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Abstract In this paper, we introduce a stochastic model for the dynamics of actin
polymers and their interactions with other proteins in the cellular envelop. Each poly-
mer elongates and shortens, and can switch between several modes depending on
whether it is bound to accessory proteins that modulate its behaviour as, for example,
elongation-promoting factors. Our main aim is to understand the dynamics of a large
population of polymers, assuming that the only limiting quantity is the total amount
of monomers, set to be constant to some large N.

We first focus on the evolution of a very long polymer, of size O(N), with a
rapid switch between modes (compared to the timescale over which the macroscopic
fluctuations in the polymer size appear). Letting N tend to infinity, we obtain a fluid
limit in which the effect of the switching appears only through the fraction of time
spent in each mode at equilibrium. We show in particular that, in our situation where
the number of monomers is limiting, a rapid binding-unbinding dynamics may lead
to an increased elongation rate compared to the case where the polymer is trapped in
any of the modes.

Next, we consider a large population of polymers and complexes, represented by
a random measure on some appropriate type space. We show that as N tends to in-
finity, the stochastic system converges to a deterministic limit in which the switching
appears as a flow between two categories of polymers. We exhibit some numerical
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examples in which the limiting behaviour of a single polymer differs from that of a
population of competing (shorter) polymers for equivalent model parameters.

Taken together, our results demonstrate that under conditions where the total
number of monomers is limiting, the study of a single polymer is not sufficient to
understand the behaviour of an ensemble of competing polymers.

Keywords modelling of actin polymers · measure-valued Markov processes ·
convergence theorems · homogenisation theorem

Mathematics Subject Classification (2010) 60G57 · 60J25 · 60J75 · 60F05

1 Introduction

1.1 Actin cytoskeleton and cell mechanics

During the embryonic development, cell mechanics plays a central role in many cell
behaviours, from cell shape changes to cell division, cell migration and cell rear-
rangements [17]. In animals, these mechanical properties are largely determined by
the cortical actomyosin cytoskeleton, a 200-500nm thick network of actin and myosin
polymers assembled beneath the cell membrane. Several parameters play a key role
in determining the properties of this 2d active gel, including its turnover rate, density,
crosslinking and its fine architecture. In particular, the distribution of polymer lengths
in the cytoskeleton has a strong impact on the mechanical properties of the gel and
the cell. In this paper, we focus on the dynamics of actin polymer assembly in the
presence of two classes of proteins that modulate the assembly dynamics, formins
and profilins. Our main assumption is that the total number of monomers in the sys-
tem is fixed to some (large) N, reflecting the fact that this quantity is a limiting factor
in the evolution of the population of polymers.

In cells, actin exists in two forms: monomers (or G-actin) and polymers (or F-
actin). The G-actin monomer addition is coupled to an ATP hydrolysis. Along with
the structural polar organisation of the F-actin filament, this causes both extremities
of a polymer to display distinct kinetic properties: one with fast kinetics, or plus end,
and one with slow kinetics, or minus end. In vitro actin assembly can reach a steady
state where polymerisation, occurring at the plus end, is balanced by depolymerisa-
tion, occurring at the minus end. Note that in this work we are not interested in the
spatial conformation of the polymers or their spatial organisation in the cellular cor-
tex: provided there are available free monomers, a polymer can grow irrespective of
its size.

A large number of accessory proteins interact with actin polymers and modify
their dynamics, thus contributing to the shaping of the actin network in a cell- and
tissue-specific manner. Here we consider only two such interactors: formins and pro-
filins. Formins form a large family of dimeric proteins with a wide range of bio-
chemical properties associated with their function in the cell. These proteins bind
to the plus end of actin filaments, drive a processive filament elongation and modu-
late the actin elongation rate [15,16]. Profilin is an abundant protein which regulates
the actin dynamics by promoting ADP-to-ATP exchanges on G-Actin, renewing the
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ATP-actin pool. Importantly, profilin has been shown to affect differently distinct
actin sub-networks, increasing the elongation rate by formins up to 15-fold, while
decreasing the branching of branched networks [8,25,27]. In order to disentangle the
different mechanisms underlying the composition in distinct polymer structures of
the whole population of actin polymers, in this work we do not consider the sub-
network of branched filaments (i.e., tree-like structures induced by another protein
called Arp2/3) and instead focus on the positive effect of formins and profilins on
the elongation rate of the sub-network of simple polymers. Taking branching into
account is significatively more difficult and will be the object of future work. Each
formin can thus bind to or unbind from a polymer at a given rate. We shall say that
a polymer is in “fast” mode if it is associated to a formin and therefore polymerises
faster. When it is not bound with a formin, we say that it is in “normal” mode. To
account for the role of profilin balancing the two network populations, we formally
assembled filaments in “normal” mode from a G-actin complexes, while filaments in
“fast” mode were assembled from G-actin/profilin (Figure 1 and [28]). Finally, note
that our simple model, we also ignore the effect of the formins on actin nucleation.

Our main interest is twofold: understand the consequences of the fact that mono-
mers are in limited numbers (being free, in a complex with a profilin or inserted in
a polymer), and characterise the impact of the switching between two modes on the
distribution of polymer lengths and on the fraction of monomers incorporated in a
polymer. Several models for actin assembly have already been developped [7,11,12,
31,32]. The majority of these models are either deterministic and focus on a steady-
state equilibrium, or are stochastic and are studied by Monte- Carlo simulations [6,
22]. Most of the models taking into account a population of actin polymers rely on
very specific assumptions and are not developed in a general context. Indeed, many
of them concentrate on cell motility and therefore focus on the dynamics of actin in
protrusions [7,19] or in the geometrical organisation of the actin network [10]. More
general models like [11,12] do not take into account the faster elongation of poly-
mers bound with a formin, and neither do they consider the effect of the switching
between spontaneous elongation and elongation with a formin. The works [14] and
[20] use the same approach as ours to study the average length of an actin polymer
and the distribution of the polymer lengths. However, [14] does not consider the large
population limit of their model and [20] focuses more on the importance of having
two types of monomers (ATP and ADP) than on the effects of accessory proteins.
Apart from the population approaches listed above, most of the existing literature
tends to focus on a single polymer, or on two competing polymers, with the idea
that very large populations of polymers will then be well-described by the law of an
“average” polymer. Importantly, we wanted to explore the effect of the competition
between different sub-populations of polymers, elongated by distinct factors, for a
unique, limited monomer pool.

To this end, we first consider a single polymer and its interactions with formins
and profilins in Section 1.2. Taking a particular limit as the total number of monomers
in the system tends to infinity, we show that if we allow this polymer to “live” for a
very long time (by taking its initial length to be of order O(N)), then its interac-
tions with formins average out and the resulting asymptotic polymerisation rate is a
weighted average between the polymerisation rate in fast and in normal mode (i.e.,
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when bound or not with a formin). In Section 1.3, we instead consider a large popula-
tion of short competing polymers and show that, because short polymers never reach
such a long lifetime, the intuitive homogenisation result of Section 1.2 does not ap-
ply and the competition for free monomers or G-actin/profilin complexes has a strong
impact on the size distribution within the population of polymers. In Section 4, we
show by simulation that the characteristics of a single polymer considered on its own
can differ significantly from the distribution in polymer lengths in a large population
even for equivalent model parameters.

1.2 Switching dynamics of a single actin polymer

1.2.1 The model

We first focus on the effect of the switching between different modes on the evolution
of a single polymer. We restrict our attention to two modes (fast and normal), but our
result would easily carry over to the case of finitely many modes under some natural
ergodicity conditions.

The model we propose below takes into account the spontaneous elongation of
the polymer as well as the effects of formins and profilins. If there are no formins
attached to the plus end of the polymer, elongation is spontaneous and consumes free
monomers. In contrast, if there is a formin on the polymer, elongation is induced by
the formin and G-actin/profilin complexes are integrated into the polymer instead of
free monomers. Only one formin can be bound to the polymer at a time. Recall that
in the first case we say that the polymer is in “normal” mode, while the second case
is called the “fast” mode. For every t ≥ 0, we write M(t) = 0 (resp., M(t) = 1) if the
polymer is in normal (resp., fast) mode at time t.

As we want monomers to be a limiting factor, we assume that the total number
of monomers in the system is fixed through time to some N ∈ N. These monomers
can be in three states: free, in the polymer or held in a G-actin/profilin complex (each
involving only one monomer). At any given time t ≥ 0, the current number of free
monomers is denoted by LN

0 (t), the length of the polymer by LN
1 (t) and the number

of G-actin/profilin complexes by LN
2 (t). We also define

LN(t)
de f
=
(
LN

0 (t),L
N
1 (t),L

N
2 (t)

)
. (1)

Writing [N] for the set {0,1,2, . . . ,N}, we thus have for any i ∈ {0,1,2} and any
t ∈ R+: LN

i (t) ∈ [N] and

LN
0 (t)+LN

1 (t)+LN
2 (t) = N. (2)

The model incorporates six types of events, illustrated in Figure 1:

1. Spontaneous elongation. If the polymer has positive length and is in normal mode,
elongation (at the plus end) is spontaneous, and we assume that the rate at which
it occurs is proportional to the current density of free monomers. That is, the
instantaneous rate of spontaneous elongation a time t is given by

1{M(t−)=0}1{LN
1 (t−)>0}λ

+LN
0 (t−)/N,
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Fig. 1: Schematic representation of the model for the dynamics of a single actin
polymer and its interaction with formins and profilins. Red single units represent
monomers, red-green units represent G-actin/profilin complexes and the strand of red
units at the top of each box represents the polymer. The green oval depicts a formin
bound to the polymer.

for some constant λ+ ≥ 0. The new value of the vector describing the system is
then

LN(t) =
(
LN

0 (t−)−1,LN
1 (t−)+1,LN

2 (t−)
)
.

2. Elongation with a formin. If the system is in fast mode and the polymer has posi-
tive length, elongation (also at the plus end) is induced by a formin and consumes
G-actin/profilin complexes. Therefore, in this case we suppose that the instanta-
neous rate of polymerisation is proportional to the density of available complexes,
i.e. is equal to 1{M(t−)=1}1{LN

1 (t−)>0}λ
+
F LN

2 (t−)/N for some constant λ
+
F ≥ 0. The

vector LN then jumps to

LN(t) =
(
LN

0 (t−),LN
1 (t−)+1,LN

2 (t−)−1
)
.

3. Depolymerisation. In both modes, the polymer can release a monomer (from the
minus end) if its length has not already reached 0. We write 1{LN

1 (t−)>0}λ
− for

rate of depolymerisation, where λ− is a nonnegative constant, and the new value
of LN is then

LN(t) =
(
LN

0 (t−)+1,LN
1 (t−)−1,LN

2 (t−)
)
.

4. Production of complexes. Independently of the mode of the polymer, a free mo-
nomer and a profilin can react and produce a G-actin/profilin complex. Assuming
that profilin is not a limiting factor, the instantaneous rate of production of G-
actin/profilin complexes at time t is given by ΦPLN

0 (t−)/N, for some constant
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N Total number of monomers

λ+ Rate of spontaneous elongation

λ
+
F Rate of elongation with formins

λ− Rate of depolymerisation

ΦP Rate of production of G-actin/profilin complexes

Φ
+
F Rate of binding of a formin to the polymer (switch from normal to fast mode)

Φ
−
F Rate of release of a formin by the polymer (switch from fast to normal mode)

LN
0 (t) Number of free monomers at time t

LN
1 (t) Length of the polymer at time t (in number of monomers)

LN
2 (t) Number of G-actin/profilin complexes available at time t

M(t) Mode (fast/normal) in which the polymer is at time t

Table 1: Parameters and variables in the single-polymer model

ΦP that takes into account the concentration in profilin in the cellular cortex. The
new value of LN after such an event is

LN(t) =
(
LN

0 (t−)−1,LN
1 (t−),LN

2 (t−)+1
)
.

5. Binding of a formin. If the polymer is in normal mode, a formin can bind to its
plus end and the polymer switches to the fast mode. We write Φ

+
F for the constant

rate of occurrence such a switch from normal to fast mode. This event does not
modify the value of LN , but corresponds to a jump from 0 to 1 for M(t).

6. Release of a formin. If the polymer is in fast mode, the formin bound to it can
be released and the polymer switches to the normal mode. We denote Φ

−
F the

constant rate of such a switch. Again, this event only affects the process M, which
jumps from 1 to 0.

Table 1 summarises all the notation introduced here. Observe that monomers cannot
spontaneously detach from a G-actin/profilin complex. However, when a complex is
integrated into a polymer, its depolymerisation results in the separation of the com-
plex into a free monomer and a (free) profilin. Once the length of the polymer has
reached 0, for mathematical convenience we suppose that (M(t))t≥0 keeps on jump-
ing from 0 to 1 at rate Φ

+
F and from 1 to 0 at rate Φ

−
F for all times, even if this

assumption has no biological meaning.
The system is fully described by the Markov process (LN(t),M(t))t≥0. From the

above, we see that (M(t))t≥0 is a Markov jump process with values in {0,1}, switch-
ing from 0 to 1 at rate Φ

+
F and from 1 to 0 at rate Φ

−
F . We assume that Φ

+
F +Φ

−
F > 0

to ensure the presence of mode switching. It evolves independently of the process
(LN(t))t≥0, while the dynamics of (LN(t))t≥0 depends on (M(t))t≥0. Since (M(t))t≥0
is an irreducible Markov process on a finite state space, it has a unique stationary
distribution πM given by(

πM(0) , πM(1)
)
=

(
Φ
−
F

Φ
+
F +Φ

−
F
,

Φ
+
F

Φ
+
F +Φ

−
F

)
. (3)

This stationary distribution will appear in the homogenisation result presented in the
next section.
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1.2.2 Large-N limit

In order to understand the first order fluctuations of the system, we let the total num-
ber of monomers tend to infinity and look for a fluid limit as N tends to infinity. That
is, we consider the scaled (non-Markovian) process

LN(t) =
(
LN

0 (t),L
N
1 (t),L

N
2 (t)

) de f
=

(
LN

0 (Nt)
N

,
LN

1 (Nt)
N

,
LN

2 (Nt)
N

)
, (4)

and we want to prove that LN converges to a deterministic limit as N→ ∞.
Let us write

∆
de f
=
{
(x1,x2,x3) ∈ [0,1]3 : x1 + x2 + x3 = 1

}
(5)

for the compact set in which LN takes its values for every N and D∆ [0,∞) for the
space of all càdlàg ∆ -valued paths, which we endow with the standard Skorokhod
topology. Let

C0
de f
= πM(0)λ++ΦP and C2

de f
= πM(1)λ+

F , (6)

where πM(0) and πM(1) are defined in (3). The constants C0 and C2 are respectively
the rate of consumption of free monomers and of G-actin/profilin complexes when the
process M is at stationarity. To avoid trivialities, we suppose that these two quantities
are positive.

We can now formulate the main result of this section.

THEOREM 11 Suppose that the initial condition LN(0) ∈ ∆ converges in distribu-
tion to some deterministic vector (l0(0), l1(0), l2(0))∈∆ . Then as N→∞, the process
LN converges in distribution in D∆ [0,∞) to the deterministic process (l(t))t∈R+ =
(l0(t), l1(t), l2(t))t∈R+ satisfying: for every t ≤ t0,

l0(t) =
(

l0(0)− λ−
C0

)
e−C0t + λ−

C0

l1(t) = 1− l0(t)− l2(t)

l2(t) = l2(0)e−C2t + ΦP
C2−C0

(
l0(0)− λ−

C0

)
(e−C0t − e−C2t)+ ΦPλ−

C0C2
(1− e−C2t),

and for every t > t0, 
l0(t) = l0(t0)e−ΦP(t−t0)

l1(t) = 0

l2(t) = 1− l0(t)

where t0 = min{t ∈ R+ : l1(t) = 0} is the time at which the polymer “size” cancels
(by convention, t0 =+∞ if l1 does not reach 0).
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We easily see from Theorem 11 that the system obtained in the limit has a unique
equilibrium, which depends on whether t0 < +∞ or not. If t0 < +∞ then the sys-
tem converges to (0,0,1) and every monomer ends up associated with a profilin. In
contrast, if t0 = +∞, the limiting distribution of monomers into the three different
categories is given by (

λ−

C0
, 1− λ−

C0
− λ−ΦP

C0C2
,

λ−ΦP

C0C2

)
. (7)

Observe that the limiting amount of free monomers corresponds to the ratio of the
asymptotic rate of increase of the free monomer pool, λ−, by the asymptotic rate
C0 = πM(0)λ++ΦP at which free monomers are consumed by the polymer elonga-
tion in normal mode and the creation of G-actin/profilin complexes. Likewise, since
complexes can only be created by the reaction of a free monomer with a profilin, the
limiting amount of complexes can be read as the ratio of their creation rate from the
pool of free monomers at equilibrium, (λ−/C0)×ΦP, by the rate of consumption of
complexes through polymerisation in fast mode, C2.

A natural question, on which we shall not dwell, is of course to ask when t0 is
finite. An obvious sufficient (but not necessary) condition for t0 < ∞ is

1− λ−

C0
− λ−ΦP

C0C2
< 0. (8)

Theorem 11 pertains to the family of stochastic homogenisation results such as
[21]. Indeed, although most reactions occur on a similar timescale, the time it takes
to the polymer to see its length change by O(N) units (so that this change may be
visible after our rescaling of LN

1 by N) is of the order of O(N) original time units,
and is therefore much larger than the time of order O(1) that the binding and release
of formins take. What our result shows is that, in the limit as N tends to infinity, the
fast dynamics of mode switching equilibrates and only its stationary distribution πM
impacts the slow dynamics of the polymer elongation and shortening. Recalling that
πM(0) (resp., πM(1)) can be interpreted as the fraction of time spent in the normal
mode (resp., fast mode) over the very long timescale considered here (by ergodic-
ity), we see that, as mentioned earlier, C0 (resp., C2) corresponds to a global rate of
consumption of free monomers (resp., of G-actin/profilin complexes) when M is at
stationarity, and the average behaviour described by the equations stated in Theo-
rem 11 corresponds to the barycenter between the behaviour of the system when it is
in normal mode and the behaviour of the system when it is in fast mode.

Notice that our approach is similar to that of [21,24], in which each individual
switches state (or spatial location) independently, but it differs from many stochastic
homogenisation results such as [2] or [4], in which it is the environment where all
individuals evolve which switches fast, affecting the population as a whole. More
precisely, in our study fluctuations are not on the scale of the population but on the
scale of the individuals since each polymer can be in several modes independently of
the others. This kind of random individual state switching seems less studied than the
long-term averaging effect of environmental switches.

The limiting process (l(t))t≥0 allows us to understand the impact of the restric-
tion on monomers and of the interaction with formins and profilins on the dynamics
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of a single polymer. However, our model does not take into account the competition
between the numerous polymers which are present in the cellular cortex. As a conse-
quence, we now build on our model for a single polymer to construct and analyse a
more complex model for a population of actin polymers.

1.3 Switching dynamics for a population of actin polymers

1.3.1 The model

We now consider a population of actin polymers undergoing the same reactions as
in the previous section. Recall that we assume that the total number of monomers
in the system is fixed, equal to N ∈ N. Again, these monomers can be free, in a G-
actin/profilin complex, in a polymer bound with a formin or in a simple polymer (with
no formin attached). As earlier, if an actin polymer is simple its elongation consumes
free actin monomers, and if the polymer is associated to a formin, its elongation
consumes only G-actin/profilin complexes. To ease the exposition, we shall consider
that free monomers and G-actin/profilin complexes are two types of actin polymers.

Since we want to understand the distribution of polymer lengths within the pop-
ulation as well as the amounts of monomers contained in each category of polymers,
we describe every element of the population by its type and its length. More pre-
cisely, free monomers are denoted by M, G-actin/profilin complexes by P, simple
actin polymers by S and actin polymers bound with a formin by F . Polymers of type
M and P can only be of size 1, while polymers of type S and F can be of any length
in {1,2, . . . ,N}. By convention, we distinguish between polymers of length one and
free monomers as polymers made of a single monomer can grow again. Other con-
ventions are possible and similar results to the ones presented below can be obtained
using the same arguments as in the proof of Theorem 12.

Later it will be more convenient to have a state space independent of N, we thus
let

I
de f
= {(M,1),(P,1)}∪

(
{S,F}×N

)
, (9)

and for every pair (T, l) ∈ I and every t ≥ 0, we define KN
t (T, l) as the number of

polymers of type T and length l present in the system at time t. Here we use the
convention N = {1,2, . . .}. The system at every time t is described by its empirical
distribution Z N

t :

Z N
t

de f
= KN

t (M,1)δ(M,1)+KN
t (P,1)δ(P,1)+

N

∑
l=1

KN
t (S, l)δ(S,l)+

N

∑
l=1

KN
t (F, l)δ(F,l),

(10)
where δx denotes a Dirac mass at x. Each Z N

t is thus a random measure on I . We
write MI for the space of all finite measures on I , endowed with the topology of
weak convergence.

Let us make a few remarks. First, let pl denote the projector (T, l) 7→ l that returns
the second coordinate of an element in I . For every Z ∈MI and every measurable
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function f : I → R, we use the standard notation

〈Z, f 〉=
∫

I
f (i)Z(di),

whenever this integral makes sense. Since the total number of monomers is N, for
every t ≥ 0 we have KN

t (·, l) = 0 if l > N and

〈Z N
t , pl〉= KN

t (M,1)+KN
t (P,1)+

N

∑
l=1

lKN
t (S, l)+

N

∑
l=1

lKN
t (F, l) = N. (11)

The total number of “real” polymers (i.e., that are not free monomers or complexes)
is denoted by FN(t):

FN(t)
de f
=

N

∑
l=1

(
KN

t (S, l)+KN
t (F, l)

)
= 〈Z N

t ,1(S,·)+1(F,·)〉. (12)

Observe that the quantity KN(M,1) corresponds to what we called LN
0 in the

model with one polymer and KN(P,1) corresponds to what we called LN
2 . The other

quantities are not quite comparable to those introduced in the previous model, but an
analogue of L1 would be the total number of monomers inserted in a polymer:

MN
inF(t)

de f
=

N

∑
l=1

l
(
KN

t (S, l)+KN
t (F, l)

)
= 〈Z N

t , pl
(
1(S,·)+1(F,·)

)
〉. (13)

The process (Z N
t )t≥0 evolves according to the same six types of transitions as in

the single polymer model.

1. Spontaneous elongation. Each simple polymer can elongate by catching a free
monomer, independently of the other polymers. As in the first model,

λ
+KN

t−(M,1)/N

is the constant rate at which a given polymer captures a free monomer. Conse-
quently, the total rate at which a spontaneous elongation happens at time t is
λ+(KN

t−(M,1)/N)∑l≥1 KN
t−(S, l) and conditionally on this polymer being of size

` just before the event (which happens with probability KN
t−(S, `)/∑l KN

t−(S, l)),
this corresponds to a transition to

Z N
t = Z N

t−−δ(S,`)−δ(M,1)+δ(S,`+1),

or equivalently to

KN
t (S, `) = KN

t−(S, `)−1 ; KN
t (S, `+1) = KN

t−(S, `+1)+1 ;

KN
t (M,1) = KN

t−(M,1)−1.
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2. Elongation with a formin. Each polymer associated to a formin can elongate by
absorbing a G-actin/profilin complex (again, independently of the other poly-
mers). As in the previous type of transition, the total rate at which an elongation
with a formin happens at time t is λ

+
F (KN

t−(P,1)/N)∑l KN
t−(F, l) and condition-

ally on this polymer being of size ` just before the event (which happens with
probability KN

t−(F, `)/∑l KN
t−(F, l)), this corresponds to a transition to

Z N
t = Z N

t−−δ(F,`)−δ(P,1)+δ(F,`+1),

or equivalently to

KN
t (F, `) = KN

t−(F, `)−1 ; KN
t (F, `+1) = KN

t−(F, `+1)+1 ;

KN
t (P,1) = KN

t−(P,1)−1.

3. Depolymerisation. Each polymer of length l ≥ 1 (bound or not with a formin)
can release a monomer at rate λ− and this monomer becomes “free”. The (total)
instantaneous rate at which depolymerisation occurs to a polymer of length ` at
time t is thus λ−(KN

t−(S, `) + KN
t−(F, `)), and if T ∈ {S,F} is the type of this

polymer, the new value of the empirical measure at time t is

Z N
t = Z N

t−−δ(T,`)+δ(M,1)+δ(T,`−1)1{`≥2}.

4. Production of complexes. Each free monomer can bind with a profilin and create
a G-actin/profilin complex at rate ΦP, independently of the others. Therefore, the
total rate of creation of complexes at time t is ΦPKN

t−(M,1) and the new state of
the system after such an event is

Z N
t = Z N

t−−δ(M,1)+δ(P,1).

5. Binding of a formin. Each simple polymer of length l can bind with a formin and
therefore change category (or “mode”), independently of the other polymers. If
we write again Φ

+
F for the rate at which a given simple polymer becomes bound

with a formin, the total rate at which such an event occurs is Φ
+
F KN

t−(S, l) and
conditionally on the length of the polymer concerned being `, the new state of the
system is

Z N
t = Z N

t−−δ(S,`)+δ(F,`).

6. Release of a formin. Each polymer associated to a formin can have this association
broken at rate Φ

−
F , independently of the other polymers. Hence, the total rate of

release of a formin by a polymer of length ` at time t is Φ
−
F KN

t−(F, `), and the new
state of the system after such an event is

Z N
t = Z N

t−−δ(F,`)+δ(S,`).

Figure 2 summarises all the events described above.
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Fig. 2: Transitions in the model for a population of polymers. Simple polymers can
elongate by catching a free monomer, release a monomer that becomes free, or switch
to the “fast” mode by binding with a formin. Polymers bound with a formin can
elongate by catching a G-actin/profilin complex, release a monomer that becomes
free, or switch to the “normal” mode by releasing the attached formin. Finally, free
monomers and profilins can bind to form G-actin/profilin complexes.

1.3.2 Large-N limit

We now look for a large population limit, describing the first order behaviour of our
population of polymers. More precisely, for every N ∈ N and t ∈ R+, we set

Z N
t

de f
=

1
N

Z N
t . (14)

By construction, each Z N
t takes its values in the set M ∗

I defined by

M ∗
I =

{
Z ∈MI : 〈Z, pl〉= 1

}
, (15)

where we recall that MI is the set of all finite measures on I (see (9)), and 〈Z, pl〉
is defined as in (11). In particular, since the length l of every monomer/polymer is at
least one, we have

M ∗
I ⊂M

(1)
I

de f
=
{

Z ∈MI : 〈Z,1〉 ≤ 1
}
. (16)

We now let N tend to infinity, assuming that the sequence of initial values Z N
0

converges to some measure in M
(1)
I and that the support of Z N

0 is bounded uniformly
in N. Note that we do not scale time by a factor N as we did to obtain the fluid limit
for a single polymer in Section 1.2. Our main result is the following. We denote the
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space of all càdlàg trajectories with values in M
(1)
I by D

M
(1)
I

[0,∞) and we endow it

with the standard Skorokhod topology.

THEOREM 12 Suppose that the initial condition Z N
0 converges in distribution to a

deterministic limit Z0 ∈M
(1)
I as N→+∞, and that there exists K0 ∈N such that for

every N sufficiently large,
〈Z N

0 ,1I{l≥K0}〉= 0. (17)

Then the process
(
Z N

t
)

t∈R+
converges in distribution in D

M
(1)
I

[0,∞) as N→ ∞, to a

deterministic limit (Zt)t≥0 which can be characterised as follows. If for every (T, l)∈
I we write kt(T, l) for the mass Zt({(T, l)}) given by Zt to the point (T, l), then

k0(T, l) = Z0({(T, l)}),

and

d
dt kt(M,1) = λ−∑

+∞

l=1 (kt(S, l)+ kt(F, l))−λ+kt(M,1)∑
+∞

l=1 kt(S, l)−ΦPkt(M,1)
d
dt kt(P,1) = ΦPkt(M,1)−λ

+
F kt(P,1)∑

+∞

l=1 kt(F, l)
d
dt kt(S,1) = Φ

−
F kt(F,1)+λ−kt(S,2)− (λ+kt(M,1)+λ−+Φ

+
F )kt(S,1)

d
dt kt(F,1) = Φ

+
F kt(S,1)+λ−kt(F,2)− (λ+

F kt(P,1)+λ−+Φ
−
F )kt(F,1)

and ∀l ≥ 2,
d
dt kt(S, l) = λ+kt(M,1)kt(S, l−1)+Φ

−
F kt(F, l)+λ−kt(S, l +1)

−(λ+kt(M,1)+λ−+Φ
+
F )kt(S, l)

d
dt kt(F, l) = λ

+
F kt(P,1)kt(F, l−1)+Φ

+
F kt(S, l)+λ−kt(F, l +1)

−(λ+
F kt(P,1)+λ−+Φ

−
F )kt(F, l).

REMARK 13 (a) Ideally, we would like to replace the assumption that Z0 ∈M
(1)
I

by Z0 ∈M ∗
I and obtain the convergence of the sequence (Z N)N≥1 in DM ∗

I
[0,∞).

However, the fact that Zt ∈M ∗
I for all t ≥ 0 is not guaranteed by the convergence

in distribution of Z N
t seen as a finite measure on I , since the function pl : (T, l) 7→ l

is not bounded continuous on I and so the property that 〈Zt , pl〉= 1 needs not hold
in the limit. In Remark 32, we argue that in the limiting system, at any time t ≥ 0
we have 〈Zt , pl〉 < ∞. Unfortunately, we were not able to prove that this integral
is actually equal to 1. For this, one would have to be able either to compute the
dynamics of (〈Zt , pl〉)t≥0 from the system of equations stated in Theorem 12, or to
finely control the total length of polymers in the stochastic pre-limiting system, and
in particular to control the amount of polymers of length larger than a given m ∈ N
uniformly in N (for each given time t ≥ 0). Indeed, although the probability that very
long polymers form in a finite time t is very small (see the paragraph surrounding
Equation (48)), a vanishing proportion of the polymer lengths may drift to infinity
fast enough for their contribution to 〈Z N

t , pl〉 (which is equal to 1 by construction,
for finite N) to remain lower bounded by some ε > 0 as N→ ∞. Since in the limiting
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measures Zt all polymers of “infinite length” are lost (recall that Zt is a measure on
I ⊂ {M,P,S,F}×N), this would lead to 〈Zt , pl〉 ≤ 1− ε . Numerical experiments
tend to show that indeed (Zt)t≥0 lives in M ∗

I for a large range of parameter values,
with the caveat that very long polymers must also be very rare (by (48)) and therefore
they are very difficult to capture by numerical simulations.

(b) Notice that the assumption that the measures Z N
0 should have uniformly

bounded supports imposes that Z N
0 should asymptotically give no weight to poly-

mers whose sizes tend to infinity with N, so that no mass is lost on infinitely long
polymers in the limit. If for instance the initial population was made of a few poly-
mers of size O(N) (and free monomers, so that (11) would be satisfied), we would
rather have to scale time and polymer lengths by N as in Section 1.2 to obtain a
nontrivial limit and this limit would be the obvious analogue for several polymers
of the homogenisation result stated in Theorem 11 for a single polymer. Since our
main motivation for this work was to understand the dynamics of the distribution in
lengths and types of the large population of polymers of length O(1) present in the
cellular cortex under standard conditions, we chose to focus on initial populations
with many O(1)-long polymers. But in this regime, a single “short” polymer is liable
to disappear before having reached the timescale on which the homogenisation effect
of the switching dynamics appears, and to be able to compare the long-term effect of
mode switching on a single polymer and on a population of polymers competing for
resources, in Section 1.2 we had to impose that the polymer of interest should initially
be long enough for the switching to have enough time to act before the polymer length
reaches 0. This explains the discrepancy between the set-ups of Sections 1.2 and 1.3.
Note however that experimental approaches to measure the length of actin filaments,
based on electron micrographs (e.g., [29]) or more recently on cry-electron tomog-
raphy (e.g. [18]), typically yield estimates that vary from a few hundreds nanometers
[3,9] to a few micrometers [26,30], covering at least one order of magnitude.

The rest of the paper is organised as follows. In Section 2, we prove Theorem 11
on the asymptotic behaviour of a single (long) polymer. In Section 3, we prove The-
orem 12 on the asymptotic behaviour of a population of actin polymers. Corollary 33
allows to compare these two results and highlights the effects of the competition
between polymers for G-actin on the evolution of the population. Finally, some sim-
ulations are discussed in Section 4.

2 Homogenisation result for a single actin polymer

In this section, we prove Theorem 11. To this end, in Section 2.1 we prove that the
sequence of processes (LN)N≥1 is C-tight, and in Section 2.2 we show that any limit
point satisfies the deterministic system of equations stated in Theorem 11. Before
proceeding to these proofs, we establish some useful preliminary properties.

Let us consider the evolution of LN for some fixed N. Each of its coordinates takes
its values in the finite set [N], and so (LN(t),M(t))t≥0 is a Markov jump process with
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values in a finite state space. This allows us to write that for every t ≥ 0,

LN
0 (t) = LN

0 (0)+
∫ t

0
1I{LN

1 (s)>0}λ
−ds−

∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+ LN

0 (s)
N

ds

−
∫ t

0
ΦP

LN
0 (s)
N

ds+XN
0 (t), (18a)

LN
1 (t) = LN

1 (0)+
∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+ LN

0 (s)
N

ds−
∫ t

0
1I{LN

1 (s)>0}λ
−ds

+
∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN
2 (s)
N

ds+XN
1 (t), (18b)

LN
2 (t) = LN

2 (0)+
∫ t

0
ΦP

LN
0 (s)
N

ds−
∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN
2 (s)
N

ds+XN
2 (t),

(18c)

where XN
0 , XN

1 and XN
2 are mean-zero martingales with respective predictable quadra-

tic variations

〈XN
0 〉(t) =

∫ t

0
1I{LN

1 (s)>0}λ
−ds+

∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+ LN

0 (s)
N

ds

+
∫ t

0
ΦP

LN
0 (s)
N

ds, (19a)

〈XN
1 〉(t) =

∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+ LN

0 (s)
N

ds+
∫ t

0
1I{LN

1 (s)>0}λ
−ds

+
∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN
2 (s)
N

ds, (19b)

〈XN
2 〉(t) =

∫ t

0
ΦP

LN
0 (s)
N

ds+
∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN
2 (s)
N

ds. (19c)

REMARK 21 Notice that, for simplicity, we use the same process (M(t))t≥0 to define
the evolution of every (LN(t))t≥0. It has no impact on the result of Theorem 11 since
the convergence result we obtain for (LN)N∈N is in distribution.

If we now accelerate time by a factor N and scale down the coordinates of LN by
the same quantity (see (4)), a simple change of variables gives us that

LN
0 (t) = LN

0 (0)+
∫ t

0
1I{LN

1 (u)>0}λ
−du−

∫ t

0
1I{M(Nu)=0}1I{LN

1 (u)>0}λ
+LN

0 (u)du

−
∫ t

0
ΦPLN

0 (u)du+XN
0 (t), (20a)

LN
1 (t) = LN

1 (0)+
∫ t

0
1I{M(Nu)=0}1I{LN

1 (u)>0}λ
+LN

0 (u)du−
∫ t

0
1I{LN

1 (u)>0}λ
−du

+
∫ t

0
1I{M(Nu)=1}1I{LN

1 (u)>0}λ
+
F LN

2 (u)du+XN
1 (t), (20b)

LN
2 (t) = LN

2 (0)+
∫ t

0
ΦPLN

0 (u)du−
∫ t

0
1I{M(Nu)=1}1I{LN

1 (u)>0}λ
+
F LN

2 (u)du

+XN
2 (t), (20c)
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where

XN
i (t) =

XN
i (Nt)

N
, i ∈ {0,1,2}, t ≥ 0.

We now have all the ingredients to prove Theorem 11.

2.1 Tightness

The precise result that we prove in this section is the following.

PROPOSITION 22 (TIGHTNESS) The sequence of processes (LN)N≥1 is C-tight in
D∆ [0,∞).

Proof (Proof of Proposition 22)
The proof is rather standard. Since ∆ is compact, all we have to check is that for

every T > 0 and every ε > 0, there exists δ > 0 such that

limsup
N→∞

P
(
ω
(
LN ,δ ,T

)
> ε
)
≤ ε, (21)

where
ω(LN ,δ ,T ) = sup

0≤s<t≤T
|t−s|≤δ

∥∥LN(t)−LN(s)
∥∥.

Theorem 15.1 in [5] will then enable us to conclude.
We proceed coordinate by coordinate, starting with LN

0 . Let thus T > 0, ε > 0 and
δ > 0. Using (20a) and the fact that LN

0 (t) ≤ 1 for all t ≥ 0, it is straightforward to
show that for every 0≤ s < t ≤ T such that |t− s| ≤ δ , we have∣∣LN

0 (t)−LN
0 (s)

∣∣≤ (λ−+λ
++ΦP)δ +

∣∣XN
0 (t)

∣∣+ ∣∣XN
0 (s)

∣∣. (22)

Choosing δ < δ0 := ε/(9(λ−+λ++ΦP)), we obtain that the first term on the r.h.s.
of (22) is less than ε/9 with probability one. Next, by the Markov inequality we have

P
(

sup
u∈[0,T ]

∣∣XN
0 (u)

∣∣> ε/9
)
≤ 81

ε2N2 E

[
sup

u∈[0,T ]

(
XN

0 (Nu)
)2

]
. (23)

Using Doob’s maximal inequality and (19a), we can then write that

E

[
sup

u∈[0,T ]
(XN

0 (Nu))2

]
≤ 2E

[
(XN

0 (NT ))2]= 2E
[
〈XN

0 〉(NT )
]
≤ 2(λ−+λ

++ΦP)NT.

Combining the above, we obtain that

P
(

sup
u∈[0,T ]

∣∣XN
0 (u)

∣∣> ε/9
)
≤ 162(λ−+λ++ΦP)T

ε2N
, (24)
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which converges to 0 as N→ ∞. Consequently, with our choice of δ < δ0, we obtain
that

limsup
N→∞

P

 sup
0≤s<t≤T
|t−s|≤δ

∣∣LN
0 (t)−LN

0 (s)
∣∣> ε

3

= 0.

The same reasoning applies to the two other coordinates LN
1 and LN

2 and yields sim-
ilar thresholds δ1,δ2 > 0, which is more than enough to prove that if we take δ <
min{δ0,δ1,δ2},

limsup
N→∞

P
(
ω
(
LN ,δ ,T

)
> ε
)
= 0.

This shows (21) and the proof of Proposition 22 is therefore complete.

2.2 Uniqueness of the limit

Now that we have proved that the sequence of normalised processes is tight, it re-
mains to show that the deterministic system described in Theorem 11 is its only pos-
sible limit as N → ∞. This is what we do in this section. To do so, we shall use the
following lemmas, whose proofs are postponed until the end of the section.

LEMMA 23 For every t > 0, we have∫ t

0
(1I{M(Ns)=0}−πM(0))LN

0 (s)ds P−→
N→+∞

0.

LEMMA 24 For every t > 0, we have∫ t

0
(1I{M(Ns)=1}−πM(1))LN

2 (s)ds P−→
N→+∞

0.

Suppose that the sub-sequence (LNk)k∈N converges weakly to a process

(l0(t), l1(t), l2(t))t≥0.

By Proposition 22, we know that this process has continuous paths a.s. Furthermore,
the estimates (24) (and their analogues for XN

1 and XN
2 ) guarantee that the limit of the

quadratic variation process of each LN
i is zero and (l0(t), l1(t), l2(t))t≥0 is therefore

deterministic.
For every N ∈ N, let tN

0 be the first time at which the polymer has length 0:

tN
0 = min

{
t ∈ R+ : LN

1 (t) = 0
}
.
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Similarly, let us define t0 as the first time at which l1(t) takes the value 0. In both
cases, if the process considered does not reach 0, we set the corresponding t(N)

0 to
+∞. Since 0 is an absorbing state for the process

(
LN

1 (t)
)

t∈R+
, we have

{
LN

1 (t)> 0 if t < tN
0 ,

LN
1 (t) = 0 if t ≥ tN

0 .

Therefore, the system of equations (20) can be rewritten as follows: for all t < tN
0

LN
0 (t) = LN

0 (0)+λ
−t−λ

+
∫ t

0
1I{M(Nu)=0}LN

0 (u)du−ΦP

∫ t

0
LN

0 (u)du+XN
0 (t),

LN
1 (t) = LN

1 (0)−λ
−t +λ

+
∫ t

0
1I{M(Nu)=0}LN

0 (u)du+λ
+
F

∫ t

0
1I{M(Nu)=1}LN

2 (u)du

+XN
1 (t),

LN
2 (t) = LN

2 (0)+ΦP

∫ t

0
LN

0 (u)du−λ
+
F

∫ t

0
1I{M(Nu)=1}LN

2 (u)du+XN
2 (t),

and for all t ≥ tN
0

LN
0 (t) = LN

0 (0)+λ
−tN

0 −λ
+
∫ tN

0

0
1I{M(Nu)=0}LN

0 (u)du−ΦP

∫ t

0
LN

0 (u)du+XN
0 (t),

LN
1 (t) = 0,

LN
2 (t) = LN

2 (0)+ΦP

∫ t

0
LN

0 (u)du−λ
+
F

∫ tN
0

0
1I{M(Nu)=1}LN

2 (u)du+XN
2 (t).

Splitting the integral
∫ t∧t

Nk
0

0 into
∫ t

0−
∫ t

t∧t
Nk
0

and decomposing

1I{M(Nku)=0} = πM(0)+(1I{M(Nku)=0}−πM(0)),
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we can rewrite the above system of equations for t < t0 as

LNk
0 (t) = LNk

0 (0)+λ
−t− (λ+

πM(0)+ΦP)
∫ t

0
LNk

0 (u)du+XNk
0 (t)−λ

−(t− t ∧ tNk
0 )

+λ
+

πM(0)
∫ t

t∧t
Nk
0

LNk
0 (u)du−λ

+
∫ t∧t

Nk
0

0
(1I{M(Nku)=0}−πM(0))LNk

0 (u)du,

LNk
1 (t) = LNk

1 (0)−λ
−t +λ

+
πM(0)

∫ t

0
LNk

0 (u)du+λ
+
F πM(1)

∫ t

0
LNk

2 (u)du+XNk
1 (t)

+λ
−(t− t ∧ tNk

0 )+λ
+
∫ t∧t

Nk
0

0
(1I{M(Nku)=0}−πM(0))LNk

0 (u)du

+λ
+
F

∫ t∧t
Nk
0

0
(1I{M(Nku)=1}−πM(1))LNk

2 (u)du−λ
+

πM(0)
∫ t

t∧t
Nk
0

LNk
0 (u)du

−λ
+
F πM(1)

∫ t

t∧t
Nk
0

LNk
2 (u)du,

LNk
2 (t) = LNk

2 (0)+ΦP

∫ t

0
LNk

0 (u)du−λ
+
F πM(1)

∫ t

0
LNk

2 (u)du+XNk
2 (t)

+λ
+
F πM(1)

∫ t

t∧t
Nk
0

LNk
2 (u)du−λ

+
F

∫ t∧t
Nk
0

0
(1I{M(Nku)=1}−πM(1))LNk

2 (u)du.

First, for every t < t0 we have the convergence in probability

t− (t ∧ tNk
0 )

P−→
k→+∞

0, (25)

and ∫ t

t∧t
Nk
0

LNk
0 (u)du P−→

k→+∞
0 and

∫ t

t∧t
Nk
0

LNk
2 (u)du P−→

k→+∞
0. (26)

Indeed, since for any i ∈ {0,2} and any u≤ t we have LNk
i (u)≤ 1, then

0≤ E
[∫ t

t∧t
Nk
0

LNk
i (u)du

]
≤ tP

[
tNk
0 < t

]
.

But
limsup

k→∞

P
[
tNk
0 < t

]
= limsup

k→∞

P
[
LNk

1 (t) = 0
]
≤ inf

ε>0
P
[
l1(t)≤ ε

]
= 0,

where the last but first inequality comes from the fact that (LNk
1 (t))k≥1 converges in

distribution to l1(t) and the last equality uses our assumption that t < t0. This last
result proves (25). The Markov inequality then gives us the two convergence results
stated in (26).

Second, by assumption we have the convergence in distribution of (LNk)k≥1 to the
deterministic process (l0(t), l1(t), l2(t))t≥0 and therefore(

LNk
0 (0),LNk

1 (0),LNk
2 (0)

) P−→
k→+∞

(
l0(0), l1(0), l2(0)

)
,



20 François Robin et al.

and (∫ t

0
LNk

0 (u)du ,
∫ t

0
LNk

2 (u)du
)

P−→
k→+∞

(∫ t

0
l0(u)du ,

∫ t

0
l2(u)du

)
. (27)

Thirdly, by (24) the sequence (XN
0 (t))N≥1 converges in probability to 0 (in fact

this convergence is uniform over [0, t]) and equivalent results hold for (XN
1 (t))N≥1

and (XN
2 (t))N≥1.

Finally, Lemmas 23 and 24 ensure the convergence in probability∫ t

0
(1I{M(Ns)=0}−πM(0))LN

0 (s)ds P−→
N→+∞

0

and ∫ t

0
(1I{M(Ns)=1}−πM(1))LN

2 (s)ds P−→
N→+∞

0.

Combining the above and using Slutsky’s theorem, we can conclude that for every
t < t0,

l0(t) = l0(0)+λ
−t− (λ+

πM(0)+ΦP)
∫ t

0
l0(u)du,

l1(t) = l1(0)−λ
−t +λ

+
πM(0)

∫ t

0
l0(u)du+λ

+
F πM(1)

∫ t

0
l2(u)du,

l2(t) = l2(0)+ΦP

∫ t

0
l0(u)du−λ

+
F πM(1)

∫ t

0
l2(u)du.

By the same type of arguments, we can prove that for every t > t0

l0(t) = l0(0)+λ
−t0−λ

+
πM(0)

∫ t0

0
l0(u)du−ΦP

∫ t

0
l0(u)du,

l1(t) = 0,

l2(t) = l2(0)+ΦP

∫ t

0
l0(u)du−λ

+
F πM(1)

∫ t0

0
l2(u)du.

As l0 and l2 are two continuous functions, the functions t 7→
∫ t

0 l0(u)du and t 7→∫ t
0 l2(u)du are differentiable and for any t ≤ t0, we have

l′0(t) = λ
−−πM(0)λ+l0(t)−ΦP l0(t),

l′1(t) = πM(0)λ+l0(t)+πM(1)λ+
F l2(t)−λ

−, (28)

l′2(t) = ΦPl0(t)−πM(1)λ+
F l2(t),

while for any t > t0,

l′0(t) =−ΦPl0(t), l′1(t) = 0, l′2(t) = ΦPl0(t).

Solving these systems of equations, we obtain that the limiting process is neces-
sarily the one given in Theorem 11 and therefore this limit is unique. Since (LN)N≥1
is tight by Proposition 22, we can conclude that the full sequence converges in distri-
bution and Theorem 11 is proved. �

It remains to prove Lemmas 23 and 24. As the proofs are similar, we only give
the proof of Lemma 23.
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Proof (Proof of Lemma 23) Let t > 0. We split the interval [0, t] into intervals of
length ε > 0. This gives us∣∣∣∣∫ t

0
(1I{M(Ns)=0}−πM(0))LN

0 (s)ds
∣∣∣∣

≤

∣∣∣∣∣
b t

ε
c

∑
k=1

∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM(0))LN

0 (s)ds

∣∣∣∣∣+
∣∣∣∣∫ t

b t
ε
cε
(1I{M(Ns)=0}−πM(0))LN

0 (s)ds
∣∣∣∣

≤
b t

ε
c

∑
k=1

∣∣∣∣∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM(0))LN

0 ((k−1)ε)ds
∣∣∣∣

+
b t

ε
c

∑
k=1

∣∣∣∣∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM(0))

(
LN

0 (s)−LN
0 ((k−1)ε)

)
ds
∣∣∣∣

+

∣∣∣∣∫ t

b t
ε
cε
(1I{M(Ns)=0}−πM(0))LN

0 (bt/εcε)ds
∣∣∣∣

+

∣∣∣∣∫ t

b t
ε
cε
(1I{M(Ns)=0}−πM(0))

(
LN

0 (s)−LN
0 (bt/εcε)

)
ds
∣∣∣∣.

(29)

Now since LN
0 ((k−1)ε) ∈ [0,1] for every k, we have∣∣∣∣∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM(0))LN

0 ((k−1)ε)ds

∣∣∣∣∣≤
∣∣∣∣∣
∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM(0))ds

∣∣∣∣.
(30)

and likewise ∣∣∣∣∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM(0))(LN

0 (s)−LN
0 ((k−1)ε)ds

∣∣∣∣
≤
∫ kε

(k−1)ε

∣∣∣LN
0 (s)−LN

0 ((k−1)ε)
∣∣∣ds. (31)

We now control each of these terms.
First, since M is an irreducible Markov jump process on a finite state space, the

ergodic theorem applies and gives us that for every 0 < s1 < s2, we have the almost
sure convergence∫ s2

s1

1I{M(Ns)=0}ds =
1
N

∫ Ns2

Ns1

1I{M(s)=0}ds a.s.−→
N→+∞

πM(0)(s2− s1).

Applying this result with s1 = (k−1)ε and s2 = kε (or s2 = t when k = bt/εc+1)
for each of the finitely many values of k of interest, we obtain that

bt/εc

∑
k=1

∣∣∣∣∣
∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM(0))ds

∣∣∣∣+
∣∣∣∣∣
∫ t

b t
ε
cε
(1I{M(Ns)=0}−πM(0))ds

∣∣∣∣ a.s.−→
N→+∞

0.

(32)
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Second, recall from (20a) that for every 0≤ s′ ≤ s, we have∣∣LN
0 (s)−LN

0 (s
′)
∣∣≤ (λ−+λ

++ΦP)(s− s′)+
∣∣XN

0 (s)−XN
0 (s′)

∣∣.
Applying this result with s′ = (k− 1)ε and s ∈ [(k− 1)ε,kε] and combining them
with (24) (with T = t), we obtain that for C := λ−+λ++ΦP +2/9,

lim
N→∞

P
(∫ kε

(k−1)ε

∣∣∣LN
0 (s)−LN

0 ((k−1)ε)
∣∣∣ds≥ C ε

2
)
= 0.

Consequently,

lim
N→∞

P
( b t

ε
c

∑
k=1

∫ kε

(k−1)ε

∣∣∣LN
0 (s)−LN

0 ((k−1)ε)
∣∣∣ds+

∫ t

b t
ε
cε

∣∣∣LN
0 (s)−LN

0 (bt/εcε)
∣∣∣ds

≥ C ε
2
(⌊ t

ε

⌋
+1
))

≤ lim
N→∞

{ b t
ε
c

∑
k=1

P
(∫ kε

(k−1)ε

∣∣∣LN
0 (s)−LN

0 ((k−1)ε)
∣∣∣ds≥ C ε

2
)

+P
(∫ t

b t
ε
cε

∣∣∣LN
0 (s)−LN

0 (bt/εcε)
∣∣∣ds≥ C ε

2
)}

= 0 (33)

Coming back to (29), combining (30), (31), (32) and (33), and observing that

C ε
2(bt/εc+1) = O(C εt)

as ε tends to 0, we obtain that

lim
N→∞

P
(∣∣∣∣∫ t

0
(1I{M(Ns)=0}−πM(0))LN

0 (s)ds
∣∣∣∣≥ (C t +1)ε

)
= 0.

Since ε was arbitrary, this proves Lemma 23.

3 Large population asymptotics

In this section, we prove Theorem 12. Recall that for every N ∈N, the Markov process
Z N takes its values in the space M ∗

I ⊂M
(1)
I , respectively defined in (15) and (16).

Let D be the set of all functions on M
(1)
I of the form

ϕ f : Z 7→ ϕ
(
〈Z, f 〉

)
, (34)

with f a bounded measurable function on I and ϕ a function of class C 1 on R.
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Since the rescaled process
(
Z N

t
)

t∈R+
is a Markov jump process with bounded

rates for every N ∈ N, its infinitesimal generator G N applied to any ϕ f ∈ D is given
by: for every Z ∈M

(1)
I ,

G N
ϕ f (Z)

= λ
+Z(M,1)

N−1

∑
l=1

NZ(S, l)
(

ϕ f

(
Z +

δ(S,l+1)

N
−

δ(S,l)

N
−

δ(M,1)

N

)
−ϕ f (Z)

)
+λ

+
F Z(P,1)

N−1

∑
l=1

NZ(F, l)
(

ϕ f

(
Z +

δ(F,l+1)

N
−

δ(F,l)

N
−

δ(P,1)

N

)
−ϕ f (Z)

)
+λ

−
∑

T∈{S,F}

N

∑
l=1

NZ(T, l)
(

ϕ f

(
Z +

δ(T,l−1)

N
1I{l≥2}−

δ(T,l)

N
+

δ(M,1)

N

)
−ϕ f (Z)

)

+ΦPNZ(M,1)
(

ϕ f

(
Z +

δ(P,1)

N
−

δ(M,1)

N

)
−ϕ f (Z)

)
+Φ

+
F

N

∑
l=1

NZ(S, l)
(

ϕ f

(
Z +

δ(F,l)

N
−

δ(S,l)

N

)
−ϕ f (Z)

)
+Φ

−
F

N

∑
l=1

NZ(F, l)
(

ϕ f

(
Z +

δ(S,l)

N
−

δ(F,l)

N

)
−ϕ f (Z)

)
, (35)

where for simplicity we have written Z(T, l) for Z({(T, l)}). Furthermore,
(
Z N

t
)

t∈R+

satisfies the property that for every ϕ f ∈D , the process
(
Y N

t (ϕ f )
)

t∈R+
defined by:

(
Y N

t (ϕ f )
)

t∈R+

de f
=

(
ϕ f

(
Z N

t

)
−ϕ f

(
Z N

0

)
−
∫ t

0
G N

ϕ f

(
Z N

s

)
ds
)

t∈R+

(36)

is a mean-zero martingale with predictable quadratic variation given for all t ≥ 0 by

〈Y N(ϕ f )〉t =
∫ t

0
yN

s (ϕ f )ds, (37)
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where, writing this time KN
t (T, l) for Z N

t ({(T, l)}),

yN
t (ϕ f )

de f
= λ

+KN
t (M,1)

N−1

∑
l=1

NKN
t (S, l)

(
ϕ f

(
Z N

t +
δ(S,l+1)

N
−

δ(S,l)

N
−

δ(M,1)

N

)
−ϕ f

(
Z N

t

))2

+λ
+
F KN

t (P,1)
N−1

∑
l=1

NKN
t (F, l)

(
ϕ f

(
Z N

t +
δ(F,l+1)

N
−

δ(F,l)

N
−

δ(P,1)

N

)
−ϕ f

(
Z N

t

))2

+λ
−

∑
T∈{S,F}

N

∑
l=1

NKN
t (T, l)

(
ϕ f

(
Z N

t +
δ(T,l−1)

N
1I{l≥2}−

δ(T,l)

N
+

δ(M,1)

N

)

−ϕ f

(
Z N

t

))2

+ΦPNKN
t (M,1)

(
ϕ f

(
Z N

t +
δ(P,1)

N
−

δ(M,1)

N

)
−ϕ f

(
Z N

t

))2

+Φ
+
F

N

∑
l=1

NKN
t (S, l)

(
ϕ f

(
Z N

t +
δ(F,l)

N
−

δ(S,l)

N

)
−ϕ f

(
Z N

t

))2

+Φ
−
F

N

∑
l=1

NKN
t (F, l)

(
ϕ f

(
Z N

t +
δ(S,l)

N
−

δ(F,l)

N

)
−ϕ f

(
Z N

t

))2

.

Hence, the semimartingale decomposition of ϕ f (Z N) reads

ϕ f

(
Z N

t

)
= ϕ f

(
Z N

0

)
+V N

t (ϕ f )+Y N
t (ϕ f ), t ≥ 0 (38)

with

V N
t (ϕ f )

de f
=
∫ t

0
G N

ϕ f

(
Z N

s

)
ds.

3.1 Tightness

As a first step in the proof of Theorem 12, we show the tightness of (Z N)N∈N.
Let I ∆ be the one-point compactification of I . In this subsection, we use the

classical trick of seeing our sequence of processes as taking values in the space MI ∆

of all finite measures on I ∆ . In the next subsection, we shall show that any limit
point actually takes its values in M

(1)
I .

PROPOSITION 31 (TIGHTNESS) The sequence
(
Z N

)
N∈N is tight in DM

I ∆
[0,∞).
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Proof (Proof of Proposition 31) Since the total mass of each Z N
t is bounded by

1 and since the set of all measures on I ∆ with total mass bounded by 1 is com-
pact (hence the fact that we consider the one-point compactification of I ), the com-
pact containment condition holds for (Z N)N≥1 seen as a sequence in DM

I ∆
[0,∞).

By Theorem 3.9.1 in [13], tightness of (Z N)N≥1 will follow from the tightness of
(ϕ f (Z N))N≥1 for every ϕ f ∈D .

Let thus f be a bounded measurable function on I ∆ and ϕ ∈ C 1(R). We use the
standard Aldous-Rebolledo criterion [1,23]. First, the tightness of (ϕ f (Z N

t ))N≥1 for
every t ≥ 0 is obvious from the boundedness of f and the fact that the total mass of
Z N

t is bounded by 1.
Second, we have to prove that for any T > 0, any sequence of stopping times

(TN)N≥1 bounded by T and for every ε > 0, there exists δ > 0 and N0 ∈ N such that
for all ∀N ≥ N0 and θ ∈ [0,δ ],

P
(∣∣∣∣∫ TN+θ

TN

G N
ϕ f

(
Z N

t

)
dt
∣∣∣∣> ε

)
≤ ε, (39)

and

P
(∣∣∣∣∫ TN+θ

TN

yN
t (ϕ f )dt

∣∣∣∣> ε

)
≤ ε. (40)

Plugging the definition of ϕ f (Z) = ϕ(〈Z, f 〉) in the expression for G Nϕ f , Taylor
expanding ϕ and writing ‖ϕ ′‖ f for the supremum of ϕ ′ over [−‖ f‖∞,‖ f‖∞], we
obtain that∣∣∣G N

ϕ f

(
Z N

t

)∣∣∣≤‖ϕ ′‖ f ‖ f‖∞

(
3λ

+KN
t (M,1)

N−1

∑
l=1

KN
t (S, l)+3λ

+
F KN

t (P,1)
N−1

∑
l=1

KN
t (F, l)

+3λ
−

∑
T∈{S,F}

N

∑
l=1

KN
t (T, l)+2ΦPKN

t (M,1)+2Φ
+
F

N

∑
l=1

KN
t (S, l)

+2Φ
−
F

N

∑
l=1

KN
t (F, l)

)
+o(1), (41)

where the remainder term tends to 0 uniformly in N and t. By construction (since the
total mass of each Z N

t is bounded by 1), for every type T ∈ {S,F} we have

KN
t (M,1)≤ 1, KN

t (P,1)≤ 1,
N

∑
l=1

KN
t (T, l)≤ 1,

and hence∣∣G N
ϕ f

(
Z N

s

)∣∣≤ ‖ϕ ′‖ f ‖ f‖∞

(
3λ

++3λ
+
F +6λ

−+2ΦP +2Φ
+
F +2Φ

−
F
)
+o(1)

de f
= C1 +o(1). (42)

Therefore, taking δ = ε/(2C1), we see that there exists N0 ∈ N such that for every
N ≥ N0 and θ ∈ [0,δ ],

P
(∣∣∣∣∫ TN+θ

TN

G N
ϕ f

(
Z N

t

)
dt
∣∣∣∣> ε

)
= 0
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and (39) is satisfied.
We prove (40) in exactly the same way, noticing that the squared increments in the

expression for yN
t (ϕ f ) give rise to a bound on |yN

t (ϕ f )| of the form C2/N +o(1/N),
where again the remainder term is uniform in t. Proceeding this way, we obtain a
stronger result than (40), namely that the predictable quadratic variation of ϕ f (Z N)
vanishes as N→∞, uniformly over compact time intervals: by the Markov inequality
and then Doob’s maximal inequality,

P
(

sup
t∈[0,T ]

∣∣Y N
t (ϕ f )

∣∣> ε

)
≤ 1

ε2E
[

sup
t∈[0,T ]

∣∣Y N
t (ϕ f )

∣∣2]
≤ 2

ε2E
[
〈Y N(ϕ f )〉T

]
≤ 2C2T

Nε2 +o
(

1
N

)
, (43)

which tends to 0 as N→ ∞. As a corollary to this result, we obtain that any potential
limit for (Z N)N≥1 must be deterministic. Since (43) implies (40), all the points in
the Aldous-Rebolledo criterion have now been checked and we can conclude that
(ϕ f (Z N))N≥1 is tight in DR[0,∞) for every ϕ f ∈ D , and finally that the sequence
(Z N)N≥1 is tight in DM

I ∆
[0,∞).

3.2 Large population limit

We now complete the proof of Theorem 12 by checking that all the assumptions
of Theorem 4.8.10 in [13] are met. Tightness in DM

I ∆
[0,∞) was obtained in the

previous subsection and we now want to prove that, if we define the operator G ∞ on
D (the set of all functions of the form ϕ(〈·, f 〉) with ϕ ∈ C 1(R) and f : I → R
bounded measurable) by: for every Z ∈MI ,

G ∞
ϕ f (Z) = ϕ

′(〈Z, f 〉)
{

λ
+Z(M,1)

+∞

∑
l=1

Z(S, l)( f (S, l +1)− f (S, l)− f (M,1))

+λ
+
F Z(P,1)

+∞

∑
l=1

Z(F, l)( f (F, l +1)− f (F, l)− f (P,1))

+λ
−

∑
T∈{S,F}

+∞

∑
l=1

Z(T, l)
(

f (T, l−1)1I{l≥2}− f (T, l)+ f (M,1)
)

+ΦPZ(M,1)( f (P,1)− f (M,1))

+Φ
+
F

+∞

∑
l=1

Z(S, l)( f (F, l)− f (S, l))+Φ
−
F

+∞

∑
l=1

Z(F, l)( f (S, l)− f (F, l))
}
,

(44)

then for every ϕ f ∈ D and t,s > 0, every k ∈ N, 0 ≤ t1 < · · · < tk ≤ t < t + s and
βi ∈ Cb(MI ), we have

lim
N→∞

E
[(

ϕ f
(
Z N

t+s
)
−ϕ f

(
Z N

t
)
−
∫ t+s

t
G ∞

ϕ f
(
Z N

u
)
du
)( k

∏
i=1

βi
(
Z N

ti

))]
= 0. (45)
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Once this result is shown, we shall prove that any potential limiting process takes its
value in M

(1)
I , on which every G ∞ϕ f is a continuous and bounded function, which

will also prove that tightness of (Z N)N≥1 holds in D
M

(1)
I

[0,∞) (by Corollary 3.9.3

in [13]). Finally, we shall prove that there is at most one possible limit for (Z N)N≥1,
which is the deterministic solution to the D

M
(1)
I

[0,∞)-martingale problem associated

to (G ∞,δZ0) or, equivalently, the M
(1)
I -valued solution to the system of equations

stated in Theorem 12. Combining these arguments, we shall be able to use Theo-
rem 4.8.10 in [13] to conclude that the limiting process exists and (Z N)N≥1 indeed
converges to it in D

M
(1)
I

[0,∞).

Let us thus start by showing (45). Using the decomposition (38), we have for
every N ∈ N,

E
[(

ϕ f
(
Z N

t+s
)
−ϕ f

(
Z N

t
)
−
∫ t+s

t
G N

ϕ f
(
Z N

u
)
du
)( k

∏
i=1

βi
(
Z N

ti

))]
= 0. (46)

It thus remains to prove that

lim
N→∞

E
[∫ t+s

t

∣∣G N
ϕ f
(
Z N

u
)
−G ∞

ϕ f
(
Z N

u
)∣∣du

]
= 0, (47)

since then∣∣∣∣E[(ϕ f
(
Z N

t+s
)
−ϕ f

(
Z N

t
)
−
∫ t+s

t
G ∞

ϕ f
(
Z N

u
)
du
)( k

∏
i=1

βi
(
Z N

ti

))]∣∣∣∣
=

∣∣∣∣E[(∫ t+s

t

(
G N

ϕ f
(
Z N

u
)
−G ∞

ϕ f
(
Z N

u
))

du
)( k

∏
i=1

βi
(
Z N

ti

))]∣∣∣∣
≤
( k

∏
i=1
‖βi‖∞

)
E
[∫ t+s

t

∣∣G N
ϕ f
(
Z N

u
)
−G ∞

ϕ f
(
Z N

u
)∣∣du

]
→ 0

as N→ ∞, and we obtain (45).
Coming back to the definition of G Nϕ f and performing a Taylor expansion of ϕ ,

it is straightforward to obtain that there exists a sequence (εN)N≥1 tending to 0 such
for any Z ∈M

(1)
I , ∣∣G N

ϕ f (Z)−G ∞
ϕ f (Z)

∣∣≤ εN .

Using this result, the fact that for every N ∈ N and t ≥ 0 we have 〈Z N
t ,1〉 ≤ 1, the

bound (42) and the dominated convergence theorem, we can conclude that (47) holds
true and the proof of (45) is complete.

Second, let us show that any potential limit point (zt)t≥0 for (Z N)N≥1 satisfies
that zt ∈M

(1)
I for every t ≥ 0. We already know from the subsection on tightness

that each zt is deterministic and that its total mass is bounded by 1. It only remains to
show that zt gives no mass to the “infinity” point of I ∆ (i.e., to polymers of infinite
length). Let thus t ≥ 0 and N large enough for (17) to hold. Since the elongation rate
of each polymer is bounded by λ ∗ = max{λ+,λ+

F }, the probability that at time t a
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given polymer is of length at least K0 + k is bounded by the probability that the sum
of k i.i.d exponential random variables with parameter λ ∗ is less than t, that is:

P
( k

∑
i=1

Ei < t
)
= P

(
exp
(
−

k

∑
i=1

Ei

)
> e−t

)
≤ et

(
λ ∗

λ ∗+1

)k

, (48)

where the last inequality uses the Markov inequality. Since by construction Z N
t has

at most N atoms (or “polymers”), another use of the Markov inequality gives us that
for every k ∈ N, ε ∈ (0,1) and N large enough (independently of k and ε)

P
(
〈Z N

t ,1I{l≥K0+k}〉> ε

)
≤ 1

ε
E
[
〈Z N

t ,1I{l≥K0+k}〉
]
≤ 1

εN
Net
(

λ ∗

λ ∗+1

)k

.

Since we suppose that Z N
t converges in distribution to zt , we can take the limit as

N→ ∞ in the above to obtain

P
(
〈zt ,1I{l≥K0+k}〉> ε

)
≤ 1

ε
et
(

λ ∗

λ ∗+1

)k

. (49)

Together with the fact that zt is not random, we obtain that for every ε ∈ (0,1), there
exists k(ε) ∈ N such that ε−1et(λ ∗/(λ ∗+1))k(ε) < 1 and so

〈zt ,1I{l≥K0+k(ε)}〉 ≤ ε.

Taking ε to 0, we can conclude that zt puts no mass on infinitely long polymers, i.e.,
zt ∈M

(1)
I .

REMARK 32 The estimate (48) allows us to argue that for every t ≥ 0, we have

〈zt , pl〉< ∞.

Indeed, in the stochastic pre-limiting model, the length of each of the at most N poly-
mers is stochastically bounded by a pure birth model with birth rate λ ∗, started at
K0, and therefore by (48) we have for every t ≥ 0 and m ∈ N,

E
[
〈Z N

t ,1I{l=K0+m}〉
]
≤ et

(
λ ∗

λ ∗+1

)m

.

Passing to the limit as N→ ∞ yields

kt(S,K0 +m)+ kt(F,K0 +m) = 〈Zt ,1I{l=K0+m}〉 ≤ et
(

λ ∗

λ ∗+1

)m

.

Summing over m for a fixed t, we obtain that

〈Zt , pl〉=kt(M,1)+ kt(P,1)+ ∑
T∈{S,F}

K0

∑
l=1

lkt(T, l)

+
∞

∑
m=1

(K0 +m)
(
kt(S,K0 +m)+ kt(F,K0 +m)

)
< ∞. (50)

Note however that these arguments are not sufficient to conclude that 〈Zt , pl〉 = 1
and therefore that the convergence in Theorem 12 holds in M ∗

I rather than in M
(1)
I .
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Thirdly, let us check that any potential limit Z for (Z N)N≥1 satisfies the system
of equations stated in Theorem 12. As recalled earlier, we know from (43) that Z

is deterministic (since we assumed that the limit of the initial value Z N
0 was deter-

ministic). Using (45) along the subsequence of (Z N)N≥1 converging to Z , we can
conclude that for every bounded measurable function f on I (taking ϕ = Id),(

〈Zt , f 〉−〈Z0, f 〉−
∫ t

0
G ∞Id f (Zs)ds

)
t≥0

is a martingale, which is thus constant equal to 0. Taking now f = 1I{(T,l)} for (T, l)∈
I , we obtain the integrated version of the differential equation for

kt(T, l) = Zt({(T,L)})

given in Theorem 12, namely

kt(T,L) = k0(T, l)+
∫ t

0
G ∞Id1I(T,l)(Zs)ds. (51)

Since the integrand in the above expression is bounded, the function t 7→ kt(T, l) is
differentiable and we can therefore differentiate it to obtain the corresponding line in
the system of Theorem 12.

Finally, let us prove that this system has at most one solution with trajectories in
M

(1)
I . Let thus (zt)t≥0 and (z̃t)t≥0 be two solutions to the limiting system of equations

in Theorem 12 such that z0 = z̃0 and zt , z̃t ∈M
(1)
I for all t ≥ 0. Let f be a bounded

measurable function on I such that ‖ f‖∞ ≤ 1. From the above, for every t ≥ 0, we
have ∣∣〈zt , f 〉−〈z̃t , f 〉

∣∣= ∣∣∣∣∫ t

0

(
G ∞Id f (zs)−G ∞Id f (z̃s)

)
ds
∣∣∣∣. (52)

Let us consider each term in G ∞Id f (zs)−G ∞Id f (z̃s) separately to obtain a bound on
the integral on the r.h.s. of (52). We have∣∣∣∣λ+

∫ t

0

(
∞

∑
l=1

{
zs(M,1)zs(S, l)− z̃s(M,1)z̃s(S, l)

}
f (S, l +1)

)
ds
∣∣∣∣

= λ
+

∣∣∣∣∫ t

0

(
∞

∑
l=1

{
zs(M,1)(zs(S, l)− z̃s(S, l))

+(zs(M,1)− z̃s(M,1))z̃s(S, l)
}

f (S, l +1)
)

ds
∣∣∣∣

= λ
+

∣∣∣∣∫ t

0

(
zs(M,1)〈zs− z̃s,1I(S,·) f (S, ·+1)〉

+ 〈zs− z̃s,1I(M,1)〉
∞

∑
l=1

z̃s(S, l) f (S, l +1)
)

ds
∣∣∣∣. (53)

By assumption, the total mass of zs and z̃s is bounded by 1, and so

0≤ zs(M,1)≤ 1 and
∣∣∣∣ ∞

∑
l=1

z̃s(S, l) f (S, l +1)
∣∣∣∣≤ ‖ f‖∞〈z̃s,1〉 ≤ 1.
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As a consequence, the r.h.s. of (53) is bounded by

λ
+
∫ t

0

{∣∣〈zs− z̃s,1I(S,·) f (S, ·+1)〉
∣∣+ ∣∣〈zs− z̃s,1I(M,1)〉

∣∣}ds

≤ 2λ
+
∫ t

0
sup
‖φ‖∞≤1

∣∣〈zs,φ〉−〈z̃s,φ〉
∣∣ds.

Proceeding in the same way for all the other terms in the generator, we obtain that∣∣〈zt , f 〉−〈z̃t , f 〉
∣∣

≤
(
6λ

++6λ
+
F +6λ

−+2ΦP +2Φ
+
F +2Φ

−
F
)∫ t

0
sup
‖φ‖∞≤1

∣∣〈zs,φ〉−〈z̃s,φ〉
∣∣ds,

and since this inequality holds for every bounded measurable f such that ‖ f‖∞ ≤ 1,
we can write that for every t ≥ 0,

sup
‖φ‖∞≤1

∣∣〈zt ,φ〉−〈z̃t ,φ〉
∣∣≤(6λ

++6λ
+
F +6λ

−+2ΦP +2Φ
+
F +2Φ

−
F
)

×
∫ t

0
sup
‖φ‖∞≤1

∣∣〈zs,φ〉−〈z̃s,φ〉
∣∣ds.

By Gronwall’s lemma,

sup
‖φ‖∞≤1

∣∣〈zt ,φ〉−〈z̃t ,φ〉
∣∣≤( sup

‖φ‖∞≤1

∣∣〈z0,φ〉−〈z̃0,φ〉
∣∣)e(6λ++6λ

+
F +6λ−+2ΦP+2Φ

+
F +2Φ

−
F )t

= 0.

Since every bounded measurable function can be written as a multiple of a function φ

such that ‖φ‖∞ ≤ 1, we obtain that 〈zt , f 〉= 〈z̃t , f 〉 for every bounded measurable f ,
and hence zt = z̃t for all t ≥ 0 and the system of Theorem 12 has at most one solution
with trajectories in M

(1)
I .

We have now checked that all the conditions of Theorem 4.8.10 in [13] are satis-
fied and we can therefore conclude that, as N tends to infinity, (Z N)N≥1 converges in
distribution in D

M
(1)
I

[0,∞) to the unique solution with values in M
(1)
I of the system

stated in Theorem 12. �

We end this section with some heuristics that are confirmed by the simulations
discussed in the next section. In order to compare the large population limit of The-
orem 12 with the fluid limit of Theorem 11, recall that informally, for a given N, LN

0
in the single polymer model corresponds to KN(M,1), LN

2 corresponds to KN(P,1)
and LN

1 corresponds to MN
inF (defined in (13)). The same correspondence can be made

between the limiting objects, if we define

minF(t)
de f
=

+∞

∑
l=1

l(kt(S, l)+ kt(F, l)).



The role of mode switching in a population of actin polymers with constraints 31

(This quantity is finite by Remark 32.) Moreover, writing for any t ≥ 0,

F∞(t) = lim
N→+∞

FN(t) =
+∞

∑
l=1

kt(S, l)+
+∞

∑
l=1

kt(F, l)

for the amount of “real” polymers at time t in the limiting population process, we see
that the quantity ∑

+∞

l=1 kt(S, l)/F∞(t) corresponds to the proportion of those polymers
which are simple and we expect it to be close to πM(0) when t is large (recall that
πM(0) is the proportion of time that a single polymer spends not bound with a formin
at stationarity). Although we have no proof of this fact, Figures 6 and 7 show two
examples where this convergence happens.

Finally, summing the corresponding equations in the system of ODE stated in
Theorem 12, we obtain the following system which can be more easily compared
with the result of Theorem 11.

COROLLARY 33 In the limit as N→ +∞, the distribution of monomers among the
different sub-populations (free monomers, inserted in a polymer or in a G-actin/pro-
filin complex) is described by the following system of ODE:

d
dt kt(M,1) = λ−F∞(t)−λ+F∞(t)kt(M,1)∑

+∞

l=1 kt(S, l)−ΦPkt(M,1)
d
dt minF(t) = λ+F∞(t)kt(M,1)∑

+∞

l=1 kt(S, l)+λ
+
F F∞(t)kt(P,1)∑

+∞

l=1 kt(F, l)
−λ−F∞(t)

d
dt kt(P,1) = ΦPkt(M,1)−λ

+
F F∞(t)kt(P,1)∑

+∞

l=1 kt(F, l).

4 Simulations

4.1 Single actin polymer

In this section, we exhibit an interesting example of behaviour for a single long poly-
mer, that highlights the role of the different proteins. The parameters chosen in these
simulations are fairly arbitrary and do not come from biological measurements. In-
vestigating more biologically-driven examples and the effect of sudden parameter
changes on the behaviour of the system will be the object of future work.

Figure 3 shows the evolution of the system with N = 1000, λ+ = 10, λ− = 2,
λ
+
F = 100, ΦP = 10, Φ

+
F = 1 and Φ

−
F = 1, starting with a unique actin polymer of

length 334, 333 free monomers and 333 G-actin/profilin complexes. That is, initially
a third of the monomers in the system are free, another third are associated with a
profilin and the rest sits in the polymer.

Figure 3 is divided into three graphs. On the top left, we show the evolution in
time of the number of free monomers, LN

0 (t). The graph on the top right presents the
evolution of the length of the polymer, LN

1 (t), and the graph at the bottom corresponds
to the evolution of the number of G-actin/profilin complexes, LN

2 (t). Each graph dis-
plays four plots. The oscillating solid line shows a single realisation of the stochastic
system of Section 1.2.1 with N = 1000 and the parameters expounded above. The
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Fig. 3: Evolution of the system described by the model for a single actin polymer with
N = 1000, λ+ = 10, λ−= 2, λ

+
F = 100, ΦP = 10, Φ

+
F = 1 and Φ

−
F = 1. Initially, there

are a (unique) polymer of length 334, 333 free monomers and 333 G-actin/profilin
complexes. Top left: evolution of the number of free monomers. Top right: evolution
of the length of the polymer. Bottom: evolution of the number of G-actin/profilin
complexes. On each graph, we plot a single realisation of the stochastic system for
N = 1000, the fluid limit given in Theorem 11 (i.e., N times li(t)), the fluid limit one
would obtain by assuming that the system stays in normal mode and the fluid limit
one would obtain by assuming that the system remains in fast mode all the time.

smooth solid line represents N times the fluid limit described in Theorem 11 (so that
we compare numbers instead of proportions of monomers). The dashed line repre-
sents (N times) the fluid limit that we would obtain if we assumed that the poly-
mer was constantly in normal mode. Finally, the alternated dashed line represents (N
times) the fluid limit that we would obtain if we assumed that the polymer was always
in fast mode.

In this particular example, we observe that if the system stays in normal mode, the
length of the polymer converges quickly to 0 because the polymer looses monomers
faster than it can gain them. This can be explained by the fact that the polymer and
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profilins compete for the same pool of free monomers with density dependent rates
while the polymer also looses monomers through depolymerisation at a constant rate,
so that once the pool of free monomers has fallen below a certain level because some
fraction of monomers have been captured in G-actin/profilin complexes, polymeri-
sation happens more slowly than depolymerisation. In fact, this is a general result,
valid for any parameter values: if the polymer stays in normal mode all the time, then
t0 <+∞. Indeed, in this case the system of equations (28) reads

l′0(t) = λ
−−λ

+l0(t)−ΦP l0(t),

l′1(t) = λ
+l0(t)−λ

−, (54)
l′2(t) = ΦPl0(t).

for all t ≤ t0. Solving the above, we obtain that for every t ≤ t0,

l0(t) =
(

l0(0)−
λ−

λ++ΦP

)
e−(λ

++ΦP)t +
λ−

λ++ΦP
,

l1(t) = 1− l0(t)− l2(t), (55)

l2(t) = l2(0)+
ΦP

λ++ΦP

(
l0(0)−

λ−

λ++ΦP

)(
1− e−(λ

++ΦP)t
)
+

λ−ΦP

λ++ΦP
t.

Supposing that t0 = +∞ would imply that lim
t→+∞

l2(t) = +∞, which is absurd since

l2(t)≤ 1 for all t ≥ 0.
Coming back to the example in Figure 3 we see that if, on the other hand, the

polymer is constantly in fast mode or if it switches modes, then its length converges
to a nonzero equilibrium. For other parameter values, it is possible to observe that the
length of the polymer converges to a nonzero equilibrium when mode switching is
allowed, while it converges to 0 if the system stays in fast mode. Writing the analogue
of Condition (8) when the polymer is always in fast mode, we obtain

1− λ−

ΦP
− λ−

λ
+
F

< 0, (56)

which tells us that, for instance, ΦP ≤ λ− is a sufficient condition for t0 <+∞ in this
regime. Our numerical exploration did not enable us to find biologically reasonable
parameter values for which the length of the polymer with mode switching converges
to 0.

Noticeably, the polymer length at equilibrium is longer in the case of mode switch-
ing than in the case when the polymer remains in the state with the highest rate of
polymerisation. As can be remarked on the two other graphs, this phenomenon is due
to the fact that the switching between modes enables the polymer to use the two types
of “resources” (free monomers and G-actin/profilin complexes) more efficiently, al-
lowing the pool of free monomers not to be depleted (so that they can be consumed
during the elongation of the polymer in normal mode, or be used to replenish the pool
of complexes). More generally, in cases where t0 =+∞, the length of the polymer at
equilibrium is larger with mode switching than in fast mode if and only if

ΦP ∈
[

0,
1
2

(
πM(1)λ++

√
πM(1)λ+(πM(1)λ++4λ

+
F )

)]
. (57)
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(a) ΦP = 25 (b) ΦP = 30

Fig. 4: Evolution of the length of the filament with N = 1000, λ+ = 10, λ− = 2,
λ
+
F = 100, Φ

+
F = 1 and Φ

−
F = 1 for two values of ΦP. Initially, there are a (unique)

polymer of length 334, 333 free monomers and 333 G-actin/profilin complexes. On
each graph, we plot the fluid limit given in Theorem 11 (i.e., N times li(t)) and the
fluid limit assuming that the system stays in fast mode all the time.

Indeed, using Equation (7), we see that the length at equilibrium is l∞
S = 1− λ−

C0
−

λ−ΦP
C0C2

and l∞
F = 1− λ−

ΦP
− λ−

λ
+
F

respectively with mode switching and in fast mode. This
gives us

l∞
S > l∞

F ⇔ −Φ
2
P +πM(1)λ+

ΦP +πM(1)λ+
λ
+
F > 0, (58)

and since by assumption ΦP ≥ 0, we find Condition (57).
Figure 4 illustrates this criterion. Using the same parameters as in Figure 3, Con-

dition (57) reads ΦP ∈ [0,25]. In Figure 4a we set ΦP = 25 and we observe that the
two limiting polymer lengths (in fast and alternating modes) are identical. In Fig-
ure 4b, we set ΦP = 30 and the length at equilibrium is larger if the system stays in
fast mode.

4.2 Population of actin polymers

Figure 5 displays the evolution of a population of actin polymers with the same set
of parameters as in Figure 3, namely λ+ = 10, λ− = 2, λ

+
F = 100, ΦP = 10, Φ

+
F = 1

and Φ
−
F = 1. In order to compare the limiting models for a single polymer and for

a population of competing polymers, we start with an analogous initial distribution
of monomers into free monomers, and monomers sequestered in polymers or com-
plexes: 33,3% of free monomers, 33,4% of monomers included in a polymer and
33,3% of monomers in G-actin/ profilin complexes. Moreover, to match the condi-
tions of Theorem 12 we start with 50% of the polymers being simple and 50% being
associated with a formin, all of them being of length 30. Finally, we use the Euler
explicit method with a time pitch dt = 0.001. Note that here we only compare the
limits obtained in Theorems 11 and 12, and therefore we directly consider N = ∞.
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Fig. 5: Evolution of the system described by the limiting model for a population of
actin polymers with dt = 0.001, λ+ = 10, λ− = 2, λ

+
F = 100, ΦP = 10, Φ

+
F = 1 and

Φ
−
F = 1, starting with 33% of free monomers, 33% of G-actin/profilin complexes

and 34% of monomers included within polymers of length 30. Top left: evolution of
the proportion of free monomers. Top right: evolution of the proportion of monomers
included in a polymer. Bottom: evolution of the proportion of G-actin/profilin com-
plexes. On each graph, we plot the fluid limit given in Theorem 11, the large popula-
tion limit given in Theorem 12, the large population limit obtained by assuming that
the system stays in normal mode and the large population limit obtained by assuming
that the system stays in fast mode.

In Figure 5, the same quantities are shown as in Figure 3, but for a population of
actin polymers. Figure 5 is divided into three graphs. On the top left, we show the
evolution in time of the proportion of free monomers in the population, kt(M,1). The
graph on the top right presents the evolution of the proportion of monomers included
in a polymer,

minF(t) =
+∞

∑
l=1

l(kt(S, l)+ kt(F, l)),

and the graph at the bottom gives the evolution in time of the proportion G-actin/pro-
filin complexes available in the population, kt(P,1). On each graph, we display four
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Fig. 6: Convergence of the proportion of simple polymers (resp., polymers bound
with a formin) towards πM(0) (resp., πM(1)) with dt = 0.001, λ+ = 10, λ− = 2,
λ
+
F = 100, ΦP = 10, Φ

+
F = 1 and Φ

−
F = 1, starting with 33% of free monomers, 33%

of G-actin/profilin complexes and 34% of monomers included in polymers. Initially,
we start with 50% of simple polymers and 50% of polymers bound with a formin, all
of length 30.

plots. The solid line represents the large population limit described in Theorem 12.
The coloured dashed line (resp. coloured alternated dashed line) represents the large
population limit that we would obtain if we assumed that all polymers were stuck in
normal mode (resp. fast mode - in these cases, initially all the polymers are simple,
resp., associated with a formin). Finally, the thin black dashed line represents the
equilibrium state in the fluid limit obtained in the single polymer model and shown
in Figure 3.

In this particular example, we can observe that the qualitative behaviour of a
population of polymers bears some similarity with the fluid limit for a single long
polymer. Indeed, if all polymers are blocked in normal mode, the proportion of
monomers inserted in a polymer converges quickly to 0 because a large fraction of
free monomers is quickly captured by profilins and cannot be converted again into
free monomers (since there is no accelerated polymerisation), so that they can no
longer be used in polymer elongation. In contrast, when the polymers can switch
modes or when they all remain in fast mode, the proportion of monomers inserted
in a polymer stabilises to a non-zero value. However, this time the “equilibrium” is
lower in the case with switching than in the constantly fast mode. This can be ex-
plained by the fact that the large number of polymers in the system compete for the
same order of magnitude of free monomers (themselves also captured by profilins)
and so the pool of free monomers is constantly kept at a low level, which impedes
the elongation of the simple polymers. In this case, mode switching does not allow a
better use of the different pools of monomers.

Although we are not able to prove analytically that, in the limiting process ob-
tained in Theorem 12, the proportion of polymers bound with a formin approaches
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the stationary probability πM(1) that a single polymer is in “fast” mode (in the ter-
minology of the single polymer model of Section 1.2), we checked this intuition by
simulation. In Figure 6, we plot the evolution of the quantities

∑
+∞

l=1 kt(S, l)
F∞(t)

and
∑
+∞

l=1 kt(F, l)
F∞(t)

,

where as earlier

F∞(t) =
+∞

∑
l=1

kt(S, l)+
+∞

∑
l=1

kt(F, l)

is the total amount of “real” polymers (thus excluding monomers and complexes) in
the system at time t. The parameters and initial state are the same as before. Since
Φ

+
F = Φ

−
F , in this case we have πM(0) = 0.5 = πM(1) and the initial proportion of

polymers bound with a formin is also 0.5. As we see in Figure 6, after an initial very
small shift (whose origin is not clear), the proportion of polymers converges again to
the value 0.5, which confirms our intuition.

Using this approximation, the system of ODE proposed in Corollary 33 can be
rewritten for large times as

d
dt kt(M,1) = λ−F∞(t)−λ+πM(0)F∞(t)2kt(M,1)−ΦPkt(M,1)
d
dt minF(t) = λ+πM(0)F∞(t)2kt(M,1)+λ

+
F πM(1)F∞(t)2kt(P,1)−λ−F∞(t)

d
dt kt(P,1) = ΦPkt(M,1)−λ

+
F πM(1)F∞(t)2kt(P,1).

(59)
If we compare this system to the limiting evolution obtained in (28) for a single

polymer, we observe that in the above, the elongation rates (spontaneous or with a
formin) are multiplied by the square of the amount of polymers F∞. Therefore, it
appears that elongation is more slowed down by the competition between polymers
than the other transitions.

Since in Figure 6 the initial proportion of polymers bound with a formin was
set to be equal to its (supposed) equilibrium value, we explored what happens in
other cases by choosing a different set of parameters. Figure 7 displays the same
quantities as Figure 6 but with the following set of parameters: λ+ = 10, λ− = 2,
λ
+
F = 100, ΦP = 10, Φ

+
F = 8 and Φ

−
F = 2. We start again with the same initial state

(33% of free monomers, 34% of monomers included in a polymer, 33% of monomers
in G-actin/profilin complexes, 50% of polymers being simple, 50% being associ-
ated with a formin and all polymers being of length 30). By (3), this time we have
(πM(0),πM(1)) = (0.2,0.8) and Figure 7 confirms again the suspected convergence
(with another initial overshoot by a very small amount that we cannot explain).

Since the main difference between the systems (28) and (59) lies in the presence
of the coefficient F∞ in the latter, it is natural to investigate the evolution in time of
the amount of “real” polymers in the limiting population model. In Figure 8, we plot
(F∞(t))t≥0 using the same parameter values as in Figure 5. We observe in particular
that the amount of polymers seems to decrease towards a limit of the order of 10−3.
Of course this (empirical) stabilisation to a nonzero value is only one example of
potential limit for the decreasing process F∞ and other sets of parameters may lead
to a limiting amount of “real” polymers equal to 0.
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Fig. 7: Convergence of the proportion of simple polymers (resp., polymers bound
with a formin) towards πM(0) (resp., πM(1)) with dt = 0.001, λ+ = 10, λ− = 2,
λ
+
F = 100, ΦP = 10, Φ

+
F = 8 and Φ

−
F = 2, starting with 33% of free monomers, 33%

of G-actin/profilin complexes and 34% of monomers included in polymers. Initially,
we start with 50% of simple polymers and 50% of polymers with formin, all of length
30.

Fig. 8: Evolution of the amount of “real” polymers F∞ with dt = 0.001, λ+ = 10,
λ− = 2, λ

+
F = 100, ΦP = 10, Φ

+
F = 1 and Φ

−
F = 1, starting with 33% of free

monomers, 33% of G-actin/profilin complexes and 34% of monomers included
within polymers of length 30.

As in the previous section, we can also try to use the approximation (59) to com-
pare the amount of monomers inserted in a polymer (as a proxy for the average poly-
mer length) when the polymers can switch modes and when they are always in fast
mode. We only proceed heuristically, assuming that F∞(t)→t→∞ f∞ > 0. Finding an
analogue of the criterion (57) to characterise the set of parameters for which the frac-
tion of monomers included in a polymer at equilibrium is larger with mode switching
than if the system stays in fast mode is trickier than in the case of a single polymer.
Indeed, the limit f∞ itself depends on the value of ΦP. However, noticing that the
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(a) ΦP = 0.001 (b) ΦP = 0.01

Fig. 9: Time evolution of the proportion of monomers included in a polymer with
dt = 0.001, λ+ = 10, λ− = 2, λ

+
F = 100, Φ

+
F = 1 and Φ

−
F = 1 for two values of ΦP,

starting with 33% of free monomers, 33% of G-actin/profilin complexes and 34%
of monomers included within polymers of length 30. On each graph, we plot the
large population limit given in Theorem 12 and the large population limit obtained
by assuming that the system stays in fast mode.

system (59) can be obtained from (28) by replacing λ− by λ− f∞, λ+ by λ+ f 2
∞ and

λ
+
F by λ

+
F f 2

∞, the candidate criterion derived from (57) can be written

ΦP ∈
[

0,
1
2

(
πM(1)λ+ f 2

∞ +
√

πM(1)λ+ f 4
∞(πM(1)λ++4λ

+
F )

)]
. (60)

In particular, we see that when the limiting amount of “real” polymers f∞ is small, the
proportion of monomers included in a polymer at equilibrium is greater with mode
switching than if the system stays in the fast mode only when ΦP is itself very small.
Figure 9 confirms that such a regime is numerically possible, but it is not clear that
values of ΦP that are so low compared to other parameter values are biologically
relevant.

Let us now consider the polymer lengths in our large population limit to see what
is the impact of mode switching on their distribution. Figure 10 presents the evolu-
tion of the distribution of the polymer lengths with the same set of parameters as in
Figure 5. We start with the same proportion as previously, 33,3% of free monomers,
33,3% of G-actin/profilin complexes and 33,4% of monomers included in a polymer.
In Figure 10a we start with polymers of length 30, whereas on Figure 10b we start
with polymers of length 3. In each graph, we plot the distribution of the polymer
lengths obtained in Theorem 12 at different times and in dashed line we plot the dis-
tribution at which the system seems to stabilise (in the simulations) when we assume
that all polymers are blocked in fast mode.

First, comparing Figure 10a and Figure 10b, we see that the distribution in length
depends on the initial condition. Indeed, if the polymers are initially shorter, at later
times they are globally shorter but more numerous. In contrast, if we start with longer
polymers, at later times they are longer, the variance in polymer length is larger but
there are fewer polymers.
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(a) Initial polymers of length 30 (b) Initial polymers of length 3

Fig. 10: Evolution of the distribution of the polymer lengths with dt = 0.001, λ+ =
10, λ− = 2, λ

+
F = 100, ΦP = 10, Φ

+
F = 1 and Φ

−
F = 1, starting with 33% of free

monomers, 33% of G-actin/profilin complexes and 34% of monomers included in
polymers. In each graph, we plot the distribution at different times. The red dashed
line represents the distribution after stabilisation when assuming that all polymers
are blocked in fast mode. To ease the comparison between the two graphs, the black
dashed line in (b) corresponds to the red solid line in (a).

Second, let us compare the distributions of the polymer lengths at different times,
the distribution after stabilisation (in red) and the distribution assuming that all poly-
mers remain in fast mode (red dashed line) in Figure 10a. As in Figure 5, we see that
the proportion of polymers is larger when the polymers are blocked in fast mode. But
we can also observe that the polymer lengths are globally shorter than when polymers
switch modes. We can therefore conclude that mode switching allows to have longer
polymers but limits the proportion of monomers included in polymers, and thus it
limits the number of polymers.
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