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Abstract
Computational argumentation has taken a predominant

place in the modeling of negotiation dialogues over the last
years. A competent agent participating in a negotiation pro-
cess is expected to decide its next move taking into account
an, often incomplete, model of its opponent. This work pro-
vides a complete computational account of argumentation-
based negotiation under incomplete opponent profiles. After
the agent identifies its best option, in any state of a negotia-
tion, it looks for suitable arguments that support this option
in the theory of its opponent. As the knowledge on the op-
ponent is uncertain, the challenge is to find arguments that,
ideally, support the selected option despite the uncertainty.
We present a negotiation framework based on these ideas,
along with experimental evidence that highlights the advan-
tages of our approach.

1 Introduction

During the last years computational argumentation has
taken a predominant place in the modeling of negotiation
dialogues (for a survey see [11], [24]). The goal of a ne-
gotiation dialogue is to allow interacting agents to resolve
conflicts and reach a mutually accepted agreement, which
in this work is a mutually accepted offer (e.g. the price of a
product, the mode of payment). In an argumentation-based
negotiation (ABN), agents choose offers that are likely to
be accepted by the opponent and exchange arguments that
support these offers, either based on their own theories (see
e.g. [1], [3], [18],[13], [22], [14]), or based on the oppo-
nent’s profile (e.g. [15], [23], [9]).

The modeling of the opponent profile is an important
issue in negotiation dialogues (and more generally other
types of dialogue such as persuasion). As explained in [5],
although there are important differences between opponent

models, there are strong reasons justifying their use, such
as the minimization of negotiation cost, the adaptation to
the opponent and the capacity to reach win-win agree-
ments, especially in cooperative environments. Learning
the opponent profile means learning its acceptance and bid-
ding strategies, the deadlines and its preference profile [5].
In most of the proposed works, the (online) opponent mo-
deling is based on learning techniques (see e.g. [4] for a
survey). Apart from the fact that learning the opponent
profile with traditional learning techniques is not an easy
task, as pointed out in [28], those techniques seem better
suited to game-theoretic (or utility-based) negotiations, ra-
ther than argumentation-based negotiations. Other works
(although they concern persuasion dialogues and legal dis-
putes), have proposed a probabilistic approach for dealing
with the uncertainty about the opponent profile. In these
works (e.g. [16], [27], [17]), probabilities are used in dif-
ferent ways for finding the arguments that are most likely
to be accepted by the opponent. Finally, some works (e.g.
[26], [21], [8]) investigate other approaches to modeling
the opponent profile in argumentation-based dialogues.

This work advances the state of the art in argumentation-
based negotiation by making original contributions to the
opponent modeling, and the associated acceptance strategy
(i.e. what offers are most likely to be accepted) as well as
bidding strategy (i.e. the strategy that an agent applies for
choosing the next offer). For opponent modeling, it builds
on the work of [10] on control argumentation frameworks
(CAFs), a formalism for modeling the uncertainty about the
opponent profile. More specifically, it borrows the concepts
of "on/off" arguments (i.e. arguments we don’t know whe-
ther they are present or not in a theory), and the three dif-
ferent categories of attacks (i.e. attacks we know their exis-
tence and direction, attacks we know the existence but not
the direction, attacks we don’t know the existence but we



know the direction). This allows generating different pro-
files modeled as completions of the known part of the op-
ponent’s theory, and seeking offers that satisfy all possible
profiles (or as many as possible). Regarding the bidding
and acceptance strategies, the originality of this work lies
in the assumption that in argumentation-based negotiation,
a central challenge for an agent is to lead, by means of ap-
propriate arguments, its counter party to change its theory,
and eventually accept the offer it proposes, hence influen-
cing its acceptance strategy. Thus, in our approach, we pro-
pose a bidding strategy that relies on the previous assump-
tion. More precisely, the idea is that a proponent agent uses
first its own theory for choosing the best offer to propose,
but next, it uses the incomplete theory of its opponent to
find the arguments to support it. Then, it seeks and puts for-
ward a set of arguments called control configuration, that
could reinstate the supporting arguments, if these are re-
jected in the current state of the argumentative negotiation
theories of all (or most) of the generated opponent profiles.
Once the arguments of the control configuration are inser-
ted in the opponent theory, they would, ideally, allow it to
reach an agreement with the proponent, thus they alter its
acceptance decision.

2 Background

We assume that the reader is familiar with abstract argu-
mentation frameworks as introduced in [12], presented as
a pair 〈A,R〉, where A is a set of arguments, and R ⊆ A × A
is an attack relation. The relation a attacks b is denoted by
a R b or (a, b) ∈ R. Different acceptability semantics were
also introduced in this work. Based on the acceptability se-
mantics, we can define the status of any argument, namely
skeptically accepted, credulously accepted and rejected ar-
guments.

Now we introduce briefly the control argumentation fra-
meworks (CAFs) proposed in [10], and discusses how they
capture the knowledge of an agent on its opponents. On a
high level, a CAF is an argumentation framework where
arguments are divided in three parts, fixed, uncertain and
control.

The f ixed part of the theory concerns the certain know-
ledge that an agent holds about its opponent. This includes
arguments as well as attacks that undoubtedly belong to the
argumentation theory of the opponent. For instance, a sel-
ler agent knows that the customer agent prefers European
cars, that safety is an important issue for it and that it pre-
fers electric or gasoline-powered cars than diesel cars. The
uncertain part captures the uncertainty about the presence
of arguments in a theory (expressed by the “on/off” argu-
ments as shown below), as well as the presence and the
direction of attacks between arguments in this theory. It re-
flects the uncertainty that arises due to lack of complete in-
formation on the current state of the world that determines

the decisions of the opponent, but also its beliefs and pre-
ferences. For example, the seller agent may not know the
income of the customer agent, whether a car is a social sta-
tus symbol for it, the highest price that it is ready to pay, or
whether it is willing to pay more if some extras are inclu-
ded, and payment by installments is accepted. Finally, the
control part contains arguments that can be used against
arguments of the fixed or uncertain parts that attack argu-
ments that are in favour of some offer of the proponent.
Therefore, the control part serves to ensure that arguments
in the fixed part that support some offer of the seller that
is not adequate with some certain (i.e. European car) or
uncertain (e.g. max price, preferred mode of payment) pre-
ferences of the customer, can be accepted under some cir-
cumstances. For instance, a control argument could allow a
seller agent to propose a car from abroad Europe (which is
against the known preference of the customer agent and re-
presented in the fixed part) by proposing some interesting
options (e.g. five airbags knowing that safety is an impor-
tant issue for the customer and also represented in the fixed
part) and in a price that is probably higher than the highest
price the customer is intended to pay (this is part of the un-
certain knowledge) but which allows the seller to accept a
payment by installments, if this is the preferred payment
mode for the customer (this is also part of the uncertain
knowledge). Formally, a CAF is defined as follows :

Definition 1 LetL be a language from which we can build
arguments, and let Args(L) be the set which contains
all those arguments. A Control Argumentation Framework
(CAF) is a triple CAF = 〈F,C,U〉 where F is the fixed
part, U is the uncertain part and C is the control part of
CAF with :
1. F = 〈AF ,→〉where AF is a set of arguments that we know
they belong to the system and→⊆ (AF ∪ AU) × (AF ∪ AU)
is an attack relation representing a set of attacks for which
we are aware both of their existence and their direction.
2. U = 〈AU , (� ∪ d)〉 where AU is a set of arguments
for which we are not sure that they belong to the sys-
tem, �⊆ (((AU ∪ AF) × (AU ∪ AF))\ →) is an attack
relation representing a set of attacks for which we are
aware of their existence but not of their direction, and
d⊆ (((AU ∪ AF) × (AU ∪ AF))\ →) is an attack relation
representing a set of attacks for which we are not aware
of their existence but we are aware of their direction, with
� ∩d= ∅.
3. C = 〈AC ,V〉 where AC is a set of arguments, called
control arguments, that the agent can choose to use or not,
andV⊆ {(ai, a j) | ai ∈ AC , a j ∈ AF ∪AC ∪AU} is an attack
relation.

AF , AU and AC are disjoint subsets of Args(L).

A CAF features a set of distinct attack relations that
capture different sorts of information. Its simplest part is
〈AF ,→ ∩(AF × AF)〉, which is a classical AF that contains



the indisputable knowledge of the agent on its opponent.
The idea of CAFs essentially extends this basic argumenta-
tion framework with additional attack relations defined on
arguments from the sets AU and AC . For instance, there is
an attack (ai, a j) ∈�, with ai, a j ∈ AF when it is certain that
the two arguments exist and are in conflict (e.g. because
they make mutually exclusive claims), but the direction of
the attack(s) is unknown (e.g because of lack of informa-
tion on the intrinsic strength of arguments, or on the prefe-
rence relation between arguments). An attack (ai, a j) ∈→,
with ai ∈ AU and a j ∈ AF , represents a situation where it is
unknown whether ai is present in the system (e.g. some of
its premises could be false at the current time), but if ai is
in the system, then ai definitely attacks a j.

Central to controllability is the notion of completion of
a CAF. Intuitively, a completion is a classical AF which is
built from the CAF, by choosing one of the possible options
for each uncertain argument or attack.

Definition 2 [10] Given a CAF CAF = 〈F,C,U〉, a com-
pletion of CAF is an AFAF = 〈A,R〉, s.t.
1. A = AF ∪ AC ∪ Acomp where Acomp ⊆ AU ;
2. if (a, b) ∈ R, then (a, b) ∈→ ∪� ∪d ∪V ;
3. if (a, b) ∈→, then (a, b) ∈ R;
4. if (a, b) ∈� and a, b ∈ A, then (a, b) ∈ R or (b, a) ∈ R;
5. if (a, b) ∈V and a, b ∈ A, then (a, b) ∈ R.

Note that the definition of a completion leaves the at-
tacks fromd unspecified, as these attacks may not appear
in the theory. For some examples of completions the reader
can see [10].

Controllability means that we can select a subset Acon f ⊆

AC and the corresponding attacks {(ai, a j) ∈V| ai ∈

AC , a j ∈ (AF ∪ AC ∪ AU)} such that whatever the com-
pletion of CAF , a given target is always reached. We fo-
cus on two kinds of targets : credulous acceptance of a set
of arguments (this is reminiscent of extension enforcement
[6]), and skeptical acceptance of a set of arguments.

Definition 3 [10] A control configuration of a CAF
CAF = 〈F,C,U〉 is a subset Acon f ⊆ AC . Given a set of ar-
guments T ⊆ AF and a semanticsσ, we say that T is skepti-
cally (resp. credulously) reached by the configuration Acon f

under σ if T is included in every (resp. at least one) σ-
extension of every completion of CAF ′ = 〈F,C′,U〉, with
C′ = 〈Acon f , {(ai, a j) ∈V| ai ∈ AC , a j ∈ (AF ∪ AC ∪ AU)}〉.
We say that CAF is skeptically (resp. credulously) control-
lable w.r.t. T and σ.

In a nutshell, CAFs are a powerful enabler of advan-
ced negotiation techniques, that blend together a number of
desirable features such as the qualitative representation of
uncertainty, simultaneous reasoning with different profiles
through completions, simultaneous consideration of both
certain and uncertain knowledge of the opponent, the use

of control arguments (corresponding to a persuasion phase
embedded in negotiation, allowing for the reinstatement of
rejected arguments), along with a computational model ba-
sed on QBFs.

3 The Negotiation Framework

This section presents a new argumentation-based nego-
tiation framework that relies on CAFs [10] for represen-
ting the incomplete information that agents have about their
opponents. Agents communicate through the exchange of
messages (or dialogue moves, see e.g. [11]). We assume
that agents play the roles of the proponent and opponent
in a turn-taking round-based protocol (e.g. similar to the
alternating offers protocol of [14]), where a proponent ini-
tiates a round and passes the token to its opponent when it
is unable to defend an offer rejected by the opponent. The
opponent may accept an offer when one of the supporting
arguments is an acceptable argument for it, or reject an of-
fer if it cannot accept any of the different supporting argu-
ments sent by the proponent. We build on the works of [1],
[14], and in the following, L denotes a logical language,
and ≡ an equivalence relation associated with it. From L,
a set O = {o1, . . . , on} of n offers is identified, such that
@oi, o j ∈ O such that oi ≡ o j. This means that the offers
are different. Offers correspond to the different alternatives
(e.g. prices for a product) that can be exchanged during the
negotiation dialogue. We assume that agents share the same
set of offers O but those offers can be supported by dif-
ferent practical arguments (although not necessarily) in the
theories of the negotiating agents. By argument, we mean a
reason in believing (called epistemic arguments) or doing
something (called practical arguments). The set Args(L) is
then divided into two subsets : a subset Argsp(L) of prac-
tical arguments supporting offers, and a subset Argse(L)
of epistemic arguments supporting beliefs. Thus, Args(L)
= Argsp(L) ∪ Argse(L). A negotiation theory is therefore
represented as follows :

Definition 4 (Negotiating agent theory) Let O be a set of
n offers. A negotiating theory of an agent α is a tuple T =

〈O,T α,CAF α,β,F α〉 with T α = 〈Aα,→α〉 and CAF α,β =

〈Fα,β,Uα,β,Cα,β〉 and where :
1. Aα ⊆ Args(L) is a set of arguments s.t. Aα = Aα

p ∪ Aα
e

where Aα
p is a set of practical arguments, Aα

e a set
of epistemic arguments, and Aα

c ⊆ Aα
e is the set of

control arguments. For the attack relation it holds
→α=→p ∪ →e ∪ →m, with →p⊆ Aα

p × Aα
p, representing

an attack relation for practical arguments, →e⊆ Aα
e × Aα

e
representing an attack relation for epistemic arguments
and→m⊆ Aα

e × Aα
p representing an attack relation between

epistemic and practical arguments i.e. (a, δ) ∈→m, if
a ∈ Aα

e and δ ∈ Aα
p (see [2], [14]).



2. CAF α,β is defined by :
— Fα,β=〈Aα,β

F ,→α,β〉 with Aα,β
F =Aα,β

Fe
∪ Aα,β

Fp
,→α,β=→

α,β
e

∪ →
α,β
p and 〈Aα,β

Fe
,→

α,β
e 〉 defining the epistemic argu-

ments subpart s.t.→α,β
e ⊆ (Aα,β

Fe
∪Aα,β

Ue
)× (Aα,β

Fe
∪Aα,β

Ue
).

The above hold also for the practical arguments sub-
part. It also holds Aα,β

U =Aα,β
Ue
∪ Aα,β

Up
.

— Uα,β=〈Aα,β
U ,�α,β ∪ dα,β)〉 with �α,β=�e ∪ �p,

dα,β=de ∪ dp and 〈Aα,β
Ue
,�e ∪ de)〉, �e⊆

((Aα,β
Ue
∪ Aα,β

Fe
) × (Aα,β

Ue
∪ Aα,β

Fe
))\ →α,β

e ),de⊆ ((Aα,β
Ue
∪

Aα,β
Fe

) × (Aα,β
Ue
∪ Aα,β

Fe
))\ →α,β

e , defining the epistemic
arguments subpart. The same hold for the practical
arguments subpart.�e ∩de= ∅.

— Cα,β=〈Aα
c ,V〉 whereV⊆ {(ai, a j) | ai ∈ Aα

c and a j ∈

Aα
c ∪ Aα,β

Fe
∪ Aα,β

Ue
} \ (→α,β

e ∪�e ∪de)).
3. F α : O → 2Ap

α

s.t ∀i, j with i , j, F α(oi) ∩ F α(o j) = ∅.
Let Ap

α
O

=
⋃
F α(oi) with i = 1, . . . , n. This function returns

the practical arguments supporting offers in O.

In the following we present the different procedures that
implement the new negotiation framework of this paper.

3.1 Best Offers Selection

Algorithm 1 is the procedure invoked by the proponent
agent α in order to compute, first, its best offer, based on
its own theory, and it is implemented through function
comp_next_o f f er. This function looks for the best offer
supported by an acceptable practical argument by using
a ranking on the supporting arguments based on a partial
preorder (other methods can be also applied here). Then,
based on its CAF α,β, it computes the practical arguments
that support this offer in its opponent theory and calls a pro-
cedure, implemented by algorithm 2, that selects the sup-
porting argument to be sent. If the proponent agent has no
(other) offer to propose, the opponent of the agent is infor-
med by a suitable message (i.e. nothing).

Algorithm 1: choose-best-
offer(O,T α,CAF α,β,F α,β(o))

1 o← comp_next_offer(O,T α);
2 if o , ∅ then
3 F α,β(o)← compute_sup_arg(o, Aα,β

Fp
∪ Aα,β

Up
);

4 call choose-support-arg(o,F α,β(o),CAF α,β);

5 else
6 message(α, β)=nothing ; send(message(α, β));

3.2 Supporting Argument Selection

The algorithm described below, selects (through func-
tion choose − arg, where the choice can be random, as
herein, or based on other methods) the argument that the
proponent agent α sends to its opponent agent to support its

offer. Moreover, another procedure finds the arguments that
defend this supporting argument whenever this argument is
currently rejected by the opponent. This task is carried out
by the procedure implemented by algorithm 3. If there is no
other available argument that supports the current offer, the
agent abandons this offer and passes the negotiation token
to the opponent agent.

Algorithm 2: choose-support-
arg(o,F α,β(o),CAF α,β)

1 if F α,β(o) , ∅ then
2 θ ← choose-arg(F α,β(o));
3 call defend-offer(o, θ,F α,β(o),CAF α,β)

4 else
5 O=O − {o} ; Aα

p = Aα
p − F

α(o);
6 message(α, β)=give_token ; send(message(α, β)) ;

3.3 The Bidding Strategy

The bidding strategy of the proponent agent is imple-
mented by algorithm 3. The main task here is to defend the
proposed offer by an argument that (as said before) sup-
ports the offer in the opponent’s theory. Consider for ins-
tance a car seller agent who proposes an expensive luxury
SUV of a prestigious brand to a customer who, as the agent
understands, seems to afford it. The reason (argument) that
the seller agent has chosen this particular car is probably
the high sales commission that it brings. However, this is
not an argument it can use to convince its customer. The
pool of appropriate arguments could include the smooth
ride, fast acceleration, high top speed, off-road capabilities,
safety features, or even the high social status associated
with the brand. In fact, the discovery of those arguments
takes place inside algorithms 1 and 2. The role of the bid-
ding strategy algorithm is to determine whether such a sup-
porting argument is already acceptable in the opponent’s
theory, or to search for a control configuration that can de-
fend the selected supporting argument under all possible
opponent profiles.

More precisely, acceptance in the context of incomplete
theories is based on the notion of completion which repre-
sents a possible profile (see definition 2). The computation
in line 1 of the algorithm relies on reasoning with Quan-
tified Boolean Formulas (QBFs), as described in [10], that
is carried out by the quantom solver [25]. The credulous
controllability wrt the theory Aα,β

F ∪ Aα,β
U (i.e. arguments in

Aα
c are not considered in this case) is computed by using

the following Formula 1 :

∀{onxi | xi ∈ Aα,β
U }∀{attxi,x j | (xi, x j) ∈dα,β ∪�α,β}

∃{accxi | xi ∈ A}[Φcr
st (CAF , θ)

∨(
∨

(xi,x j)∈�α,β
(¬attai,a j ∧ ¬atta j,ai ))]

where A = Aα,β
F ∪ Acomp with Acomp ⊆ Aα,β

U .



Algorithm 3: defend-offer(o, θ,F α,β(o),CAF α,β)
1 if θ is credulously accepted in all completions of the

theory Aα,β
F ∪ Aα,β

U
2 then
3 offer(α, β) = 〈o, θ, 〈∅, ∅〉〉;
4 F α,β(o) = F α,β(o) − {θ};
5 message(α, β)=offer(α, β) ; send(message(α, β))

6 else
7 S ← comp_contr_conf(CAF α,β, θ);
8 if S , ∅ then
9 R = {(ai, a j)|ai ∈ S , a j ∈ Aα,β

F ∪ Aα,β
U };

offer(α, β) = 〈o, 〈θ, 〈S ,R〉〉〉;
10 message(α, β)=offer(α, β) ;

send(message(α, β))
11 else
12 F α,β(o) = F α,β(o) − {θ};
13 call choose-support-arg(o,F α,β(o),CAF α,β);

The onxi variable means that the argument xi cur-
rently belongs to the system; it is used for making the
differentiation between the completions where xi is in-
cluded and those where it is not. Similarly, attxi,x j is true
when there is an attack from xi to x j. This variable has to
be true if (xi, x j) is a fixed attack of CAF . Otherwise the
truth value of this variable allows to make the distinction
between the completions where (xi, x j) is included and
those where it is not. Finally accxi is a propositional
variable representing the acceptance status of the argument
xi. The propositional matrix Φcr

st (CAF , θ) of the formula
is satisfiable when θ belongs to at least one extension of
a completion of CAF (more details about this part are
given later). Straightforwardly, the prefix of the formula
corresponds to an enumeration of every completion (by
the ∀ quantifiers) ; for every such completion, we have
to search for at least one extension (represented by the
existentially quantified part) such that θ belongs to it.
Now, in case this computation succeeds, θ is acceptable in
all possible opponent profiles (completions), and agent α
sends to agent β the offer o, along with θ.

In case θ is not acceptable wrt the above theory, agent α
reacts as depicted in lines 7-13 of algorithm 3. First, it uses
its CAF to seek a control configuration S , that defends θ.
This is again a problem on QBFs that is solved by a call
to quantom solver (line 7 of the algorithm). However, this
time arguments in Aα

c are considered and credulous control-
lability is computed by using the following Formula 2 :

∃{onxi | xi ∈ Aα
c }∀{onxi | xi ∈ Aα,β

U }∀{attxi,x j |

(xi, x j) ∈dα,β ∪�α,β}∃{accxi | xi ∈ A}[Φcr
st (CAF , θ)

∨(
∨

(xi,x j)∈�α,β
(¬attai,a j ∧ ¬atta j,ai ))]

where A = Aα,β
F ∪ Aα

c ∪ Acomp with Acomp ⊆ Aα,β
U .

Note that this formula is very similar to the previous
one. This time, the existential quantifier over the onxi

variables, for xi ∈ Aα
c , corresponds to the search for one

control configuration. So the whole formula corresponds
to the definition of credulous controllability : the formula
is true if there is a control configuration such that, for
every completion, θ belongs to at least one extension.

In both above cases we use the formula Φcr
st (CAF , θ) =

Φst(CAF ) ∧ accθ which is based on

Φst(CAF ) =
∧

xi∈Aα,βF
[accxi ⇔∧

x j∈A(attx j,xi ⇒ ¬accx j )] ∧
∧

xi∈Aα,βC ∪Aα,βU
[accxi ⇔ (onxi∧∧

x j∈A(attx j,xi ⇒ ¬accx j ))] ∧
∧

(xi,x j)∈→α,β∪Vα,β
attxi,x j∧

(xi,x j)∈�α,β
attxi,x j ∨ attx j,xi

∧
(xi,x j)<R ¬attxi,x j

where R =→α,β ∪Vα,β ∪dα,β ∪�α,β.
Moreover, in the first case, where the control arguments

are not used (in Formula 1),
∧

xi∈Aα,βC ∪Aα,βU
becomes

∧
xi∈Aα,βU

.

This formula is a generalization of the encoding of stable
semantics defined in [7]. When every att-variable and every
on-variable is assigned a truth value, this assignment cor-
responds to a completion. Then, the consistent truth as-
signments of the acc-variables correspond to the set of
stable extensions of the completion. This means that if
Φst(CAF ) ∧ accθ is satisfiable, then θ belongs to at least
one stable extension of the completion which is represen-
ted by the att and on-variables.

Now if in this second case the call succeeds, agent α
sends offer o to agent β, along with the supporting argu-
ment θ, the set of arguments S , and the associated attacks
R. Otherwise, the agent abandons this argument and picks
another from F α,β(o) in order to continue defending o. This
is done by function choose-support-arg. Recall that our ap-
proach looks for sets of arguments that are control configu-
rations, i.e. work for all possible profiles of agent β. Howe-
ver, if there is no such solution, the QBF based techniques
of quantom [25], can find sets of arguments that work for
most of these profiles.

In the following we define an operator ⊕ that is used in
algorithms 4 and 5.

Definition 5 Let A1, A2, A3 be sets. We define (A1, A2)⊕A3
as the pair (A′1, A

′
2) such that A′1 = A1 \ (A1 ∩ A3) and

A′2 = A2 ∪ (A1 ∩ A3).

At the beginning of the negotiation each agent has in its
theory (i.e. Aα and Aβ respectively) only a part of the pos-
sible epistemic arguments (wrt a specific application). That
means that some arguments are in Aα and not in Aβ (and
vice-versa). However, when an agent will use arguments
(and the associated attacks) that do not belong to the op-
ponent’s theory, the opponent agent will add them (as well
as the associated attacks) in its own theory, and it will be
able to use them from that point onwards in the negotiation.
This situation may take place in the algorithms 4 and 5.



3.4 The Acceptance Strategy

This section discusses Algorithm 4, that implements the
acceptance strategy of an agent. Upon receiving an offer
and its supporting arguments (and the associated attacks)
sent by a proponent agent, the algorithm updates the theory
as well as the CAF of the receiving agent by integrating
the supporting arguments, the defending arguments (i.e. the
control configuration), and the associated attacks into both
theories (i.e. the receiving agent own theory and its CAF ).
Then, the receiver agent either accepts the offer (i.e. if the
supporting arguments are acceptable) and informs the pro-
ponent accordingly, or sends to the proponent the reasons
for rejecting its offer.

Algorithm 4: decide-upon-offer(T α,CAF α,β,
offer(β, α))

1 〈o, θ, 〈S ,R〉〉=offer(β, α);
2 if S , ∅ then
3 T α=(Aα ∪ S ,→α ∪ R);
4 (Aα,β

U , Aα,β
F ) = (Aα,β

U , Aα,β
F ) ⊕ S ;

5 (dα,β,→α,β) = (dα,β,→α,β) ⊕ R;
6 (�α,β,→α,β) = (�α,β,→α,β) ⊕ R

7 if θ is a credulous conclusion of theory T α then
8 message(α, β)=Accept(o);
9 send(message(α, β))

10 else
11 Compute Q ⊆ E where E is an extension of T α and Q

is the set of arguments from which θ is reachable in
the attack graph;

12 Reasons={(p, θ)|(p, θ) ∈→α and p ∈ Q };
13 message(α, β)=Reject(o, θ, 〈Q,Reasons〉);
14 send(message(α, β)) ;

3.5 The Negotiation Protocol

The algorithm 5 described below implements the core
procedure that drives the overall negotiation between the
two negotiating agents through the necessary updates of
their negotiation theories and calls to appropriate functions.
The first part of algorithm (lines 1-2) implements the be-
havior of an agent when it is the proposer of the first of-
fer, whereas the second part (lines 3-24) is concerned with
its reaction when it receives an answer from another agent
(i.e. the opponent). While the first part is straightforward
as it concerns the selection of the best offer to propose,
the second part is more involved and breaks down to seve-
ral subcases. Those cases concern different situations that
may arise during a negotiation, such as the rejection of an
offer by the opponent, the acceptance of an offer (that ter-
minates the negotiation with an agreement), the situation
where the opponent informs that it has no other offer to pro-
pose, the situation where the opponent responds that it has
no offer to propose too in a received similar message by the

(proponent) agent (this ends the negotiation without agree-
ment), the situation where an agent informs that it gives the
token, and the situation where an offer is received and the
receiver agent has to decide upon its acceptance or rejec-
tion. The example below explains how the protocol works.

Algorithm 5: Procedure
negotiate(〈O,T α,CAF α,β,F α〉)

1 if agent α proposes first then
2 call choose-best-offer(O,T α,CAF α,β,F α,β(o));

3 while true do
4 get message(β, α);
5 switch message(β, α) do
6 case Reject(o, θ, 〈Q,Reasons〉) do
7 (Aα,β

U , Aα,β
F ) = (Aα,β

U , Aα,β
F ) ⊕ Q;

8 (dα,β,→α,β) = (dα,β,→α,β) ⊕ Reasons;
9 (�α,β,→α,β) = (�α,β,→α,β) ⊕ Reasons;

10 call defend-offer(o, θ,F α,β(o),CAF α,β) ;
11 case Accept(o) do
12 End of negotiation with agreement on

offer o
13 case nothing do
14 if O , ∅ then
15 call choose-best-

offer(O,T α,CAF α,β,F α,β(o)) ;
16 else
17 answer(α, β)=nothing_too;
18 send(answer(α, β))

19 case nothing_too do
20 End of negotiation without agreement
21 case give_token do
22 call choose-best-

offer(O,T α,CAF α,β,F α,β(o)) ;
23 case offer(β, α)=〈o, 〈θ, 〈S ,R〉〉〉 do
24 call decide-upon-offer(T α,CAF α,β,

offer(β, α));

3.6 A Negotiation Example

In the following we run an example of negotiation for
illustrating our framework. Figure 1 presents the agents
α and β theories (before (a) and after the negotiation
(b)) and their associated CAF respectively. Green argu-
ments (resp. attacks) represent certain arguments (resp. at-
tacks), red arguments (resp. attacks) represent uncertain ar-
guments (resp. attacks) and blue arguments (resp. attacks)
represent control arguments (resp. attacks). Thus in the
current example we have Aα

p = {X} and Aα
e = {B, E,K}

for agent α and Aβ
p = {Y} and Aβ

e = {B, E,D, F} for
agent β. The arguments {D, F} are ignored by agent α.
We have also the common set of offers Oα = Oβ = {o}.
F α(o) = {X} and F β(o) = {Y} represent the practical ar-



guments supporting offer o in the agents α and β theories
respectively. For their CAF we have F (o)α,β = {Y} and
F (o)β,α = {X} respectively. Regarding the uncertainty, for
CAF

α,β we have Aα,β
Ue

={B},dα,β={(E,Y)} and for CAF β,α

we have Aβ,α
Ue

={E}, dβ,α={(B, X)}, �β,α={(K, E), (E,K)},
Vβ,α={(F, E), (D, B)} and control arguments Aβ

c = {D, F}.
The negotiation starts with agent α as proponent (see

Fig. 1 (a)) by invoking algorithm 5. Following line 2 there
is a call of algorithm 1. This algorithm computes the next
(best) offer (line 1) to propose that is supported by an
acceptable argument. In our example there is offer o but
the supporting argument X is rejected as it is attacked by
arguments B and E that belong into the two stable ex-
tensions namely {B,K} and {B, E}. Agent α has no offer
to propose to agent β and following line 6 it prepares a
message(α, β) = nothing and sends it to agent β. Agent
β acts now as proponent (see Fig. 1, (a)). By using al-
gorithm 5 (line 13) it checks whether Oβ , ∅ (line 14)
which is the case and calls algorithm 1. This algorithm
computes (as previously) the next (best) offer (line 1) that
is supported by an acceptable argument. In the current si-
tuation we have the offer o which is now supported by the
acceptable argument Y as it belongs to the (only) stable ex-
tension {Y,D, F}. Then (line 3) it computes the supporting
practical arguments in the uncertain theory of agent α na-
mely F (o)β,α = {X} by using its CAF. Then (line 4) there
is a call of algorithm 2. This algorithm allows to choose
a supporting argument (line 2). In our case there is only
one the argument X. Then there is a call (line 3) of al-
gorithm 3. This algorithm allows to check firstly (line 1)
whether X is credulously accepted in the uncertain theory
of agent α without the use of a control configuration (see
Formula 1). Argument X is attacked by the uncertain ar-
gument E (i.e. see attack (E, X)). That means that there is
a completion (or profile) where this argument is present
in the theory. Moreover the type of uncertain attack bet-
ween arguments K and E informs us that an attack is in-
deed present but the direction is unknown. That means that
there are two completions (profiles) (among the three pos-
sible ones) where we have {(K, E), (E,K)} and {(E,K)} as
possible attacks. In one of these completions argument E
defends itself against the attack from K and in the other it
attacks K. Therefore in both cases E will be an acceptable
argument and X will be rejected (as there is no defence
against this attack). Argument X is also attacked by argu-
ment B through the uncertain attack (B, X). That means that
there is a completion (profile) where this attack is present
in the theory and in that case X will also be rejected as B
is an acceptable argument and there is no defence for X
against the attack (B, X). Therefore X cannot be accepted
without the use of a control configuration. By looking at
the real theory (green arguments) of agent α we may ob-
serve that the profile with the attacks {(K, E), (E,K)} is the
right one but agent β ignores this information. Then the al-

gorithm tries to check whether it can find (see Formula 2)
a control configuration S (line 7). As we may observe such
a set exists (see line 9) that can defend X no matter the real
profile (i.e. for all the completions) of agent α. More pre-
cisely we have S = {D, F} and R={(F, E), (D, B)} and an
offer(β, α)=〈o, 〈X, 〈{D, F}, {(F, E), (D, B)}〉〉〉 is built. Then,
following line 10, a message(β, α)=offer(β, α) is prepa-
red and sent to agent α. Agent α acts as receiver now.
By using algorithm 5 (see line 23) it calls algorithm 4
(see line 24). By using algorithm 4 agent α updates its
theory and CAF (see lines 3-6), by using S = {D, F} and
R={(F, E), (D, B)} (see Fig. 1 (b)). Then it checks whether
it can accept X (see line 7). As shown in Figure 1 (b), the in-
tegration of agent’s β control (blue) arguments {D, F} (and
the associated attacks) in agent’s α theory (see green argu-
ments and attacks in Fig. 1 (b)), allows this agent to accept
argument X as {X,D, F,K} is a stable extension and there-
fore to accept offer o. Thus, following lines 8-9 it prepares
a message(α, β)=accept(o) and sends it to agent β. Agent β
acts as receiver by using algorithm 5 (see line 11) and the
negotiation ends successfully (line 12) with an agreement
on offer o.

4 Experimental evaluation

Our framework has been implemented by using the
JADE (http ://jade.tilab.com/) platform and evaluated on
negotiations with random argumentation theories.

4.1 Random Theory Generation

The experimental evaluation of the proposed framework
is based on a system, implemented in Java, that generates
pairs of random negotiation theories and associated CAFs,
with different user specified characteristics.

Each negotiation experiment involves a pair of random
theories T α = 〈Aα,→α〉 and T β = 〈Aβ,→β〉 that share a
common part, i.e. there exists Nα,β = 〈ANα,β ,→Nα,β

〉, such
that ANα,β = Aα ∩Aβ and (a, b) ∈→Nα,β

iff (a, b) ∈→α ∩ →β.
Moreover, control arguments are only attacked by other
control arguments, i.e. ((Aα \ Aα

c ) × Aα
c )∩ →α= ∅.

The structure of the generated theories depends on a num-
ber of user supplied parameter values that are explained
briefly below.

The user inputs the number of epistemic, practical and
control arguments of theories T α and T β, as well as their
density, defined as the ratio of attacks present in the
theory to the number of all possible attacks between the
arguments of the theory. Moreover, the instance generation
system receives as input the number of epistemic, practical
and control arguments of the shared part Nα,β.

From theory T β, the CAF CAF α,β = 〈〈Aα,β
F ,→α,β

〉, 〈Aα,β
U ,�α,β ∪ dα,β〉, 〈Aα

c ,V〉〉 is built (similarly for T α

and CAF β,α), which is the theory that agent α holds about



Figure 1 – The theories of agents α and β before (a) and after (b) the negotiation and their respective CAFs.

agent β. CAF α,β satisfies the following conditions (a)
Aα,β

F ∪ Aα,β
U = Aβ ∪ Aα

p, (b) Aβ
p ⊆ Aα,β

F .

The attack relation→α,β ∪ �α,β ∪ dα,β of CAF α,β, is
generated so that it satisfies the following conditions :
a)→α,β⊆→β,
b)→β ∩(Aα,β

F × Aα,β
F ) ⊆→α,β,

c) (�α,β ∪dα,β) ⊆ (→β \ →α,β), and
d)�α,β ∩dα,β= ∅.

The main consequence of the above requirements is that
the attack relation of CAF α,β is a subset of the attack rela-
tion of T β. The rationale for this restriction, in this initial
experimental evaluation, is to focus on negotiation experi-
ments where agents possess an "accurate" model of their
opponent. One way to formalize the model accuracy is via
the above relation between individual theories and CAFs.
Moreover, it is interesting to study how the framework be-
haves when this restriction is removed. Indeed, the next
section provides initial evidence that the method of this pa-
per can cope with the relaxation of this restriction.

As with the individual agent theories T α and T β, the
random instance generation software accepts as input a
number of parameter values that determine various fea-
tures of the CAFs of the agents. Most of them concern
the uncertainty of an agent profile on its opponent, as cap-
tured by the corresponding CAF. The first is parameter
rateUncertArgs that defines the ratio of uncertain argu-
ments to all (fixed and uncertain) arguments of the theory.
That is, rateUncertArgs= |Aα,β

U |/|A
α,β
F ∪ Aα,β

U | for agent α,
and similarly for agent β.

Other parameters of the system include
rateUncertAtt, that defines the ratio of uncertain
attacks over all attacks, as well as rateUndirAtt that
defines the ratio of undirected attacks to all attacks. That
is, rateUncertAtt=| dα,β |/| →α,β ∪ �α,β ∪ dα,β |, and
rateUndirAtt=|�α,β |/| →α,β ∪�α,β ∪dα,β |.
Moreover, parameter densContrAtt defines the ratio of
attacks from the control arguments of the agent to the
arguments of its opponent that are included in its CAF
to all possible such attacks from control arguments. For
instance, densContrAtt=0.1 for CAF α,β, means that
10% of all possible attacks from arguments of Aα

c to
arguments in Aα,β

F ∪ Aα,β
U are included in the particular

CAF
α,β. Finally, the instance generation system receives

as input the number of offers, i.e. |Oα| and |Oβ|, as well as

the number of practical arguments that support each offer.

4.2 Experimental Results

This section reports on selected results of the experimen-
tal evaluation of the framework. As the negotiation theory
generation system accepts several parameter values, it is
outside the scope of this work to provide exhaustive ex-
perimental results for all possible value combinations. Ins-
tead, we present results for selected runs that reveal impor-
tant factors that influence the working of the negotiation
algorithm, and highlight its merits and limitations. In all
experiments we fix |Aα| = |Aβ| = 40, |Aα

p | = |Aβ
p| = 6,

|Oα| = |Oβ| = 4 and Aα
c ∩ ANα,β = Aβ

c ∩ ANα,β = ∅.
The experimental evaluation is centered around 12 sets

of agent theories, and associated CAFs, that differ in the
uncertainty of these CAFs and the size of the shared part
of agent theories. More specifically, four (4) combinations
of parameter values concerning the CAFs are considered,
same for both agents. The first combination, abbreviated
as comb1, is determined by the values rateUncertArgs=
0, rateUndirAtt= 0, rateUncertAtt= 0 which cor-
respond to the case where both agents have complete
knowledge of their opponent. Then, comb2 is defined
by the values rateUncertArgs= 0.10, rateUndirAtt=
0.5, rateUncertAtt= 0.5. Moreover, the third combina-
tion comb3 is rateUncertArgs= 0.25, rateUndirAtt=
0.125, rateUncertAtt= 0.125. Finally, the last combina-
tion comb4 is rateUncertArgs= 0.50, rateUndirAtt=
0.25, rateUncertAtt= 0.25 and is the case where the
agents have the highest uncertainty about their opponents
among all the experiments.
Each of the above set of values for the 3 CAF parame-
ters is combined with one of the three possible values
{0.25, 0.5, 0.75} for the ratio |ANα,β |/|Aα| that capture dif-
ferent degrees of similarity between agent theories.

Each row of Tables 1 and 2 presents the agreement rate,
(i.e. ratio of the number of negotiations terminated with
agreement over the total number of negotiations) of 600
negotiations consisting of 50 randomly generated experi-
ments for each of the 12 parameter values combinations
described above. Therefore, each experiment is an amal-
gamation of negotiation theories of various types as far as
the values of the 12 value parameters is concerned. Each
row of Table 1 corresponds to an experiment (600 negotia-



tions) where the number of control arguments is shown in
the numContrArg column, whereas the value of parame-
ter dens ContrAtt in the corresponding column. The last
two columns refer to the agreement rates achieved when
the density of the individual theories of the agents parti-
cipating in the negotiations is fixed to 0.15 (column "Agr
0.15") and 0.2 (column "Agr 0.2") respectively. The first
row corresponds to the case where none of the agents has
any control arguments.

The first conclusion that can be readily drawn from Table
1 is that the presence of control arguments increases si-
gnificantly the number of negotiations that terminate with
agreement. Indeed, for theories with density 0.15 (column
"Agr 0.15"), the agreement rate almost doubles from 0.23
to 0.44 for cases where there are relatively few control ar-
guments and attacks from those arguments, and triples to
0.65 in the experiments with the highest number of control
arguments and attacks.

Similar are the results when the density of the indivi-
dual theories of the participating agents is set to 0.2 (co-
lumn "Agr 0.2"). Observe that the slight increase of the
density leads to a decrease in the rate of agreements in all
cases. However, again the presence of control arguments
increases the agreement rate from 0.16 to as high as 0.56.

numContrArg densContrAtt Agr 0.15 Agr 0.2
0 0 0.23 0.16
3 0.03 0.44 0.39
3 0.05 0.46 0.44
3 0.1 0.57 0.49
3 0.2 0.60 0.52
6 0.03 0.58 0.52
6 0.05 0.59 0.50
6 0.1 0.65 0.56
6 0.2 0.58 0.54

Table 1 – Agreement rate for negotiations with individual
theories of density 0.15 and 0.20

Recall that the negotiation experiments are generated
so that Aα,β

F ∪ Aα,β
U = Aβ ∪ Aα

p i.e. agent α CAF about
β contains all the arguments of its opponents. In the ex-
periments of Table 2 this assumption is removed by allo-
wing agent β to possess arguments that are not part of the
CAF of agent α. The number of these arguments is de-
termined by the value of parameter unknown defined as
|(Aβ − (Aα,β

F ∪ Aα,β
U ))|/|(Aα,β

F ∪ Aα,β
U )|. In the experiments of

Table 2 this value is set to 0.25 with the effect of a decrease
in the agreement rate when compared to the case with no
unknown arguments. This decrease was less significant for
theories with more control attacks. The experimental eva-
luation leads to a number of general conclusions. The first
is that, not surprisingly, the effectiveness of the approach
wrt the rate of agreements depends on a number of para-
meters including the density of the individual theories, the

numContrArg densContrAtt Agreement
3 0.03 0.32
3 0.05 0.37
3 0.1 0.42
3 0.2 0.43
6 0.03 0.45
6 0.05 0.43
6 0.1 0.55
6 0.2 0.57

Table 2 – Agreement rate for negotiations with individual
theories of density 0.15 and unknown= 0.25

number of attacks from control arguments, etc. Moreover,
other experiments not reported here, have shown that the
agreement rate also depends on the size of the shared part
Nα,β. In all cases it seems that, for "reasonably good" op-
ponent profiles, the method leads to a significant increase in
the number of negotiations that terminate with agreement.

5 Related work and Conclusions

In this paper we presented an original argumentation-
based negotiation framework that exploits a recent work
proposed in [10] on control argumentation frameworks for
modeling the uncertainty about the opponent profile and
also the acceptance and bidding strategies of the nego-
tiating agents. Compared to previous works proposed in
the literature on argumentation-based negotiation (see e.g.
[1],[3], [18],[13], [22],[14], [19],[20]) this new framework
introduces and combines together a number of original
ideas, with most notable a qualitative representation of un-
certainty that enables simultaneous consideration of several
different profiles, the bidding strategy that allows an agent
to use arguments that do not belong to its theory, along with
the notion of control arguments that facilitates persuasion
and utilizes arguments that defend against all the possible
attacks at once, hence minimizing the number of exchan-
ged messages. We consider that our work generalizes the
works proposed in [15],[9]. Our work is also different from
the work proposed in [23] where the agents have an in-
complete theory on the opponent which evolves based on
the information contained in the exchanged offers during
the negotiation through classical belief revision. The bid-
ding strategy also used in this work is different to ours.
Our experimental results have shown that the outcome of
an argumentation-based negotiation dialogue depends on
different parameters of the argumentation theories of the
agents but in all cases the use of control arguments seems
to have a positive impact on the number of agreements.
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