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Abstract   Cartographic generalisation seeks to summarise geographical information to produce legible maps at 

smaller scales. Past research led to the development of many automated cartographic generalisation processes, 

each one being more or less specialised to a particular problem: a landscape like urban areas, a data theme like 

land use, a cartographic conflict like linear symbol overlap or most of the time of mix of the three. This paper 

deals with the development of a model allowing collaborative generalisation i.e. the collaboration between au-

tomatic processes like these in order to tackle the generalisation of a complete map. CollaGen, our proposed 

model, allows to partition data in geographic spaces and to find to best suited process to generalise each space. 

The applications of a process on a space are automatically orchestrated. Interoperability between processes is 

managed thanks to formal constraints and side effects are monitored after each process application. Results from 

CollaGen prototype are shown and discussed. 

1. Background and Objectives  

Cartographic generalisation seeks to summarise geographic data to produce legible maps at smaller scales. The 

automation of cartographic generalisation would make the production of map series easier as well as it would al-

low quality on-demand mapping. The past twenty years of research in the generalisation domain have lead to the 

development of many different and complementary automatic models and processes. (Barrault et al. 2001, Harrie 

and Sarjakoski 2002, Duchêne 2004, Bader et al. 2005, Haunert 2007) are a small sample of the available carto-

graphic generalisation processes. 

If so many processes have been developed over the years, it is due to the impossibility to solve the complex 

problem of generalisation with a single process. Indeed, every process is only completely relevant for a limited 

part of the generalisation problem. Some processes are well adapted to particular landscapes: AGENT (Ruas 

1999, Barrault et al. 2001) is designed for urban generalisation while GAEL (Gaffuri 2007) may be specialised 

to deal with high relief landscapes. Moreover, some are only relevant for the generalisation of a specific data 

theme: (Haunert 2007) is dedicated to land use generalisation for instance. Added to that, some are relevant for 

solving a limited part of the cartographic conflicts resulting from scale change: for instance, the simulated an-

nealing process of (Ware et al. 2003) is designed for solving proximity conflicts. Finally, some mix the three 

previous cases: the Elastic Beams (Bader et al. 2005) are relevant for road overlap conflicts (theme and conflict). 

Either automatically producing map series or on-demand mapping requires to be able to generalise any land-

scape, data theme or solve any necessary kind of conflict, which is not possible using a single existing process. 

Rather than developing a new complete generalisation process, which seems a bit rash, the objectives of our re-

search is to benefit from the existing processes and make them work together. We propose a new framework, 

Collaborative Generalisation (CG), to make processes collaborate to correctly generalise a entire map.  

The second part of the paper describes the CG approach and the CollaGen model. The third part focuses on 

the results obtained with CollaGen. The fourth part draws some conclusions and proposes future plans. 



2. Approach and Methods  

2.1. The Collaborative Generalisation Framework  

Automatic generalisation research first tried to answer to the questions “why, when and how to generalise?” 

(McMaster and Shea 1988, Brassel and Weibel 1988). Inspired from (Regnauld 2007) and (Duchêne and Gaffuri 

2008), the CG framework we define aims at allowing an answer to the question why, when and how to apply 

which automatic process? Within this framework, automatic generalisation processes are applied on parts of 

space where they are expected to be efficient while side effects are likely managed at generalisation neighbour-

hood (Fig.  1). 

 
Fig.  1. The collaboration principle between generalisation processes. A process 1 is carried out on the town area, a process 2 on 

the rural area, and then a process 3 on the mountain area and finally a process 4 is carried out on the road network. Side effects are 

corrected at the neighbourhood (dashed arrows) of application spaces.  

2.2. Overview of CG Framework Components 

Generalising data within the CG framework brings about specific problems like process interoperability, treat-

ment heterogeneity or side effects (Touya 2008). The framework function analysis lead to a six main compo-

nents and three resources groups structure (Fig.  1.2). Partitioning builds the geographic spaces where the avail-

able generalisation processes can be applied. The Translator parameterises the processes. The Registry chooses 

the process to generalise a given space. The Observation provides online evaluation. Side effects are managed by 

the eponymous component. Finally, the Scheduling Component orchestrates the whole process. 

 
Fig.  1.2. The main Components (rectangles) and Resources (ellipses) of a Collaborative Generalisation framework and how the 

components act on the resources (plain arrows). Dashed arrows show that formal knowledge is used by each component.  

Within the CG framework, we developed the CollaGen model that implements all the aspects of collaborative 

generalisation defined in Fig.  1.2. The next parts describe how each aspect is managed in CollaGen. 

2.3. The CollaGen Model 

2.3.1. Automatic Generalisation Processes  
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CG consists in making several available automatic processes collaborate to optimise the entire map generalisa-

tion. Thus, we consider as an available automatic generalisation process, any process that can be triggered on 

geographic data from the software platform the CG framework is developed on. A process is a computer pro-

gram that automatically triggers generalisation operator (e.g. simplification, displacement...) sequences on geo-

graphic objects. For instance, in CollaGen, developed on a research platform (Renard et al. 2010), AGENT 

(Ruas 1999), CartACom (Duchêne 2004), GAEL (Gaffuri 2007), Least Squares (Harrie and Sarjakoski 2002) or 

road selection processes are implemented and thus available for collaboration. Processes published as web ser-

vices (Regnauld 2007, Neun et al. 2008) could also be considered as available processes. 

2.3.2. Geographic Spaces  

We define a geographic space as a geographically meaningful extract of the data that can be a relevant input for 

a given generalisation process (Touya 2010). The use of geographic spaces in CollaGen is useful for both opti-

mising the use of the existing generalisation processes and partitioning the data to avoid the processing of very 

large datasets. The geographic spaces (Fig.  3) can be areal (e.g. urban or rural area), thematic (e.g. road network 

or vegetation) or both areal and thematic (e.g. mountain roads). 

 
Fig.  3. (a) buildings in black, urban areas in red and rurban areas in blue. (b) vegetation thematic space on the same area. (c) 

mountains roads space (in the rectangle). 

It can be noticed that with such a definition, the geographic spaces do not form a mathematical partition as 

metric spaces can overlap and thematic spaces cross metric spaces. Spaces can be cut in several portions in order 

to keep small spaces and minimise processing time.  

Moreover, some emerging spaces can be managed by CollaGen: they are sub-spaces where conflicts remain 

unsolved. During the generalisation of a space by a given process, the observation component can identify con-

flict clusters (close conflicting objects) that emerge as sub-spaces to be generalised by another process than the 

one processing the whole space (§2.3.9).  

2.3.3. Formalised Knowledge in CollaGen  

Formalised cartographic generalisation knowledge is necessary to allow process collaboration. The model de-

signer (e.g. we are the CollaGen model designer) has to provide a generalisation ontology and sequencing rules; 

a process developer (the one that makes a new generalisation process available for collaboration) has to provide 

a process description; the user (the one that generalises data) has to provide generalisation constraints and oper-

ation rules (Fig.  4).  

- The generalisation ontology is the support for sharing a common vocabulary in the collaboration model. 

It helps to express that map specification (“buildings smaller than 50 m² must be deleted”), a data type 

(“BATIMENT” class) or a process requirement (“agent_building” in AGENT process) deal with the 

same concept of ‘building’ for instance. 

- The sequencing rules are guidelines for sequencing applications of processes on geographic spaces. As 

in the Global Master Plan of (Ruas and Plazanet 1996), it allows to formalise that ‘road selection’ 

should be triggered before ‘urban generalisation’ for instance, or that ‘urban areas’ should be general-

ised before ‘rural areas’. 



- The generalisation constraints and the operation rules formalise the map specifications. The formal 

model summarises past research (Beard 1991, Stöter et al. 2007, Duchêne and Gaffuri 2008) and allows 

to express different constraints like ‘building area > 0.2 map mm²’, ‘building block density should be 

preserved’ or ‘very concave buildings should maintain initial concavity with 10% margin’. 

- A process description formalises the capabilities of a generalisation process. As for web services com-

position, capabilities are described with pre and post conditions (Lutz 2007). In CollaGen, pre condi-

tions are adapted spaces for the process and post conditions are a priori satisfied generalisations con-

straints and operation rules (after the process has been applied). 

 
Fig.  4. A diagram of the 5 parts of formalised knowledge and their use in the collaborative model. The dashed arrows show that 

the Ontology provides shared concepts to every part. 

(Touya et al. 2010) describes how each piece of formalised knowledge is modelled in CollaGen and how it 

can be acquired by a user, a process developer or the model designer. 

2.3.4. The CollaGen Workflow 

CollaGen proposes a workflow for CG to chain the components actions (Fig.  5). 

 
Fig.  5. Simplified view of the sequence of CollaGen generalisation (emergence mechanism is not included). Each box is the ac-

tion of one component. 

As a simplified example, let us imagine an area that is firstly partitioned (into two rural spaces, an urban 

space and the road network), and three processes (AGENT, CartACom and Beams). Then, the urban space is 

chosen and the registry chooses AGENT. The process is parameterised according to the constraints and general-

ised. Generalisation is evaluated as good and there is no side effect. Then, the next chosen space type is rural and 

the two instances are ordered. CartACom is chosen and generalises the two instances correctly without side ef-

fects. Finally, the Beams generalise the remaining space (road network) but generates side effects by overlapping 

buildings. Then, the side effects are corrected by a specific process (Least Squares here) and the CollaGen work-

flow is finished. An implemented version of this example is illustrated in Fig.  15. 

2.3.5. Partitioning Component  

The partitioning component is responsible for the creation of the geographic spaces as additional data (Touya 

2010). Thus, the component has to be fed with spatial analysis algorithms able to outline the required spaces. For 

instance, algorithms to identify urban, suburban, rural, costal, mountain areas were implemented, among others. 

2.3.6. Translator Component  

The translator component provides three kinds of services to translate inputs and outputs of the processes in 

the language used to convey interoperability: the formal constraints and the ontology (Touya et al. 2010). First, 

the translator allows process interoperability making the constraints the only input and output of every process 

(Fig.  6). A translating function is provided for every process and transforms the constraints and operation rules 

into the specific parameters of the process (e.g. numeric thresholds for a river selection, specific constraints for 
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AGENT or CartACom, equations on coordinates for Least Squares or additional attributes for the Elastic 

Beams). 

 
Fig.  6. CollaGen allows interoperability with the use of a single output, constraints and the translator. 

The translator also serves as a registration mapping (Lemmens 2008) to tag the geographic data with the cor-

responding ontology concept: it makes the mapping between the “IGN_BUILDING” data class and the “build-

ing” ontology concept for instance (Touya et al. 2010). Finally, the translator allows to map the formal con-

straints with measurement algorithms that compute the constraint current value and satisfaction for a given 

object as in AGENT (Barrault et al. 2001). The use of such mechanism is detailed in §2.3.9. 

2.3.7. Registry Component  

The registry serves as yellow pages service to choose a relevant process to generalise a given space at a given 

time. To a request like ‘what are the best available processes to generalise rural space n°x?’ the registry responds 

with a list of applicable processes sorted by relevance (e.g. ‘CartACom, Least Squares, AGENT’). 

To build the list, the registry first selects the relevant processes according to their description pre-condition: if 

the pre-condition, a list of space types with relevance rate (e.g. ‘urban area 4/5’) contains the request space type, 

the process is selected; then it is rated according to relevance rate. 

In a second step, the processes are reordered according to the description post-condition, the list of a priori 

satisfied constraints after generalisation: a ratio is computed between the post-condition and the occurrences of 

constraints inside the space (Fig.  7). The ratio weights the relevance rate, reordering the processes. 



 
Fig.  7. Illustration of the registry response according to the constraints inside a given space: process 2 matches 14/15 constraints 

against 5/15 for process 1. 

2.3.8. Scheduling Component  

The scheduling component orchestrates the generalisation of spaces by processes. After every generalisation, it 

decides what to do next: it chooses the next type of geographic space to generalise and then orders the instances 

of this type. As in a Global Master Plan (Ruas and Plazanet 1996) but here rule-based, the space type (urban, ru-

ral...) is chosen according to the active sequencing rules. If it is not enough to choose, the space type whose in-

stances have the highest conflict mean is selected first. Once the type chosen, the instances are ordered by con-

flict importance: the most conflicting ones are peeked (Fig.  8). 

Generalisation is considered in CollaGen as a four step operation: geometry changes (e.g. area-to-point col-

lapses), selection, cartographic and graphic generalisation (Harrie and Sarjakoski 2002). The processes are de-

scribed as contributing to one or more of these steps and can be used only during the right steps. The scheduling 

component chains these steps according to the rules. 

 
Fig.  8. Interactions of the scheduling component with other components and resources. 

Moreover, the scheduling component provides state management to allow local and global corrections (Fig.  

9). When a generalisation is badly evaluated, the scheduling may cancel it and go back to previous states of data. 

To allow this try/error mechanism, as in (Zhou et al. 2008), the initial state stores the attribute data while all the 

geometry states are kept linked to the generalisation pair (space/process) that led to the following step. 
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Fig.  9. UML class diagram of the state management system of the scheduling component. 

2.3.9. Observation Component  

Generalising a space with the best available process does not guarantee a complete success. Conflicts clusters 

may emerge during generalisation and the observation component allows to detect them as conflicting areas 

(Duchêne and Touya 2010).  Therefore, the component observes the generalisations online and evaluates the 

progress. The observation component analyses the conflict areas, pauses the process when some are too big, ex-

tends the areas to subserve solving, triggers the registry component to propose a local solution and once the local 

conflicts are solved, resumes to the interrupted generalisation. 

The online evaluation embedded in the emergence mechanism, as well as the global evaluation performed on 

a geographic space after generalisation rely on the constraints to guarantee homogeneous evaluation for every 

process. To enable this monitoring of the constraints against the data, located constraints monitors (LCM) are 

added on each object concerned by constraints as in (Barrault et al. 2001): if “granularity” and “size” constraints 

are defined on buildings, granularity and size LCMs are added for every building. LCMs are able to give the sat-

isfaction of the constraint for the given building.  

 
Fig.  10. Conflicting LCM are clustered by triangulation to observe ‘conflicting area’ emergence. 

The located constraints are provided with a geometry (Fig.  10) that allows the spatial clustering necessary for 

the emergence mechanism. The geometry also allows to quantify the LCMs inside a geographic space so as to 

evaluate globally the space generalisation from the distribution of individual evaluation. Progress means less un-

satisfied LCMs in the distribution while good generalisation means few very unsatisfied LCMs and lots of very 

satisfied LCMs. 

2.3.10. Side Effects Component  

Within the CG Framework, generalising a space may cause additional conflicts just outside the space: for in-

stance, a building is moved too close to a building that was just outside (thus not managed by generalisation). 

We call such additional conflicts side effects. In order to detect and correct side effects, the neighbourhood of 



each space is defined depending on the topological relation shared by two spaces (adjacency or overlap) (Touya 

2010).  

Following the principle of the LCM evaluation, the side effects management is based on consistency con-

straints located in each space’s neighbourhood. Consistency constraints are kind of integrity constraints that 

guarantee the consistency of data before and after the generalisation of a space. Three types of consistency con-

straints can be identified: the inter-space relational constraints, the non-existence relational constraints and the 

operation consistency constraints. 

The inter-space relational constraints are relational LCMs (LCM on a geographic relation between two ob-

jects) concerning an object inside the space and an object outside the space (Fig.  11). The figure “relative posi-

tion relation” has a building in rural space 1 and the other in rural space 2. The “relative orientation relation” is 

an inter-space relation in the road network space point of view (building outside the space) but not in the rural 

space 2 point of view as the road is inside the space. 

 
Fig.  11. Two examples of inter-space relations with two rural space portions separated by a road: a relative position relation that 

should be preserved after each rural space is generalised and relative orientation relation (shared by rural space 2 and the road net-

work space) that should be preserved if the road network is generalised. 

Then, non-existence relational constraints check that no additional inter-space relation has been created by 

generalisation. 

The operation consistency constraints affect the intersection neighbourhood. If the intersecting space has al-

ready been generalised, these constraints check that the second generalisation is not inconsistent with the first 

one. For instance, if a building has been moved one way, it should not be moved the other way round. The opera-

tion consistency constraints are based on the previous states of the objects stored by the scheduling component. 

Finally, if consistency constraints are violated, side effects correcting processes are triggered. Side effects 

correctors are monitored by consistency constraints as processes are monitored by constraints. GAEL (Gaffuri 

2007), Elastic Beams (Bader et al. 2005) or Least Squares (Harrie and Sarjakoski 2002) can be used to correct 

side effects (Fig.  12) as well as diffusion processes (Legrand et al. 2005). If no balanced solution can be found, 

the component can arbitrate by choosing a solution (before or after 2
nd

 generalisation) like a legislator (Ruas 

2000) or by relaxing some less important constraints like a controller (Ruas 2000). 

 
Fig.  12. Example of side effect correction by least squares adjustment : a balance between both generalisations. 
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3. Results  

The CollaGen model is not fully implemented but some experiments were carried out on French topographic da-

ta (1:15k reference scale) to produce a 1:50k map on a large area containing heterogeneous landscapes (shore, 

city, country, mountain). A standard set of constraints and rules, extracted from NMA experience, is used as 

specification (80 constraints and rules). The available processes are the ones implemented on CartAGen platform 

(Renard et al. 2010): AGENT, CartACom, GAEL, Least Squares, Elastic Beams and network selection process-

es. Fig.  13 shows the steps of a rural area generalisation: the rural space is generalised by CartACom and the 

road network by the Beams generating a side effect conflict. 

 
Fig.  13. (a) initial rural area. (b) rural space generalised by CartACom. (c) Roads generalised by the Beams with a side effect on 

the circled building. 

Fig.  14 shows the registry answer to a rurban space request: three processes match the pre-condition but 

CartACom is ranked first as it better matches the constraints (a 10 constraints caricatural sample is used) a priori 

(97% against 59 for Agent and 6% for the Least Squares). 

 
Fig.  14. The registry answer to a request from the delineated rurban space. CartACom is ranked first as it better suits the con-

straints than Agent or the Least Squares processes. 

Fig.  15 shows a CollaGen result (without side effect correction) on a small area with urban, suburban and ru-

ral spaces.  



 
Fig.  15. (a) initial data. (b) urban space generalised by AGENT, then rurban and rural spaces by CartACom and roads by the 

Beams (urban space is delineated with the thick outline). 

Fig.  16 illustrates the importance of choosing the best process and the best order. The remaining conflicts in 

picture (2) show that the choices are not as good as pictures (3) and (4) ones. Moreover, the order of picture (4) 

is better than in picture (3) as it did not result in side effects. Thus, the sequencing component has to be careful 

in choosing the order! 

 
Fig.  16. Illustration of order and registry importance: (1) before generalisation. (2) generalisation with AGENT then Least 

Squares process. (3) generalisation with CartACom then the Beams. (4) generalisation with the beams then CartACom. 

Finally, Fig. 17 shows observed emerging conflicting areas in a space too dense for CartACom and the con-

flict correction using Least Squares. 

 
Fig. 17.  Conflict emergence from CartACom generalisation. (a) ungeneralised data. (b) emerging conflict areas are detected after 

generalization. (c) zoom on a conflict area extended to better solve the conflict. (d) conflicts solved by least squares generalization. 

In order to evaluate CollaGen contribution, we used it to generalise the benchmark dataset from EuroSDR 

generalisation state-of-the-art project (Stoter et al. 2009) and compared the results to the best ones obtained dur-

ing the tests with CPT and Clarity™ software (Fig. 18). Although the seven processes used could be tuned to 

improve individual results, the comparison shows the pros of CG and CollaGen, particularly in the southwest 

suburban part that has to be generalised differently from the town area. 
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Fig. 18.  A mountainous French dataset from EuroSDR tests (Stoter et al. 2009) generalized with CollaGen compared to the best 

results from the tests. 

Conclusion and Future Plans 

This paper introduced a new framework to perform automatic cartographic generalisation by making optimised 

use of past research processes: Collaborative Generalisation. Within this framework, the CollaGen model allows 

to sequence interoperable generalisations of geographic spaces by the relevant available process. Among Colla-

Gen contributions, a formal constraints model, a generalisation domain ontology, online evaluation and side ef-

fects detection mechanisms can be noticed. 

A lot can still be made to improve both CollaGen and the Collaborative Generalisation Framework. The side 

effects correction really need to be more investigated to know how far corrections can be made without undoing 

what was previously generalised. In-depth testing (different data and scale change) of CollaGen and each com-

ponent is also necessary to identify remaining issues. Moreover, rather than being implemented on a platform, 

the available processes could be called as web services as proposed by (Regnauld 2007). 
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