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PLANE POLAR CREMONA MAPS OF ARBITRARILY LARGE DEGREE IN POSITIVE CHARACTERISTIC

A result of I.V. Dolgachev states that the complex homaloidal polynomials in three variables, i.e. the complex homogeneous polynomials whose polar map is birational, are of degree at most three. In this note we describe homaloidal polynomials in three variables of arbitrarily large degree in positive characteristic.

Introduction

Given a homogeneous polynomial f ∈ k[x 0 , . . . , x m ] over a field k, the polar map Φ f : P m k P m k of f is the rational map defined by the linear system ∂f ∂x0 , . . . , ∂f ∂xm . The polynomial f is called homaloidal if ∂f ∂x0 , . . . , ∂f ∂xm has no fixed component and Φ f is birational.

It was established by I.V. Dolgachev [Dol00, Theorem 4] that if k = C, the homaloidal polynomials in three variables are either of degree 2, defining a smooth conic in the projective plane, or of degree 3, defining either a union of three lines in general position or a union of a smooth conic with one of its tangents. These polynomials remain homaloidal when the base field k has characteristic greater than 2. This leads to the following question which is a generalisation of [DHS12, Question 3.7].

Problem 1. Over a field k of positive characteristic, are there other homaloidal polynomials than the ones in Dolgachev's classification?

In [START_REF] Bignalet-Cazalet | Torsion of a finite base locus[END_REF]Proposition 4.6], a first example of a homaloidal polynomial of degree 5 over a field of characteristic 3 was produced, answering negatively both Problem 1 and [DHS12, Question 3.7]. Very recently, the following example of a homaloidal curve of degree 5 in characteristic 3 was also described.

Example 2. In characteristic 3, the polynomial f = x 0 (x 2 1 + x 0 x 2 )(2x 2 1 + x 0 x 2 ), whose zero locus is the union of two conics intersecting with multiplicity two in two distinct points with the tangent at one intersection point, is homaloidal.

The negative answer to Problem 1 leads to the following question. Problem 3. Does there exists homaloidal polynomials in three variables of arbitrary large degree over fields of arbitrary large characteristic? Date: October 2, 2019. 2010 Mathematics Subject Classification. 13D02, 14E05, 14B05, Key words and phrases. rational maps, homaloidal hypersurfaces, homaloidal curves, naive graph, torsion of the symmetric algebra, Milnor number, Swan conductor.
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In this note, we answer negatively this question, see Theorem 2.4 for our expanded result.

Theorem A. Let n ≥ 2 be an integer and let k be a field of characteristic p that divides n. Then the polynomial

f n ∈ k[x 0 , x 1 , x 2 ] whose zero locus F n = V(f n ) in P 2
k is the union of n distinct lines through a fixed point z 0 and any other line not passing through z 0 is homaloidal.

This result provides an answer to Problem 3. For instance, let n ∈ N >0 be such that n ≡ 0 mod 5 and let k be a field of characteristic 5. Then the polynomial f n in Theorem A has degree n + 1 and is homaloidal. Moreover, given a prime number p, a field k of characteristic p and a positive integer m, Theorem A gives a homaloidal polynomial of degree mp + 1, so homaloidal polynomials exist in arbitrarily high degree and in any prime characteristic.

Remark that the base ideal of the polar map Φ f , i.e. the ideal generated by the partial derivatives of a polynomial f defines the singular locus of the zero locus V(f ) of f in P 2 k . In this direction, the proof given by I.V.Dolgachev about the classification of homaloidal complex polynomials relies on the Jung-Milnor's formula over C relating several invariants of singularities [Dol00, Lemma 3]. In contrast, our proof of Theorem A relies on the study of the torsion of the symmetric algebra of the base ideal of Φ f , an approach that fits in line with previous works such as [START_REF] Russo | On birational maps and jacobian matrices[END_REF], [START_REF] Dória | A characteristic free criterion of birationality[END_REF], and [START_REF] Bignalet-Cazalet | Torsion of a finite base locus[END_REF]. We emphasize that all the polynomials we consider in this note define free curves (a curve being free if, by definition, the base ideal of the polar map is determinantal [Dim17, Def 2.1]). We specially focus on this case since, when the base ideal has a linear syzygy, free curves are the curves whose singular schemes have maximal length [Dim17, Cor 1.2].

Contents of the paper. In the first section, we recall the relations between the symmetric algebra of the base ideal of a rational map Φ and the graph of Φ. Birationality of a map can be checked via its graph which explains the strategy of detecting a birational map via the symmetric algebra of its base ideal.

The second section constitutes the heart of our work. As a central idea, one can study the reduction modulo p of the presentation matrix of the base ideal in order to predict a drop of the topological degree of the polar map, see Subsection 2.1. The next step is then to evaluate this drop. We carry on this evaluation by describing the generic fibre of the naive graph and thus describing the generic fibre of the graph itself. This implies in particular that the polynomials f n are homaloidal (Lemma 2.3). We end this section by providing another example of a polynomial of degree 5 which is homaloidal in characteristic 3. Its zero locus in P 2 k is the union of the unicuspidal ramphoïd quartic and the tangent cone at its cusp (Example 2.6).

In the third section, we return to the description of the base locus of the polar map as the ideal of the singular locus of a curve. Theorem A provides in particular examples of arbitrarily big Swan conductors (Proposition 3.1).

The explicit computations given in this paper were made using basic functions of Macaulay2 and the Cremona package [START_REF] Stagliano | A Macaulay2 package for computations with rational maps[END_REF] associated. The corresponding codes are available on request.

Graph and naive graph

In this note, all the fields are assumed to be algebraically closed and denoted by the same letter k.

1.1. Multidegree of a subscheme of P 2 × P 2 , projective degrees. For this presentation, we follow [Dol11, 7.1]. Given l ∈ {0, 1, 2}, we denote by H l a general codimension l linear subspace of P 2 k . For a subscheme

X ⊂ P 2 k × P 2 k of codimension 2, the multidegree d 2 (X), d 1 (X), d 0 (X) is defined by : (1.1) d i (X) = length X ∩ p -1 1 (H i ) ∩ p -1 2 (H 2-i ) where p 1 : P 2 k × P 2 k → P 2 k and p 2 : P 2 k × P 2 k → P 2
k are the first and second projection respectively.

Consider now a rational map Φ = (φ 0 :

φ 1 : φ 2 ) : P 2 k P 2 k with base ideal I = (φ 0 , φ 1 , φ 2 ) ⊂ R = k[x 0 , x 1 , x 2 ]
where φ 0 , φ 1 , φ 2 are homogeneous polynomials of the same degree that do not share any common factor. The graph Γ of Φ is by definition the closure of {(x, Φ(x)), x ∈ P 2 k \V(I)} ⊂ P 2 k × P 2 k in the Zariski topology. It is an irreducible variety of codimension 2. We define the projective degrees

d 2 (Φ), d 1 (Φ), d 0 (Φ) of Φ as the multidegree d 2 (Γ), d 1 (Γ), d 0 (Γ) of Γ.
Since Φ is birational if and only if d 2 (Φ) = 1, this last quantity has a special importance and is called the topological degree of Φ. 

Decomposition of the naive graph

. Let Φ = (φ 0 : φ 1 : φ 2 ) : P 2 k P 2 k be a rational map with base ideal I = (φ 0 , φ 1 , φ 2 ) in the coordinate ring R = k[x 0 , x 1 , x 2 ] of P 2 k and let R(I) := ⊕ i≥0 I i t i ⊂ R[t]
ideal I = (φ 0 , φ 1 , φ 2 ) ⊂ k[x 0 , x 1 , x 2 ]
of height at least 2 and where φ 0 , φ 1 , φ 2 have the same degree d. Note that, in this setting, the condition height(I) ≥ 2 is equivalent to the fact that (φ 0 , φ 1 , φ 2 ) do not share any common factor, a property which we always assume in the following. Assume moreover that Φ is determinantal, i.e. that the polynomials φ 0 , φ 1 , φ 2 are the 2-minors of a given 3 × 2-matrix such that all its entries in the first column are homogeneous of degree a and all its entries in the second column are homogeneous of degree b (hence a + b = d). The Hilbert-Burch theorem [Eis95, Theorem 20.15] implies that I has a free resolution of the form:

0 R 2 R 3 I 0. M (φ0 φ1 φ2)
where M is a 3 × 2-matrix with entries in R. Hence M is a presentation matrix of I and P(I) is the intersection of two divisors of P 2 k × P 2 k of bidegree (a, 1) and (b, 1) respectively. Considering the case where I is of linear type, since Γ has codimension 2, P(I) = Γ is a complete intersection and the projective degrees of Φ are given by Bézout's theorem:

     d 2 (Φ) = d 2 (P(I)) = ab d 1 (Φ) = d 1 (P(I)) = a + b d 0 (Φ) = d 0 (P(I)) = 1.
Assume that Φ : P 2 k P 2 k is a determinantal rational map with base ideal 

I ⊂ R = k[x 0 , x 1 , x 2 ] of

Contribution of the torsion

In this section, following the situation described in Example 1.4, we illustrate first on an example how to estimate the drop of the topological degree in positive characteristic compared to characteristic 0. We analyse then in greater generality how this modification impacts the computation of the topological degree of Φ.

Reduction of the presentation matrix modulo p.

In what follows, for a homogeneous ideal I of R = k[x 0 , x 1 , x 2 ] and an integer t, we denote by I t the homogeneous piece of I of degree t. Let n ∈ N >1 and let F n be the union of n distinct lines through a point z 0 ∈ P 2 k with any other line not passing through z 0 . We can reduce to the situation where V(x 2 ) is the latter line and two lines among the n th firsts are V(x 0 ) and V(x 1 ) so that z 0 = (0 : 0 : 1). We can consequently assume without loss of generality that an equation of F n reads f n = x 0 x 1 l 2 • • • l n-1 x 2 where, for all i ∈ {2, . . . , n -1}, l i belongs to (x 0 , x 1 ) 1 (set f n = x 0 x 1 x 2 if n = 2). The ideal I of partial derivatives of f n is then equals to

I = (x 1 l 2 • • • l n-1 x 2 +x 0 x 1 ∂ ∂x 0 (l 2 • • • l n-1 )x 2 , x 0 l 2 • • • l n-1 x 2 + x 0 x 1 ∂ ∂x 1 (l 2 • • • l n-1 )x 2 , x 0 x 1 l 2 • • • l n-1 ).
Lemma 2.1. A minimal presentation matrix of I reads

M =   x 0 0 x 1 x 1 l 2 • • • l n-1 -nx 2 -l 2 • • • l n-1 x 2 -x 1 ∂ ∂x1 (l 2 • • • l n-1 )x 2   Proof.
The ideal I has depth 2 for otherwise the first two generators of I would be divisible by either x 0 , x 1 or l i for i ∈ {2, . . . , n -1} which is excluded by the assumption that all the lines in F n are distinct. A direct computation shows that

     x 1 x 2 l 2 . . . l n-1 + x 0 x 1 x 2 ∂ ∂x0 (l 2 . . . l n-1 ) = M 1 x 0 x 2 l 2 . . . l n-1 + x 0 x 1 x 2 ∂ ∂x1 (l 2 . . . l n-1 ) = M 2 x 0 x 1 l 2 . . . l n-1 = M 3
where, given j ∈ {1, 2, 3}, M j stands for (-1) j times the minor obtained from M by leaving out the j th row (in order to check these equalities, remark that, for any i ∈ {2, . . . , n -1},

l i = x 0 ∂li x0 + x 1 ∂li x1
). Hence I is a determinantal ideal given by the 2-minors of M . Since it has the expected depth, the Hilbert-Burch theorem asserts that a free resolution of I reads:

0 R 2 R 3 I 0.
M Moreover, since it does not have constant entries, M is a minimal presentation matrix of I.

Proposition 2.2. Let n ∈ N >1 and k be an algebraically closed field such that char(k) does not divide n. Then I is of linear type and the polar map Φ fn of f n has multidegree (n -1, n, 1).

Proof. Since M has one column of linear entries and one column of entries of degree n, the naive multidegree is (n -1, n, 1), see Example 1.2. Moreover Fitt 2 (I) = (x 0 , x 1 , x 2 ) is not supported on any point of P 2 k so, by (1.2), I is of linear type. Hence the graph Γ and the naive graph P(I) coincide, so the projective degrees and the naive projective degrees of Φ fn coincide.

We consider now the case where char(k) divides n in a more general situation. 2.2. Weight of the torsion. In all the section, we put n ∈ N >1 , k be any field unless otherwise specified, R = k[x 0 , x 1 , x 2 ] and we consider the ideal I generated by the 2-minors of the matrix

M =   λ 0 p 0 λ 1 p 1 λ 2 p 2   with entries in R = k[x 0 , x 1 , x 2 ]
such that for all j ∈ {0, 1, 2}, λ j belongs to (x 0 , x 1 ) 1 and p j belongs to (x 0 , x 1 ) n-2 n-1 , the homogeneous piece of degree n -1 of the ideal (x 0 , x 1 ) n-2 . We assume moreover that I has height 2 and that there exists j ∈ {0, 1, 2} such that p j ∈ (x 0 , x 1 ) n-2 n-1 \(x 0 , x 1 ) n-1 n-1 . In S = R[y 0 , y 1 , y 2 ], consider now the ideal

I P(I) = (λ 0 y 0 + λ 1 y 1 + λ 2 y 2 , y 0 p 0 + y 1 p 1 + y 2 p 2 )
generated by the entries of the matrix y 0 y 1 y 2 M . Under the conditions imposed on the entries of M , the naive graph P(I) = V(I P(I) ) ⊂ P 2

x × P 2 y has multidegree (n -1, n, 1) and is the union of a torsion part T supported on V(x 0 , x 1 ), see (1.2), and of the graph Γ = P(I)\V(x 0 , x 1 ) of the map Φ defined by the 2-minors of M . The next result is a consequence of [BCS18, Theorem 5.14] but we will give a self-contained proof.

Lemma 2.3. Under the previous conditions on M , the torsion component T of P(I) has multidegree (n -2, 0, 0) and the graph Γ of Φ has multidegree (1, n, 1).

Proof. We analyse separately each element of the multidegree d 2 (Γ), d 1 (Γ), d 0 (Γ) .

• Case i = 2. Take a general point y ∈ P 2 k as the intersection of two general lines H 1 , H 2 of P 2 k and consider the intersection P(I) y = P(I) ∩ p -1 2 (H 1 ) ∩ p -1 2 (H 2 ) ⊂ P 2 y . Under our assumptions, this intersection is a complete intersection of a line and a curve of degree n -1 in P 2 y . Moreover, since λ j ∈ (x 0 , x 1 ) 1 for all j ∈ {0, 1, 2} and since there exists j ∈ {0, 1, 2} such that p j ∈ (x 0 , x 1 ) n-2 n-1 \(x 0 , x 1 ) n-1 n-1 , this complete intersection decomposes as the union of the point V(x 0 , x 1 ) y ∈ P 2 y with multiplicity n -2 and of another point with multiplicity 1. By the generality assumption on y, we can assume that the subscheme P(I) ∩ P 2 y is defined by the ideal x 1 , x n-2 0 (x 0 + α) for some α ∈ k\{0}. Since Γ = P(I)\V(x 0 , x 1 ) is defined by the saturation [I P(I) : (x 0 : x 1 ) ∞ ] of the ideal I P(I) of P(I) by the ideal (x 0 , x 1 ) = Fitt 2 (I), see (1.2), the only points of P 2 k over which the fibre of P(I) contributes to d 2 (Γ) are those different from V(x 0 , x 1 ). Thus the other point is the only

element in Γ ∩ p -1 2 (H 1 ) ∩ p -1 2 (H 2 ). Hence d 2 (Γ) = length Γ ∩ p -1 2 (H 1 ) ∩ p -1 2 (H 2 ) = 1 and d 2 (T) = d 2 (P(I)) -d 2 (Γ) = n -2.
• Case i = 1. Since I has height 2, the linear system defined by the 2-minors of M does not have fixed components so d 1 (Γ) = d 1 P(I) = n and thus d 1 (T) = 0. • Case i = 0. The torsion component T being supported over V(x 0 , x 1 ), the intersection T ∩ p -1 1 (H 1 ) ∩ p -1 1 (H 2 ) of T with inverse images of general lines in P 2 k is empty so d 0 (T) = 0 and d 0 (Γ) = d 0 (P(I)) -d 0 (T) = 1. To sum up, T has multidegree (n -2, 0, 0) and Γ has multidegree

(n -1, n, 1) -(n -2, 0, 0) = (1, n, 1).
We have the following extension of Theorem A.

Theorem 2.4.

(1) Let n ∈ N >1 and assume that p = char k divides n, then the union F n = V(f n ) of n distinct lines in the pencil through a given point z 0 with another line not passing through z 0 is homaloidal.

(2) Let n ∈ N >1 and assume that p = char k divides n(n-1)-1, then the curve

G n = V x 0 x 1 (x n-1 1 + x n-2 0 x 2 ) is homaloidal.
Proof.

(1) By Lemma 2.1, a presentation matrix of the ideal I of partial derivatives of f n verifies the conditions of Lemma 2.3. Hence Φ fn is birational and since the associated linear system has no fixed component, the polynomial f n is homaloidal.

(2) Let n ∈ N >1 . The ideal

I = (x n 1 + (n -1)x n-2 0 x 1 x 2 , nx 0 x n-1 1 + x n-1 0 x 2 , x n-1 0 x 1 ) of partial derivatives of g n = x 0 x 1 (x n-1 1 + x n-2 0 x 2 ) has presentation matrix M =   nx 0 0 -x 1 x n-2 0 x 1 -(n(n -1) -1)x 2 -nx n-1 1 -x n-2 0 x 2   , Indeed, I has height 2 for otherwise x 0 or x 1 would divide x n 1 + (n - 1)x n-2 0 x 1 x 2 and nx 0 x n-1 1 + x n-1 0 x 2 which is not the case. Moreover      x n 1 + (n -1)x n-2 0 x 1 x 2 = M 1 nx 0 x n-1 1 + x n-1 0 x 2 = M 2 x n-1 0 x 1 = M 3 ,
where given j ∈ {1, 2, 3}, M j is equal to (-1) j times the minor obtained from M by leaving out the j th row. Hence I is a determinantal ideal and, by application of Hilbert-Burch theorem, M is a minimal presentation matrix of I. Now, if p divides n(n -1) -1, the matrix M verifies the conditions of Lemma 2.3. So, in this case, Φ gn is birational and g n is homaloidal.

Remark 2.5. The method of reduction modulo p we just described also applies to Example 2 and to the quintic Q 5 = V x 0 (x 2 1 + x 0 x 2 )(x 2 1 + x 0 x 2 + x 2 0 ) described in [START_REF] Bignalet-Cazalet | Torsion of a finite base locus[END_REF].

2.3. Limits and perspectives. The fact that the presentation matrix of the jacobian ideal reduces well modulo p does not always occur, as illustrated by the following example.

Example 2.6. Let h = x 2 (x 4 1 -2x 0 x 2 1 x 2 + x 2 0 x 2 2 -x 1 x 3 2 ) ∈ k[x 0 , x 1 , x 2 ]. Its zero locus in P 2 k is the union of the unicuspidal ramphoïd quartic with the tangent cone at its cusp, see [START_REF] Moe | Rational cuspidal curves[END_REF]. Over a field k of characteristic 0, a computation with Macaulay2 shows that a presentation matrix of the ideal of partial derivatives of h reads:

  15x 2 1 + 3x 0 x 2 72x 0 x 1 + 15x 2 2 8x 1 x 2 2x 2 1 + 30x 0 x 2 -2x 2 2 -8x 1 x 2   .
We can a priori not expect to apply Lemma 2.3 after reduction modulo p. However, after reducing modulo 3, a presentation matrix of the reduction of I modulo 3 reads

  0 x 3 1 -x 0 x 1 x 2 -x 3 2 x 1 x 0 x 2 2 -x 2 -x 1 x 2 2   .
This implies that the polar map of h is birational by Lemma 2.3 (here, remark that the torsion is supported on V(x 1 , x 2 ) and that the maximal power of x 0 is 1 is the second column). By application of Hilbert-Burch theorem, we also have that the induced linear system does not have fix components so h is actually homaloidal.

  be the Rees algebra of I. By [Dol00, 7.1.3] the blow-up Proj R(I) of P 2 k with respect to I is the graph Γ of Φ. Moreover, R(I) is the epimorphic image of the symmetric algebra S(I) of I via the epimorphisms I ⊗i ։ I i . Hence, the ideal of the graph Γ ⊂ P 2 k × P 2 k of Φ contains the ideal of P(I) = Proj S(I) ⊂ P 2 k × P 2 k generated by the entries of the matrix y 0 y 1 y 2 M S where S = R[y 0 , y 1 , y 2 ] stands for the coordinate ring of P 2 k × P 2 k and M S stands for a presentation matrix of I ⊂ R tensored with S [BC18, Subsection 1.1] (note that we use the same notation M and M S from now on). The ideal I is said to be of linear type if Γ = P(I) [Vas05, 1.1 Ideals of linear type]. Definition 1.1. The naive graph of Φ is the projectivization P(I) = Proj S(I) of the symmetric algebra of I. Example 1.2. Let Φ = (φ 0 : φ 1 : φ 2 ) : P 2 k P 2 k be a dominant rational map with base

  height 2 and denote by M the 3 × 2-presentation matrix of I. Then the complement subscheme T = P(I)\Γ of Γ in P(I) is supported on (1.2) x∈V Fitt2(I) {x} × P 2 k where Fitt 2 (I) is the second Fitting ideal of I [Eis95, Corollary-Definition 20.4], by definition generated by the entries of M , see [BC18, Corollary 1.4] for a reference. Definition 1.3. Let Φ = (φ 0 : φ 1 : φ 2 ) : P 2 k P 2 k be a determinantal rational map with base ideal I = (φ 0 , φ 1 , φ 2 ) of height 2. The naive projective degrees d 2 (Φ), d 1 (Φ), d 0 (Φ) of Φ are defined by the multidegree d 2 (P(I)), d 1 (P(I)), d 0 (P(I)) of its naive graph P(I). Example 1.4. If I is not necessarily of linear type in Example 1.2, we still have that the naive projective degree of Φ are (ab, a+b, 1) because P(I) is still a complete intersection. However, if there is an extra part T = P(I)\Γ in P(I) with support as in (1.2), we have then d 2 (P(I)), d 1 (P(I)), d 0 (P(I)) = d 2 (Γ), d 1 (Γ), d 0 (Γ) + d 2 (T), d 1 (T), d 0 (T) . So the topological degree d 2 (Φ) is strictly smaller than d 2 (Φ) because d 2 (T) ≥ length V Fitt 2 (I) is non zero. The quantity d 2 (Γ) = d 2 (P(I)) -d 2 (T) depends moreover on the scheme structure of T and is the object of Subsection 2.2.
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Milnor numbers and Swan conductors

Let us now focus on the singularities of the curves we considered in Theorem 2.4. We follow here the presentation in [START_REF] Dolgachev | Polar Cremona transformation[END_REF] and [START_REF] Nguyen | Invariants of plane curve singularities and Plücker formulas in positive characteristic[END_REF]. Fix an algebraically closed field k.

Let f ∈ k[x 0 , x 1 , x 2 ] be homogeneous of degree d and consider the ideal I = (f 0 , f 1 , f 2 ) of the partial derivatives of f . Assume moreover that the linear system defined by the f i does not have fixed components. Given z ∈ Z = V(I) ⊂ P 2 k , define the local Milnor number µ f,z of f at z as Denoting by Φ f the polar map of f defined by f 0 , f 1 , f 2 , we have that

Define also the conductor invariant δ(f, z) as the length of the quotient module O f,z /O f,z , where O f,z is the normalization of the local ring O f,z . Over the field of complex number k = C, Jung-Milnor formula, [Mil68, Th. 10.5] establishes a relation between the local Milnor number µ f,z at z ∈ Z and δ(f, z), namely:

where r(f, z) denotes the number of local branches of F = V(f ) at z. The classification of complex homaloidal curves of I.V. Dolgachev in [START_REF] Dolgachev | Polar Cremona transformation[END_REF] relies on this formula which provides constraints on the type of singularities of a homaloidal complex curve.

In characteristic p > 0, P. Deligne showed that one has to add a corrective term depending on p for the formula to hold (cf. [START_REF] Deligne | La formule de Milnor. SGA 7 II[END_REF], [START_REF] Melle-Hernández | Pencils of curves on smooth surfaces[END_REF]), that is:

where Sw p (f, z) denotes the Swan conductor of f at z (see [Del73, 1.7, 1.8] for the definition). By [Ngu16, Corollary 3.2], Sw p (f, z) = 0 if p > d(d -1). Hence, given a polynomial f ∈ Z[x 0 , x 1 , x 2 ] of degree d, if the characteristic p is big enough with respect to d, the global Milnor number of F = V(f ) is the same as if one considers the equation of F over k or C. For big enough primes p, the topological degree of the polar map Φ f is thus invariant after reduction of f modulo p. On the other hand, if p is smaller than d(d -1), the line arrangements 

Proof. Let n ∈ N >1 . As explained at the beginning of Subsection 2.1, we can reduce to the case where F n has equation x 0 x 1 l 2 • • • l n-1 x 2 and z 0 = (0 : 0 : 1). Hence, the singular locus Z of F n is supported on the union

where for i ∈ {1, . . . , n}, (α i : β i : 0) are the intersection points of V(x 2 ) with V x 0 x 1 l 2 • • • l n-1 . Because the intersection between V(x 2 ) and the n th firsts lines is transverse, each local Milnor number µ Fn,(αi:βi:0) is equal to 1.

Moreover, by (3.1), we have that:

Now, if p = 0 then d 2 (Φ fn ) = n -1 by Proposition 2.2 and since Sw(f n , z 0 ) = 0, we have 2δ(f n , z 0 ) -r(f n , z 0 ) + 1 = (n + 1) 2 . Thus, by Theorem 2.4, if p divides n, we have d 2 (Φ fn ) = 1 = n 2 -n -(n -1) 2 + Sw p (f n , z 0 ) so Sw p (f n , z 0 ) = n -2.