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Argumentation-based Negotiation with Incomplete Opponent Profiles

Computational argumentation has taken a predominant place in the modeling of negotiation dialogues over the last years. A competent agent participating in a negotiation process is expected to decide its next move taking into account an, often incomplete, model of its opponent. This work provides a complete computational account of argumentationbased negotiation under incomplete opponent profiles. After the agent identifies its best option, in any state of a negotiation, it looks for suitable arguments that support this option in the theory of its opponent. As the knowledge on the opponent is uncertain, the challenge is to find arguments that, ideally, support the selected option despite the uncertainty. We present a negotiation framework based on these ideas, along with experimental evidence that highlights the advantages of our approach.

Introduction

During the last years computational argumentation has taken a predominant place in the modeling of negotiation dialogues (for a survey see [START_REF] Dimopoulos | Advances in Argumentation-based Negotiation[END_REF], [START_REF] Rahwan | Argumentationbased negotiation[END_REF]). The goal of a negotiation dialogue is to allow interacting agents to resolve conflicts and reach a mutually accepted agreement, which in this work is a mutually accepted offer (e.g. the price of a product, the mode of payment). In an argumentation-based negotiation (ABN), agents choose offers that are likely to be accepted by the opponent and exchange arguments that support these offers, either based on their own theories (see e.g. [START_REF] Amgoud | A unified and general framework for argumentation-based negotiation[END_REF], [START_REF] Amgoud | On the Study of Negotiation Strategies[END_REF], [START_REF] Kakas | Adaptive agent negotiation via argumentation[END_REF], [START_REF] Dung | Towards argumentation-based contract negotiation[END_REF], [START_REF] Parsons | Agents That Reason and Negotiate by Arguing[END_REF], [START_REF] Hadidi | Argumentative alternating offers[END_REF]), or based on the opponent's profile (e.g. [START_REF] Hadidi | Tactics and Concessions for Argumentation-based Negotiation[END_REF], [START_REF] Pilotti | Chesñevar: A Belief Revision Approach for Argumentation-Based Negotiation Agents[END_REF], [START_REF] Bonzon | Knowing each other in argumentation-based negotiation[END_REF]).

The modeling of the opponent profile is an important issue in negotiation dialogues (and more generally other types of dialogue such as persuasion). As explained in [START_REF] Baarslag | A Survey of Opponent Modeling Techniques in Automated Negotiation[END_REF], although there are important differences between opponent models, there are strong reasons justifying their use, such as the minimization of negotiation cost, the adaptation to the opponent and the capacity to reach win-win agreements, especially in cooperative environments. Learning the opponent profile means learning its acceptance and bidding strategies, the deadlines and its preference profile [START_REF] Baarslag | A Survey of Opponent Modeling Techniques in Automated Negotiation[END_REF]. In most of the proposed works, the (online) opponent modeling is based on learning techniques (see e.g. [START_REF] Baarslag | Learning about the opponent in automated bilateral negotiation : a comprehensive survey of opponent modeling techniques[END_REF] for a survey). Apart from the fact that learning the opponent profile with traditional learning techniques is not an easy task, as pointed out in [START_REF] Zafari | POPPONENT : Highly accurate, individually and socially efficient opponent preference model in bilateral multi issue negotiations (Extended Abstract)[END_REF], those techniques seem better suited to game-theoretic (or utility-based) negotiations, rather than argumentation-based negotiations. Other works (although they concern persuasion dialogues and legal disputes), have proposed a probabilistic approach for dealing with the uncertainty about the opponent profile. In these works (e.g. [START_REF] Hadjinikolis | Opponent Modelling in Persuasion Dialogues[END_REF], [START_REF] Riveret | Success chances in argument games : a probabilistic approach to legal disputes[END_REF], [START_REF] Hunter | Modelling the Persuadee in Asymmetric Argumentation Dialogues for Persuasion[END_REF]), probabilities are used in different ways for finding the arguments that are most likely to be accepted by the opponent. Finally, some works (e.g. [START_REF] Rienstra | Opponent Models with Uncertainty for Strategic Argumentation[END_REF], [START_REF] Oren | Arguing Using Opponent Models[END_REF], [START_REF] Black | Choosing persuasive arguments for action[END_REF]) investigate other approaches to modeling the opponent profile in argumentation-based dialogues.

This work advances the state of the art in argumentationbased negotiation by making original contributions to the opponent modeling, and the associated acceptance strategy (i.e. what offers are most likely to be accepted) as well as bidding strategy (i.e. the strategy that an agent applies for choosing the next offer). For opponent modeling, it builds on the work of [START_REF] Dimopoulos | Control Argumentation Frameworks[END_REF] on control argumentation frameworks (CAFs), a formalism for modeling the uncertainty about the opponent profile. More specifically, it borrows the concepts of "on/off" arguments (i.e. arguments we don't know whether they are present or not in a theory), and the three different categories of attacks (i.e. attacks we know their existence and direction, attacks we know the existence but not the direction, attacks we don't know the existence but we know the direction). This allows generating different profiles modeled as completions of the known part of the opponent's theory, and seeking offers that satisfy all possible profiles (or as many as possible). Regarding the bidding and acceptance strategies, the originality of this work lies in the assumption that in argumentation-based negotiation, a central challenge for an agent is to lead, by means of appropriate arguments, its counter party to change its theory, and eventually accept the offer it proposes, hence influencing its acceptance strategy. Thus, in our approach, we propose a bidding strategy that relies on the previous assumption. More precisely, the idea is that a proponent agent uses first its own theory for choosing the best offer to propose, but next, it uses the incomplete theory of its opponent to find the arguments to support it. Then, it seeks and puts forward a set of arguments called control configuration, that could reinstate the supporting arguments, if these are rejected in the current state of the argumentative negotiation theories of all (or most) of the generated opponent profiles. Once the arguments of the control configuration are inserted in the opponent theory, they would, ideally, allow it to reach an agreement with the proponent, thus they alter its acceptance decision.

Background

We assume that the reader is familiar with abstract argumentation frameworks as introduced in [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], presented as a pair A, R , where A is a set of arguments, and R ⊆ A × A is an attack relation. The relation a attacks b is denoted by a R b or (a, b) ∈ R. Different acceptability semantics were also introduced in this work. Based on the acceptability semantics, we can define the status of any argument, namely skeptically accepted, credulously accepted and rejected arguments.

Now we introduce briefly the control argumentation frameworks (CAFs) proposed in [START_REF] Dimopoulos | Control Argumentation Frameworks[END_REF], and discusses how they capture the knowledge of an agent on its opponents. On a high level, a CAF is an argumentation framework where arguments are divided in three parts, fixed, uncertain and control.

The f ixed part of the theory concerns the certain knowledge that an agent holds about its opponent. This includes arguments as well as attacks that undoubtedly belong to the argumentation theory of the opponent. For instance, a seller agent knows that the customer agent prefers European cars, that safety is an important issue for it and that it prefers electric or gasoline-powered cars than diesel cars. The uncertain part captures the uncertainty about the presence of arguments in a theory (expressed by the "on/off" arguments as shown below), as well as the presence and the direction of attacks between arguments in this theory. It reflects the uncertainty that arises due to lack of complete information on the current state of the world that determines the decisions of the opponent, but also its beliefs and preferences. For example, the seller agent may not know the income of the customer agent, whether a car is a social status symbol for it, the highest price that it is ready to pay, or whether it is willing to pay more if some extras are included, and payment by installments is accepted. Finally, the control part contains arguments that can be used against arguments of the fixed or uncertain parts that attack arguments that are in favour of some offer of the proponent. Therefore, the control part serves to ensure that arguments in the fixed part that support some offer of the seller that is not adequate with some certain (i.e. European car) or uncertain (e.g. max price, preferred mode of payment) preferences of the customer, can be accepted under some circumstances. For instance, a control argument could allow a seller agent to propose a car from abroad Europe (which is against the known preference of the customer agent and represented in the fixed part) by proposing some interesting options (e.g. five airbags knowing that safety is an important issue for the customer and also represented in the fixed part) and in a price that is probably higher than the highest price the customer is intended to pay (this is part of the uncertain knowledge) but which allows the seller to accept a payment by installments, if this is the preferred payment mode for the customer (this is also part of the uncertain knowledge). Formally, a CAF is defined as follows :

Definition 1 Let L be a language from which we can build arguments, and let Args(L) be the set which contains all those arguments. A Control Argumentation Framework (CAF) is a triple CAF = F, C, U where F is the fixed part, U is the uncertain part and C is the control part of CAF with : 1. F = A F , → where A F is a set of arguments that we know they belong to the system and →⊆ (A F ∪ A U ) × (A F ∪ A U ) is an attack relation representing a set of attacks for which we are aware both of their existence and their direction. 2. U = A U , ( ∪ ) where A U is a set of arguments for which we are not sure that they belong to the system, ⊆ ((

(A U ∪ A F ) × (A U ∪ A F ))\ →
) is an attack relation representing a set of attacks for which we are aware of their existence but not of their direction, and

⊆ (((A U ∪ A F ) × (A U ∪ A F ))\ →
) is an attack relation representing a set of attacks for which we are not aware of their existence but we are aware of their direction, with ∩ = ∅.

C = A C ,

where A C is a set of arguments, called control arguments, that the agent can choose to use or not, and ⊆ {(a i , a j )

| a i ∈ A C , a j ∈ A F ∪ A C ∪ A U } is an attack relation.
A F , A U and A C are disjoint subsets of Args(L).

A CAF features a set of distinct attack relations that capture different sorts of information. Its simplest part is A F , → ∩(A F × A F ) , which is a classical AF that contains the indisputable knowledge of the agent on its opponent. The idea of CAFs essentially extends this basic argumentation framework with additional attack relations defined on arguments from the sets A U and A C . For instance, there is an attack (a i , a j ) ∈ , with a i , a j ∈ A F when it is certain that the two arguments exist and are in conflict (e.g. because they make mutually exclusive claims), but the direction of the attack(s) is unknown (e.g because of lack of information on the intrinsic strength of arguments, or on the preference relation between arguments). An attack (a i , a j ) ∈→, with a i ∈ A U and a j ∈ A F , represents a situation where it is unknown whether a i is present in the system (e.g. some of its premises could be false at the current time), but if a i is in the system, then a i definitely attacks a j .

Central to controllability is the notion of completion of a CAF. Intuitively, a completion is a classical AF which is built from the CAF, by choosing one of the possible options for each uncertain argument or attack.

Definition 2 [10] Given a CAF CAF = F, C, U , a com- pletion of CAF is an AF AF = A, R , s.t. 1. A = A F ∪ A C ∪ A comp where A comp ⊆ A U ; 2. if (a, b) ∈ R, then (a, b) ∈→ ∪ ∪ ∪ ; 3. if (a, b) ∈→, then (a, b) ∈ R ; 4. if (a, b) ∈ and a, b ∈ A, then (a, b) ∈ R or (b, a) ∈ R ; 5. if (a, b) ∈ and a, b ∈ A, then (a, b) ∈ R.
Note that the definition of a completion leaves the attacks from unspecified, as these attacks may not appear in the theory. For some examples of completions the reader can see [START_REF] Dimopoulos | Control Argumentation Frameworks[END_REF].

Controllability means that we can select a subset A con f ⊆ A C and the corresponding attacks {(a i , a j ) ∈ | a i ∈ A C , a j ∈ (A F ∪ A C ∪ A U )} such that whatever the completion of CAF , a given target is always reached. We focus on two kinds of targets : credulous acceptance of a set of arguments (this is reminiscent of extension enforcement [START_REF] Baumann | Expanding Argumentation Frameworks : Enforcing and Monotonicity Results[END_REF]), and skeptical acceptance of a set of arguments.

Definition 3 [START_REF] Dimopoulos | Control Argumentation Frameworks[END_REF] A control configuration of a CAF CAF = F, C, U is a subset A con f ⊆ A C . Given a set of arguments T ⊆ A F and a semantics σ, we say that T is skeptically (resp. credulously) reached by the configuration A con f under σ if T is included in every (resp. at least one) σextension of every completion of CAF = F, C , U , with

C = A con f , {(a i , a j ) ∈ | a i ∈ A C , a j ∈ (A F ∪ A C ∪ A U )} .
We say that CAF is skeptically (resp. credulously) controllable w.r.t. T and σ.

In a nutshell, CAFs are a powerful enabler of advanced negotiation techniques, that blend together a number of desirable features such as the qualitative representation of uncertainty, simultaneous reasoning with different profiles through completions, simultaneous consideration of both certain and uncertain knowledge of the opponent, the use of control arguments (corresponding to a persuasion phase embedded in negotiation, allowing for the reinstatement of rejected arguments), along with a computational model based on QBFs.

The Negotiation Framework

This section presents a new argumentation-based negotiation framework that relies on CAFs [START_REF] Dimopoulos | Control Argumentation Frameworks[END_REF] for representing the incomplete information that agents have about their opponents. Agents communicate through the exchange of messages (or dialogue moves, see e.g. [START_REF] Dimopoulos | Advances in Argumentation-based Negotiation[END_REF]). We assume that agents play the roles of the proponent and opponent in a turn-taking round-based protocol (e.g. similar to the alternating offers protocol of [START_REF] Hadidi | Argumentative alternating offers[END_REF]), where a proponent initiates a round and passes the token to its opponent when it is unable to defend an offer rejected by the opponent. The opponent may accept an offer when one of the supporting arguments is an acceptable argument for it, or reject an offer if it cannot accept any of the different supporting arguments sent by the proponent. We build on the works of [START_REF] Amgoud | A unified and general framework for argumentation-based negotiation[END_REF], [START_REF] Hadidi | Argumentative alternating offers[END_REF], and in the following, L denotes a logical language, and ≡ an equivalence relation associated with it. From L,

a set O = {o 1 , . . . , o n } of n offers is identified, such that o i , o j ∈ O such that o i ≡ o j .
This means that the offers are different. Offers correspond to the different alternatives (e.g. prices for a product) that can be exchanged during the negotiation dialogue. We assume that agents share the same set of offers O but those offers can be supported by different practical arguments (although not necessarily) in the theories of the negotiating agents. By argument, we mean a reason in believing (called epistemic arguments) or doing something (called practical arguments). The set Args(L) is then divided into two subsets : a subset Args p (L) of practical arguments supporting offers, and a subset Args e (L) of epistemic arguments supporting beliefs. Thus, Args(L) = Args p (L) ∪ Args e (L). A negotiation theory is therefore represented as follows :

Definition 4 (Negotiating agent theory) Let O be a set of n offers. A negotiating theory of an agent α is a tuple T = O, T α , CAF α,β , F α with T α = A α , → α and CAF α,β = F α,β , U α,β , C α,β and where : 1. A α ⊆ Args(L) is a set of arguments s.t. A α = A α p ∪ A α e
where A α p is a set of practical arguments, A α e a set of epistemic arguments, and A α c ⊆ A α e is the set of control arguments. For the attack relation it holds e and δ ∈ A α p (see [START_REF] Amgoud | Making Decisions through Preference-Based Argumentation[END_REF], [START_REF] Hadidi | Argumentative alternating offers[END_REF]).

→ α =→ p ∪ → e ∪ → m , with → p ⊆ A α p × A α p ,
2. CAF α,β is defined by : -

F α,β = A α,β F , → α,β with A α,β F =A α,β F e ∪ A α,β F p , → α,β =→ α,β e ∪ → α,β p and A α,β F e , → α,β e defining the epistemic argu- ments subpart s.t. → α,β e ⊆ (A α,β F e ∪ A α,β U e ) × (A α,β F e ∪ A α,β U e ).
The above hold also for the practical arguments subpart. It also holds A

α,β U =A α,β U e ∪ A α,β U p . -U α,β = A α,β U , α,β ∪ α,β ) with α,β = e ∪ p , α,β = e ∪ p and A α,β U e , e ∪ e ) , e ⊆ ((A α,β U e ∪ A α,β F e ) × (A α,β U e ∪ A α,β F e ))\ → α,β e ), e ⊆ ((A α,β U e ∪ A α,β F e ) × (A α,β U e ∪ A α,β F e ))\ → α,β
e , defining the epistemic arguments subpart. The same hold for the practical arguments subpart. e ∩ e = ∅.

-C α,β = A α c , where ⊆ {(a i , a j ) | a i ∈ A α c and a j ∈ A α c ∪ A α,β F e ∪ A α,β U e } \ (→ α,β e ∪ e ∪ e )). 3. F α : O → 2 A p α s.t ∀i, j with i j, F α (o i ) ∩ F α (o j ) = ∅. Let A p α O = F α (o i ) with i = 1, . . .

, n. This function returns the practical arguments supporting offers in O.

In the following we present the different procedures that implement the new negotiation framework of this paper.

Best Offers Selection

Algorithm 1 is the procedure invoked by the proponent agent α in order to compute, first, its best offer, based on its own theory, and it is implemented through function comp_next_o f f er. This function looks for the best offer supported by an acceptable practical argument by using a ranking on the supporting arguments based on a partial preorder (other methods can be also applied here). Then, based on its CAF α,β , it computes the practical arguments that support this offer in its opponent theory and calls a procedure, implemented by algorithm 2, that selects the supporting argument to be sent. If the proponent agent has no (other) offer to propose, the opponent of the agent is informed by a suitable message (i.e. nothing). 

Algorithm 1: choose-best- offer(O, T α , CAF α,β , F α,β (o)) 1 o ← comp_next_offer(O, T α ); 2 if o ∅ then 3 F α,β (o) ← compute_sup_arg(o, A α,β Fp ∪ A α,β Up ); 4 call choose-support-arg(o, F α,β (o), CAF α,β );

Supporting Argument Selection

The algorithm described below, selects (through function choosearg, where the choice can be random, as herein, or based on other methods) the argument that the proponent agent α sends to its opponent agent to support its offer. Moreover, another procedure finds the arguments that defend this supporting argument whenever this argument is currently rejected by the opponent. This task is carried out by the procedure implemented by algorithm 3. If there is no other available argument that supports the current offer, the agent abandons this offer and passes the negotiation token to the opponent agent.

Algorithm 2: choose-support- arg(o, F α,β (o), CAF α,β ) 1 if F α,β (o) ∅ then 2 θ ← choose-arg(F α,β (o)); 3 call defend-offer(o, θ, F α,β (o), CAF α,β ) 4 else 5 O=O -{o} ; A α p = A α p -F α (o); 6 message(α, β)=give_token ; send(message(α, β)) ;

The Bidding Strategy

The bidding strategy of the proponent agent is implemented by algorithm 3. The main task here is to defend the proposed offer by an argument that (as said before) supports the offer in the opponent's theory. Consider for instance a car seller agent who proposes an expensive luxury SUV of a prestigious brand to a customer who, as the agent understands, seems to afford it. The reason (argument) that the seller agent has chosen this particular car is probably the high sales commission that it brings. However, this is not an argument it can use to convince its customer. The pool of appropriate arguments could include the smooth ride, fast acceleration, high top speed, off-road capabilities, safety features, or even the high social status associated with the brand. In fact, the discovery of those arguments takes place inside algorithms 1 and 2. The role of the bidding strategy algorithm is to determine whether such a supporting argument is already acceptable in the opponent's theory, or to search for a control configuration that can defend the selected supporting argument under all possible opponent profiles.

More precisely, acceptance in the context of incomplete theories is based on the notion of completion which represents a possible profile (see definition 2). The computation in line 1 of the algorithm relies on reasoning with Quantified Boolean Formulas (QBFs), as described in [START_REF] Dimopoulos | Control Argumentation Frameworks[END_REF], that is carried out by the quantom solver [START_REF] Reimer | QBF with Soft Variables[END_REF]. The credulous controllability wrt the theory A α,β F ∪ A α,β U (i.e. arguments in A α c are not considered in this case) is computed by using the following Formula 1 :

∀{on x i | x i ∈ A α,β U }∀{att x i ,x j | (x i , x j ) ∈ α,β ∪ α,β } ∃{acc x i | x i ∈ A}[Φ cr st (CAF , θ) ∨( (x i ,x j )∈ α,β (¬att a i ,a j ∧ ¬att a j ,a i ))]
where

A = A α,β F ∪ A comp with A comp ⊆ A α,β U . Algorithm 3: defend-offer(o, θ, F α,β (o), CAF α,β ) 1 if θ is credulously accepted in all completions of the theory A α,β F ∪ A α,β U 2 then 3 offer(α, β) = o, θ, ∅, ∅ ; 4 F α,β (o) = F α,β (o) -{θ}; 5 message(α, β)=offer(α, β) ; send(message(α, β)) 6 else 7 S ← comp_contr_conf(CAF α,β , θ); 8 if S ∅ then 9 R = {(a i , a j )|a i ∈ S , a j ∈ A α,β F ∪ A α,β U }; offer(α, β) = o, θ, S , R ; 10 message(α, β)=offer(α, β) ; send(message(α, β)) 11 else 12 F α,β (o) = F α,β (o) -{θ}; 13 call choose-support-arg(o, F α,β (o), CAF α,β );
The on x i variable means that the argument x i currently belongs to the system ; it is used for making the differentiation between the completions where x i is included and those where it is not. Similarly, att x i ,x j is true when there is an attack from x i to x j . This variable has to be true if (x i , x j ) is a fixed attack of CAF . Otherwise the truth value of this variable allows to make the distinction between the completions where (x i , x j ) is included and those where it is not. Finally acc x i is a propositional variable representing the acceptance status of the argument x i . The propositional matrix Φ cr st (CAF , θ) of the formula is satisfiable when θ belongs to at least one extension of a completion of CAF (more details about this part are given later). Straightforwardly, the prefix of the formula corresponds to an enumeration of every completion (by the ∀ quantifiers) ; for every such completion, we have to search for at least one extension (represented by the existentially quantified part) such that θ belongs to it. Now, in case this computation succeeds, θ is acceptable in all possible opponent profiles (completions), and agent α sends to agent β the offer o, along with θ.

In case θ is not acceptable wrt the above theory, agent α reacts as depicted in lines 7-13 of algorithm 3. First, it uses its CAF to seek a control configuration S , that defends θ. This is again a problem on QBFs that is solved by a call to quantom solver (line 7 of the algorithm). However, this time arguments in A α c are considered and credulous controllability is computed by using the following Formula 2 :

∃{on x i | x i ∈ A α c }∀{on x i | x i ∈ A α,β U }∀{att x i ,x j | (x i , x j ) ∈ α,β ∪ α,β }∃{acc x i | x i ∈ A}[Φ cr st (CAF , θ) ∨( (x i ,x j )∈ α,β (¬att a i ,a j ∧ ¬att a j ,a i ))]
where

A = A α,β F ∪ A α c ∪ A comp with A comp ⊆ A α,β U .
Note that this formula is very similar to the previous one. This time, the existential quantifier over the on x i variables, for x i ∈ A α c , corresponds to the search for one control configuration. So the whole formula corresponds to the definition of credulous controllability : the formula is true if there is a control configuration such that, for every completion, θ belongs to at least one extension.

In both above cases we use the formula Φ cr st (CAF , θ) = Φ st (CAF ) ∧ acc θ which is based on

Φ st (CAF ) = x i ∈A α,β F [acc x i ⇔ x j ∈A (att x j ,x i ⇒ ¬acc x j )] ∧ x i ∈A α,β C ∪A α,β U [acc x i ⇔ (on x i ∧ x j ∈A (att x j ,x i ⇒ ¬acc x j ))] ∧ (x i ,x j )∈→ α,β ∪ α,β att x i ,x j (x i ,x j )∈ α,β att x i ,x j ∨ att x j ,x i (x i ,x j ) R ¬att x i ,x j where R =→ α,β ∪ α,β ∪ α,β ∪ α,β .
Moreover, in the first case, where the control arguments are not used (in Formula 1),

x i ∈A α,β C ∪A α,β U becomes x i ∈A α,β U .
This formula is a generalization of the encoding of stable semantics defined in [START_REF] Besnard | Checking the acceptability of a set of arguments[END_REF]. When every att-variable and every on-variable is assigned a truth value, this assignment corresponds to a completion. Then, the consistent truth assignments of the acc-variables correspond to the set of stable extensions of the completion. This means that if Φ st (CAF ) ∧ acc θ is satisfiable, then θ belongs to at least one stable extension of the completion which is represented by the att and on-variables. Now if in this second case the call succeeds, agent α sends offer o to agent β, along with the supporting argument θ, the set of arguments S , and the associated attacks R. Otherwise, the agent abandons this argument and picks another from F α,β (o) in order to continue defending o. This is done by function choose-support-arg. Recall that our approach looks for sets of arguments that are control configurations, i.e. work for all possible profiles of agent β. However, if there is no such solution, the QBF based techniques of quantom [START_REF] Reimer | QBF with Soft Variables[END_REF], can find sets of arguments that work for most of these profiles.

In the following we define an operator ⊕ that is used in algorithms 4 and 5.

Definition 5 Let A 1 , A 2 , A 3 be sets. We define (A 1 , A 2 ) ⊕ A 3 as the pair (A 1 , A 2 ) such that A 1 = A 1 \ (A 1 ∩ A 3 ) and A 2 = A 2 ∪ (A 1 ∩ A 3 ).
At the beginning of the negotiation each agent has in its theory (i.e. A α and A β respectively) only a part of the possible epistemic arguments (wrt a specific application). That means that some arguments are in A α and not in A β (and vice-versa). However, when an agent will use arguments (and the associated attacks) that do not belong to the opponent's theory, the opponent agent will add them (as well as the associated attacks) in its own theory, and it will be able to use them from that point onwards in the negotiation. This situation may take place in the algorithms 4 and 5.

The Acceptance Strategy

This section discusses Algorithm 4, that implements the acceptance strategy of an agent. Upon receiving an offer and its supporting arguments (and the associated attacks) sent by a proponent agent, the algorithm updates the theory as well as the CAF of the receiving agent by integrating the supporting arguments, the defending arguments (i.e. the control configuration), and the associated attacks into both theories (i.e. the receiving agent own theory and its CAF ). Then, the receiver agent either accepts the offer (i.e. if the supporting arguments are acceptable) and informs the proponent accordingly, or sends to the proponent the reasons for rejecting its offer.

Algorithm 4: decide-upon-offer(T α , CAF α,β , offer(β, α)) 

1 o, θ, S , R =offer(β, α); 2 if S ∅ then 3 T α =(A α ∪ S , → α ∪ R); 4 (A α,β U , A α,β F ) = (A α,β U , A α,β F ) ⊕ S ; 5 ( α,β , → α,β ) = ( α,β , → α,β ) ⊕ R; 6 ( α,β , → α,β ) = ( α,β , → α,β ) ⊕ R 7 if θ is a credulous conclusion of theory T α then 8 message(α, β)=Accept(o);

The Negotiation Protocol

The algorithm 5 described below implements the core procedure that drives the overall negotiation between the two negotiating agents through the necessary updates of their negotiation theories and calls to appropriate functions. The first part of algorithm (lines 1-2) implements the behavior of an agent when it is the proposer of the first offer, whereas the second part (lines 3-24) is concerned with its reaction when it receives an answer from another agent (i.e. the opponent). While the first part is straightforward as it concerns the selection of the best offer to propose, the second part is more involved and breaks down to several subcases. Those cases concern different situations that may arise during a negotiation, such as the rejection of an offer by the opponent, the acceptance of an offer (that terminates the negotiation with an agreement), the situation where the opponent informs that it has no other offer to propose, the situation where the opponent responds that it has no offer to propose too in a received similar message by the (proponent) agent (this ends the negotiation without agreement), the situation where an agent informs that it gives the token, and the situation where an offer is received and the receiver agent has to decide upon its acceptance or rejection. The example below explains how the protocol works. call decide-upon-offer(T α , CAF α,β , offer(β, α));

(A α,β U , A α,β F ) = (A α,β U , A α,β F ) ⊕ Q; 8 ( α,β , → α,β ) = ( α,β , → α,β ) ⊕ Reasons; 9 ( α,β , → α,β ) = ( α,β , → α,β ) ⊕ Reasons;

A Negotiation Example

In the following we run an example of negotiation for illustrating our framework. Figure 1 U e ={E}, β,α ={(B, X)}, β,α ={(K, E), (E, K)}, β,α ={(F, E), (D, B)} and control arguments A β c = {D, F}. The negotiation starts with agent α as proponent (see Fig. 1 (a)) by invoking algorithm 5. Following line 2 there is a call of algorithm 1. This algorithm computes the next (best) offer (line 1) to propose that is supported by an acceptable argument. In our example there is offer o but the supporting argument X is rejected as it is attacked by arguments B and E that belong into the two stable extensions namely {B, K} and {B, E}. Agent α has no offer to propose to agent β and following line 6 it prepares a message(α, β) = nothing and sends it to agent β. Agent β acts now as proponent (see Fig. 1,(a)). By using algorithm 5 (line 13) it checks whether O β ∅ (line 14) which is the case and calls algorithm 1. This algorithm computes (as previously) the next (best) offer (line 1) that is supported by an acceptable argument. In the current situation we have the offer o which is now supported by the acceptable argument Y as it belongs to the (only) stable extension {Y, D, F}. Then (line 3) it computes the supporting practical arguments in the uncertain theory of agent α namely F (o) β,α = {X} by using its CAF. Then (line 4) there is a call of algorithm 2. This algorithm allows to choose a supporting argument (line 2). In our case there is only one the argument X. Then there is a call (line 3) of algorithm 3. This algorithm allows to check firstly (line 1) whether X is credulously accepted in the uncertain theory of agent α without the use of a control configuration (see Formula 1). Argument X is attacked by the uncertain argument E (i.e. see attack (E, X)). That means that there is a completion (or profile) where this argument is present in the theory. Moreover the type of uncertain attack between arguments K and E informs us that an attack is indeed present but the direction is unknown. That means that there are two completions (profiles) (among the three possible ones) where we have {(K, E), (E, K)} and {(E, K)} as possible attacks. In one of these completions argument E defends itself against the attack from K and in the other it attacks K. Therefore in both cases E will be an acceptable argument and X will be rejected (as there is no defence against this attack). Argument X is also attacked by argument B through the uncertain attack (B, X). That means that there is a completion (profile) where this attack is present in the theory and in that case X will also be rejected as B is an acceptable argument and there is no defence for X against the attack (B, X). Therefore X cannot be accepted without the use of a control configuration. By looking at the real theory (green arguments) of agent α we may observe that the profile with the attacks {(K, E), (E, K)} is the right one but agent β ignores this information. Then the al-gorithm tries to check whether it can find (see Formula 2) a control configuration S (line 7). As we may observe such a set exists (see line 9) that can defend X no matter the real profile (i.e. for all the completions) of agent α. More precisely we have S = {D, F} and R={(F, E), (D, B)} and an offer(β, α)= o, X, {D, F}, {(F, E), (D, B)} is built. Then, following line 10, a message(β, α)=offer(β, α) is prepared and sent to agent α. Agent α acts as receiver now. By using algorithm 5 (see line 23) it calls algorithm 4 (see line 24). By using algorithm 4 agent α updates its theory and CAF (see lines 3-6), by using S = {D, F} and R={(F, E), (D, B)} (see Fig. 1 (b)). Then it checks whether it can accept X (see line 7). As shown in Figure 1 (b), the integration of agent's β control (blue) arguments {D, F} (and the associated attacks) in agent's α theory (see green arguments and attacks in Fig. 1 (b)), allows this agent to accept argument X as {X, D, F, K} is a stable extension and therefore to accept offer o. Thus, following lines 8-9 it prepares a message(α, β)=accept(o) and sends it to agent β. Agent β acts as receiver by using algorithm 5 (see line 11) and the negotiation ends successfully (line 12) with an agreement on offer o.

Experimental evaluation

Our framework has been implemented by using the JADE (http ://jade.tilab.com/) platform and evaluated on negotiations with random argumentation theories.

Random Theory Generation

The experimental evaluation of the proposed framework is based on a system, implemented in Java, that generates pairs of random negotiation theories and associated CAFs, with different user specified characteristics.

Each negotiation experiment involves a pair of random theories T α = A α , → α and T β = A β , → β that share a common part, i.e. there exists

N α,β = A N α,β , → N α,β , such that A N α,β = A α ∩ A β and (a, b) ∈→ N α,β iff (a, b) ∈→ α ∩ → β .
Moreover, control arguments are only attacked by other control arguments, i.e. ((

A α \ A α c ) × A α c )∩ → α = ∅.
The structure of the generated theories depends on a number of user supplied parameter values that are explained briefly below.

The user inputs the number of epistemic, practical and control arguments of theories T α and T β , as well as their density, defined as the ratio of attacks present in the theory to the number of all possible attacks between the arguments of the theory. Moreover, the instance generation system receives as input the number of epistemic, practical and control arguments of the shared part N α,β .

From theory T β , the CAF CAF α,β = A α,β F , → α,β , A α,β U , α,β ∪ α,β , A α c , is built (similarly for T α and CAF β,α ), which is the theory that agent α holds about 

F ∪ A α,β U = A β ∪ A α p , (b) A β p ⊆ A α,β F . The attack relation → α,β ∪ α,β ∪ α,β of CAF α,β
, is generated so that it satisfies the following conditions :

a) → α,β ⊆→ β , b) → β ∩(A α,β F × A α,β F ) ⊆→ α,β , c) ( α,β ∪ α,β ) ⊆ (→ β \ → α,β ), and d) α,β ∩ α,β = ∅.
The main consequence of the above requirements is that the attack relation of CAF α,β is a subset of the attack relation of T β . The rationale for this restriction, in this initial experimental evaluation, is to focus on negotiation experiments where agents possess an "accurate" model of their opponent. One way to formalize the model accuracy is via the above relation between individual theories and CAFs. Moreover, it is interesting to study how the framework behaves when this restriction is removed. Indeed, the next section provides initial evidence that the method of this paper can cope with the relaxation of this restriction.

As with the individual agent theories T α and T β , the random instance generation software accepts as input a number of parameter values that determine various features of the CAFs of the agents. Most of them concern the uncertainty of an agent profile on its opponent, as captured by the corresponding CAF. The first is parameter rateUncertArgs that defines the ratio of uncertain arguments to all (fixed and uncertain) arguments of the theory. That is, rateUncertArgs= |A α,β U |/|A α,β F ∪ A α,β U | for agent α, and similarly for agent β.

Other parameters of the system include rateUncertAtt, that defines the ratio of uncertain attacks over all attacks, as well as rateUndirAtt that defines the ratio of undirected attacks to all attacks. That is,

rateUncertAtt=| α,β |/| → α,β ∪ α,β ∪ α,β |, and rateUndirAtt=| α,β |/| → α,β ∪ α,β ∪ α,β |.
Moreover, parameter densContrAtt defines the ratio of attacks from the control arguments of the agent to the arguments of its opponent that are included in its CAF to all possible such attacks from control arguments. For instance, densContrAtt=0.1 for CAF α,β , means that 10% of all possible attacks from arguments of A α c to arguments in A α,β F ∪ A α,β U are included in the particular CAF α,β . Finally, the instance generation system receives as input the number of offers, i.e. |O α | and |O β |, as well as the number of practical arguments that support each offer.

Experimental Results

This section reports on selected results of the experimental evaluation of the framework. As the negotiation theory generation system accepts several parameter values, it is outside the scope of this work to provide exhaustive experimental results for all possible value combinations. Instead, we present results for selected runs that reveal important factors that influence the working of the negotiation algorithm, and highlight its merits and limitations. In all experiments we fix

|A α | = |A β | = 40, |A α p | = |A β p | = 6, |O α | = |O β | = 4 and A α c ∩ A N α,β = A β c ∩ A N α,β = ∅.
The experimental evaluation is centered around 12 sets of agent theories, and associated CAFs, that differ in the uncertainty of these CAFs and the size of the shared part of agent theories. More specifically, four (4) combinations of parameter values concerning the CAFs are considered, same for both agents. The first combination, abbreviated as comb1, is determined by the values rateUncertArgs= 0, rateUndirAtt= 0, rateUncertAtt= 0 which correspond to the case where both agents have complete knowledge of their opponent. Then, comb2 is defined by the values rateUncertArgs= 0.10, rateUndirAtt= 0.5, rateUncertAtt= 0.5. Moreover, the third combination comb3 is rateUncertArgs= 0.25, rateUndirAtt= 0.125, rateUncertAtt= 0.125. Finally, the last combination comb4 is rateUncertArgs= 0.50, rateUndirAtt= 0.25, rateUncertAtt= 0.25 and is the case where the agents have the highest uncertainty about their opponents among all the experiments. Each of the above set of values for the 3 CAF parameters is combined with one of the three possible values {0.25, 0.5, 0.75} for the ratio |A N α,β |/|A α | that capture different degrees of similarity between agent theories.

Each row of Tables 1 and2 presents the agreement rate, (i.e. ratio of the number of negotiations terminated with agreement over the total number of negotiations) of 600 negotiations consisting of 50 randomly generated experiments for each of the 12 parameter values combinations described above. Therefore, each experiment is an amalgamation of negotiation theories of various types as far as the values of the 12 value parameters is concerned. Each row of Table 1 corresponds to an experiment (600 negotia-tions) where the number of control arguments is shown in the numContrArg column, whereas the value of parameter dens ContrAtt in the corresponding column. The last two columns refer to the agreement rates achieved when the density of the individual theories of the agents participating in the negotiations is fixed to 0.15 (column "Agr 0.15") and 0.2 (column "Agr 0.2") respectively. The first row corresponds to the case where none of the agents has any control arguments.

The first conclusion that can be readily drawn from Table 1 is that the presence of control arguments increases significantly the number of negotiations that terminate with agreement. Indeed, for theories with density 0.15 (column "Agr 0.15"), the agreement rate almost doubles from 0.23 to 0.44 for cases where there are relatively few control arguments and attacks from those arguments, and triples to 0.65 in the experiments with the highest number of control arguments and attacks.

Similar are the results when the density of the individual theories of the participating agents is set to 0.2 (column "Agr 0.2"). Observe that the slight increase of the density leads to a decrease in the rate of agreements in all cases. However, again the presence of control arguments increases the agreement from 0.16 to as high as 0.56. Recall that the negotiation experiments are generated so that A α,β F ∪ A α,β U = A β ∪ A α p i.e. agent α CAF about β contains all the arguments of its opponents. In the experiments of Table 2 this assumption is removed by allowing agent β to possess arguments that are not part of the CAF of agent α. The number of these arguments is determined by the value of parameter unknown defined as

|(A β -(A α,β F ∪ A α,β U ))|/|(A α,β F ∪ A α,β U )|.
In the experiments of Table 2 this value is set to 0.25 with the effect of a decrease in the agreement rate when compared to the case with no unknown arguments. This decrease was less significant for theories with more control attacks. The experimental evaluation leads to a number of general conclusions. The first is that, not surprisingly, the effectiveness of the approach wrt the rate of agreements depends on a number of parameters including the density of the individual theories, the . In all cases it seems that, for "reasonably good" opponent profiles, the method leads to a significant increase in the number of negotiations that terminate with agreement.

Related work and Conclusions

In this paper we presented an original argumentationbased negotiation framework that exploits a recent work proposed in [START_REF] Dimopoulos | Control Argumentation Frameworks[END_REF] on control argumentation frameworks for modeling the uncertainty about the opponent profile and also the acceptance and bidding strategies of the negotiating agents. Compared to previous works proposed in the literature on argumentation-based negotiation (see e.g. [START_REF] Amgoud | A unified and general framework for argumentation-based negotiation[END_REF], [START_REF] Amgoud | On the Study of Negotiation Strategies[END_REF], [START_REF] Kakas | Adaptive agent negotiation via argumentation[END_REF], [START_REF] Dung | Towards argumentation-based contract negotiation[END_REF], [START_REF] Parsons | Agents That Reason and Negotiate by Arguing[END_REF], [START_REF] Hadidi | Argumentative alternating offers[END_REF], [START_REF] Marey | Agents' Uncertainty in Argumentationbased Negotiation : Classification and Implementation[END_REF], [START_REF] Monteserin | A reinforcement learning approach to improve the argument selection effectiveness in argumentation-based negotiation[END_REF]) this new framework introduces and combines together a number of original ideas, with most notable a qualitative representation of uncertainty that enables simultaneous consideration of several different profiles, the bidding strategy that allows an agent to use arguments that do not belong to its theory, along with the notion of control arguments that facilitates persuasion and utilizes arguments that defend against all the possible attacks at once, hence minimizing the number of exchanged messages. We consider that our work generalizes the works proposed in [START_REF] Hadidi | Tactics and Concessions for Argumentation-based Negotiation[END_REF], [START_REF] Bonzon | Knowing each other in argumentation-based negotiation[END_REF]. Our work is also different from the work proposed in [START_REF] Pilotti | Chesñevar: A Belief Revision Approach for Argumentation-Based Negotiation Agents[END_REF] where the agents have an incomplete theory on the opponent which evolves based on the information contained in the exchanged offers during the negotiation through classical belief revision. The bidding strategy also used in this work is different to ours. Our experimental results have shown that the outcome of an argumentation-based negotiation dialogue depends on different parameters of the argumentation theories of the agents but in all cases the use of control arguments seems to have a positive impact on the number of agreements.

  representing an attack relation for practical arguments, → e ⊆ A α e × A α e representing an attack relation for epistemic arguments and → m ⊆ A α e × A α p representing an attack relation between epistemic and practical arguments i.e. (a, δ) ∈→ m , if a ∈ A α

  , β)=nothing ; send(message(α, β));

  E where E is an extension of T α and Q is the set of arguments from which θ is reachable in the attack graph; 12 Reasons={(p, θ)|(p, θ) ∈→ α and p ∈ Q }; 13 message(α, β)=Reject(o, θ, Q, Reasons ); 14 send(message(α, β)) ;

6 case

 6 Procedure negotiate( O, T α , CAF α,β , F α ) 1 if agent α proposes first then 2 call choose-best-offer(O, T α , CAF α,β , F α,β (o));3 while true do 4 get message(β, α); 5 switch message(β, α) do Reject(o, θ, Q, Reasons ) do 7

  presents the agents α and β theories (before (a) and after the negotiation (b)) and their associated CAF respectively. Green arguments (resp. attacks) represent certain arguments (resp. attacks), red arguments (resp. attacks) represent uncertain arguments (resp. attacks) and blue arguments (resp. attacks) represent control arguments (resp. attacks). Thus in the current example we have A α p = {X} and A α e = {B, E, K} for agent α and A β p = {Y} and A β e = {B, E, D, F} for agent β. The arguments {D, F} are ignored by agent α. We have also the common set of offers O α = O β = {o}. F α (o) = {X} and F β (o) = {Y} represent the practical ar-guments supporting offer o in the agents α and β theories respectively. For their CAF we have F (o) α,β = {Y} and F (o) β,α = {X} respectively. Regarding the uncertainty, for CAF α,β we have A α,β U e ={B}, α,β ={(E, Y)} and for CAF β,α we have A β,α
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 1 Figure 1 -The theories of agents α and β before (a) and after (b) the negotiation and their respective CAFs.

Table 1 -

 1 Agreement rate for negotiations with individual theories of density 0.15 and 0.20

	numContrArg densContrAtt Agr 0.15 Agr 0.2
	0	0	0.23	0.16
	3	0.03	0.44	0.39
	3	0.05	0.46	0.44
	3	0.1	0.57	0.49
	3	0.2	0.60	0.52
	6	0.03	0.58	0.52
	6	0.05	0.59	0.50
	6	0.1	0.65	0.56
	6	0.2	0.58	0.54

Table 2 -

 2 Agreement rate for negotiations with individual theories of density 0.15 and unknown= 0.25 number of attacks from control arguments, etc. Moreover, other experiments not reported here, have shown that the agreement rate also depends on the size of the shared part N α,β

	numContrArg densContrAtt Agreement
	3	0.03	0.32
	3	0.05	0.37
	3	0.1	0.42
	3	0.2	0.43
	6	0.03	0.45
	6	0.05	0.43
	6	0.1	0.55
	6	0.2	0.57