l'emprunteur continuera de bénéficier du prêt de même montant et de même taux d'intérêt (Hypothèse H7) ; soit, en cas d'aucun défaut, l'emprunteur bénéficiera d'un nouveau prêt d'un montant supérieur.

Les contraintes imposées aux variables du modèle

D'après l'étude de Osman Khodr et Francine Diener, trois types de contraintes sont assignés à leur modèle, à savoir : la contrainte de participation, la contrainte d'empêchement de la stratégie de défaut et la contrainte de continuité. Quant à notre modèle, aucun changement n'a été opéré au niveau de ces contraintes.

La contrainte de participation

Une des conditions nécessaires et suffisantes d'octroi de crédit est la viabilité financière du projet. Un projet est financièrement viable si la richesse brute attendue couvrira largement le remboursement de prêt (intérêt et capital emprunté). Ainsi, en supposant que la richesse brute espérée dans l'état s ∈ S de la nature, d'une unité investie, est W t (s), (W t (s) ≥ 0) positive en cas de succès et nulle sinon, la contrainte de participation se présente comme suit : W t (s) ≥ 1 + r.

La contrainte d'empêchement de stratégie de défaut

Soient A = {A T , A (T -1) , . . . , A 1 } et B = {B 1 , B 2 , I} deux sous ensembles de S. Compte tenu de risque élevé de non remboursement en microfinance, celle-ci cherche à se protéger tout en créant une stratégie d'incitation dynamique : bénéficier automatiquement d'un nouveau prêt en cas de remboursement et exclure pour T périodes en cas de défaillance. Pour un emprunteur rationnel averse au risque, la contrainte d'empêchement qui s'interprète comme un coût d'opportunité s'écrit : pour tout s ∈ S,

W t (s) -(1 + r + C) + δV (s ∈ B) ≥ W t (s) + δV (s ∈ A)
Où C représente la consommation incompressible, δ le taux d'actualisation, V (s ∈ B) le profit net futur espéré d'un bénéficiaire d'un prêt, et V (s ∈ A) est celui d'un exclu pour T périodes.

L'entrepreneur doit choisir après avoir calculé son coût d'opportunité de continuer à être un bénéficiaire de crédit ou de tomber dans l'état de demandeur où il risque d'y rester durant sa vie. Par ailleurs, la mise en place du central de risque en matière d'octroi de crédit permet de renforcer l'empêchement de stratégie de défaut.

La contrainte de continuité

En étant intermédiaire financier, chaque octroi de crédit d'une unité coûte à l'agence, dans un état s ∈ S de la nature, une certaine somme z. Afin d'assurer la continuité de l'activité de prêt, le montant de remboursement espéré doit couvrir le coût du prêt. Ainsi, la contrainte de continuité en résulte : α(1 + r) ≥ (1 + z).

Rappelons que α représente la probabilité de succès du projet de l'emprunteur dans l'état s ∈ S de la nature.

Le Profit espéré des participants 4.1. Au niveau de l'emprunteur 4.1.1. Profit d'une période

Si nous considérons un projet pour lequel nous envisageons S états de la nature possibles (par exemple favorable et neutre : possibilité de remboursement, défavorable : défaut de remboursement), avec α la probabilité de succès de ce projet et 1α en cas d'échec, le profit d'une période, d'une unité investie est : pour tout s ∈ S,

α[W t (s) -(1 + r + C)]
La démarche consiste à déterminer les différents profits intertemporels espérés pour toutes les périodes futures et pour chaque état de la nature possible.

Profit total espéré

Pour mettre en relief le profit total espéré des emprunteurs entrepreneurs, nous définissons une fonction f : S * S → R, telle que :

f (x, s) =        W t (s) -(1 + r + C + (p * d)) si (x, s) = (B 1 , B 1 ), d = 1 à 3 W t (s) -(1 + r + C) si (x, s) = ((B 1 , B 2 ) ou (B 2 , I)) W t (s) -(1 + r + C) si (x, s) = (I, I) 0 sinon (2) 
Où f (x, s) décrit le profit de passage d'une période d'investissement de l'état x vers l'état s de la chaîne, pour tous x, s ∈ S. Et r est le taux d'intérêt réduit d'un bénéficiaire arrivant à construire une relation stable de confiance avec l'IMF (avec r ≤ r).

Pour pouvoir exploiter la fonction ci-dessus afin d'aboutir au profit total espéré, nous allons énoncer la propriété de Markov. Pour cela, nous faisons appel à la notion de tribu et de probabilité conditionnelle à une tribu. Étant donnée une variable aléatoire markovienne X définie sur (Ω, F), nous utiliserons la notation classique σ(X) pour la sous-tribu de F engendrée par X, plus particulièrement, pour tout t ≥ 1, nous utiliserons la notation F t = σ(X 1 , . . . , X t ). Alors (F t≥1 ) est une suite croissante de tribus qui porte le nom de filtration naturelle ou canonique sur (Ω, F, P). Pour un temps t fixé, F t représente l'information disponible à l'instant t. Définition 7. : Soit (X t , t ≥ 1) une chaîne de Markov définie sur un espace probabilisé (Ω, F, P), et soit F t = σ(X 1 , . . . , X t ) dans F la tribu des événements déterminés par X 1 , . . . , X t . Une variable aléatoire τ : Ω → N ∪ {+∞} est appelée temps d'arrêt si {τ ≤ t} ∈ F t , pour tout t ∈ T dans N. A chaque instant t, nous savons si τ est survenu.

Soit B = {B 1 , B 2 , I} ∈ S, le temps du premier passage de la chaîne par B,

τ B = inf {t ≥ 1/X t ∈ B} si un tel t existe +∞ si X t / ∈ Bpour tout t ≥ 1 (3) 
est un temps d'arrêt, parce que {τ B ≤ t} = ∪ t m=1 {X m ∈ B} ∈ F t . τ B est donc le premier instant où la demande de crédit de financement de l'emprunteur est acceptée pour être un bénéficiaire de crédit pour la première fois. Sachant toutes les valeurs passées jusqu'au temps t (y compris la valeur de X t ), la chaîne se comporte à partir du temps t comme une nouvelle chaîne de Markov issue de X t . Définition 8. : Soient B = {B 1 , B 2 , I} et P une matrice de transition sur S, nous disons que (X t , t ≥ 1) une chaîne de Markov sur un espace probabilisé (Ω, F, P) par rapport à une filtration (F t , t ≥ 1) si c'est un processus adapté à cette filtration tel que nous avons : P(X t+1 ∈ B/F t ) = P(X t , B), avec P(x, B) = s∈B P(x, s), pour tous x, s ∈ S. 1) , . . . , A 1 } ∈ S. Soit (X t , t ≥ 1) une chaîne de Markov par rapport à la filtration (F t , t ≥ 1), alors P(X t+1 = B/X t = A, . . . , X 1 = A) = P(A, B).

Proposition 3. : Soient

B = {B 1 , B 2 , I} ∈ S et A = {A T , A (T -

En effet, P(X

t+1 = B/X t = A, . . . , X 1 = A) =E(E(1 {Xt+1=B} 1 {Xt=A,...,X1=A} /F t )) =E(1 {Xt=A,...,X1=A} E(1 {Xt+1=B} /F t )) =E(1 {Xt=A,...,X1=A} P(A, B)) =P(A, B)P(X t = A, . . . , X 1 = A) =P(A, B)
Proposition 4. : Propriété de Markov forte Soit (X t , t ≥ 1) une chaîne de Markov de matrice de transition P par rapport à la filtration

(F t , t ≥ 1), alors E(f (X m+t , m ≥ 0)/F t ) = φ(X t ), avec φ(X) = E X (f (X m+1 , m ≥ 0)).

Nous écrivons souvent cette relation sous la forme

: E(f (X m+t , m ≥ 0)/F t ) = E Xt (f (X m+1 , m ≥ 0)).
Soit m un temps d'arrêt par rapport à la filtration (F t , t ≥ 1), avec F t = σ(X 1 , . . . , X t ). Ce qui signifie que pour tout entier t, {m ≤ t} est un ensemble de F t ou de façon équivalente {m = t} est un ensemble de F t . Nous supposerons, de plus, que P(m < +∞) = 1.

Nous allons donc identifier la loi de la suite (X m+1 , X m+2 , . . .) m≥0 . Pour cela, nous devons calculer, pour toute fonction positive f : E(f (X m+1 , X m+2 , . . .)/F m ).

Or nous avons :

E(f (X m+1 , X m+2 , . . .)/F m ) =E( k≥1 1 {m=k} f (X m+1 , X m+2 , . . .)/F k ) = k≥1 E(1 {m=k} f (X k , X k+1 , . . .)/F k ) Nous notons que {m = k} est dans F k et que f (X k+1 , X k+2 , . . .) est une variable aléatoire indépendante de F k et nous en déduisons que : E(f (X m+1 , X m+2 , . . .)/F m ) = k≥1 E(1 {m=k} f (X k , X k+1 , . . .)/F k ) = k≥1 P(m = k)E(f (X k , X k+1 , . . .)/F k ) =( k≥1 P(m = k))E(f (X 1 , . . . , X t )/F t ) =E(f (X 1 , .
. . , X t )/F t ) Ceci prouve que la suite (X m+1 , X m+2 , . . .) m≥0 a la même loi que la suite (X 1 , . . . , X t ) et nous pouvons donc en déduire que la suite (X m+k , k ≥ 1) a la même loi que (X k , k ≥ 1).

A présent, pour chaque trajectoire (X m+1 , X m+2 , . . .) m≥0 de la chaîne de Markov, nous définissons :

F (X m+1 , X m+2 , . . .) = t≥1 δ t-m-1 f (X t , X t+1 )[4]. En effet, F (X m+1 , X m+2 , . . .) =f (X m+1 , X m+2 ) + δF (X m+2 , X m+3 , . . .) =f (X m+1 , X m+2 ) + δ(f (X m+1 , X m+2 ) + δF (X m+2 , X m+3 , . . .)) =f (X m+1 , X m+2 ) + δf (X m+2 , X m+3 ) + δ 2 F (X m+3 , X m+4 , . . .)) =f (X m+1 , X m+2 ) + δf (X m+2 , X m+3 ) + δ 2 f (X m+3 , X m+4 ) + δ 3 F (X m+4 , X m+5 , . . = t≥1 δ t-m-1 f (X t , X t+1 ) Notons que F et f sont bien définies et bornées et que la série k≥0 δ k est convergente puisque le taux d'actualisation δ est compris entre 0 et 1((0 < δ < 1)).
Nous définissons finalement le profit total espéré au temps t et à l'état s ∈ S de la nature (X t = s) par

V t : S → R, tel que V t (s) = E[F (X t , X t+1 , . . . , /F t , X t = s)].
En effet, soit m un temps d'arrêt par rapport à la filtration (F t , t ≥ 1). {m = t} est un ensemble de F t . Si nous notons que {m = k} est dans F k et que F (X k+1 , X k+2 , . . .) est une variable aléatoire indépendante de F k , nous avons vu que (X m+1 , X m+2 , . . .) m≥0 et (X 1 , . . . , X t ) ont la même loi.

De ce fait, le profit total espéré, en partant de l'état x au temps t s'exprime ainsi, pour m ≥ 0 :

V t (s/x) = E[F (X m+1 , X m+2 , . . . /X m = x)/F m ] = k≥1 E(P(m = k)F (X k , X k+1 , . . . /X k = m)/F k ) =( k≥1 P(m = k))(E(F (X 1 , X 2 , . . . , X t /X 1 = x)/F k ) =E(F (X 1 , X 2 , . . . , X t /X 1 = x)/F k ) =V 1 (s/x)
Corollaire 1. D'après ce qui précède, la suite de variables (X m+1 , X m+2 , . . .) m≥0 a la même loi que la suite (X 1 , X 2 , . . . , X t ). Nous pouvons donc en déduire que la valeur du profit total espéré V t (s/x) au temps t et à l'état s sachant que la chaîne démarre à l'état x est égale à sa valeur

V 1 (s/x) au temps t = 1(c'est- à-dire V t (s/x) = V 1 (s/x))
, et ce pour tout état s ∈ S de la nature.

4.1.2.1. Calculs du profit espéré pour chaque état s ∈ S D'après le corollaire (1), le profit total espéré à l'état s de la nature, pour tout instant t, s'obtient en calculant la valeur du profit V 1 (s/x) au temps t = 1 pour tout état s ∈ S de la nature.

Calcul du profit espéré au temps t = 1

Au vu des résultats précédents, nous avons :

V 1 (s/x) = E((f (X 1 , X 2 ) + δF (X 2 , X 3 , . . . /X 1 = x))/F t )
En appliquant l'espérance conditionnelle et la propriété de Markov, nous obtenons :

V 1 (s/x) = s∈S (f (x, s) + δV 1 (s/x)) * P x,s
Avec P x,s = P((X t+1 = s/X t = x)) est la probabilité de passage, en une étape, de l'état x à l'état s. 1) , . . . , A 1 }, pour déterminer la quantité V 1 (s/x) pour tous (s, x) ∈ B ∪ A, trois cas de figures peuvent se présenter :

Expression du profit espéré pour chaque état s

Rappelons que B = {B 1 , B 2 , I} et A = {A T , A (T -
1) Pour {x = B 1 }, deux cas peuvent se présenter : a) Premier cas : si l'emprunteur fait défaut que ce soit partiel ou total, les seuls états accessibles de la chaine à partir de l'état B 1 sont B 1 et A T (i.e s = B 1 ou A T ), avec les probabilités de transition suivantes :

P x,s = α l si λ ∈ [λ min , λ max ] ⇒ s = B 1 1 -α si λ < λ min ⇒ s = A T (4)
avec α l la probabilité associée au remboursement partiel de la dette.

Ainsi,

V 1 (s/x = B 1 ) = (f (B 1 , B 1 ) + δV 1 (s/x = B 1 ))P B1,B1 + (f (B 1 , A T ) + δV 1 (s/x = B 1 )P B1,A T =α l (W t (s) -((1 + r) + C + (p * d)) + δV 1 (s/x = B 1 )) + (1 -α)(δV 1 (s = A T /x = B 1 )) =α l (W t (s) -((1 + r) + C + (p * d))) + α l δV 1 (s/x = B 1 ) + (1 -α)(δV 1 (s = A T /x = B 1 ))
En rapprochant l'expression identique de côté et d'autre de l'égalité, nous obtenons :

(1 -α l δ)V 1 (s/x = B 1 ) =α l (W t (s) -((1 + r) + C + (p * d))) + (1 -α)(δV 1 (s = A T /x = B 1 ))
b) Deuxième cas : l'emprunteur rembourse en totalité son emprunt sans faire défaut. Le seul état accessible à partir de l'état B 1 est B 2 avec une probabilité de transition associée au remboursement total de la dette

P B1B2 = α h si bien sûr λ ∈ [λ min , λ max ] ⇒ s = B 2 . Ainsi, V 1 (s/x = B 1 ) = (f (B 1 , B 2 ) + δV 1 (s/x = B 1 ))P B1B2 =α h (W t (s) -((1 + r) + C) + δV 1 (s/x = B 1 )) =α h (W t (s) -((1 + r) + C)) + δα h V 1 (s/x = B 1 )) = α h 1-δα h (W t (s) -((1 + r) + C)) 2) Pour {x = B 2 },
les seuls états accessibles de la chaine à partir de l'état B 2 sont I et A T (i.e s = I ou A T ), avec les probabilités de transition suivantes :

P x,s = β si λ ∈ [λ min , λ max ] ⇒ s = I 1 -β si λ < λ min ⇒ s = A T (5) Ainsi, V 1 (s/x = B 2 ) = (f (B 2 , I) + δV 1 (s/x = B 2 ))P B2,I + f (B 2 , A T ) + δV 1 ((s = A T /x = B 2 )))P B2,A T =β(W t (s) -(1 + r + C) + δV 1 (s/x = B 2 )) + (1 -β)(δV 1 (s = A T /x = B 2 )) =β(W t (s) -(1 + r + C)) + β s δV 1 (s/x = B 2 ) + (1 -β)δV 1 (s = A T /x = B 2 )
En rapprochant aussi l'expression identique de côté et d'autre de l'égalité, nous obtenons :

(1 -βδ)V 1 (s/x = B 2 ) =β(W t (s) -(1 + r + C)) + (1 -β)δV 1 (s = A T /x = B 2 )
3) Pour {x = I}, les seuls états accessibles de la chaine à partir de l'état I sont I et A T (i.e s = I ou A T ), avec les probabilités de transition suivantes :

P x,s = 1 -θ si λ > λ max ⇒ s = I θ si λ < λ min ⇒ s = A T (6) Ainsi, V 1 (s/x = I) = (f (I, I) + δV 1 (s/x = I))P I,I + (f (I, A T ) + δV 1 (s = A T /x = I))P I,A T =(1 -θ)(W t (s) -(1 + r + C) + δV 1 (s/x = I)) + θ(δV 1 (s = A T /x = I)) =(1 -θ)(W t (s) -(1 + r + C)) + δ(1 -θ)V 1 (s/x = I) + θ(δV 1 (s = A T /x = I))
En rapprochant l'expression identique de côté et d'autre de l'égalité, nous obtenons :

(1 -δ(1 -θ))V 1 (s/x = I) =(1 -θ)(W t (s) -(1 + r + C)) + θ(δV 1 (s = A T /x = I))
4) Pour x = A T , T = i à 2 , la chaine reste durant i -1 périodes dans son état actuel avant de le quitter. Ainsi, le seul état accessible à partir de l'état A T est A T -1 , avec une probabilité presque sûre qui vaut 1 (P A T ,A T -1 = 1). Alors, nous avons :

V 1 (A T ) = δV 1 (A T -1 ) = δ 2 V 1 (A T -2 ) = δ 3 V 1 (A T -3 ) = . . . = δ i V 1 (A T -i ). Pour i = T -1 alors, nous avons : V 1 (A T ) = δ T -1 V 1 (A 1 ). Expression de V 1 (s/x = A 1 ) en fonction de V 1 (s/x ∈ B)
Trivialement, chaque emprunteur candidat se place dans l'état de demandeur A 1 . L'emprunteur se déplacera alors soit dans un état où il bénéficiera de crédit soit dans son état actuel de demandeur de cré-dit. Ainsi, pour x = A 1 , d'après l'hypothèse (H6), nous avons γ la probabilité de transition de

A 1 vers B 1 (P A 1 ,B1 = γ) et 1 -γ celle de rester en A 1 (P A 1 ,A 1 = 1 -γ).
Nous allons étudier pour la chaine de Markov (X t , t ≥ 1) sur un espace d'états s ∈ S le temps passé dans l'état A 1 avant de le quitter. Nous supposons pour avoir les idées claires X 1 = A 1 presque sûrement et nous notons τ = inf {t ≥ 2, X t = A 1 } le premier instant d'être de nouveau bénéficiaire de prêt après avoir été dans l'état A 1 . τ -1 est alors le temps de séjour en l'état A 1 avant de le quitter, donc τ est un temps d'arrêt.

Nous avons bien sûr, pour t = 2 :

P A 1 (τ = 2) = P A 1 (X 2 = A 1 ) = 1 -p(A 1 , A 1 ) = 1 -γ Et plus généralement, pour t ≥ 3 : P A 1 (τ = t) = P A 1 (X 1 = A 1 , X 2 = A 1 , . . . , X t-1 = A 1 , X t = A 1 ) =P A 1 (X 1 = A 1 , X 2 = A 1 , . . . , X t-1 = A 1 ) -P A 1 (X 1 = A 1 , X 2 = A 1 , . . . , X t-1 = A 1 , X t = A =((p(A 1 , A 1 )) t-1 ) -((p(A 1 , A 1 )) t ) =((p(A 1 , A 1 )) t-1 )(1 -p(A 1 , A 1 )) =((1 -γ) t-1
)γ La loi de τ est donc une loi géométrique appelée "loi sans mémoire" vérifiant :

P(τ ≥ t + k/τ ≥ t) = P(τ ≥ k).
En utilisant la propriété de Markov, nous obtenons :

V 1 (A 1 ) = E(F (X 1 , X 2 , . . . /X 1 = A 1 )/F t ) =E(E(δ τ F (X τ , X τ +1 , . . . /X 1 = A 1 , . . . , X τ -1 = A 1 , X τ = s)/F t ) =E(E(δ τ F (X τ , X τ +1 , . . . /X τ = s), X 1 = A 1 )/F t ) =E(δ τ V 1 (s/x ∈ B)/X 1 = A 1 , F t ) =E(δ τ V 1 (s/x ∈ B)/F t ) =V 1 (s/s -1 ∈ B)E(δ τ /F t ) Or E(δ τ /F t ) = E(δ τ ) = k≥1 δ k (1 -γ) k-1 γ = δγ k≥1 (δ(1 -γ)) k-1 = δγ 1-δ(1-γ) , par passage à la limite.

La valeur du profit espéré pour chaque état s

Passons maintenant à la détermination de chaque valeur du profit espéré pour chaque état s de la nature. Comme

V 1 (A 1 ) = δγ 1-δ(1-γ) V 1 (s/x ∈ B) et V 1 (A T ) = δ T -1 V 1 (A 1 ) et par conséquent V 1 (A T ) = γδ T 1-δ(1-γ) V 1 (s/x ∈ B)
, la valeur de chaque profit espéré à l'état s se présente comme suit :

1) La quantité V 1 (s/x = B 1 )
, cas avec défaut partiel de remboursement :

(1 -α l δ)V 1 (s/x = B 1 ) =α l (W t (s) -((1 + r) + C + (p * d))) + (1 -α)(δV 1 (s = A T /x = B 1 )) =α l (W t (s) -((1 + r) + C + (p * d))) + (1 -α) γδ T 1-δ(1-γ) V 1 (s/x = B 1 ) En rapprochant les termes V 1 (s/x = B 1 ) de l'équation ci-dessus, il devient : (1 -α l δ -(1 -α) γδ T 1-δ(1-γ) )V 1 (s/x = B 1 ) =α l (W t (s) -((1 + r) + C + (p * d))) Donc, V 1 (s/x = B 1 ) = 1 1-α l δ-(1-α) δ T γ 1-δ(1-γ) α l (W t (s) -((1 + r) + C + (p * d))) = 1 (1-α l δ)(1-δ(1-γ))-γ(1-α)δ T 1-δ(1-γ) α l (W t (s) -((1 + r) + C + (p * d))) = 1-δ(1-γ) (1-α l δ)(1-δ(1-γ))-γ(1-α)δ T α l (W t (s) -((1 + r) + C + (p * d)))
2) La quantité V 1 (s/x = B 1 ), cas sans défaut de remboursement : D'après le résultat du paragraphe précédent, nous avons alors :

V 1 (s/x = B 1 ) = α h 1-δα h (W t (s) -((1 + r) + C)) 3) La quantité V 1 (s/x = B 2 ) : (1 -βδ)V 1 (s/x = B 2 ) =β(W t (s) -(1 + r + C)) + (1-β)γδ T 1-δ(1-γ) V 1 (s/x = B 2 ) En rapprochant les termes V 1 (s/x = B 2 ) de l'équation ci-dessus, il devient : (1 -βδ -(1-β)γδ T 1-δ(1-γ) )V 1 (s/x = B 2 ) =β(W t (s) -(1 + r + C)) Alors, nous obtenons : V 1 (s/x = B 2 ) = 1-δ(1-γ) (1-βδ)(1-δ(1-γ))-(1-β)γδ T β(W t (s) -(1 + r + C)) = 1-δ(1-γ) 1-(δ-γ)(1+δβ)-(1-β)γδ T β(W t (s) -(1 + r + C)) 4) La quantité V 1 (s/x = I) : (1 -δ(1 -θ))V 1 (s/x = I) =(1 -θ)(W t (s) -(1 + r + C)) + θγδ T 1-δ(1-γ) (V 1 (s/x = I))
En rapprochant les termes V 1 (s/x = I) de l'équation ci-dessus, il devient :

(1 -δ(1 -θ) -θγδ T 1-δ(1-γ) )V 1 (s/x = I) =(1 -θ)(W t (s) -(1 + r + C)) Alors, nous obtenons : V 1 (s/x = I) = 1-δ(1-γ) (1-δ(1-θ))(1-δ(1-γ)-θγδ T (1 -θ)(W t (s) -(1 + r + C)) 4.1.2.

Résultat obtenu

En regroupant toutes les valeurs calculées du profit espéré pour chaque état possible s de la nature, le profit total espéré d'un emprunteur au temps t est finalement : Théorème 1. : Dans le modèle de prêt individuel défini par la chaine de Markov (X t , t ≥ 1) à valeurs dans un espace d'états S, le profit total espéré d'un emprunteur qui est à l'état s ∈ S au temps t est donné par :

V t (s/x ∈ B) =                                    1-δ(1-γ) (1-α l δ)(1-δ(1-γ))-γ(1-α)δ T α l (W t (s) -((1 + r) + C + (p * d))) si (s, x) = (B 1 , B 1 ), d = 1 à 3 α h 1-δα h (W t (s) -((1 + r) + C)) si (s, x) = (B 2 , B 1 ) 1-δ(1-γ) 1-(δ-γ)(1+δβ)-(1-β)γδ T β(W t (s) -(1 + r + C)) si (s, x) = (I, B 2 ) 1-δ(1-γ) (1-δ(1-θ))(1-δ(1-γ)-θγδ T (1 -θ)(W t (s) -(1 + r + C)) si (s, x) = (I, I) 0 sinon (7)
Puisque les probabilités de transition ne dépendent pas du temps, le profit total espéré est une fonction à variable aléatoire dépendante des états envisageables s ∈ S de la nature ( Hypothèse H2) et du taux d'intérêt r.

Au niveau de l'IMF

Par le biais de l'incitation dynamique, pour un emprunteur qui rembourse à chaque échéance son emprunt, les crédits sont octroyés de façon répétitive et progressive, pour des montants adaptés aux capacités de sa gestion. Par contre, l'IMF arrête de prêter à celui qui dépasse le nombre de défauts de remboursement autorisés. Par nature, la microfinance doit s'imposer de couvrir leurs coûts par les recettes de leurs activités. Pour y arriver, parmi les critères d'octroi de crédits, l'IMF met un accent sur le profit futur espéré d'un demandeur de prêt pour se prémunir du risque de non remboursement. En n'octroyant des crédits qu'aux supposés bons emprunteurs, le profit total espéré d'une IMF se détermine comme étant les résultats de leurs investissements intertemporels.

Corollaire 2. : Dans le modèle de prêt individuel défini par la chaîne de Markov (X t , t ≥ 1) à valeurs dans un espace d'états S, le profit total espéré de l'IMF qui est à l'état s au temps t est donné par :

V t (s/x ∈ B) =                                1-δ(1-γ) (1-α l δ)(1-δ(1-γ))-γ(1-α)δ T (α l (1 + r) -(1 + z)) si (s, x) = (B 1 , B 1 ), d = 1 à 3 α h 1-δα h (α h (1 + r) -(1 + z)) si (s, x) = (B 2 , B 1 ) 1-δ(1-γ) 1-(δ-γ)(1+δβ)-(1-β)γδ T (β(1 + r) -(1 + z))
si (s, x) = (I, B 2 )

1-δ(1-γ) (1-δ(1-θ))(1-δ(1-γ)-θγδ T ((1 -θ)(1 + r) -(1 + z)) si (s, x) = (I, I) 0 sinon
La démonstration de ce corollaire se fait de la même façon que le théorème précédent. 

Algorithme et Illustration

a) W t+1 (s) = W t (s) + V (s, x) b) W t+1 (s) = W t (s) + V (s ′ , x)
6) Retour à l'étape 1 et ainsi de suite.

Illustration

Les données de cette section sont des données réelles issues de l'Agence de Microcrédit de la Région Voici donc le graphe associé à cette situation : -soit l'emprunteur a pu rembourser la totalité de sa dette mais avec un défaut (d = 1) de remboursement moyennant une pénalité pécuniaire de retard de 5000 ;

-soit l'emprunteur ne fait aucun défaut de paiement jusqu'au dernier paiement de la mensualité. Comme l'emprunteur n'accuse qu'un défaut partiel de remboursement, il pourra encore bénéficier de crédit de même montant tout en restant à l'état B 1 de bénéficiaire. La probabilité de réussite de son projet α l au temps t = 1 et a l'état B 1 prend donc une nouvelle valeur α l au temps t = 2 et au même état B 1 . (α l → α l ).

α l = 2810645,52-(511458+830000) 5000000 = 0, 2938, soit α l = 29, 38%. Ce qui nous donne le graphe de Markov suivant : L'emprunteur entre donc dans la phase de maturité du programme de crédit . Il est donc à ce stade un client pur de la microfinance. A la quatrième année , il sollicite un nouveau crédit de financement de 10 000 000 au taux réduit d'intérêt de 2% (r= 2%<r=3,5% auparavant). Il constante que sa consommation incompressible augmente de 30% à celle du précédent, soit C = 1079000. Le total des intérêts dû s'élève à 1300 000 et l'intérêt dû constant à une somme de 108333,33 . Ce qui nous permet de calculer le montant du remboursement mensuel constant qui s'élève à 941 666,66 .

Ainsi ,nous pouvons à présent déterminer le profit espéré de l'emprunteur au bout de la quatrième année d'activité avec θ = 76, 08% et w t-1 (s) = 5145904, 207, le cash flow de la troisième année :

V (I, I) = 

Discussion

A l'instant initial, l'emprunteur dépose sa demande de financement à l'institution de son libre choix. L'institution se charge à son tour d'étudier minutieusement l'éligibilité de la demande. A cet instant, le paramètre λ modélisant le comportement futur de l'emprunteur permet de choisir entre l'état B 1 ou A 1 où l'emprunteur va attérrir. La probabilité de demande de crédit accordée dépend de γ, avec γ = 1 -1 λ ( la condition d'existence de λ a été donnée dans la section précédente) . Plus le paramètre λ est grand, plus la chance de l'emprunteur d'avoir un prêt est aussi grande. La valeur de γ est jusque-là estimée à partir des données historiques par l'institution. Quant à nous, nous attribuons une valeur à ce paramètre en fonction de la réussite future de l'emprunteur. Notre modèle ne laisse donc aucun tâtonnement quant aux valeurs prises de ses paramètres. En estimant la richesse brute espérée W s en t + 1, notre modèle s'apparente à un arbre de décision qui s'analyse en commençant par la fin et en remontant dans le temps.

Définition 4 .

 4 Étant donnée une chaîne de Markov (X t ) t≥1 définie sur un espace d'états S, le graphe de la chaîne est le graphe construit à partir de la matrice de transition. Ainsi, les sommets sont les états et les arêtes avec orientations représentent les transitions possibles d'un état vers un autre. Au dessus de chaque arête, nous écrivons la probabilité de transition correspondante.La figure ci-après représente donc le graphe de la chaîne de Markov associé au modèle en question.

Figure 1 .

 1 Figure 1. Graphe de Markov avec probabilités de passage d'un état à un autre

5. 1 .) Calculer α 2 ) 4 )

 124 AlgorithmeSoient W t (s), C, r et u(s) des valeurs données en entrée.1Calculer λ et faire un test sur la valeur-seuil.3) Décision de financement (Accordée ou non accordée). Test du défaut de remboursement : a) Si d > 4 alors l'emprunteur est exclu ; b) Si d ∈[START_REF] Diener | Valeur espérée d'un microcrédit dans un modèle de chaîne de Markov[END_REF][START_REF] Osman Khodr | Mathematical models for individual and group lending in microfinance[END_REF] alors calculer V (s, x) et passer à l'étape 5a ; c) Si d = 0 alors calculer V (s ′ , x) et passer à l'étape 5b.5) Nouvelle demande de financement :

= 2 : 3 :

 23 w(s)-(1+r+C u(s) avec w(s) = 2500000 ; 1 + r = 511458 : c'est le remboursement mensuel constant ; C = 830000 ; u(s) = 5000000 ; α = 2500000-(511458+830000) 5000000 = 0.2317 ; soit α = 23.17%. Etape Calculons la valeur de λ et faisons un teste sur la valeur-seuil λ = 1+α 1-α = 1.2317 0.768 = 1.60 ; pour le test λ = 1.60 ∈ [λ min ; λ max ] Etape Décision de financement Calcul de la probabilité γ où l'emprunteur quitte son état demandeur pour être un bénéficiaire du premier contrat de crédit. γ = 1 -1 λ = 1 -1 1.6 = 0.375, comme λ ∈ [λ min ; λ max ], l'agence de microfinance accepte le renouvellement du crédit de son client.

Figure 2 .

 2 Figure 2. Graphe à la fin de première année

Cas 1 :

 1 L'emprunteur fait un défaut de remboursement d = 1 V (B 1 , B 1 ) = 1-0.6(1-0.375) (1-0.2317×0.6)(1-0.6(1-0.375))-0.375(1-0.2317)(0.6) 13 * A avec A = 0.2317 * (2500000 -(511458 + 830000)). Tout calcul fait, nous avons V (B 1 , B 1 ) = 310649, 161. Le cash-flow espéré à la période 2 sera : W t (s) = w t-1 (s) + V (B 1 , B 1 ) = 2500000 + 310649, 16 = 2810645, 52.

Figure 3 .

 3 Figure 3. Graphe à la fin de la première année avec un défaut de remboursement

Figure 4 .

 4 Figure 4. Graphe à la fin de la première année sans défaut de remboursement

Figure 5 .Figure 6 .

 56 Figure 5. Graphe à la fin de la deuxième année

  7608))(1-0.6(1-0.375))-0.7608(0.6) 13 * A avec A = 5145904, 207 -(941666.66 + 1079000) * 0.2392. Après tout calcul fait ,nous avons V (I, I) = 874447, 81. Le cash flow futur de l'emprunteur sera donc à hauteur de : w t (s) = w t-1 (s) + V (I, I) = 5145904, 207 + 874447, 81 = 6020352, 021. La probabilité de réussite de son projet prend alors une nouvelle valeur par le donnée de : θ = 6020352,021-(941666.66+1079000) 10000000 = 0.40, soit θ = 40%. Ce qui nous donne le graphe de Markov suivant :

Figure 7 .

 7 Figure 7. Graphe à la fin de la quatrième année

  

  pour tout t ≥ 1) , le temps de premier passage de la chaîne dans B est la variable aléatoire τ = inf {t ≥ 1 : X t ∈ B} ; Le nombre de visites de la chaîne dans B est la variable aléatoire N B = t≥1 1 {Xt∈B} Le nombre de fois où la chaine reste dans B est la variable aléatoire N Ω = t≥1 1 {Xt∈B,Xt+1∈B}

Proposition 1. : Soient P B = q = q(B, B) la probabilité sur B où l'emprunteur reste bénéficiaire de crédit dans l'un des trois états bénéficiaires et N B = t≥1 1 {Xt∈B} le nombre de visites de la chaîne dans B. Alors, pour chaque k ≥ 2, nous avons P B

  Proposition 2. : Soient B = {B 1 , B 2 , I} un sous-ensemble de S et (X t , t ≥ 1) une chaîne de Markov à valeurs dans S. Notons D B k la durée du k ième temps de séjour en B. Ce k ième temps de séjour est l'entier i qui vérifie :

X k ∈ B}. Nous disons alors que E B k est un temps d'arrêt.

Les auteurs évaluent la probabilité de réussite en fonction du résultat d'investissement. Nous avons repris cette formule en modifiant certains aspects.