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Abstract. We address automated testing and interactive proving of properties involving complex data
structures with constraints, like the ones studied in enumerative combinatorics, e.g., permutations and maps.
In this paper we show testing techniques to check properties of custom data generators for these structures.
We focus on random property-based testing and bounded exhaustive testing, to find counterexamples for false
conjectures in the Coq proof assistant. For random testing we rely on the existing Coq plugin QuickChick
and its toolbox to write random generators. For bounded exhaustive testing, we use logic programming to
generate all the data up to a given size. We also propose an extension of QuickChick with bounded exhaustive
testing based on generators developed inside Coq, but also on correct-by-construction generators developed
with Why3. These tools are applied to an original Coq formalization of the combinatorial structures of
permutations and rooted maps, together with some operations on them and properties about them. Recursive
generators are defined for each combinatorial family. They are used for debugging properties which are finally
proved in Coq. This large case study is also a contribution in enumerative combinatorics.

Keywords: interactive theorem proving; random testing; bounded-exhaustive testing; logic programming;
combinatorial enumeration; permutations; rooted maps

1. Introduction

We address automated testing of programs and properties manipulating data structures with constraints
(such as duplicate-free lists or red-black trees) hereafter called structured data. A challenge is to provide
effective random and exhaustive generators of structured data, controlled by some bound on the number or
size of generated data. Some general testing tools can generate data or derive effective generators from data
definitions, using techniques such as constraint solving or local choice with backtracking (see Section 7 for
related work). When these general-purpose generation tools reach their limits (being too slow to generate
data, failing in the derivation of a generator, or deriving an insufficiently efficient generator), a custom
generator can be designed, for each family of structured data with many applications. Typical examples are
lambda terms [PCRH11,Tar15] and event structures [BC17].

Our aim is to apply formal methods to design, specify, implement and check custom generators. We
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propose to check them by testing, with test data generated by other generators similarly designed and
checked, and by proofs of some expected properties, themselves first tested to avoid trying to prove false
conjectures.

When a datatype is algebraic, it is easy to derive from its recursive definition a recursive generator,
which generates data of a given size from smaller data. Classical examples are lists, trees, or words following
a context-free grammar. However, most data structures must also satisfy constraints, or invariants, which
complicates the efficient generation of data. The approach we promote is to find a recursive description of
these structures, and then derive a recursive generator for them. We illustrate this approach with examples
of increasing complexity.

A large amount of research in enumerative combinatorics is devoted to the discovery of a recursive
description of given combinatorial structures. A combinatorial contribution of the present work is the design
of a recursive generator for rooted maps (in Section 5).

We carry out formalization and interactive proof within the framework of the theory of dependent types,
with the Coq proof assistant [BC04]. Unless the proof of a conjecture is trivial, it is common to test lemmas
and theorems before proving. Main validation methods are random(ized) testing, bounded exhaustive testing
(BET) [Bul12] and finite model finding [BN10]. In the following we deal with random testing and BET. For
random testing we use the QuickChick plugin [PHD+15, HLDP18] for Coq. BET checks a formula for all
its possible inputs up to a given small size. It is often sufficient to detect many errors, while providing
counterexamples of minimal size. A challenge for BET is to design and implement efficient algorithms to
generate the data. We address it in two ways. First, in a lightweight way, we exploit the features of logic
programming, implemented in a Prolog system. Thanks to backtracking, data structure invariants written
in Prolog can often be used for free as bounded exhaustive generators. Then, in a more integrated way in
Coq, we extend the random property testing tool QuickChick with BET.

The paper brings together two kinds of contributions: contributions to software engineering, with a
presentation of random and bounded-exhaustive testing tools for the generation of counterexamples in a
proof assistant (Section 2) and contributions to enumerative combinatorics, with a case study defining
generators for families of combinatorial structures related to permutations and rooted maps (Sections 3
to 5). The main contributions in property-based testing are:

• a non-trivial application of random testing with QuickChick, to debug Coq specifications,
• an extension of QuickChick with BET (providing the new commands SmallCheck and SmallCheckWhy3),

and
• a method of BET based on logic programming.

These tools helped us to design and check custom generators for lists of natural numbers with bounded
values (illustrating example in Section 2), permutations as injective endofunctions (Section 3), permutations
encoded by reversed subexcedant sequences (Section 4), and rooted maps encoded with a recursive dependent
type (Section 5).

With respect to the previous work by Dubois, Giorgetti and Genestier [DGG16], the present paper
additionally provides the BET extension of QuickChick and extends the case study to subexcedant sequences
and rooted maps. Moreover the emphasis here is put on designing and checking generators, whereas the
previous work was focussing on the benefits of tests and formal proofs for enumerative combinatorics.

The remainder of the paper is organized as follows. Section 6 reports some statistics on our tested and
proved implementation of custom generators. Section 7 describes related work, and Section 8 concludes.

2. Testing Coq Conjectures

This section presents our methodology for testing Coq specifications. Before investing time in proving invalid
conjectures we want to check their validity. Coq is presented in Section 2.1.

Property-based testing (PBT) is popular for functional languages, as exemplified by QuickCheck [CH00]
in Haskell. PBT has also been adopted by proof assistants, e.g., Isabelle [BN04], Agda [DHT03], PVS [Owr06],
FoCaLiZe [CDG10] and more recently Coq [PHD+15]. We consider here two kinds of PBT: random testing
(in Section 2.2) and bounded exhaustive testing (in Sections 2.3 to 2.5).
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2.1. Brief Presentation of Coq

The Coq tool [BC04,Coq17] is a proof assistant, allowing the user to define objects (mathematical objects,
data structures, functions and programs), write statements about these objects and prove these statements.
Coq is an interactive theorem prover, meaning that making proofs with Coq is not an automatic activity.
It is done with the help of tactics which transform a proof goal into a set of subgoals such that solving
these subgoals is sufficient to solve the original goal. Some of them are very basic, close to elementary logical
rules, some are more elaborate, close to decision procedures, like omega for solving linear arithmetic goals.
Coq is based on the Calculus of Inductive Constructions (CIC), a very powerful type theory aiming at
representing both ML-like functional programs and proofs in intuitionistic higher-order logic. It includes in
particular polymorphic types, dependent types and inductive types defined by constructors. Coq inductive
types cover both ML datatypes and Prolog-style relations. Functions can be defined using recursion and
pattern-matching. Proofs can be done if necessary by induction or case analysis. Following Curry-Howard
isomorphism, proofs are programs in CIC, thus making a proof via tactics builds a program whose type-
checking validates the proof.

It is important to note, for our testing purpose, that Coq objects are sorted according to two different
categories, the Prop sort and the Type sort. The former is dedicated to logical facts (e.g., odd 3, 2 = 4) while
the latter is for mathematical objects and data structures (e.g., nat, list , bool). It means that a binary
relation of type nat → nat → Prop and the corresponding Boolean function of type nat → nat → bool are
not the same but might be proved “equivalent” if the relation is decidable. A proposition in Prop usually
cannot be computed whereas a Boolean expression can be computed.

Last but not least, Coq features an extraction mechanism from Coq proofs and definitions to OCaml (or
Haskell) programs. Roughly speaking, the computational parts are translated in OCaml while the logical
parts are erased. This feature is fundamental for QuickChick and its extensions used in the rest of the paper:
QuickChick extracts OCaml code from Coq code and runs tests in OCaml outside Coq for better efficiency.

In the rest of the paper, we explain Coq constructions as and when needed.

2.2. Random Testing

2.2.1. QuickChick and the General Workflow

QuickChick [HLDP18] is a random testing plugin for Coq. It allows us to check the validity of executable
conjectures with random inputs. QuickChick is mainly a generic framework providing combinators to write
testing code, in particular random generators.

We consider conjectures of the form

∀x: T, precondition x→ conclusion (f x), (1)

where precondition and conclusion are logical predicates of type T → Prop. The general workflow that we
follow to validate these conjectures by testing starts with the definition of a random generator gen_T of
values of type T that satisfy the property precondition. However the predicate conclusion is not executable.
We must turn it into a Boolean function — named conclusionb — that is more adapted for testing. We must
prove that the Boolean function is semantically equivalent to the logical predicate. If we cannot provide an
executable version of the logical predicate conclusion, then QuickChick does not apply.

The test is run by using the command

QuickCheck (forAll gen_T (fun x ⇒ conclusionb (f x)).

Its execution generates a fixed number of inputs using the generator gen_T and applies the function f to
each of them to verify the property under test (conclusion).

In this approach, we rely on the generator which is here part of the trusted code. QuickChick proposes
some theorems (or axioms) about its different combinators, which could be used to prove that the generator
is correct, but it may require a large proof effort. In the following we propose to test that the generator
produces correct outputs. For this purpose, we also turn the logical property precondition into an executable
one, named preconditionb.
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2.2.2. Lists of Bounded Natural Numbers

We now illustrate QuickChick features and our approach on constrained lists of natural numbers. Let us
notice that QuickChick heavily uses type classes and monads. However, in the following we explain very
informally some piece of code.

In the example below, we manipulate lists whose elements are natural numbers strictly smaller than a
given bound b. We call such a list a (b-)bounded list, or blist for short. Thus T in (1) is here list nat, where
the inductive type nat of Peano natural numbers is defined with the constructors 0 for zero and S for the
successor operation, and the inductive polymorphic type list is defined with the constructors nil for the
empty list and cons (also denoted by :: ) for adding an element. The predicate precondition of (1) is here the
following inductively defined predicate:
I n d u c t i v e i s _ b l i s t ( b : nat ) : l i s t nat → Prop :=
| B l i s t _ n i l : i s _ b l i s t b n i l
| B l i s t_con s : ∀ v l , v < b → i s _ b l i s t b l → i s _ b l i s t b ( v : : l ) .

This predicate is not executable. However we can define the Boolean function is_blistb and prove its
correctness with respect to the logical predicate is_blist.
F i x p o i n t i s _ b l i s t b ( b : nat ) ( l : l i s t nat ) :=
match l w i th

n i l ⇒ t r u e
| v : : l ’ ⇒ ( l t b v b ) && ( i s _ b l i s t b b l ’ )
end .

Lemma i s_b l i s t_de c : ∀ b l , ( i s _ b l i s t b b l = t r u e ↔ i s _ b l i s t b l ) .

The function is a recursive function defined by pattern-matching on the list l, where ltb is the Boolean
function equivalent to the logical predicate <. The correctness proof, omitted here, is done by induction on
the list l.

We now define a generator of blists parameterized by the length n of the list to be generated and the
bound b.
F i x p o i n t g e nB l i s t A s L i s t n a t ( n : nat ) ( b : nat ) : G ( l i s t nat ) :=
match n wi th

0 ⇒ r e tu rnGen n i l
| S n ’ ⇒ match b wi th

0 ⇒ r e tu rnGen n i l
| S b ’ ⇒ do ! m← choose (0 , b ’ ) ;

l i f t G e n ( cons m) ( g e nB l i s t A s L i s t n a t n ’ b )
end

end .

The generator is defined by pattern-matching on n and b: if n or b is 0, the output is the empty list. Otherwise
(n = n′ + 1 and b = b′ + 1) the recursive call (genBlistAsListnat n′ b) generates a b-bounded list of length n′
which is extended by a number m arbitrarily chosen in the interval [0..b− 1] (using the combinator choose).
The combinator liftGen applies monadic lifting, and do! m ← . . . ; . . . is the usual monadic notation to bind
a result and go on with the next computation.

Notice that the generator always returns a b-bounded list of length n if b 6= 0. However, for b = 0, it
always returns the empty list nil of length 0, whatever the value of its input parameter n. This design choice
is not important in practice because generating 0-bounded lists has no interest. The case b = 0 is only the
basis of the recursive definition of the generator. So in the following we’ll use the generator with bounds
strictly greater than 0.

To have confidence in this generator of b-bounded lists, we test the well-formedness of the outputs, i.e.,
that they contain elements strictly smaller than the bound b. Below, the first QuickCheck command checks
that the 10-bounded lists generated by the generator are well-formed. The second test not only varies the
length of the generated list but also arbitrarily picks up the bound. In this latter test, we use two generators,
one for the bound (arbitraryNat) and another for blists (genBlistAsListnat).
QuickCheck ( s i z e d ( fun n ⇒

f o r A l l ( g e nB l i s t A s L i s t n a t n 10) ( fun l ⇒ ( i s _ b l i s t b 10) l ) ) ) .
+++ Passed 10000 t e s t s (0 d i s c a r d s )

QuickCheck ( s i z e d ( fun n ⇒
f o r A l l a r b i t r a r yN a t ( fun b ⇒
f o r A l l ( g e nB l i s t A s L i s t n a t n b ) ( fun l ⇒ i s _ b l i s t b b l ) ) ) ) .

+++ Passed 10000 t e s t s (0 d i s c a r d s )
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The maximal number of tests (10,000 here) can be adjusted by the user. We iterate over different values
for n thanks to the use of the combinator sized.
F i x p o i n t l i f t 3 ( n : nat ) ( p : nat ) ( l : l i s t nat ) { s t r u c t l } :=
match p , l w i th

0 , _ ⇒ n : : l
| _, n i l ⇒ n : : n i l
| S p ’ , a : : l ’ ⇒ a : : ( l i f t 3 n p ’ l ’ )
end .

D e f i n i t i o n l i f t ( p : nat ) ( l : l i s t nat ) := l i f t 3 ( l e n g t h l ) p l .

Lemma l i f t_b l i s t_max : ∀ l b p ,
i s _ b l i s t b l → i s _ b l i s t (max b (S ( l e n g t h l ) ) ) ( l i f t p l ) .

Listing 1: Functions and conjectures about lists of natural numbers.

Let us test a first conjecture, about the operation lift defined in Listing 1. This operation will be useful
in the next case studies. The operation lift is such that (lift p l) inserts the length of the list l at position
p in l, thanks to the more general operation lift3 which is such that (lift3 n p l) inserts n at position p in
the list l. We want to test the conjecture lift_blist_max about preservation of blists by the operation lift. It
claims that the application of lift on a blist returns a blist, but with a change in the bound that becomes
the maximum of the initial bound and the successor of the list length.

So, as previously, we randomly generate the size (n), the bound (b) of the blist, the b-bounded list l with
length n and the position p where the list length n is inserted in the blist (with lift).
QuickCheck ( s i z e d ( fun n ⇒

f o r A l l a r b i t r a r yN a t ( fun b ⇒
f o r A l l ( g e nB l i s t A s L i s t n a t n b ) ( fun l ⇒
f o r A l l a r b i t r a r yN a t ( fun p ⇒ i s _ b l i s t b (max b (S ( l e n g t h l ) ) ) ( l i f t p l ) ) ) ) ) )

+++ Passed 10000 t e s t s (0 d i s c a r d s )

2.2.3. Counterexamples

What happens if there is an error in the conjecture, e.g., a wrong bound in the conclusion? To illustrate the
behavior of QuickChick in such a case, we inject such an error in the conjecture lift_blist_max that becomes
the following one:
Lemma l i f t _ b l i s t _ e r r o r : ∀ l b p ,

i s _ b l i s t b l → i s _ b l i s t (S b ) ( l i f t p l ) .

QuickChick discovers an error after generating 5 test cases. It displays the counterexample b = 2, l = [1, 0, 1, 1]
and p = 3 as follows:
QuickCheck ( s i z e d ( fun n ⇒

f o r A l l a r b i t r a r yN a t ( fun b ⇒
f o r A l l ( g e nB l i s t A s L i s t n a t n b ) ( fun l ⇒
f o r A l l a r b i t r a r yN a t ( fun p ⇒ i s _ b l i s t b (S b ) ( l i f t p l ) ) ) ) ) ) .

2
[ 1 , 0 , 1 , 1 ]
3
∗∗∗ F a i l e d a f t e r 5 t e s t s and 0 s h r i n k s . (0 d i s c a r d s )

Just like Haskell’s QuickCheck, QuickChick also supports shrinking and thus tries to isolate the part of the
failing input that triggers the failure. We do not emphasis on this point here.

2.2.4. Automatic Derivation of Generators

Recently QuickChick functionalities have been extended with the possibility to automatically derive a gener-
ator from the definition of the precondition predicate, when the latter is inductively defined [LPP18]. Another
new functionality is the automatic generation of the correctness proof of the generator.

However some issues were raised during our attempts with the actual prototype. The first issue comes
from the restrictions on the shape of the inductive definition of the precondition. The definition of is_blist
given previously cannot be used for deriving a generator because < (from the Coq standard library) is not
inductively defined but defined with respect to ≤ which is an inductively defined predicate. We circumvent
this limitation by writing another inductive definition based on ≤ and proving the equivalence with the
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previous definition. Listing 2 presents the new inductive predicate is_blist_le, the equivalence lemma be-
tween the two definitions and the command Derive for deriving the random generator. In this command, the
free variable b indicates that the bound will be an input of the generator while the bound variable l, the
bounded list, will be the output of the generator. This command introduces a class instance named GenSized-
SuchThatis_blist_le which provides a function named arbitrarySizeST which is the derived generator. The
function derived_genBlistAsListnat simplifies the access to this generator. If no data satisfy the precondition,
its output is the None value. Otherwise its output is (Some l), where l is a list of natural numbers satisfying
the predicate is_blist_le. The QuickCheck command (omitted here) for testing conjectures is a bit more
complex because the derived generator does not produce lists of natural numbers but values of type option
(list nat).
I n d u c t i v e i s _ b l i s t _ l e : nat → l i s t nat → Prop :=
| B l i s t_ l e_n i l : ∀ b , i s _ b l i s t _ l e b n i l
| B l i s t_ l e_cons : ∀ v l b ,

v ≤ b → i s _ b l i s t _ l e (S b ) l
→ i s _ b l i s t _ l e (S b ) ( v : : l ) .

Lemma i s_b l i s t_eq_de f : ∀ l b , i s _ b l i s t b l ↔ i s _ b l i s t _ l e b l .

De r i v e A rb i t r a r yS i z edSuchTha t f o r ( fun l ⇒ i s _ b l i s t _ l e b l ) .

D e f i n i t i o n d e r i v e d_g e nB l i s tA s L i s t n a t ( n b : nat ) : G ( op t i on ( l i s t nat ) ) :=
a r b i t r a r y S i z e ST _ ( i s _ b l i s t _ l e b ) ( GenS i z edSuchTha t i s_b l i s t_ l e b ) b .

Listing 2: Deriving a generator with QuickChick.

A more serious issue for us is that the prototype is not able to deal with dependent types. In the following
we go on with manually written generators.

2.2.5. Endofunctions in One-Line Notation

Our interest for bounded lists is motivated by the following notion: the one-line notation of a function f on
[0 . . . n − 1] is the list [f(0); f(1); . . . ; f(n − 1)] of its images. So, b-bounded lists represent functions from
[0 . . . n − 1] to [0 . . . b − 1] by their one-line notation. In particular, bounded lists whose bound equal their
length n— hereafter called endolines — encode endofunctions on [0 . . . n−1] by their one-line notation. This
property is formalized by the logical predicate is_endoline and the equivalent Boolean function is_endolineb
reproduced in Listing 3. The listing also shows invariance lemmas that we have easily proved as specializations
of similar lemmas for bounded lists, first randomly tested with QuickChick and then proved by induction on
lists.

D e f i n i t i o n i s_endo l i n e ( l : l i s t nat ) := i s _ b l i s t ( l e n g t h l ) l .
D e f i n i t i o n i s_endo l i n e b ( l : l i s t nat ) := i s _ b l i s t b ( l e n g t h l ) l .
Lemma i s_endo l i ne_dec : ∀ l , ( i s_endo l i n e b l = t r u e ↔ i s_ endo l i n e l ) .

Lemma cons_endo : ∀ n ( f : l i s t nat ) ,
n ≤ l e n g t h f → i s_ endo l i n e f → i s_ endo l i n e ( n : : f ) .

Lemma l i f t_endo : ∀ p ( f : l i s t nat ) , i s_endo l i n e f → i s_ endo l i n e ( l i f t p f ) .

Listing 3: Characterization of endolines and two invariance lemmas.

2.3. Bounded Exhaustive Testing with Prolog

For testing Coq specifications we also advocate bounded exhaustive testing (BET) and its lightweight support
with logic programs, for many reasons. Firstly BET is especially well adapted to enumerative combinatorics,
because it corresponds to the familiar research activity of combinatorial object generation. Secondly BET
provides the author of a wrong lemma with the smallest counterexample revealing her error. (This benefit is
somewhat mitigated by the shrinking — counterexample size reduction — feature of QuickChick.) Thirdly
many inductive structures with properties can be easily specified in first-order logic with Prolog predicates.
Fourthly the Prolog backtracking mechanism often provides bounded exhaustive generators for free. All these
advantages are illustrated in this paper.
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In order to make the testing tasks easier, we extend a Prolog validation library created by Valerio
Senni [Sen18] and previously applied to test algorithms on words encoding rooted planar maps [GS12].
The library returns counterexamples (so the debugging process is guided by those counterexamples), and
it collects statistics such as generation time and memory consumption. We illustrate some of the library
features on the example of endolines. The reader is assumed to be familiar with logic programming, or can
otherwise read a short summary in [GS12].

We take again the example of endofunctions in one-line notation. We encode a function f on [0..n − 1]
by the Prolog list [f(0),. . . ,f(n − 1)] of its values, called its one-line notation. Listing 4 shows a Prolog
predicate line_endo such that the formula line_endo(L,N) (resp. line_endo(L,N,K)) holds if and only if
L is a list of length N with elements in [0..N-1] (resp. [0..K]). The predicate is parameterized by the list
length. This is not strictly required for formal specification but useful for generation purposes. The formula
in(K,I,J) holds if and only if the integer K is in the interval [I..J].

line_endo ([],0,_).
line_endo ([V|M],N,K) :- N > 0, Nm1 is N-1, in(V,0,K), line_endo(M,Nm1 ,K).
line_endo(L,N) :- Nm1 is N-1, line_endo(L,N,Nm1).

Listing 4: Endofunctions in Prolog.

A clear advantage of logic programming is that the predicate line_endo works in two ways: as an acceptor
of endofunctions, and as a generator enumerating all of them for a given length. The query scheme

?- p(L,n), write_coq(L), fail.

indeed allows the enumeration of all the data of a given size n accepted by a characteristic predicate p. The
query forces the construction of a first datum L of size n accepted by p, its output on a stream, and the
failure of the proof mechanism by using the built-in fail. Since the proof fails, the backtracking mechanism
recovers the last choice-point (necessarily in p) and triggers the generation of a new datum, until there are
no more choice points. Here the predicate write_coq is defined by the user to output (as side-effect) a test
case in Coq syntax. For instance, it can easily be defined so that the query

?- line_endo(L,3), write_coq (3), fail.

writes a Coq line such as
Eva l compute i n ( i s_endo l i n e b 3 [ 2 ; 1 ; 1 ] ) .

for each endofunction of length 3. Each line provokes the evaluation inside Coq of the expression written
between parentheses. These lines constitute a test suite for the Coq function is_endolineb, under the
assumption that the Prolog program in Listing 4 is correct. This assumption can be checked in two ways: by
visual inspection of the lists it generates, or by counting. For counting, the validation library provides the
predicate iterate so that the query

?- iterate (0,6, line_endo ).

outputs the numbers 1, 1, 4, 27, 256, 3125 and 46656 of distinct lists of length n from 0 to 6 accepted by the
predicate line_endo. We easily recognize the first numbers nn of endofunctions of length n.

We can now adapt the predicate write_coq to the BET of the lemmas in Listing 3. For Lemma cons_endo
the query evaluation can generate in a Coq file all the Coq lines of the form
Eva l compute i n ( i s_endo l i n e b ( cons i l ) ) .

for any list l of length n satisfying line_endo(l,n) and any 0 ≤ i ≤ n, up to some bound for n. We then
check that the compilation of the generated Coq file always produces true. We proceed similarly with Lemma
lift_endo.

2.4. Extension of QuickChick with BET

We propose to add a Coq command named SmallCheck (after SmallCheck [RNL08]) to do BET inside Coq,
reusing the QuickChick mechanisms to execute test cases that relies on OCaml extraction. We also rely on
the same hypothesis that the user has to provide an equivalent Boolean version of the predicate she wants
to test.
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The general workflow that we follow to validate by BET a conjecture like (1) starts with the definition
of a Java-style iterator iterator_T that produces iteratively all the values of type T up to size n that satisfy
the property precondition. Let conclusionb be the Boolean version of conclusion. The test is run by using the
command
Smal lCheck ( i t e r a to r_T ) ( fun x ⇒ c o n c l u s i o n b (f x ) )

which applies the function f on each value produced by the iterator and verifies the property under test
(conclusion).

We consider here iterators modifying a structure, here a state, to build the next structure of the same size,
without needing any other information. The iterator iterator_T has the type It T defined by the following
polymorphic dependent record:

Record I t {A : Type} : Type := mkIt {
st_t : Type ;
s t a r t : st_t ;
nex t : st_t → op t i on A ∗ st_t ;
ha snex t : st_t → boo l

}

where the field st_t denotes the type of the internal state for the iterator, start is the initial state, next
returns the next state and the output value that will be used as a test case if they exist, and a Boolean
predicate hasnext returns true if there are more elements, false otherwise. Notice that the three last fields
depend on the first one.

As a first example, let us define an iterator allowing the enumeration of all natural numbers from 0 to n,
as a record parameterized by n:

D e f i n i t i o n i t _ i n t e r v a l ( n : nat ) := { |
st_t := nat ∗ nat ;
s t a r t := (0 , n ) ;
nex t := fun s t ⇒ match s t w i th ( cur , up ) ⇒ (Some ( cu r +1) , ( cu r +1, up ) ) end ;
ha snex t := fun s t ⇒ match s t w i th ( cur , up ) ⇒ l t b cu r up end

| } .

We use it first to check that each enumerated number is less than or equal to 7, then to check that each
enumerated number is less than or equal to 6: The former command succeeds with the result Success while
the latter fails indicating the first value encountered in the interval that falsifies the property.
Smal lCheck ( i t _ i n t e r v a l 7) ( fun x : nat ⇒ l e b x 7 ) .
Succe s s

Smal lCheck ( i t _ i n t e r v a l 7) ( fun x : nat ⇒ l e b x 6 ) .
F a i l u r e : 7

2.5. BET with Cursors Proved with Why3

We propose to implement iterators as cursors, as defined by Filliâtre and Pereira [FP16]. A cursor is composed
of three functions: a constructor named create_cursor initiates the cursor to the first element of the iteration, a
function has_next returns a Boolean indicating the existence of a next element in the iteration, and a function
next moves to the next element and returns it. Filliâtre and Pereira defined cursors to traverse a collection
such as an array, a list, a set, a binary tree or a graph. We adapt their work to exhaustive generation and
define cursors to iterate over the inhabitants of a datatype or interest for testing.

In order to get trustable cursors we specify and implement them in Why3 and thus formally prove
some of their expected properties. Why3 [FP13] is a platform dedicated to deductive verification. We can
write WhyML programs with formal specifications and get correct-by-construction OCaml programs via an
automated extraction mechanism. WhyML comes with a rich library of data structures like mutable arrays.
Our choice of Why3 (instead of Coq) to define cursors is motivated by the imperative nature of the language
and the existence of mutable data structures for generator efficiency.

We illustrate our approach with the example of a cursor for bounded arrays, presented in Listings 5
and 6. A (b-)bounded array, or barray for short, is an array of natural numbers strictly smaller than a given
bound b. The first-order formula (is_barray a k b) formalizes this property for the subarray a[0..k − 1].
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predicate is_barray (a:array int) (k:int) (b:int) = ∀ i:int. 0 ≤ i < k→ 0 ≤ a[i] < b
predicate cte_array (a:array int) (k:int) (b:int) = ∀ i:int. 0 ≤ i < k→ a[i] = b

type cursor = {
arr: array int; (* current array *)

bound: int; (* strict upper bound for array values *)
mutable rank: int; (* arr is the rank -th generated array *)
mutable last: bool; (* true iff c.arr is the last array *)

}

predicate sound (c: cursor) = c.bound ≥ 1 && c.rank ≥ 0 && is_barray c.arr (length c.arr) c.bound

let create_cursor (n: int) : cursor
requires { n > 0 }
ensures { length result.arr = n }
ensures { result.bound = n }
ensures { cte_array result.arr (length result.arr) 0 }
ensures { sound result }

=
let a = make n 0 in {
arr = a;
bound = n;
rank = 0;
last = (n ≤ 1);

}

predicate completed (c: cursor) = cte_array c.arr (length c.arr) (c.bound -1)

let has_next (c: cursor) : bool
ensures { result ↔ not (completed c) }

=
c.last← true;
let t = ref (0) in begin
while !t < length c.arr && c.last do
invariant { 0 ≤ !t ≤ length c.arr }
invariant { cte_array c.arr !t (c.bound -1) }
invariant { completed c→ c.last }
if (c.arr[!t] = c.bound -1) then
t := !t + 1

else
c.last←false

done
end;
not c.last

Listing 5: Generator of bounded arrays in Why3, part 1.

The cursor stores the current array (field arr), the (strict) upper bound b for its elements (field bound),
the rank of the current array during generation (field rank), from 1 to the number bn of functions from
[0..n − 1] to [0..b − 1], where n is the array length, and a Boolean flag (field last) indicating the end of the
generation. The bound and the rank are declared as signed integers (type int) because there is no type for
natural numbers in WhyML. However they are respectively assumed to be a positive and a nonnegative
integer, as requested in the first part of the soundness condition for the cursor (predicate sound). (There is
no array if b ≤ 0 and the case b = 1 is excluded because there is only one array 0 . . . 0 to generate.) In
addition to these two conditions, the cursor is sound if all the elements in its current array are strictly lower
than its bound (last condition of the predicate sound).

The function create_cursor initializes the cursor with the smallest array 0 . . . 0 , which is the last
one if and only if the array length n is 1. For the sake of simplicity the case n = 0 is excluded and the
presented code is limited to the case where the bound b equals the array length n. (These bounded arrays
encode endofunctions in one-line notation.) The rank is set to the unsound value 0 so that the function next
(Listing 6) detects this initial case and sets it to its right value 1.

The arrays are generated in increasing lexicographic order. So, the generation ends when all the array
elements have reached their maximal value b− 1. This condition is specified by the predicate completed, and
the function has_next detects that it does hold yet.

The function next in Listing 6 steps from one bounded array to the next one. For all cases but the first
one where the rank is 0, it works as follows. The first loop goes through the array c.arr from right to left to
find its rightmost non-maximal element, that is, the maximal array index r such that c.arr[!r] < b− 1. (The
variables t and r are references and ! is the dereferencing operator.) If the search fails, the current array is
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let next (c: cursor) : array int
requires { sound c }
requires { not (completed c) }
ensures { sound c }
ensures { old c.rank ≤ c.rank ≤ old c.rank + 1 }

=
if c.rank = 0 then (* First array *)
c.rank← 1

else begin (* For all arrays but the first one *)
let r = ref (-1) in
let t = ref (length c.arr - 1) in
(* Find the index (!r) of the rightmost digit that can be incremented: *)
while !t ≥ 0 do
invariant { -1 ≤ !t < length c.arr }
invariant { -1 ≤ !r < length c.arr }
invariant { !t ≥ 0→ ∀ i:int. !t < i < length c.arr→ c.arr[i] ≥ c.bound -1 }
invariant { !r = -1→ ∀ i:int. !t < i < length c.arr→ c.arr[i] ≥ c.bound -1 }
invariant { 0 ≤ !r < length c.arr→ c.arr[!r] < c.bound -1 }
variant { !t + 1 }
if (c.arr[!t] < c.bound -1) then begin
r := !t;
t := -1

end else
t := !t - 1

done;
if !r < 0 then (* last array reached. *)
c.last← true

else begin
c.arr[!r]← c.arr[!r] + 1;
(* Fill the suffix starting at c.arr[!r+1] with zeros: *)
for i = !r+1 to length c.arr - 1 do
invariant { !r+1 ≤ i ≤ length c.arr }
invariant { is_barray c.arr i c.bound }
c.arr[i]← 0

done;
c.rank← c.rank + 1;
c.last← false

end
end;
c.arr

end

Listing 6: Generator of bounded arrays in Why3, part 2.

the last one. Otherwise the function increments this non-maximal element c.arr[!r] and the second loop fills
out the upper part c.arr[!r + 1..] of the array with zeros.

The loop contracts specify the interval of values of the integer variables modified by the loop, and
invariants for the array content that are strong enough to entail the postconditions (ensures clauses). Under
the precondition requires { sound c } that the input array is bounded, the postcondition ensures { sound c }
specifies that the output array is also bounded (soundness property).

This code is fully proven with Alt-Ergo [BCCL08]. More specification and proof efforts are required to
prove the properties of monotonicity — the function next always generates an array higher than its input
array, in lexicographic order, completeness — all bounded arrays are generated, and duplicate-freedom — no
array is generated twice. This program is an adaptation to Why3 of a C program that is part of a library of
12 proved generators implemented in C, formally specified in ACSL, and automatically proved by the WP
plugin within the Frama-C framework [GGP15].

Why3 allows the automated extraction of correct-by-construction OCaml programs fromWhy3 programs.
We exploit this mechanism together with our BET command. So we define as follows a Coq iterator of type
It with an abstract type for the cursor (introduced as a parameter below) and abstract functions create,
next_list and hasnext (also introduced as parameters).

Parameter c u r s o r : Type .
Parameter c r e a t e : nat → c u r s o r .
Parameter n e x t_ l i s t : c u r s o r → ( op t i on ( l i s t nat ) ) ∗ c u r s o r .
Parameter ha snex t : c u r s o r → boo l .

D e f i n i t i o n it_endo ( n : nat ) := mkIt ( l i s t nat )
c u r s o r ( c r e a t e n ) n e x t_ l i s t ha snex t .
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These type and functions will be linked with the OCaml respective type and functions genrated by Why3.
Consequently it means that arrays will be used as in Why3 but any array generated by Why3 will be
transformed into a list of natural numbers.

We introduce the variant SmallCheckWhy3 of the previous SmallCheck command, very close but linking,
at extraction time, with the OCaml files generated by Why3.

For instance Lemma cons_endo (Listing 3) can be verified by BET with every value n in [0..8] and every
endofunction f of length 7 or less by
SmallCheckWhy3 ( i t _ i n t e r v a l 7) ( fun l f ⇒
( sma l lCheckb ( i t_endo l f ) ( fun f ⇒
( sma l lCheckb ( i t _ i n t e r v a l l f ) ( fun n ⇒ i s_endo l i n e b ( n : : f ) ) ) ) ) ) .

Succe s s

In the previous command, smallCheckb performs as its counterpart SmallCheckWhy3 but is introduced for
combining several iterations.

With SmallCheckWhy3 one can test exhaustively up to some bound the conjectures randomly tested by
QuickCheck.

3. First Example: Permutations As Injective Endofunctions

Permutations on a finite set form an elementary but central combinatorial family. It is well known that
any injective endofunction on a finite domain is a permutation. We could formalize permutations by adding
a constraint to endofunctions in one-line notation introduced in Section 2. However, several operations on
permutations, such as composition, are more easily defined with permutations seen as functions, rather than
as lists of their values. Therefore we present here a formal study of permutations defined as Coq functions
constrained to be injective endofunctions (Section 3.1). We discuss their random and bounded exhaustive
generation in Section 3.2. For these permutations we define the operations of insertion, contraction and direct
sum, by refining them from operations more generally defined on functions on natural numbers (Sections 3.3
to 3.5). This formalization and the operations of insertion and direct sum served as running example in
previous work [DGG16]. The study is completed here with the operation of contraction (Section 3.4), new
generators (Section 3.2), and more tested and proved properties (Sections 3.3 to 3.6).

The formalization of permutations in the library of mathematical components [Mat18] also relies on
the property that permutations are injective endofunctions. However, as far as we know, no formal library
defines the operations of insertion, contraction and direct sum. They are used in the case study of rooted
maps in Section 5.

3.1. Characterization of Permutations

Listing 7 shows our Coq formalization of permutations. A permutation is defined as an injective function
from an interval [0..n−1] of natural numbers to itself. We consider functions defined on nat (hereafter called
natural functions) but we only impose constraints for their values on the interval [0..n− 1], whatever their
definition outside the interval. The predicates is_endo and is_inj respectively define the properties of being
an endofunction and injectivity. A permutation is then a record structure composed of a natural function
and the proofs that the latter satisfies the previous two properties. For convenience we also consider their
conjunction is_permut.
D e f i n i t i o n is_endo ( n : nat ) ( f : nat → nat ) := ∀ x , x < n → f x < n .
D e f i n i t i o n i s _ i n j ( n : nat ) ( f : nat → nat ) := ∀ x y ,
x < n → y < n → x 6= y → f x 6= f y .

Record permut ( n : nat ) : Set := {
f c t : nat → nat ;
endo : is_endo n f c t ;
i n j : i s _ i n j n f c t } .

D e f i n i t i o n is_permut n f := is_endo n f ∧ i s _ i n j n f .

D e f i n i t i o n idNat : nat → nat := ( fun ( x : nat ) ⇒ x ) .
Lemma id0_endo : is_endo 0 idNat . f i r s t o r d e r . De f i ned .
Lemma i d0_ i n j : i s _ i n j 0 idNat . f i r s t o r d e r . De f i ned .
D e f i n i t i o n id0permut := MkPermut id0_endo i d 0_ i n j .

Listing 7: Permutations as injective endofunctions in Coq.
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The listing also shows the definition of identity as a permutation id0permut of size 0, called the empty
permutation. Its proof components are proved using the tactic firstorder dedicated to first-order reasoning.

3.2. Generation of Permutations

A list which is the one-line notation of some permutation is hereafter called a permutation list, or permline.
We generate permutations as permutation lists and go from this representation to the functional one with
the help of the function list2fun defined by
D e f i n i t i o n l i s t 2 f u n ( l : l i s t nat ) : nat → nat := fun ( n : nat ) ⇒ nth n l n .

The function nth in Coq standard library is such that (nth n l d) returns the n-th element of l if it exists,
and d otherwise.

The operation lift (Listing 1) is a classical way to construct a permutation on [0..n] from a permutation
p of size [0..n− 1], by inserting n in the one-line notation of p. The following random generator applies this
operation:
F i x p o i n t g enPe rm l i n eAsL i s t n a t ( n : nat ) : G ( l i s t nat ) :=
match n wi th

0 ⇒ r e tu rnGen n i l
| S n ’ ⇒ do ! p ← choose (0 , n ’ ) ;

l i f t G e n ( l i f t p ) ( g enPe rm l i n eA sL i s t n a t n ’ )
end .

This recursive generator is defined by pattern-matching on n: if n is 0, the output is the empty list.
Otherwise (n = n′ + 1) the recursive call (genPermlineAsListnat n′) generates the one-line notation of a
permutation on [0..n′ − 1], and the operation lift inserts n in it, at some position p randomly chosen in
[0..n− 1] (using the combinator choose).

To have confidence in this generator of permutations, we test that its outputs do not contain any duplicate,
that their length is n and that their elements are natural numbers strictly smaller than n. These three
conditions are implemented by the Boolean function is_permlineb (its code is omitted here).
QuickCheck ( s i z e d ( fun n ⇒ f o r A l l ( g enPe rm l i n eA sL i s t n a t n ) ( i s_pe rm l i n eb n ) ) ) .
+++ Passed 10000 t e s t s (0 d i s c a r d s )

We can follow the same process to validate that permutations as natural functions are obtained by
applying the translation function list2fun on lists generated by the previous generator genPermlineAsListnat.
To this end, we implement Boolean versions is_endob, is_injb and is_permutb of the logical properties
is_endo, is_inj and is_permut. Listing 8 shows the functions is_endob and is_permutb. An evaluation of
(is_endob n f) returns true if and only if the function f is an endofunction on [0..n − 1]. The lemma
is_endo_dec states that the Boolean function is_endob is a correct implementation of the predicate is_endo.
Similar lemmas are proved for the other two Boolean functions. If the connection between is_endo and
is_endob is quite immediate, it is not the case for is_inj and is_injb . To define is_injb , we rely on another
lemma we have proved: a function f is injective on [0..n] if and only if the list [f(0); f(1); . . . ; f(n)] of its
images has no duplicate.
F i x p o i n t is_endob_aux n f m :=
match m with

0 ⇒ i f ( l t_dec ( f 0) n ) then t r u e e l s e f a l s e
| S m’ ⇒ i f ( l t_dec ( f m) n ) then is_endob_aux n f m’ e l s e f a l s e end .

D e f i n i t i o n is_endob n f :=
match n wi th

0 ⇒ t r u e
| S n ’ ⇒ is_endob_aux n f n ’ end .

Lemma is_endo_dec : ∀ n f , ( is_endob n f = t r u e ↔ i s_endo n f ) .
D e f i n i t i o n is_permutb n f := ( is_endob n f ) && ( i s_ i n j b n f ) .

Listing 8: Boolean functions for permutations.

3.3. Insertion

A permutation can also be considered as a finite composition of pairwise disjoint cycles, called its cycle
structure [Sta97, Section 1.3]. For example the cycle structure of
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p =
(

0 1 2 3 4
1 3 4 0 2

)
is (0 1 3) (2 4).

We now define insertion of one element in a cycle of the cycle structure of a permutation. This insertion
is fundamental to define two operations for map construction (in Section 5). It is also used to define another
recursive generator of permutations, in Section 4.

Let n be a natural number, p be a permutation on [0..n − 1] and i be a natural integer in [0..n]. The
insertion before i in p is the permutation on [0..n] obtained from p by adding the cycle (n) if i = n or by
inserting the integer n before the integer i in its cycle in p if 0 ≤ i ≤ n−1. For example the insertion before 5
in the previous permutation p is the permutation (0 1 3) (2 4) (5), which adds the fixed point 5 to p. Its one-
line notation is [1; 3; 4; 0; 2; 5]. The insertion before 4 in p is the permutation (0 1 3) (2 5 4) = [1; 3; 5; 0; 2; 4].
The insertion before 0 in p is the permutation (0 1 3 5) (2 4) = [1; 3; 4; 5; 2; 0]. This insertion in the cycle
structure clearly differs from insertion in the one-line notation implemented by the Coq function lift, since the
latter permutation (0 1 3 5) (2 4) = [1; 3; 4; 5; 2; 0] cannot be obtained by insertion in the one-line notation
[1; 3; 4; 0; 2] of p.

We propose the following generalization of this operation to natural functions. For any natural number
n let f be a natural function defined on [0..n− 1] and i a natural number. The insertion before i in f is the
function f ′ defined on [0..n] as follows:

(a) it is f if i > n;
(b) it is f extended with the fixed point f(n) = n if i = n;
(c) if i < n then f ′(n) = i, f ′(j) = n if f(j) = i, and f ′(j) = f(j) if 0 ≤ j ≤ n− 1 and f(j) 6= i.

Listing 9 presents an implementation in Coq of the operation of insertion in a natural function. Here we
use two different ways to compare natural numbers: elimination of a decidability lemma (le_lt_dec or
eq_nat_dec) and pattern-matching on the result of the nat_compare function that returns either Eq, Lt or
Gt (for Equal, Less than or Greater than).
D e f i n i t i o n i n s e r t_ f un n ( f : nat → nat ) ( i : nat ) : nat → nat :=
fun x ⇒ i f l e_l t_dec i n (∗ D e f i n i t i o n le_lt_dec n m : {n ≤ m} + {m < n } . ∗)

then (∗ i ≤ n ∗)
match nat_compare x n wi th

Eq ⇒ (∗ x = n ∗) i
| Lt ⇒ (∗ x < n ∗)

i f eq_nat_dec ( f x ) i (∗ D e f i n i t i o n eq_nat_dec n m : {n = m} + ∼ {m = n } . ∗)
then (∗ f x = i ∗) n
e l s e (∗ f x 6= i ∗) f x

| Gt ⇒ (∗ x > n ∗) f x end
e l s e (∗ i > n ∗) x .

Listing 9: Insertion in Coq.

3.4. Contraction

We now define an inverse function for insertion. It is named contraction because it is a generalization to
natural functions of contraction of permutations defined in [BLS18, Section 2.1].

Let n be a natural number and g be a natural function defined on [0..n]. The contraction of g is the
function g′ defined on [0..n− 1] as follows: if x < n and g(x) = n then g′(x) = g(n); otherwise g′(x) = g(x).

For example, the contraction of the permutation (0 1 3) (2 5 4) = [1; 3; 5; 0; 2; 4] on [0..5] is the permutation
p = (0 1 3) (2 4) = [1; 3; 4; 0; 2] on [0..4].

The operation of contraction in a natural function is implemented in Coq by
D e f i n i t i o n con t r a c t i on_fun ( n : nat ) ( g : nat → nat ) : nat → nat :=
fun x ⇒ i f l e_l t_dec n x
then (∗ n ≤ x ∗) g x
e l s e (∗ n > x ∗)
i f eq_nat_dec ( g x ) n
then (∗ g x = n ∗) g n
e l s e (∗ g x 6= n ∗) g x .
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3.5. Direct Sum

Insertion is the main ingredient of two operations for map construction defined in [DGG16]. A second
ingredient for one of these operations is the direct sum of two permutations, generalized here to natural
functions.

For any natural numbers n1 and n2 the direct sum of a natural function f1 on [0..n1 − 1] and a natural
function f2 on [0..n2 − 1] is the function f on [0..n1 + n2 − 1] such that

(a) f(x) = f1(x) if 0 ≤ x < n1 and
(b) f(x) = f2(x− n1) + n1 if n1 ≤ x < n1 + n2.

It is an extension of the well-known direct sum on permutations [Kit11, p. 57], denoted ⊕.
For example, let p1 = [2; 1; 0] = (0 2) (1) be a permutation on [0..2] and p2 = [1; 3; 4; 0; 2] = (0 1 3) (2 4)

a permutation on [0..4]. We then have p1 ⊕ p2 = [2; 1; 0; 4; 6; 7; 3; 5] = (0 2) (1) (3 4 6) (5 7).
The direct sum on natural functions is implemented in Coq by

D e f i n i t i o n sum_fun n1 f1 n2 f2 : nat → nat := fun x ⇒
i f lt_ge_dec x n1
then (∗ x < n1 ∗)
f 1 x

e l s e (∗ x ≥ n1 ∗)
i f lt_ge_dec x ( n1+n2 )
then (∗ x < n1+n2 ∗)
( f 2 ( x−n1 ) ) + n1

e l s e (∗ x ≥ n1+n2 ∗)
x .

3.6. Invariance Properties

The three operations on natural functions (insertion, contraction and direct sum) should first satisfy the
invariance property that they preserve permutations. Their restriction to the type permut n for permutations
is respectively named insert, contraction and sum.

Lemma inse r t_permut : ∀ ( n : nat ) ( p : permut n ) ( i : nat ) , i s_permut (S n ) ( i n s e r t_ f un n ( f c t p ) i ) .
Lemma cont rac t i on_permut : ∀ ( n : nat ) ( p : permut (S n ) ) , i s_permut n ( con t r a c t i on_fun n ( f c t p ) ) .
Lemma sum_permut : ∀ n1 ( p1 : permut n1 ) n2 ( p2 : permut n2 ) ,

i s_permut ( n1 + n2 ) ( sum_fun n1 ( f c t p1 ) n2 ( f c t p2 ) ) .

Listing 10: Invariance properties for insertion, contraction, and direct sum.

The lemmas in Listing 10 state that insertion, contraction and direct sum on natural functions pre-
serve permutations. Before proving them, they are conjectures that we can test with the usual method-
ology: (i) when a natural function representing a permutation is to be generated, we use the generator
genPermlineAsListnat of permutations in one-line notation; (ii) the logical property under test is turned into
its Boolean version composed with the translation function list2fun.

For example Lemma insert_permut is tested by
QuickCheck ( s i z e d ( fun n ⇒

f o r A l l ( g enPe rm l i n eA sL i s t n a t n ) ( fun l ⇒
f o r A l l a r b i t r a r yN a t ( fun i ⇒ i s_permutb (S n ) ( i n s e r t_ f un n ( l i s t 2 f u n l ) i ) ) ) ) ) .

+++ Passed 10000 t e s t s (0 d i s c a r d s )

If we inject a fault in the definition of insert_fun reproduced in Listing 9, e.g., replacing the result n by S n
in the Lt case, we get a counterexample, e.g., l = [0; 1] and i = 0 for n = 2.

3.7. Detection of Missing Hypotheses

The next code snippet illustrates the way we can use this testing facility to discover missing hypotheses in a
statement. For example we can try to test the following — wrong — conjecture that states that contraction
preserves endofunctions:
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Lemma contract ion_fun_endo ( n : nat ) ( f : nat → nat ) :
i s_endo (S n ) f → i s_endo n ( con t r a c t i on_fun n f ) .

The corresponding random test
QuickCheck ( s i z e d ( fun n ⇒

f o r A l l ( g e nEndo l i n eA sL i s t n a t ( n+1)) ( fun l ⇒ i s_endob n ( con t r a c t i on_fun n ( l i s t 2 f u n l ) ) ) ) ) .

exhibits a counterexample which is a non-injective natural function:
[ 1 , 2 , 2 ]
∗∗∗ F a i l e d a f t e r 10 t e s t s and 0 s h r i n k s . (0 d i s c a r d s )

Here we use a simple generator genEndolineAsListnat of endofunctions in one-line notation: (genEndolineAsList-
nat n) produces a list of length n with elements in [0..n− 1]. This suggests to also require the injectivity of
the function.

QuickCheck ( s i z e d ( fun n ⇒
f o r A l l ( g enPe rm l i n eA sL i s t n a t ( n+1)) ( fun l ⇒ i s_endob n ( con t r a c t i on_fun n ( l i s t 2 f u n l ) ) ) ) ) .

+++ Passed 10000 t e s t s (0 d i s c a r d s )

Lemma contract ion_fun_endo ( n : nat ) ( f : nat → nat ) :
i s_endo (S n ) f → i s _ i n j (S n ) f → i s_endo n ( con t r a c t i on_fun n f ) .

The property then passes the test and the corrected lemma (contraction_fun_endo) is proved.

3.8. Relational Properties

The lemmas in Listing 11 state that contraction of permutations is a left inverse (or retraction) and a right
inverse (or section) of insertion. The first lemma is a key ingredient for the proof of the cancellation lemma
in Section 4. The predicate eq_natfun defines equality for functions on [0..n − 1] represented by natural
functions. The predicate eq_permut defines equality on permutations represented by terms with type permut
n.

D e f i n i t i o n eq_natfun ( n : nat ) ( f g : nat → nat ) := ∀ i , i < n → f i = g i .
D e f i n i t i o n eq_permut ( n : nat ) ( p q : permut n ) := eq_natfun n ( f c t p ) ( f c t q ) .

Lemma con t r a c t i o n_ i n s e r t_ i n v ( n : nat ) ( p : permut n ) ( i : nat ) :
i ≤ n → eq_permut ( c o n t r a c t i o n ( i n s e r t p i ) ) p .

Lemma i n s e r t_con t r a c t i o n_ i n v : ∀ ( n : nat ) ( q : permut (S n ) ) ,
eq_permut ( i n s e r t ( c o n t r a c t i o n q ) ( app l y q n ) ) q .

Listing 11: Contraction and insertion.

A natural choice for (contraction_fun n g x) when x ≥ n is (g x), which leaves g unchanged outside
[0..n − 1]. Contraction is then a right inverse for insertion only if insertion_fun n f i x = f x when i ≤ n
and x > n. In that case the present definition of insertion (Listing 9) improves that one in [DGG16], which
proposed insertion_fun n f i x = x instead.

All the properties about permutations listed in Sections 3.6 to 3.8 have been tested using the random
generator of permutations as lists (genPermlineAsListnat).

4. Second Example: Reversed Subexcedant Lists

A subexcedant sequence is a sequence s0, . . . , sn−1 of natural numbers such that 0 ≤ sj ≤ j for all 0 ≤ j < n.1
Subexcedant sequences are studied as an alternative way to represent permutations. Any size-preserving bi-
jection between subexcedant sequences and permutations is called a permutation code. Subexcedant sequences
and permutation codes are widely studied in combinatorics [Leh60,DV80,MR01,Vaj11,Vaj13,BV17].

1 This is the 0-based definition, consistent with our other case studies. Other definitions consider a 1-based sequence s1, . . . , sn
instead of s0, . . . , sn−1 or values in [1..n] instead of [0..n− 1] [DV80,MR01,Vaj13].
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Sections 4.1 and 4.2 respectively present an encoding of subexcedant sequences by Coq lists of natural
numbers and by terms of a dependent type. In Section 4.3 we manually define random generators for these
datatypes. Sections 4.4 and 4.5 present a permutation code and a function whose interest will be made clear
in Section 5.

4.1. Characteristic Property

It is easier to extend a subexcedant sequence s0, . . . , sn−1 by adding a last element sn at its end, rather than
shifting it to add a new first element at its start. However, Coq lists are inductively defined by adding an
element at their start. Therefore, we choose to encode the sequence of natural numbers s0, . . . , sn−1 by the
Coq list [sn−1; . . . ; s0] containing the same elements in the reversed order. When the sequence is subexcedant,
the list is said to be a Reversed Subexcedant List (RSL, for short). Notice that the last element s0 is always
0. We however store it in the list for simplicity.

Let (is_rsl n l) formalize the property that l is a reversed subexcedant list of length |l| = n. The inference
rules

is_rsl 0 [ ]
and

i ≤ n, is_rsl n l
is_rsl (n+ 1) (i :: l)

axiomatize this predicate. Since the empty list [ ] contains no element, it is a RSL of length 0, as axiomatized
by the first rule. The second rule can be justified by proving by recurrence on n that a nonempty list (i :: l)
is a RSL if and only if l is a RSL and i ≤ |l|. This inference system can be directly translated in Coq as
an inductive predicate is_rsl and a Boolean function is_rslb, both reproduced in Listing 12. The listing also
shows a lemma stating their equivalence (proved by induction on l).

I n d u c t i v e i s _ r s l : nat → l i s t nat → Prop :=
| R s l_n i l : i s _ r s l 0 n i l
| Rs l_cons : ∀ i n l , i ≤ n → i s_subex n l → i s_subex (S n ) ( i : : l ) .

F i x p o i n t i s_ r s l b ( l : l i s t nat ) : boo l :=
match l w i th
| n i l ⇒ t r u e
| i : : l ’ ⇒ andb ( l e b i ( l e n g t h l ’ ) ) ( i s_ r s l b l ’ )
end .

Lemma i s_r s l_dec : ∀ l , i s _ r s l b l = t r u e ↔ i s _ r s l ( l e n g t h l ) l .

Listing 12: Characterization of reversed subexcedant lists.

For validating conjectures about RSLs, we define the following generator of such lists:

F i x p o i n t g e nR s lA sL i s t n a t ( n : nat ) : G ( l i s t nat ) :=
match n wi th

O ⇒ r e tu rnGen n i l
| S n ’ ⇒ do ! i ← choose (0 , n ’ ) ;

l i f t G e n ( cons i ) ( g e nR s lA sL i s t n a t n ’ )
end .

The QuickCheck command

Sample ( g e nR s lA sL i s t n a t 6 0 ) .

yields examples of reversed subexcedant lists: [0, 1, 1, 0, 0, 5], [5, 0, 2, 0, 0, 0], [0, 0, 1, 3, 3, 3], [0, 0, 1, 2, 4, 0], etc.
Again to have confidence in this generator, we test it with the Boolean function is_rslb, proved correct

w.r.t. the inductive predicate is_rsl. List lengths are also randomly chosen.

QuickCheck ( s i z e d ( fun n ⇒ f o r A l l ( g e nR s lA sL i s t n a t n ) i s_ r s l b ) ) .
+++ Passed 10000 t e s t s (0 d i s c a r d s )
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4.2. Recursive Dependent Type

It is easy to interpret the characteristic property of reversed subexcedant lists (specified by is_rsl) by the
following recursive dependent type:
I n d u c t i v e r s lTyp e : nat → Type :=
| R0 : r s lTyp e 0
| RS : ∀ n i , i ≤ n → r s lTyp e n → r s lTyp e (S n ) .

R0 is the unique reversed subexcedant list of length 0. The term (RS in−1 _ ( . . . (RS i0 _ R0) . . .))
with this type, where the _ are proof terms, encodes the subexcedant sequence i0, . . . , in−1, as stated by
the following property:
Lemma rs lType_sound : ∀ n ( r : r s lType n ) , i s _ r s l n ( r s l T y p e 2 l i s t n a t n r ) .

where rslType2listnat converts these RSL terms into lists with the same natural numbers in the same order.
In the rest of the paper, RS is sometimes replaced by @RS in order to bypass the Coq implicit parameters

mechanism that sometimes does not help the reading.

4.3. Recursive Random Generator

From this (dependent) type definition, we derive a generator whose particularity is that the generated term
contains a proof term.
Program F i x p o i n t genRslType ( n : nat ) {measure n} : G ( r s lTyp e n ) :=
match n wi th

O ⇒ r e tu rnGen R0
| S n ’ ⇒ do2 ! i , H ← choose (0 , n ’ ) ;

l i f t G e n (RS n ’ i _) ( genRslType n ’ )
end .

Next Ob l i g a t i o n .
app l y semChoose i n H; auto .
s imp l i n H.
app l y / l eP .
app l y H.
De f i ned .

Here we use the Program facility to define a recursive function where the proof term is denoted by _ in the
body of the definition and then refined using proof tactics (between keywords Next Obligation and Defined).
The proof term is mainly the application of a theorem semChoose provided by QuickChick establishing that
any number generated by the primitive choose (x, y) is indeed a number i such that x ≤ i ≤ y. In the body
of the generator, the notation do2! i, H ← choose (0, n’); ... links i to the number randomly generated by
choose and H to the proof that i belongs to the semantics of choose, defined as “the set of values that have
non-zero probability of being generated” [PHD+15].

The former soundness lemma (rslType_sound) is checked with this generator, by execution of the com-
mand
QuickCheck ( s i z e d ( fun n ⇒ f o r A l l ( genRslType n ) ( fun r ⇒ i s _ r s l b ( r s l T y p e 2 l i s t n a t r ) ) ) ) .
+++ Passed 10000 t e s t s (0 d i s c a r d s )

After this checking the lemma is easily proved by induction on r.

4.4. Permutation Code

In combinatorics a permutation code is a size-preserving bijection between subexcedant sequences and per-
mutations. We adapt this definition to our representations of subexcedant sequences and permutations and
consider here that a permutation code is a size-preserving bijection between reversed subexcedant lists and
permutations encoded as injective natural endofunctions.

More rigorously, we prove formally a one-to-one correspondence between the type rslType of reversed
subexcedant lists and the quotient of the type permut of injective natural endofunctions by the equivalence
relation eq_permut defined in Listing 11, since this formalization accepts all natural functions with the same
values on [0..n− 1] to represent the same function on [0..n− 1].

The permutation code defined here is the following function:
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F i x p o i n t r s lType2pe rmut n ( s : r s lTyp e n ) : permut n :=
match s i n ( r s lTyp e n ) w i th
| R0 ⇒ i d0permut
| @RS _ i _ r ⇒ i n s e r t ( r s lType2pe rmut r ) i
end .

The empty permcode R0 is interpreted as the empty permutation. The term (RS _ i _ r) is interpreted as
the permutation obtained by the insertion of i in the permutation resulting from the interpretation of r.

This permutation code corresponds to insertion in the cycle structure of permutations. It adapts to
[0..n − 1] the function φ defined in [MR01, Section 3] for permutations over [1..n]. We suggest to call it
transposition code, because it is related with the factorizations of permutations in transpositions. It is indeed
easy to see that the insertion function insert defined in Section 3 corresponds to the composition p 〈n, i〉 from
left to right of the permutation p with the transposition 〈n, i〉 exchanging n and i, if one also considers identity
〈n, n〉 as a transposition. When the subexcedant sequence i0, . . . , in−1 is interpreted by this permutation
code as a permutation over [1..n], the sequence is called transposition array [Bar07, Section 4].

We now prove that the type (rslType n) (for a natural number n) is the quotient of the type (permut
n) by the equivalence relation eq_permut introduced in Section 3.6. To achieve this goal, we follow the
methodology introduced in [Coh13]. So we define the encoding function permut2rslType that transforms a
permutation (as a natural function) into a reversed subexcedant list (encoded by a reversed subexcedant
term), by using the operation of contraction:

F i x p o i n t pe rmut2 r s lType n : permut n → r s lTyp e n :=
match n r e t u r n ( permut n → r s lTyp e n ) w i th
| 0 ⇒ fun _⇒ R0
| S n ’ ⇒ fun p ⇒

(@RS n ’ ( f c t p n ’ ) ( @permut_bound n ’ p ) ( @permut2rs lType n ’ ( c o n t r a c t i o n p ) ) )
end .

where (permut_bound n′ p) provides the proof that the natural function underlying the permutation p applied
to n′ is less that n′ (it comes from the fact that this function is an endofunction on the right interval). The
definition of permut2rslType (and also the previous one) is a bit technical because it deals with dependent
types and this requires some annotations to be type-checked.

The next step is to prove the following cancellation lemma (according to the terminology of the Math-
ematical Components library [Mat18]) which states that the composition of the encoding and decoding
functions is the identity:
Lemma rs lType2permutK : ∀ ( n : nat ) ( t : r s lType n ) , pe rmut2 r s lType ( r s lType2pe rmut t ) = t .

Using the previous random generator of reversed subexcedant terms, we first test the cancellation lemma
with QuickChick:
QuickCheck ( s i z e d ( fun n ⇒

f o r A l l ( genRslType n ) ( fun t ⇒
eq_rs lTypeb n ( pe rmut2 r s lType ( r s lType2pe rmut t ) ) t ) ) ) .

Here eq_rslTypeb is the Boolean function that checks the syntactic equality of two reversed subexcedant
terms of the same type (rslType n).

The proof of the cancellation lemma relies on the lemma contraction_insert_inv presented in Section 3.6.

4.5. Sum of Two Reversed Subexcedant Lists

As an illustration of RSL as a code for permutations we design and check a binary operation sum_RslType of
two RSLs whose interpretation is expected to be the direct sum of two permutations defined in Section 3.5.
The function
Program F i x p o i n t sum_rslType n1 ( l 1 : r s lTyp e n1 ) n2 ( l 2 : r s lTyp e n2 ) : r s lTyp e ( n1 + n2 ) :=
match l 2 w i th

R0 ⇒ l 1
| @RS n i i_le_n l2 ’ ⇒ @RS _ ( n1+i ) _ ( sum_rslType l 1 l2 ’ )
end .

Next Ob l i g a t i o n .
omega .
De f i ned .
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computes the sum of the RSLs l1 and l2, by recursion on l2. If l2 is empty the result is clearly l1. Otherwise,
all the elements of l2 should be augmented by the size n1 of l1 and appended before l1, as specified by the
recursive call and the addition of n1 to the first number i of l2.

5. Third Example: Rooted Maps

Rooted maps are combinatorial objects with several non-trivial applications in mathematics [MN17] and the-
oretical physics, in particular in 2-dimensional gravitation models [Eyn11] and in quantum physics [PGHS15].
These applications and the existence of tricky reasoning about rooted maps motivate their formal study.

In a nutshell labeled maps are combinatorial structures with 2e (e ≥ 0) distinct labels called darts.
Darts form e pairs called edges. A rooted map is mathematically defined as the quotient of labeled maps
by relabelings which preserve a pre-distinguished dart called the root. The vertex map is the (labeled and
rooted) map with 0 edges. It is assumed to exist and be unique. For the purpose of enumeration, the special
virtue of rooted maps is that they have no symmetries, in the sense that the automorphism group of any
rooted map is trivial.

We adopt the following definitions where labels (darts) are the first 2e natural integers. A labeled map is
a pair (R,L) where R is a permutation on [0..2e− 1] and L is a fixed-point free involution on [0..2e− 1] such
that the group 〈R,L〉 generated by R and L acts transitively on D. Transitivity means that any element
of [0..2e − 1] can be obtained from any other element of [0..2e − 1] by finitely many applications of the
permutations R, L and their inverse. The local involution with e edges is the fixed-point free involution on
[0..2e− 1] exchanging 2i and 2i+ 1 for 0 ≤ i ≤ e− 1. A local map is a labeled map (R,L) whose involution
L is a local involution [DGG16, Section 5]. The root of a labeled map with e edges is its largest label 2e− 1.
A rooted map with e edges is an equivalence class of local maps, for the equivalence relation induced by
the relabelings preserving the root and the local involution. The virtue of local maps is that they can be
represented only by their first permutation R, called their rotation. No additional knowledge about maps
is required to understand this section, but the interested reader can consult classical monographies on the
subject, e.g., [LZ04].

In a former work [DGG16] we formalized local maps with e edges with the Coq type (map e) and defined
two operations for map construction, whose type is given in Listing 13. (e1, e2 and e are numbers of edges.)
We admit that these operations can be quotiented as operations on rooted maps, respectively denoted by I
and Nk.
D e f i n i t i o n i s t hm i c e1 (m1 : map e1 ) e2 (m2 : map e2 ) : map ( e1+e2+1)
D e f i n i t i o n non_isthmic e (m : map e ) k ( pr : k ≤ 2∗ e ) : map ( e+1)

Listing 13: Local Map Construction Operations.

This section presents a formalization of rooted maps in Coq, made self-contained by admitting that rooted
maps can alternatively be defined by Proposition 1. This proposition states that the vertex map, the binary
operation I and the parameterized unary operation Nk form a free and complete system of constructors
for rooted maps. The origin of this construction goes back to [WL72, Section 3], where Walsh and Lehman
decompose rooted maps by erasing their root edge, to justify a recursion relation for the number Fb,p of
rooted maps with b+p edges and p+1 vertices. Although the theorem is not explicit in [WL72], we attribute
its paternity to Walsh and Lehman.

Proposition 1 (Construction of rooted maps [WL72]). Let M be a rooted map with e(M) edges.
Then exactly one of the following cases holds:

1. M is the vertex map and e(M) = 0.
2. M = I(M1,M2) for some rooted maps M1 and M2 such that e(M) = 1 + e(M1) + e(M2).
3. M = Nk(M1) for some rooted mapM1 such that e(M) = 1+e(M1) and some natural number k ≤ 2e(M1).

The following recursive dependent type reflects the inductive structure for rooted maps suggested by Propo-
sition 1:
I n d u c t i v e rom : nat → Type :=
| mty : rom 0
| b i n : ∀ e1 e2 , rom e1 → rom e2 → rom ( e1+e2+1)
| un l : ∀ e k , k ≤ 2∗ e → rom e → rom ( e +1).
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The type name rom is an acronym for rooted ordinary maps (ROM, for short) considered in this paper,
not to be confused with the larger family of rooted general maps that we plan to study as future work. Terms
with type (rom e) are called “ROM terms of size e”. They can be seen as trees with unary and binary inner
nodes, whose unary nodes (unl e k _ t) are labeled by some natural number k ≤ n where n is the number
of inner nodes in their direct subtree t.

By analogy with permutation codes, we say that a map code is an interpretation of ROM terms either
as local maps, or as permutations representing them, or even as any combinatorial structure encoding these
permutations.

ROM terms can be interpreted as local maps by the following representation function, where map0 is
the empty local map. The binary and unary nodes are respectively interpreted by the operations presented
in Listing 13:
F i x p o i n t rom2map ( e : nat ) ( t : rom e ) : map e :=
match t w i th
| mty ⇒ map0
| b i n e1 e2 t1 t2 ⇒ i s t hm i c ( rom2map e1 t1 ) ( rom2map e2 t2 )
| un l e _ p t ⇒ non_isthmic ( rom2map e t ) p

end .

However it is simpler to decode ROM terms as reversed subexcedant lists, and then compose this map code
with the permutation code presented in Section 4.4, to obtain the rotation of the corresponding map. This
map code is presented in Section 5.3. Before that, Section 5.1 shows how to quickly validate Proposition 1
by counting, and Section 5.2 presents a recursive random generator of ROM terms.

5.1. Counting ROM Terms

The perspective of a formal proof of Proposition 1 is out of the scope of the present paper. Proposition 1
can however be checked by counting, with the Prolog library, as detailed in this section.

The Prolog predicate romterm defined in Listing 14 characterizes a family of unary-binary trees corre-
sponding to the type rom and so to the structure of Proposition 1: romterm(T ,E) holds if and only if T is a
ROM term of size E.

romterm(mty ,0).
romterm(bin(T1,T2),E) :- E > 0, Em1 is E-1, in(E1 ,0,Em1), E2 is Em1 -E1,
romterm(T1,E1), romterm(T2,E2).

romterm(unl(K,T),E) :- E > 0, Em1 is E-1, romterm(T,Em1), Kmax is 2*Em1 ,
in(K,0,Kmax).

Listing 14: ROM terms in Prolog.

With the Prolog library introduced in Section 2.3, the query

?- iterate (0,7, romterm ).

outputs in a few seconds the numbers 1, 2, 10, 74, 706, 8162, 110410 and 1708394 of distinct ROM terms of
size from 0 to 7. We recognize the first numbers of rooted ordinary maps counted by number of edges [OEIS].
This simple count gives confidence in the existence of a one-to-one correspondence between ROM terms and
ordinary rooted maps with the same size.

5.2. Recursive Random Generator of ROM Terms

From the definition of the recursive dependent type rom, using the QuickChick toolbox, we manually derive
the recursive random generator shown in Listing 15.
Again we are faced with the generation of values of a dependent type requiring proofs inside. So we rely again
on the Program mechanism to build the generator. The proof obligations part is omitted here but they are
discharged using the semantic theorem about choose as previously. We use a combinator not yet used, oneof,
which randomly chooses one of the generators in the given list or the default case (first argument) when the
list is empty. So in the case of a nonzero size, the generator randomly chooses between the constructors bin
and unl applied to generated data with a smaller size. We can notice that the generator is not structurally

romterm
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Program F i x p o i n t genRom (n : nat ) {measure n} : G ( rom n ) :=
match n wi th

0 ⇒ r e tu rnGen mty
| S n ’ ⇒ oneo f

( do2 ! k , H ← ( choose (0 , 2∗n ’ ) ) ;
l i f t G e n ( un l n ’ k _) (genRom n ’ ) )

[ ( do2 ! e1 , H ( choose (0 , n ’ ) ) ;
l i f t G e n 2 ( b in2 n ’ e1 H) (genRom e1 ) (genRom (n ’ − e1 ) ) ) ;

( do2 ! k H ← ( choose (0 , 2∗n ’ ) ) ;
l i f t G e n ( un l n ’ k _) (genRom n ’ ) )

]
end .

Listing 15: Random Generator of ROM Terms.

defined, so we must verify its termination. It is done here giving a measure which is exactly the size. The
last technical remark about this definition concerns bin2 which is more or less a coercion lemma required for
typing.

5.3. Map Code

Let us call a map code a size-preserving bijection from ROM terms to another representation of maps.
Listing 16 presents a map code rom2rslType for local maps (whose rotation is) represented by a reversed
subexcedant list. It interprets the constructors bin and unl with the operations isth and noni on RSL, that
are nothing but an abstract view of the map construction operations declared in Listing 13 and defined
in [DGG16, Section 3.2].
Program D e f i n i t i o n i s t h ( e1 : nat ) ( r1 : r s lTyp e (2∗ e1 ) )

( e2 : nat ) ( r2 : r s lTyp e (2∗ e2 ) ) : r s lTyp e (2∗ ( e1+e2+1)) :=
l e t d1 := 2∗ e1 i n
l e t d2 := 2∗ e2 i n
match d1 wi th
| 0 ⇒ match d2 wi th

| 0 ⇒ @RS 1 1 _ (@RS 0 0 _ r2 )
| S d2 ’ ⇒ @RS ( d2+1) ( d2+1) _ (@RS d2 d2 ’ _ r2 )
end

| S d1 ’ ⇒ match d2 wi th
| 0 ⇒ @RS ( d1+1) d1 ’ _ (@RS d1 d1 _ r1 )
| S _⇒ @RS ( d1+d2+1) d1 ’ _ (@RS ( d1+d2 ) ( d1 ’+d2 ) _ ( @sum_rslType d1 r1 d2 r2 ) )
end

end .

Program D e f i n i t i o n non i e ( r : r s lTyp e (2∗ e ) ) k ( k_le_2e : k ≤ 2∗ e ) : r s lTyp e (2∗ ( e+1)) :=
l e t d := 2∗ e i n
match d wi th
| 0 ⇒ @RS 1 0 _ (@RS 0 0 _ r )
| S d ’ ⇒ @RS (d+1) k _ (@RS d d ’ _ r )
end .

Program F i x p o i n t rom2rs lType ( e : nat ) ( t : rom e ) : r s lTyp e (2∗ e ) :=
match t w i th
| mty ⇒ R0
| b i n e1 e2 t1 t2 ⇒ i s t h e1 ( rom2rs lType e1 t1 ) e2 ( rom2rs lType e2 t2 )
| un l e k k_le_2e t ⇒ non i e ( rom2rs lType e t ) k k_le_2e

end .

Listing 16: Map Code in Coq.

Again, the Program facility turns the type-checking constraints into proof obligations, which are here only
linear equalities on natural numbers. They are all discharged automatically thanks to the default obligation
tactic set with the command
Loca l Ob l i g a t i o n Tac t i c := i n t r o s ; t r y omega .

It would be too technical to explain the definitions of the operations isth and noni. However we can gain
confidence into the soundness of the map code by checking the soundness conjecture
Lemma map_code_sound : ∀ e ( r : rom e ) , i s _ t r a n s i t i v e ( r s lType2pe rmut ( rom2rs lType e r ) ) .
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Table 1. Execution time (in seconds) for cursors.

Cursor Size n Number of data Why3 OCaml Coq
n-bounded arrays 5 55 = 3,125 .50 0 1.16

6 66 = 46,656 6.43 .02 1.20
7 77 = 823,543 105.90 .31 1.96
8 88 = 16,777,216 2136.63 6.79 17.20

Permutations 8 8! = 40,320 9.48 .03 1.25
9 9! = 362,880 82.92 .29 1.71

10 10! = 3,628,800 825.29 3.14 6.60

where is_transitive is a logical predicate characterizing transitive rotations [DGG16]. In this lemma the map
code is composed with the transposition code rslType2permut defined in Section 4.4 to decode ROM terms
as permutations.

We check this conjecture with the following command:
QuickCheck ( s i z e d ( fun e ⇒

f o r A l l ( genRomRotat ionAsL i s tnat e ) ( fun r ⇒ i s _ t r a n s i t i v e b (2∗ e ) r ) ) ) .
+++ Passed 10000 t e s t s (0 d i s c a r d s )

Here is_transitiveb is a Boolean function on lists of natural numbers corresponding to the logical predicate
is_transitive, and genRomRotationAsListnat is a random generator of rooted map rotations (in one-line nota-
tion). It is obtained by composition of a random generator of ROMs, the map code and a transposition code
whose code is omitted here. This transposition code is a simple adaptation of rslType2permut to permutations
in one-line notation.

Proving the lemma is left as future work.

6. Implementation

Our work is implemented in a tool named CUT, for Coq Unit Testing, freely distributed at http://
members.femto-st.fr/alain-giorgetti/en/coq-unit-testing. It has been developed with Coq 8.7.1,
SWI-Prolog 7.2.3 [SWI18] and Why3 0.88.2. It includes our extension of QuickChick for Coq 8.7 [HLDP18].

This section evaluates the efficiency of the custom generators, of their verification by tests and proofs,
and gives some metrics about our development in Coq, Prolog and Why3. All the experiments are executed
on a PC Intel Core i5-2400 3.10 GHz × 4 under Linux Ubuntu 16.04 with 15.5 GB of memory.

6.1. Cursors with Why3

We currently distribute two cursors whose soundness is formally proved with Why3: the cursor on bounded
arrays presented in Section 2.5 and a cursor on permutations. Some durations (in seconds) of their execution
are reported in Table 1, for increasing sizes n. The Why3 column concerns the interpretation by Why3 of
the cursor written in WhyML. The OCaml column concerns the OCaml code extracted from this cursor in
WhyML. The last column corresponds to an execution of a command SmallCheckWhy3 in Coq. For instance,
the generator of permutations of size 10 in Coq is evaluated with the command
SmallCheckWhy3 ( i t_pe rm l i n e 10) ( fun x : l i s t nat ⇒ t r u e ) .

The Why3 generator is slower because Why3 code is interpreted, whereas OCaml code is compiled. The
overhead in Coq comes from the extraction time, but also from the translation of OCaml arrays into Coq
lists.

6.2. Custom Random Generators

With the QuickChick toolbox we have implemented the following random recursive generators:

• genBlistAsListnat, for lists of natural numbers strictly smaller than a given bound b;

http://members.femto-st.fr/alain-giorgetti/en/coq-unit-testing
http://members.femto-st.fr/alain-giorgetti/en/coq-unit-testing
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Table 2. Execution time (in seconds) for random generators (for 10,000 data items).

Size n
Data Generator 10 100 1,000 10,000

10-bounded lists genBlistAsListnat 3 29 219 4,866
Endolines genEndolineAsListnat 4 29 264 8,604

Reversed subexcedant lists genRslAsListnat 4 28 245 7,726
RSL terms genRslType 3 28 275 8,159
ROM terms genRom 7 89 911 25,442

• genEndolineAsListnat, for lists of length n with values in [0..n−1], representing endofunctions on [0..n−1]
in one-line notation;

• genRslAsListnat and genRslType, for reversed subexcedant lists and terms representing them;
• genRom for ROM terms representing rooted maps.

We evaluate the efficiency of the random generator genX by checking true for random data of size n, with
the command
QuickCheck ( f o r A l l ( genX n ) ( fun t ⇒ t r u e ) ) .

for increasing sizes n, 10,000 generated data items, and b = 10 for genBlistAsListnat. The results in seconds
are reported in Table 2. They show that large data can be generated in a reasonable time.

6.3. Some Metrics

The development of SmallCheck added about 346 lines of Coq code and is integrated in the QuickChick files.
The CUT tool (code shared by all the generators defined in the case study) is composed of 376 lines of Coq
code and 44 lines of Prolog code added to the validation library.

The case study is composed of 14 files, 70 definitions, and 161 lemmas and theorems, for a total of 9,206
lines of Coq code. The Prolog code to test the case study is composed of 1,036 lines of code. The Coq code
to test the case study is composed of 1,660 lines of code.

With the Prolog library 15 BET suites are generated in less than 4 seconds, for all lists of length 4 or less.
They are validated in less than 60 seconds. Among them 10 test suites (in)validate invariance properties.

Random testing is applied to generate bounded lists, reversed subexcedant lists, endofunctions and per-
mutations in one-line notations. For each of these structured data, the tests are generated and executed in
around 30 seconds. So, all QuickChick random tests (10,000 test cases for each validation step, except for
the wrong conjectures) are generated and executed in less than 2 minutes.

BET with SmallCheck is applied to check 5 generator soundness properties, 7 invariance properties and
2 cancellation lemmas. They are executed in less than 13 seconds.

These are reasonable times for thousands of automatically generated tests. For comparison, the Coq
compilation time is around 20 seconds.

7. Related work

Property-Based Testing Several techniques and tools help strengthening the trust in conjectures in proof
assistants and assertions about programs manipulating structured data. Randomized property-based test-
ing (RPBT) consists in random generation of test data to validate these properties. RPBT has gained
much popularity since the appearance of QuickCheck for Haskell [CH00], followed by, e.g., Quickcheck for
Isabelle [Bul12] and QuickChick for Coq [PHD+15], already presented in Section 2. Similar tools are also
available in the proof assistants Agda [DHT03], PVS [Owr06] and FoCaLiZe [CDG10]. Bounded exhaustive
testing (BET) consists in generating all test data up to some given limit. SmallCheck and Lazy Small-
Check [RNL08] are two Haskell libraries for BET which enumerate data up to some depth. Feat [DJW12] is
similar but enumerates test data up to some size, rather than depth.

Counterexample Generation Several tools automate counterexamples generation from a given charac-
teristic constraint (invariant). In type-targeted testing [SVJ15] types are converted into queries to SMT
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solvers whose answers provide counterexamples. Constraint solving and local choice with backtracking are
combined in the generator description language Luck for Haskell [LGH+17]. It is integrated with Haskell,
but not with Coq as far as we know. In Isabelle/HOL, Nitpick is based on model-finding [BN10]. Other tools
are based on narrowing [Lin07,Cru17]. More references can be found in the introductions of the most recent
papers on this subject [LGH+17,Cru17].

Tools for Coq Cruanes and Blanchette have recently started developing a stand-alone counterexample
generator for higher-order logic (simple type theory), named Nunchaku, and front-ends for its integration
into several proof assistants [CB16]. The frontend for Isabelle/HOL is available (to replace Nitpick). A
frontend for Coq is under study. When it will be available, it will be a general-purpose generation tool
complementing QuickChick and our Coq unit testing tool composed of custom generators.

Map Formalization The theory of combinatorial maps was developed from the early 1970’s. Tutte [Tut73,
Tut79] proposed the most advanced work in this direction, developing an axiomatic theory of combinatorial
maps without referencing topology. More recently Lazarus [Laz14] conducted a computational approach on
graphs and surfaces based on combinatorial maps. He notably proposed a formal definition of the basic
operation of edge deletion on combinatorial maps. An advanced formalization related to maps is that of
combinatorial hypermaps to state and prove the four color theorem in the Coq system [Gon08,Gon05]. Note
that combinatorial hypermaps generalize combinatorial maps by allowing an arbitrary permutation L (i.e.,
not necessarily a fixed-point free involution). This formalization does not explicitly state that L and R are
bijective, but adopts the alternative definition of a hypermap as a triple of endofunctions that compose
to the identity [Gon05, p.19]. It would be interesting to investigate this idea with local maps rather than
hypermaps, and to determine to what extent it could simplify our formalization. Some formal proofs about
combinatorial maps or variants have already been carried out in the domain of computational geometry.
Dufourd et al. have developed a large Coq library specifying hypermaps used to prove some classical results
such as Euler formula for polyhedra [Duf08], the Jordan curve theorem [Duf09], and also some algorithms such
as convex hull [BDM12] and image segmentation [Duf07]. In these papers, a combinatorial map or hypermap
is represented by an inductive type with some constraints. Its constructors are related to the insertion of a
dart or the links of two darts. This representation differs from ours that relies on permutations. In [DM07],
Dubois and Mota proposed a formalization of generalized maps using the B formalism, very close to the
mathematical presentation with permutations and involutions. Here, we simplify the structure by fixing the
involution.

8. Conclusion

We have shown how to use random testing and bounded exhaustive testing to validate Coq definitions and
conjectures. We propose two approaches to bounded exhaustive testing. The first one, outside Coq, is based
on logical specifications and uses Prolog and a validation library to generate test cases in Coq scripts. The
second one uses an iterator inside Coq. The iterator can be either written in Coq or be connected to correct-
by-construction OCaml generators developed outside Coq. We have applied these methods on a case study
including permutations and rooted maps.

This work is also a contribution in combinatorics and in formalization of mathematics with the Coq proof
assistant. We have completed a classical formalization of permutations as injective endofunctions with a for-
malization of subexcedant sequences, widely used in combinatorics to encode permutations. We have proved
a size-preserving one-to-one correspondence (a. k. a. permutation code) between the two representations. We
have formalized three operations on these permutations and sequences, namely insertion, contraction and
direct sum. A contribution to combinatorics is a generalization of these three operations to any natural
function. We have also defined a recursive dependent type for rooted maps and its correspondence with
local maps — a representation of each map by one permutation, proposed in a former work [DGG16]. This
formalization of maps differs from all previous ones [DM07,Gon08,Duf08].

Directions for future work are numerous, they concern testing and proving aspects but also with formal-
ization of combinatorial objects.

First, we plan to have a better integration of SmallCheck in QuickChick. Currently the user has to choose
one of the two testing methods inside Coq, but they cannot be combined in a single test. An interesting
complementary work is to develop and distribute a large library of iterators proved with Why3. It is valuable
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both in the context of Why3 but also in the context of Coq: via the OCaml extraction mechanisms of Why3
and Coq, these generators can be used through BET inside Coq.

A next step concerns the formal proof of Proposition 1 that would finally and formally justify our type
proposal for rooted maps. This could be generalized to other families of combinatorial objects. Permutations
and type quotients are already available in the Mathematical Components library [Mat18] using the SSReflect
proof language. The rest of our formalization is not yet in this library. One of our objectives is to integrate
our project in this library.
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