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Résumé
Les réseaux neuronaux profonds ont démontré

une grande précision dans les tâches de vision par
ordinateur. Cependant, ils se sont avérés non robustes
face aux exemples adversariaux. Une petite perturbation
dans l’image peut totalement modifier le résultat d’une
classification. Ces dernières années, plusieurs moyens
de défense ont été proposés pour tenter de résoudre
ce problème dans le cadre de tâches de classification
supervisées, sans arriver à des résultats satisfaisants.
Dans cet article nous proposons une méthode permettant
d’obtenir des features robustes contre les attaques
adversariales dans le cadre de tâches d’apprentissage non
supervisées. Notre méthode se distingue des solutions
existantes par l’apprentissage direct des features robustes
sans qu’il soit nécessaire de projeter les exemples
adversariaux dans l’espace de distribution des images
d’origine. Un premier auto-encodeur, l’attaquant, est chargé
de perturber l’image d’entrée afin de tromper un second
auto-encodeur, le defenseur, qui lui est chargé de régénérer
l’image d’origine. L’attaquant essaie de trouver l’image
la moins perturbée sous la contrainte que l’erreur dans la
sortie du defenseur soit au moins égale à un seuil. Grâce
à cette formation, l’encodeur du defenseur sera robuste
contre les attaques adversariales et pourra être utilisé dans
différentes tâches comme la classification. En utilisant une
architecture de réseau de l’état de l’art, nous démontrons
la robustesse des fonctionnalités obtenues grâce à cette
méthode dans les tâches de classification.

Abstract
Deep neural networks have shown high accuracy in

computer vision tasks. However, they are known to be
weak against adversarial examples. A small perturbation
in the image can change the classification dramatically. In
recent years, several defences methods have been proposed
to solve the issue in the context of supervised classification
tasks. We propose a method to find robust features
against adversarial attacks in the context of unsupervised
learning. Our method differs from existing solutions by
directly learning the robust features without projecting the

adversarial examples in the original distribution space.A
first auto-encoder, called attacker, perturbs the input image
in order to fool a second auto-encoder, called defender,
which tries to regenerate the original image.The goal of
the attacker is to perturb images as little as possible while
guaranteeing that the reconstructed images will be at a given
distance from the original images.After such training, we
extract from the defender an encoder that should be robust
against adversarial attacks. Using state-of-art network
architectures, we demonstrate the robustness of the features
obtained by this method in classification tasks.

1 Introduction

Neural networks and especially convolutional neural
networks have shown impressive results in many different
tasks in computer vision such as object detection, image
recognition and segmentation. A downside of these
techniques is their lack of robustness [3, 6, 9, 22] :
imperceptible perturbations of the input (image, sound,
. . . ) can disturb the networks and drastically change the
output. Such perturbed inputs are called “adversarial
examples” [6] , and it is possible to design algorithms that
can generate such examples. Those algorithms are known
as “adversarial attacks” [6]. We commonly distinguish
two types of attacks:

— white box attacks, when the network architecture
and the weights are known;

— black box attacks, when they are not.
This work focus on non-targeted white-box attacks
computed using different attack methods.

The field of adversarial generation is an active research
field. Various methods have been developed in order
to produce adversarial example [25]. In this work,
we consider five of the most common attack methods
from the literature: the Fast Gradient Sign Method
(FGSM) [6], Iterative FGSM [10], Single Pixel attack
and LocalSearch [15] and Deepfool [14]. Those methods



are gradient-based or score-based approaches that try to
find minimal perturbations that will change the model
prediction.

Different methods have been proposed in order to
deal with these adversarial attacks. Some approaches
try to project the adversarial examples into the original
distribution [12, 18, 19] while others propose to add
adversarial examples into the training dataset [6, 14, 22],
similarly to data augmentation. Finally, recent methods
propose to transform the input data to make it less sensitive
to perturbations [8]. All these methods are attack-specific,
and thus not efficient against new or different attacks.
Recently, new methods have been proposed to learn the
attacking and defending concept concurrently in order
to be independent of the attacking method. Some
of those methods use Generative Adversarial Networks
(GANs) to generate adversarial examples as in [11, 18] or
Auto-Encoders as in [1, 4, 20].

In this paper, we attempt to learn an encoder with robust
features in an unsupervised manner. For this, we train
concurrently an attacker and a defender. The attacker
generates perturbed images from the original image in
order to fool the defender. The defender try to reconstruct
the original image from the perturbed one in order to
produce robust features.

2 Related Work

2.1 Attack strategies

Several attack strategies have been proposed, which
can be split in two categories: black-box and white-box
attacks. White-box attacks have access to the weights
and gradients of the classifier while, black-box strategies
only have access to the predictions of the network.In this
work, we concentrate on two kind of white-box attacks:
gradient-based and score-based. This section describes the
method we consider.

Fast Gradient Sign Method (FGSM) [6] Given an
image X and its corresponding label Y , the FGSM attack
sets the perturbation δ to:

δ(X,Y ) = ε · sign(∇XL(X,Y )) (1)

where ε is a small number and ∇ is the gradient of the loss
function L with respect to the input X . For each pixel,
FGSM slightly increases or decreases its value depending
on the sign of the gradient with respect to the pixel.

DeepFool [14] The DeepFool method performs an
iterative attack using a linear approximation in order to
find the shortest distance between the original input and
the decision boundary of adversarial examples. If f is a
binary differentiable classifier, an iterative method is used

to approximate the perturbation. The minimal perturbation
is computed as:

argmin
ηi

‖ηi ‖2

s.t . f (xi) + ∇ f (xi)Tηi = 0
(2)

ηi is the noise level and xi is the perturbed image at
iteration i, f is the binary classifier.

The method can be extended to multi-class classifiers by
finding the closest hyperplanes. DeepFool provides less
perturbation and reduces intensity compared to FGSM.

Single Pixel [21] Single Pixel is an iterative methods that
tries to create an adversarial example by setting the value
of a single pixel in the image to the minimum or maximum
value of any pixel in the image. The method randomly
selects a set of candidate pixel to modify and then iterate
over them until an adversarial example is generated. The
method can fail if none of the candidate pixel can be
modified to generate an adversarial example.

Local Search [15] This local search procedure tries to
find a pixel (or a group of pixels) that is critical for the
classifier robustness and then modify its value to generate
adversarial images. The Local Search algorithm finds pixel
locations to modify and then applies a fixed transformation
function to the selected pixels in order to generate an
adversarial image.

2.2 Defence strategies

Several studies have assumed that the lack of robustness
comes from the fact that adversarial examples are outside
of the dataset’s distribution, near the border of decision
as shown in [5, 24]. Multiple defence methods
have been proposed to increase the robustness of deep
neural networks against adversarial attacks. This section
describes the most common strategies.

Adversarial training Adversarial training is an intuitive
method that consists in augmenting the training dataset
with adversarial examples [23]. While this method
is efficient to increase robustness against adversarial
examples similar to the ones added to the training dataset, it
is attack-specific and thus poorly generalize to adversarial
examples generated differently from the ones in the
training dataset.

Defensive distillation Defensive distillation [16] is a
method that train the classifier in two steps using a variation
of the distillation [7] method. This creates a smoother
network, thus reducing the amplitude of gradients around
input points, and consequently increasing the robustness



against adversarial examples. However, this method
has proven to be inefficient against recent black-box
attacks [2].

Adversarial detectors Another method of defence is
to detect adversarial examples [13] and exclude them.
For each attack method considered, a classifier (detector)
is trained to tell whether an input is normal or
adversarial. The detector is directly trained on both
normal and adversarial examples. This method shows
good performance when the training and testing attack
examples are generated from the same process and the
perturbations are large enough, but does not generalize well
across different attack parameters and attack generation
processes.

MagNet MagNet [12] is a method based on adversarial
detector strategy. It trains a reformer network (which is
an auto-encoder or a collection of auto-encoders) to move
adversarial examples closer to the manifold of legitimate,
or natural, examples. It is an effective strategy against
grey-box attacks where the attacker is aware of the network
architecture and defences, but does not know its weights.

3 Proposed Method

3.1 Motivation

The previously described defence methods provide some
intuition on what can make a network robust to adversarial
examples. Our strategy differs from these by performing
adversarial training with data generated by a separated
network during training. Unlike adversarial detectors
strategies, our generating network is only used during
training, and not when doing inference. This paper
focus only on unsupervised learning strategies, which is
why we use auto-encoders. An auto-encoder is a deep
neural network composed by an encoder, responsible for
extracting deep features from input images, and a decoder,
responsible for reconstructing images from the extracted
features. During training, the network is optimized in order
to generate images similar to input images by minimizing
the distance between the original and generated images.

We propose a defence strategy to increase robustness
against white box attacks using Euclidean norm (L2) as
training objective. We then demonstrate its efficiency
against attacks that use L2 or infinity norm (L∞). The
approach is to train two auto-encoders, an attacker and
a defender. The attacker generates adversarial examples
by perturbing the original image while the defender
tries to reconstruct the original image from adversarial
examples given by the attacker. The two models are
trained concurrently and adapt themselves during training
until convergence much like how Generative Adversarial

Networks (GAN) are trained. At the end of the training,
we expect that the encoder of the defender will be able
to extract deep features which are robust against the
perturbations generated by the attacker. We expect this
training method to generate deep features representing
a larger distribution of input images than the original
one, and thus increase the robustness of the defending
auto-encoder.

The attacker model is similar to a style transfer model,
it must reconstruct the input image while adding noise in
order to induce errors in the defender output. Thus the
attacker has two adversarial training objectives:

— generate an image close to the input image;
— add perturbation to the generated image in order to

disrupt the defender with a minimum noise level β.
The objective of the defender is to produce an image

as close as possible to the original image (input of the
attacker) using the image generated by the attacker.

The distance between the original and reconstructed
image, Lα, is the loss function of the problem, and can be
any distance. In our experiences, we choose the Euclidean
distance. The corresponding optimization problem is
described by equation (3–5). This optimization problem
represents a non zero-sum game.

min
θat t

Ex∼χ (Lα (Att (x, θatt ) , x)) (3)

min
θde f

Ex∼χ(Lα(x,De f (Att(x, θatt ), θdef ))) (4)

Ex∼χ(Lα(x,De f (Att(x, θatt ), θdef ))) ≥ β (5)

where:
— χ is the ensemble of distribution examples,
— θatt is the weight of the attacker auto-encoder,
— θdef is the weight of the defender auto-encoder,
— Lα : χ, χ→ R is the loss function,
— Att(x, θatt ) : χ → χ is a function with parameters

θatt ,
— De f (x, θdef ) : χ → χ is a function with parameters

θdef .
Objective (3) is to minimize the distance between

the original image and the perturbed one (attacker).
Objective (4) is to minimize the distance between the
original image and the reconstructed image (defender).
Constraint (5) enforces a given minimum distance between
the original image and the reconstructed one.

To solve this under constraint optimization problem,
we choose to relax Constraint (5) by penalizing it in the
objective function:

min
θat t

Ex∼χ(Lα(Att(x, θatt ), x))+

γ ∗max(Ex∼χ(Lα(x,De f (Att(x, θatt ), θdef ))) − β, 0.0)



where γ is an hyper-parameter that controls noise
generation and must be large enough to satisfy
Constraint (5).

3.2 Model and training procedure

The attacker is implemented as an auto-encoder where
an uniform random vector is concatenated to the encoder’s
features and then passed through the generator. Adding
an uniform random vector allows the attacker to generate
noise without modifying the real features. The defender is
implemented as a standard auto-encoder.

We use a two-stage approach, with an initialization stage
that trains the encoder of attacker and the decoder of the
defender, and an optimization stage that deals with the real
optimization problem.

During the initialization stage, both auto-encoders are
trained to generate realistic images, without constraints
(Equation (3, 4)). This first phase facilitates the training
procedure and guarantees that the optimization stage goes
in the correct direction.

During the optimization stage, the weights of the
attacker’s encoder and the defender’s generator are not
updated anymore. This choice is justified since:

— The purpose of the attacker is to produce adversarial
examples from given non-perturbed examples. After
the initialization stage, the encoder of the attacker
is already able to compress input images into their
features and does not need to be trained anymore.
During the optimization stage the attacker can be
seen as an adversarial example generator taking as
input previously learned features concatenated with
random noise.

— The goal of the defender is to be robust against
adversarial attacks. After the initialization stage, the
generator of the defender is able to reproduce correct
images from good features. We want the features of
adversarial examples to be identical to the features
of non-perturbed examples. By fixing the generator
weights, we want the defender to extract features
from perturbed images that are very close to the
features of non-perturbed images.

3.3 Testing procedure

Since auto-encoders are architectures built for
unsupervised learning, no classifiers are used during
training. After training, in order to be able to use
adversarial attacks and estimate the robustness of the
network, we train a classifier using the features produced
by the encoder of the defender on images coming from
the original dataset. The robustness of this classifier
is evaluated against the following attacks: DeepFool
(L2-norm and L∞-norm), Single Pixel, LocalSearch and
FGSM.

Figure 1 – Network architectures.

We evaluate robustness using two criterion:
— the attack success rate, i.e., the percentage of times

the attack was able to fool the classifier;
— the noise level of adversarial examples defined as

the L2-norm between the original image and the
generated adversarial example.

4 MNIST Experiments

4.1 Configuration

We evaluate our method on the MNIST dataset with the
networks shown in Figure 1.

The neural networks use convolutionnal layers with
kernel size 3x3, strides 2x2 and ReLU activation functions
except for the last layer. The last layers have (1+tanh)/2 as
activation function. We use a batch size of 128 and Adam
optimizers with learning rates described in Table 1.

Initialisation Optimisation

Defender 5.10−4 10−5

Attacker 10−3 10−5

Table 1 – Learning rates for the Adam optimizer.

We use γ = 5.0, β = 0.01 and the L2 Euclidean norm
as the loss function. We run the initialization stage for 9
epochs and the optimization stage for 31 epochs.

The classifier is trained during 20 epochs using an
Adam optimizer with a learning rate of 10−3, and
a softmax-cross-entropy loss. The classifier uses the
defender’s encoder (whose weights are fixed) and a hidden
dense layer of 64 units with ReLU activation functions.

The network architectures and hyper parameters (γ and
β) have not been optimized for this task. However,
several learning rates have been tested to achieve the



presented results: a bad choice of learning rate can create a
non-robust network.

4.2 Results

Adversarial attacks tools Tools have been implemented
to facilitate adversarial attacks implementation such
as Cleverhans [?] or Foolbox [17]. Those tools
are open-source frameworks that propose state-of-art
algorithms used to generate adversarial examples on any
model.

In order to compare our method against a traditional
network, we trained a classic auto-encoder with an
architecture similar to the defender architecture. We then
train a classifier as previously described on the defender’s
encoder network. After 20 epochs, this classifier achieves
an accuracy close to 97% on the MNIST test set. We then
attack this classifier with several methods on the whole test
set using Foolbox [17].

The evaluation is only done on the first 1000 images of
the dataset due to computation time. Results are reported
in Table 2
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Figure 2 – DeepFool attacks

4.3 Analysis

DeepFool with L2-norm In Table 2, we see that only
0.5% of attack succeed when DeepFool is used with a
maximum of 50 iterations, generating a mean noise level
around 0.0075. This is expected as, during learning, the
attacker tries to find noise level greater than β = 0.01 (in
fact, very close to β as explained above) which can fool
the defender. If the defender manages to defend against
this level of noise, we expect it to be robust against levels
of noise lower than this threshold. The classifier seems
to be robust against L2 DeepFool attacks with at most
50 iterations. When we increase the DeepFool maximum
number of iterations, the success rate of attacks slowly

increases. With 200 iterations, 1.35% of attack succeeds,
and with 1000 iterations, the percentage of successful
attacks starts to becomes significant (15.25%), but the
noise level increases significantly at the same time to reach
0.73 which is far from the threshold value of 0.01 used
in training. One may think that increasing the threshold
β during training would increase the robustness of our
method, but using the MNIST dataset, it is impossible
because doing so, the attacker would generate images that
are almost entirely black. Indeed, the average L2 distance
between an MNIST image and a black image is around
0.07, it is thus not possible to increase the threshold that
much.

DeepFool with L∞-norm With the default maximum
number of steps for DeepFool (50), the classifier seems
to be robust (4.13% of success rate) for the L∞ norm.
However, the classifier quickly fails as the number of steps
increase, with a 89.20% success rate of attack for 200
steps.Usually, such number of iteration steps are not tested
in the literature, but this shows that even if some networks
seem to be robust against few iterations of DeepFool, larger
number of iterations often manage to fool most of these
networks. However, even with 50 steps, the noise level
is already quite high (1.13), which is why it does not
necessarily mean that the network is not robust against this
attack.

Single Pixel and LocalSearch Even if the attack success
rate is relatively low (4.72%), this level of success rate is
higher than what we may expect since the L2 distances
between input images and adversarial examples generated
by single pixel are quite small. For our methods, this attack
looks more powerful than DeepFool which is designed
precisely to minimize the L2-norm.

Gradient Methods FGSM and Gradient have a high
attack success rate, near 100% for Gradient Sign and
Gradient. This is expected since the defender is not trained
against the high levels of noise generated by all these
methods.

MagNet Comparaison MagNet [12] and our method
show similar performances. However, MagNet uses an
additional network in order to detect adversarial examples
upstream to the main network. This detector network is
also used during inference, inducing more computation and
thus slowing down the inference process. Our method
use two auto encoders during the training process, but
only the encoder of the defender is used during inference,
coupled with, e.g., a small classifier for computer vision
tasks such as classification. The global architecture of the
final network is thus much smaller than the one used during



Classic Auto Encoder MagNet Our Method
Attack Name Success Rate Noise Level Success Rate Success Rate Noise Level

DeepFool (max-iter=50 – L2) 94,41% 1,25 — 0.54% 0.0075
DeepFool (max-iter=50 – L∞) 100% 1,81 0.6% 4.13% 1.13
FGSM (ε=0.005) 0.41% 0.07 3.2% 1.61% 0.04
Iterative (ε=0.005) 1.04% 0.08 4.8% 1.25% 0.04
Single Pixel 9.17% 1.0 — 4.72% 1.0
LocalSearch 44.41% 5.22 — 27.51% 9.71

Table 2 – Attack success rates and noise levels for various attacks.

training, and the computation time required for inference is
reduced without loss of robustness.

5 Conclusion

Without adding extra computational complexity, such
as image filtering or adversarial image detection, we
demonstrated that a classical network can be robust against
L2 attacks by using an appropriate unsupervised learning
procedure. This procedure shows promising results for
learning robust unsupervised networks. However, even if
it was expected due to the defence strategy, the trained
network is not robust against all types of attacks, in
particular it is weak against gradient attacks. Our future
work will focus on creating a more general defence
learning procedure, by using different distance methods.
We also plan to test this method on more complex datasets,
such as CIFAR-10 and ImageNet, with different network
architectures.
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