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The role of mode switching in a population of actin polymers

with constraints

F. Robin∗, A. Van Gorp†, and A. Véber‡

September 30, 2019

Abstract: In this paper, we introduce a stochastic model for the dynamics of actin polymers and their
interactions with other proteins in the cellular envelop. Each polymer elongates and shortens, and can
switch between several modes depending on whether it is bound to accessory proteins that modulate its
behaviour as, for example, elongation-promoting factors. Our main aim is to understand the dynamics of
a large population of polymers, assuming that the only limiting quantity is the total amount of monomers,
set to be constant to some large N .

We �rst focus on the evolution of a very long polymer, of size O(N), with a rapid switch between
modes (compared to the timescale over which the macroscopic �uctuations in the polymer size appear).
Letting N tend to in�nity, we obtain a �uid limit in which the e�ect of the switching appears only
through the fraction of time spent in each mode at equilibrium. We show in particular that, in our
situation where the number of monomers is limiting, a rapid binding-unbinding dynamics may lead to an
increased elongation rate compared to the case where the polymer is trapped in any of the modes.

Next, we consider a large population of polymers and complexes, represented by a random measure
on some appropriate type space. We show that as N tends to in�nity, the stochastic system converges to
a deterministic limit in which the switching appears as a �ow between two categories of polymers. We
exhibit some numerical examples in which the limiting behaviour of a single polymer di�ers from that of
a population of competing (shorter) polymers for equivalent model parameters.

Taken together, our results demonstrate that under conditions where the total number of monomers
is limiting, the study of a single polymer is not su�cient to understand the behaviour of an ensemble of
competing polymers.

Key words and phrases: modelling of actin polymers, measure-valued Markov processes, convergence
theorems, homogenisation theorem.

AMS 2010 subject classi�cations: 60G57, 60J25, 60J75, 60F05.

1 Introduction

1.1 Actin cytoskeleton and cell mechanics

During the embryonic development, cell mechanics plays a central role in many cell behaviours,
from cell shape changes to cell division, cell migration and cell rearrangements [15]. In animals,
these mechanical properties are largely determined by the cortical actomyosin cytoskeleton, a
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200-500nm thick network of actin and myosin polymers assembled beneath the cell membrane.
Several parameters play a key role in determining the properties of this 2d active gel, including
its turnover rate, density, crosslinking and its �ne architecture. In particular, the distribution of
polymer lengths in the cytoskeleton has a strong impact on the mechanical properties of the gel
and the cell. In this paper, we focus on the dynamics of actin polymer assembly in the presence
of two classes of proteins that modulate the assembly dynamics, formins and pro�lins. Our main
assumption is that the total number of monomers in the system is �xed to some (large) N ,
re�ecting the fact that this quantity is a limiting factor in the evolution of the population of
polymers.

In cells, actin exists in two forms: monomers (or G-actin) and polymers (or F-actin). The
G-actin monomer addition is coupled to an ATP hydrolysis. Along with the structural polar
organisation of the F-actin �lament, this causes both extremities of a polymer to display distinct
kinetic properties: one with fast kinetics, or plus end, and one with slow kinetics, or minus end.
In vitro actin assembly can reach a steady state where polymerisation, occurring at the plus end,
is balanced by depolymerisation, occurring at the minus end. Note that in this work we are not
interested in the spatial conformation of the polymers or their spatial organisation in the cellular
cortex: provided there are available free monomers, a polymer can grow irrespective of its size.

A large number of accessory proteins interact with actin polymers and modify their dynamics,
thus contributing to the shaping of the actin network in a cell- and tissue-speci�c manner. Here
we consider only two such interactors: formins and pro�lins. Formins form a large family of
dimeric proteins with a wide range of biochemical properties associated with their function in
the cell. These proteins bind to the plus end of actin �laments, drive a processive �lament
elongation and modulate the actin elongation rate [13, 14]. Pro�lin is an abundant protein
which regulates the actin dynamics by promoting ADP-to-ATP exchanges on G-Actin, renewing
the ATP-actin pool. Importantly, pro�lin has been shown to a�ect di�erently distinct actin sub-
networks, increasing the elongation rate by formins up to 15-fold, while decreasing the branching
of branched networks [7, 22, 23]. In order to disentangle the di�erent mechanisms underlying
the composition in distinct polymer structures of the whole population of actin polymers, in this
work we do not consider the sub-network of branched �laments (i.e., tree-like structures induced
by another protein called Arp2/3) and instead focus of the positive e�ect of formins and pro�lins
on the elongation rate of the sub-network of simple polymers. Taking branching into account is
signi�catively more di�cult and will be the object of future work. Each formin can thus bind to
or unbind from a polymer at a given rate. We shall say that a polymer is in �fast� mode if it is
associated to a formin and therefore polymerises faster. When it is not bound with a formin, we
say that it is in �normal� mode. To account for the role of pro�lin balancing the two network
populations, we formally assembled �laments in �normal� mode from a G-actin complexes, while
�laments in �fast� mode were assembled from G-actin/pro�lin (Figure 1 and [24]). Finally, note
that our simple model, we also ignore the e�ect of the formins on actin nucleation.

Our main interest is twofold: understand the consequences of the fact that monomers are
in limited numbers (being free, in a complex with a pro�lin or inserted in a polymer), and
characterise the impact of the switching between two modes on the distribution of polymer
lengths and on the fraction of monomers incorporated in a polymer. Several models for actin
assembly have already been developped [6, 9, 10, 25, 26]. The majority of these models are either
deterministic and focus on a steady-state equilibrium, or are stochastic and are studied by Monte-
Carlo simulations [5, 19]. Most of the models taking into account a population of actin polymers
rely on very speci�c assumptions and are not developed in a general context. Indeed, many of
them concentrate on cell motility and therefore focus on the dynamics of actin in protrusions
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[6, 16] or in the geometrical organisation of the actin network [8]. More general models like [9, 10]
do not take into account the faster elongation of polymers bound with a formin, and neither do
they consider the e�ect of the switching between spontaneous elongation and elongation with a
formin. The works [12] and [17] use the same approach as ours to study the average length of
an actin polymer and the distribution of the polymer lengths. However, [12] does not consider
the large population limit of their model and [17] focuses more on the importance of having two
types of monomers (ATP and ADP) than on the e�ects of accessory proteins. Apart from the
population approaches listed above, most of the existing literature tends to focus on a single
polymer, or on two competing polymers, with the idea that very large populations of polymers
will then be well-described by the law of an �average� polymer. Importantly, we wanted to
explore the e�ect of the competition between di�erent sub-populations of polymers, elongated
by distinct factors, for a unique, limited monomer pool.

To this end, we �rst consider a single polymer and its interactions with formins and pro�lins
in Section 1.2. Taking a particular limit as the total number of monomers in the system tends to
in�nity, we show that if we allow this polymer to �live� for a very long time (by taking its initial
length to be of order O(N)), then its interactions with formins average out and the resulting
asymptotic polymerisation rate is a weighted average between the polymerisation rate in fast
and in normal mode (i.e., when bound or not with a formin). In Section 1.3, we instead consider
a large population of short competing polymers and show that, because short polymers never
reach such a long lifetime, the intuitive homogenisation result of Section 1.2 does not apply and
the competition for free monomers or G-actin/pro�lin complexes has a strong impact on the
size distribution within the population of polymers. In Section 4, we show by simulation that
the characteristics of a single polymer considered on its own can di�er signi�cantly from the
distribution in polymer lengths in a large population even for equivalent model parameters.

1.2 Switching dynamics of a single actin polymer

1.2.1 The model

We �rst focus on the e�ect of the switching between di�erent modes on the evolution of a single
polymer. We restrict our attention to two modes (fast and normal), but our result would easily
carry over to the case of �nitely many modes under some natural ergodicity conditions.

The model we propose below takes into account the spontaneous elongation of the polymer
as well as the e�ects of formins and pro�lins. If there are no formins attached to the plus end
of the polymer, elongation is spontaneous and consumes free monomers. In contrast, if there is
a formin on the polymer, elongation is induced by the formin and G-actin/pro�lin complexes
are integrated into the polymer instead of free monomers. Only one formin can be bound to the
polymer at a time. Recall that in the �rst case we say that the polymer is in �normal� mode,
while the second case is called the �fast� mode. For every t ≥ 0, we write M(t) = 0 (resp.,
M(t) = 1) if the polymer is in normal (resp., fast) mode at time t.

As we want monomers to be a limiting factor, we assume that the total number of monomers
in the system is �xed through time to some N ∈ N. These monomers can be in three states:
free, in the polymer or held in a G-actin/pro�lin complex (each involving only one monomer).
At any given time t ≥ 0, the current number of free monomers is denoted by LN0 (t), the length
of the polymer by LN1 (t) and the number of G-actin/pro�lin complexes by LN2 (t). We also de�ne

LN (t)
def
=
(
LN0 (t), LN1 (t), LN2 (t)

)
. (1)
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Figure 1: Schematic representation of the model for the dynamics of a single actin polymer and
its interaction with formins and pro�lins. Red single units represent monomers, red-green units
represent G-actin/pro�lin complexes and the strand of red units at the top of each box represents
the polymer. The green oval depicts a formin bound to the polymer.

Writing [N ] for the set {0, 1, 2, . . . , N}, we thus have for any i ∈ {0, 1, 2} and any t ∈ R+:
LNi (t) ∈ [N ] and

LN0 (t) + LN1 (t) + LN2 (t) = N. (2)

The model incorporates six types of events, illustrated in Figure 1:

1. Spontaneous elongation. If the polymer has positive length and is in normal mode, elon-
gation (at the plus end) is spontaneous, and we assume that the rate at which it occurs is
proportional to the current density of free monomers. That is, the instantaneous rate of
spontaneous elongation a time t is given by 1{M(t−)=0}1{LN

1 (t−)>0}λ
+LN0 (t−)/N , for some

constant λ+ ≥ 0. The new value of the vector describing the system is then

LN (t) =
(
LN0 (t−)− 1, LN1 (t−) + 1, LN2 (t−)

)
.

2. Elongation with a formin. If the system is in fast mode and the polymer has posi-
tive length, elongation (also at the plus end) is induced by a formin and consumes G-
actin/pro�lin complexes. Therefore, in this case we suppose that the instantaneous rate
of polymerisation is proportional to the density of available complexes, i.e. is equal to
1{M(t−)=1}1{LN

1 (t−)>0}λ
+
FL

N
2 (t−)/N for some constant λ+

F ≥ 0. The vector LN then jumps
to

LN (t) =
(
LN0 (t−), LN1 (t−) + 1, LN2 (t−)− 1

)
.

3. Depolymerisation. In both modes, the polymer can release a monomer (from the minus end)
if its length has not already reached 0. We write 1{LN

1 (t−)>0}λ
− for rate of depolymerisation,

where λ− is a nonnegative constant, and the new value of LN is then

LN (t) =
(
LN0 (t−) + 1, LN1 (t−)− 1, LN2 (t−)

)
.
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N Total number of monomers

λ+ Rate of spontaneous elongation

λ+
F Rate of elongation with formins

λ− Rate of depolymerisation

ΦP Rate of production of G-actin/pro�lin complexes

Φ+
F Rate of binding of a formin to the polymer (switch from normal to fast mode)

Φ−F Rate of release of a formin by the polymer (switch from fast to normal mode)

LN0 (t) Number of free monomers at time t

LN1 (t) Length of the polymer at time t (in number of monomers)

LN2 (t) Number of G-actin/pro�lin complexes available at time t

M(t) Mode (fast/normal) in which the polymer is at time t

Table 1: Parameters and variables in the single-polymer model

4. Production of complexes. Independently of the mode of the polymer, a free monomer and a
pro�lin can react and produce a G-actin/pro�lin complex. Assuming that pro�lin is not a
limiting factor, the instantaneous rate of production of G-actin/pro�lin complexes at time
t is given by ΦPL

N
0 (t−)/N , for some constant ΦP that takes into account the concentration

in pro�lin in the cellular cortex. The new value of LN after such an event is

LN (t) =
(
LN0 (t−)− 1, LN1 (t−), LN2 (t−) + 1

)
.

5. Binding of a formin. If the polymer is in normal mode, a formin can bind to its plus end
and the polymer switches to the fast mode. We write Φ+

F for the constant rate of occurrence
such a switch from normal to fast mode. This event does not modify the value of LN , but
corresponds to a jump from 0 to 1 for M(t).

6. Release of a formin. If the polymer is in fast mode, the formin bound to it can be released
and the polymer switches to the normal mode. We denote Φ−F the constant rate of such a
switch. Again, this event only a�ects the process M , which jumps from 1 to 0.

Table 1 summarises all the notation introduced here. Observe that monomers cannot sponta-
neously detach from a G-actin/pro�lin complex. However, when a complex is integrated into a
polymer, its depolymerisation results in the separation of the complex into a free monomer and
a (free) pro�lin. Once the length of the polymer has reached 0, for mathematical convenience
we suppose that (M(t))t≥0 keeps on jumping from 0 to 1 at rate Φ+

F and from 1 to 0 at rate Φ−F
for all times, even if this assumption has no biological meaning.

The system is fully described by the Markov process (LN (t),M(t))t≥0. From the above, we
see that (M(t))t≥0 is a Markov jump process with values in {0, 1}, switching from 0 to 1 at rate
Φ+
F and from 1 to 0 at rate Φ−F . It evolves independently of the process (LN (t))t≥0, while the

dynamics of (LN (t))t≥0 depends on (M(t))t≥0. Since (M(t))t≥0 is an irreducible Markov process
on a �nite state space, it has a unique stationary distribution πM given by

(
πM (0) , πM (1)

)
=

(
Φ−F

Φ+
F + Φ−F

,
Φ+
F

Φ+
F + Φ−F

)
. (3)
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This stationary distribution will appear in the homogenisation result presented in the next sec-
tion.

1.2.2 Large-N limit

In order to understand the �rst order �uctuations of the system, we let the total number of
monomers tend to in�nity and look for a �uid limit as N tends to in�nity. That is, we consider
the scaled (non-Markovian) process

LN (t) =
(
LN0 (t), LN1 (t), LN2 (t)

) def
=

(
LN0 (Nt)

N
,
LN1 (Nt)

N
,
LN2 (Nt)

N

)
, (4)

and we want to prove that LN converges to a deterministic limit as N →∞.
Let us write

∆
def
=
{

(x1, x2, x3) ∈ [0, 1]3 : x1 + x2 + x3 = 1
}

(5)

for the compact set in which LN takes its values for every N and D∆[0,∞) for the space of all
càdlàg ∆-valued paths, which we endow with the standard Skorokhod topology. Let

C0
def
= πM (0)λ+ + ΦP and C2

def
= πM (1)λ+

F , (6)

where πM (0) and πM (1) are de�ned in (3). The constants C0 and C2 are respectively the rate
of consumption of free monomers and of G-actin/pro�lin complexes when the process M is at
stationarity. To avoid trivialities, we suppose that these two quantities are positive.

We can now formulate the main result of this section.

Theorem 1.1. Suppose that the initial condition LN (0) ∈ ∆ converges in distribution to some
deterministic vector (l0(0), l1(0), l2(0)) ∈ ∆. Then as N →∞, the process LN converges in dis-
tribution in D∆[0,∞) to the deterministic process (l(t))t∈R+ = (l0(t), l1(t), l2(t))t∈R+ satisfying:
for every t ≤ t0,

l0(t) =
(
l0(0)− λ−

C0

)
e−C0t + λ−

C0

l1(t) = 1− l0(t)− l2(t)

l2(t) = l2(0)e−C2t + ΦP
C2−C0

(
l0(0)− λ−

C0

)
(e−C0t − e−C2t) + ΦPλ

−

C0C2
(1− e−C2t),

and for every t > t0, 
l0(t) = l0(t0)e−ΦP (t−t0)

l1(t) = 0

l2(t) = 1− l0(t)

where t0 = min{t ∈ R+ : l1(t) = 0} is the time at which the polymer �size� cancels (by conven-
tion, t0 = +∞ if l1 does not reach 0).

We easily see from Theorem 1.1 that the system obtained in the limit has a unique equilibrium,
which depends on whether t0 < +∞ or not. If t0 < +∞ then the system converges to (0, 0, 1)
and every monomer ends up associated with a pro�lin. In contrast, if t0 = +∞, the limiting
distribution of monomers into the three di�erent categories is given by(

λ−

C0
, 1− λ−

C0
− λ−ΦP

C0C2
,
λ−ΦP

C0C2

)
. (7)
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Observe that the limiting amount of free monomers corresponds to the ratio of the asymptotic
rate of increase of the free monomer pool, λ−, by the asymptotic rate C0 = πM (0)λ+ + ΦP at
which free monomers are consumed by the polymer elongation in normal mode and the creation
of G-actin/pro�lin complexes. Likewise, since complexes can only be created by the reaction of
a free monomer with a pro�lin, the limiting amount of complexes can be read as the ratio of
their creation rate from the pool of free monomers at equilibrium, (λ−/C0)×ΦP , by the rate of
consumption of complexes through polymerisation in fast mode, C2.

A natural question, on which we shall not dwell, is of course to ask when t0 is �nite. An
obvious su�cient (but not necessary) condition for t0 <∞ is

1− λ−

C0
− λ−ΦP

C0C2
< 0. (8)

Theorem 1.1 pertains to the family of stochastic homogenisation results such as [18]. Indeed,
although most reactions occur on a similar timescale, the time it takes to the polymer to see its
length change by O(N) units (so that this change may be visible after our rescaling of LN1 by N)
is of the order of O(N) original time units, and is therefore much larger than the time of order
O(1) that the binding and release of formins take. What our result shows is that, in the limit
as N tends to in�nity, the fast dynamics of mode switching equilibrates and only its stationary
distribution πM impacts the slow dynamics of the polymer elongation and shortening. Recalling
that πM (0) (resp., πM (1)) can be interpreted as the fraction of time spent in the normal mode
(resp., fast mode) over the very long timescale considered here (by ergodicity), we see that, as
mentioned earlier, C0 (resp., C2) corresponds to a global rate of consumption of free monomers
(resp., of G-actin/pro�lin complexes) when M is at stationarity, and the average behaviour
described by the equations stated in Theorem 1.1 corresponds to the barycenter between the
behaviour of the system when it is in normal mode and the behaviour of the system when it is
in fast mode.

Notice that our approach is similar to that of [18, 21], in which each individual switches state
(or spatial location) independently, but it di�ers from many stochastic homogenisation results
such as [2] or [3], in which it is the environment where all individuals evolve which switches fast,
a�ecting the population as a whole. More precisely, in our study �uctuations are not on the scale
of the population but on the scale of the individuals since each polymer can be in several modes
independently of the others. This kind of random individual state switching seems less studied
than the long-term averaging e�ect of environmental switches.

The limiting process (l(t))t≥0 allows us to understand the impact of the restriction on
monomers and of the interaction with formins and pro�lins on the dynamics of a single polymer.
However, our model does not take into account the competition between the numerous polymers
which are present in the cellular cortex. As a consequence, we now build on our model for a single
polymer to construct and analyse a more complex model for a population of actin polymers.

1.3 Switching dynamics for a population of actin polymers

1.3.1 The model

We now consider a population of actin polymers undergoing the same reactions as in the previous
section. Recall that we assume that the total number of monomers in the system is �xed, equal
to N ∈ N. Again, these monomers can be free, in a G-actin/pro�lin complex, in a polymer
bound with a formin or in a simple polymer (with no formin attached). As earlier, if an actin
polymer is simple its elongation consumes free actin monomers, and if the polymer is associated
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to a formin, its elongation consumes only G-actin/pro�lin complexes. To ease the exposition,
we shall consider that free monomers and G-actin/pro�lin complexes are two types of actin
polymers.

Since we want to understand the distribution of polymer lengths within the population as
well as the amounts of monomers contained in each category of polymers, we describe every
element of the population by its type and its length. More precisely, free monomers are denoted
by M , G-actin/pro�lin complexes by P , simple actin polymers by S and actin polymers bound
with a formin by F . Polymers of type M and P can only be of size 1, while polymers of type
S and F can be of any length in {1, 2, . . . , N}. By convention, we distinguish between polymers
of length one and free monomers as polymers made of a single monomer can grow again. Other
conventions are possible and similar results to the ones presented below can be obtained using
the same arguments as in the proof of Theorem 1.2.

Later it will be more convenient to have a state space independent of N , we thus let

I def
= {(M, 1), (P, 1)} ∪

(
{S, F} × N

)
, (9)

and for every pair (T, l) ∈ I and every t ≥ 0, we de�ne KN
t (T, l) as the number of polymers of

type T and length l present in the system at time t. Here we use the convention N = {1, 2, . . .}.
The system at every time t is described by its empirical distribution ZNt :

ZNt
def
= KN

t (M, 1)δ(M,1) +KN
t (P, 1)δ(P,1) +

N∑
l=1

KN
t (S, l)δ(S,l) +

N∑
l=1

KN
t (F, l)δ(F,l), (10)

where δx denotes a Dirac mass at x. Each ZNt is thus a random measure on I. We write MI
for the space of all �nite measures on I, endowed with the topology of weak convergence.

Let us make a few remarks. Since the total number of monomers is N , for every t ≥ 0 we
have KN

t (·, l) = 0 if l > N and

〈ZNt , l〉 = KN
t (M, 1) +KN

t (P, 1) +
N∑
l=1

lKN
t (S, l) +

N∑
l=1

lKN
t (F, l) = N. (11)

The total number of �real� polymers (i.e., that are not free monomers or complexes) is denoted
by FN (t):

FN (t)
def
=

N∑
l=1

(
KN
t (S, l) +KN

t (F, l)
)

= 〈ZNt ,1(S,·) + 1(F,·)〉. (12)

Observe that the quantity KN (M, 1) corresponds to what we called LN0 in the model with
one polymer and KN (P, 1) corresponds to what we called LN2 . The other quantities are not quite
comparable to those introduced in the previous model, but an analogue of L1 would be the total
number of monomers inserted in a polymer:

MN
inF (t)

def
=

N∑
l=1

l
(
KN
t (S, l) +KN

t (F, l)
)

= 〈ZNt , l
(
1(S,·) + 1(F,·)

)
〉. (13)

The process (ZNt )t≥0 evolves according to the same six types of transitions as in the single
polymer model.
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1. Spontaneous elongation. Each simple polymer can elongate by catching a free monomer,
independently of the other polymers. As in the �rst model, λ+KN

t−(M, 1)/N is the constant
rate at which a given polymer captures a free monomer. Consequently, the total of rate
at which a spontaneous elongation happens at time t is λ+(KN

t−(M, 1)/N)
∑

l≥1K
N
t−(S, l)

and conditionally on this polymer being of size ` just before the event (which happens with
probability KN

t−(S, `)/
∑

lK
N
t−(S, l)), this corresponds to a transition to

ZNt = ZNt− − δ(S,`) − δ(M,1) + δ(S,`+1),

or equivalently to

KN
t (S, `) = KN

t−(S, `)− 1 ; KN
t (S, `+ 1) = KN

t−(S, `+ 1) + 1 ; KN
t (M, 1) = KN

t−(M, 1)− 1.

2. Elongation with a formin. Each polymer associated to a formin can elongate by absorbing a
G-actin/pro�lin complex (again, independently of the other polymers). As in the previous
type of transition, the total of rate at which an elongation with a formin happens at time t is
λ+
F (KN

t−(P, 1)/N)
∑

lK
N
t−(F, l) and conditionally on this polymer being of size ` just before

the event (which happens with probability KN
t−(F, `)/

∑
lK

N
t−(F, l)), this corresponds to a

transition to
ZNt = ZNt− − δ(F,`) − δ(P,1) + δ(F,`+1),

or equivalently to

KN
t (F, `) = KN

t−(F, `)− 1 ; KN
t (F, `+ 1) = KN

t−(F, `+ 1) + 1 ; KN
t (P, 1) = KN

t−(P, 1)− 1.

3. Depolymerisation. Each polymer of length l ≥ 1 (bound or not with a formin) can release
a monomer at rate λ− and this monomer becomes �free�. The (total) instantaneous rate at
which depolymerisation occurs to a polymer of length ` at time t is thus λ−(KN

t−(S, `) +
KN
t−(F, `)), and if T ∈ {S, F} is the type of this polymer, the new value of the empirical

measure at time t is

ZNt = ZNt− − δ(T,`) + δ(M,1) + δ(T,`−1)1{`≥2}.

4. Production of complexes. Each free monomer can bind with a pro�lin and create a G-
actin/pro�lin complex at rate ΦP , independently of the others. Therefore, the total rate
of creation of complexes at time t is ΦPK

N
t−(M, 1) and the new state of the system after

such an event is
ZNt = ZNt− − δ(M,1) + δ(P,1).

5. Binding of a formin. Each simple polymer of length l can bind with a formin and therefore
change category (or �mode�), independently of the other polymers. If we write again Φ+

F for
the rate at which a given simple polymer becomes bound with a formin, the total rate at
which such an event occurs is Φ+

FK
N
t−(S, l) and conditionally on the length of the polymer

concerned being `, the new state of the system is

ZNt = ZNt− − δ(S,`) + δ(F,`).

6. Release of a formin. Each polymer associated to a formin can have this association broken
at rate Φ−F , independently of the other polymers. Hence, the total rate of release of a
formin by a polymer of length ` at time t is Φ−FK

N
t−(F, `), and the new state of the system

after such an event is
ZNt = ZNt− − δ(F,`) + δ(S,`).

Figure 2 summarises all the events described above.
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Figure 2: Transitions in the model for a population of polymers. Simple polymers can elongate
by catching a free monomer, release a monomer that becomes free, or switch to the �fast� mode by
binding with a formin. Polymers bound with a formin can elongate by catching a G-actin/pro�lin
complex, release a monomer that becomes free, or switch to the �normal� mode by releasing
the attached formin. Finally, free monomers and pro�lins can bind to form G-actin/pro�lin
complexes.

1.3.2 Large-N limit

We now look for a large population limit, describing the �rst order behaviour of our population
of polymers. More precisely, for every N ∈ N and t ∈ R+, we set

ZNt
def
=

1

N
ZNt . (14)

By construction, each ZNt takes its values in the setM∗I de�ned by

M∗I =
{
Z ∈MI : 〈Z, l〉 = 1

}
, (15)

where we recall thatMI is the set of all �nite measures on I (see (9)), and 〈Z, l〉 is de�ned as
in (11). In particular, since the length l of every monomer/polymer is at least one, we have

M∗I ⊂M
(1)
I

def
=
{
Z ∈MI : 〈Z, 1〉 ≤ 1

}
. (16)

We now let N tend to in�nity, assuming that the sequence of initial values ZN0 converges

to some measure in M(1)
I and that the support of ZN0 is bounded uniformly in N . Note that

we do not scale time by a factor N as we did to obtain the �uid limit for a single polymer in
Section 1.2. Our main result is the following. We denote the space of all càdlàg trajectories with
values inM(1)

I by DM(1)
I

[0,∞) and we endow it with the standard Skorokhod topology.

Theorem 1.2. Suppose that the initial condition ZN0 converges in distribution to a deterministic

limit Z0 ∈ M(1)
I as N → +∞, and that there exists K0 ∈ N such that for every N su�ciently
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large,
〈ZN0 , 1I{l≥K0}〉 = 0. (17)

Then the process
(
ZNt
)
t∈R+

converges in distribution in DM(1)
I

[0,∞) as N →∞, to a determin-

istic limit (Zt)t≥0 which can be characterised as follows. If for every (T, l) ∈ I we write kt(T, l)
for the mass Zt({(T, l)}) given by Zt to the point (T, l), then

k0(T, l) = Z0({(T, l)}),

and 

d
dtkt(M, 1) = λ−

∑+∞
l=1 (kt(S, l) + kt(F, l))− λ+kt(M, 1)

∑+∞
l=1 kt(S, l)− ΦPkt(M, 1)

d
dtkt(P, 1) = ΦPkt(M, 1)− λ+

F kt(P, 1)
∑+∞

l=1 kt(F, l)

d
dtkt(S, 1) = Φ−F kt(F, 1) + λ−kt(S, 2)− (λ+kt(M, 1) + λ− + Φ+

F )kt(S, 1)

d
dtkt(F, 1) = Φ+

F kt(S, 1) + λ−kt(F, 2)− (λ+
F kt(P, 1) + λ− + Φ−F )kt(F, 1)

and ∀l ≥ 2,

d
dtkt(S, l) = λ+kt(M, 1)kt(S, l − 1) + Φ−F kt(F, l) + λ−kt(S, l + 1)

−(λ+kt(M, 1) + λ− + Φ+
F )kt(S, l)

d
dtkt(F, l) = λ+

F kt(P, 1)kt(F, l − 1) + Φ+
F kt(S, l) + λ−kt(F, l + 1)

−(λ+
F kt(P, 1) + λ− + Φ−F )kt(F, l).

Remark 1.3. (a) Ideally, we would like to replace the assumption that Z0 ∈M(1)
I by Z0 ∈M∗I

and obtain the convergence of the sequence (ZN )N≥1 in DM∗I [0,∞). However, the fact that

Zt ∈ M∗I for all t ≥ 0 is not guaranteed by the convergence in distribution of ZNt seen as a
�nite measure on I, since the function (T, l) 7→ l is not bounded continuous on I and so the
property that 〈Zt, l〉 = 1 needs not hold in the limit. Unfortunately, we were not able to prove
that the solution to the limiting system in Theorem 1.2, when started inM∗I , remains inM∗I for
all times. Consequently, we had to relax our assumption and obtain convergence in DM(1)

I
[0,∞)

instead. In particular, although the total mass of the limiting system remains bounded (by 1), we
have no guarantee that the �total length� of the system does not explode, although this seems very
unrealistic.

(b) Notice that the assumption that the measures ZN0 should have uniformly bounded supports

imposes that ZN0 should asymptotically give no weight to polymers whose sizes tend to in�nity
with N , so that no mass is lost on in�nitely long polymers in the limit. If for instance the initial
population was made of a few polymers of size O(N) (and free monomers, so that (11) would
be satis�ed), we would rather have to scale time and polymer lengths by N as in Section 1.2 to
obtain a nontrivial limit. As this is not what we expect from the distribution of polymer lengths
in the cellular cortex, we instead impose a bound on the polymer lengths in our model.

The rest of the paper is organised as follows. In Section 2, we prove Theorem 1.1 on the
asymptotic behaviour of a single (long) polymer. In Section 3, we prove Theorem 1.2 on the
asymptotic behaviour of a population of actin polymers. Corollary 3.2 allows to compare these
two results and highlights the e�ects of the competition between polymers for G-actin on the
evolution of the population. Finally, some simulations are discussed in Section 4.
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2 Homogenisation result for a single actin polymer

In this section, we prove Theorem 1.1. To this end, in Section 2.1 we prove that the sequence
of processes (LN )N≥1 is C-tight, and in Section 2.2 we show that any limit point satis�es the
deterministic system of equations stated in Theorem 1.1. Before proceeding to these proofs, we
establish some useful preliminary properties.

Let us consider the evolution of LN for some �xed N . Each of its coordinates takes its values
in the �nite set [N ], and so (LN (t),M(t))t≥0 is a Markov jump process with values in a �nite
state space. This allows us to write that for every t ≥ 0,

LN0 (t) = LN0 (0) +

∫ t

0
1I{LN

1 (s)>0}λ
−ds−

∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+L

N
0 (s)

N
ds

−
∫ t

0
ΦP

LN0 (s)

N
ds+XN

0 (t), (18a)

LN1 (t) = LN1 (0) +

∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+L

N
0 (s)

N
ds−

∫ t

0
1I{LN

1 (s)>0}λ
−ds

+

∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN2 (s)

N
ds+XN

1 (t), (18b)

LN2 (t) = LN2 (0) +

∫ t

0
ΦP

LN0 (s)

N
ds−

∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN2 (s)

N
ds+XN

2 (t), (18c)

where XN
0 , XN

1 and XN
2 are mean-zero martingales with respective predictable quadratic varia-

tions

〈XN
0 〉(t) =

∫ t

0
1I{LN

1 (s)>0}λ
−ds+

∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+L

N
0 (s)

N
ds

+

∫ t

0
ΦP

LN0 (s)

N
ds, (19a)

〈XN
1 〉(t) =

∫ t

0
1I{M(s)=0}1I{LN

1 (s)>0}λ
+L

N
0 (s)

N
ds+

∫ t

0
1I{LN

1 (s)>0}λ
−ds

+

∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN2 (s)

N
ds, (19b)

〈XN
2 〉(t) =

∫ t

0
ΦP

LN0 (s)

N
ds+

∫ t

0
1I{M(s)=1}1I{LN

1 (s)>0}λ
+
F

LN2 (s)

N
ds. (19c)

Remark 2.1. Notice that, for simplicity, we use the same process (M(t))t≥0 to de�ne the
evolution of every (LN (t))t≥0. It has no impact on the result of Theorem 1.1 since the convergence

result we obtain for (LN )N∈N is in distribution.

If we now accelerate time by a factor N and scale down the coordinates of LN by the same
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quantity (see (4)), a simple change of variables gives us that

LN0 (t) = LN0 (0) +

∫ t

0
1I{LN

1 (u)>0}λ
−du−

∫ t

0
1I{M(Nu)=0}1I{LN

1 (u)>0}λ
+LN0 (u)du

−
∫ t

0
ΦPLN0 (u)du+XN

0 (t), (20a)

LN1 (t) = LN1 (0) +

∫ t

0
1I{M(Nu)=0}1I{LN

1 (u)>0}λ
+LN0 (u)du−

∫ t

0
1I{LN

1 (u)>0}λ
−du

+

∫ t

0
1I{M(Nu)=1}1I{LN

1 (u)>0}λ
+
FL

N
2 (u)du+XN

1 (t), (20b)

LN2 (t) = LN2 (0) +

∫ t

0
ΦPLN0 (u)du−

∫ t

0
1I{M(Nu)=1}1I{LN

1 (u)>0}λ
+
FL

N
2 (u)du

+XN
2 (t), (20c)

where

XN
i (t) =

XN
i (Nt)

N
, i ∈ {0, 1, 2}, t ≥ 0.

We now have all the ingredients to prove Theorem 1.1.

2.1 Tightness

The precise result that we prove in this section is the following.

Proposition 2.2 (Tightness). The sequence of processes (LN )N≥1 is C-tight in D∆[0,∞).

Proof of Proposition 2.2. The proof is rather standard. Since ∆ is compact, all we have to check
is that for every T > 0 and every ε > 0, there exists δ > 0 such that

lim sup
N→∞

P
(
ω
(
LN , δ, T

)
> ε
)
≤ ε, (21)

where
ω(LN , δ, T ) = sup

0≤s<t≤T
|t−s|≤δ

∥∥LN (t)− LN (s)
∥∥.

Theorem 15.1 in [4] will then enable us to conclude.
We proceed coordinate by coordinate, starting with LN0 . Let thus T > 0, ε > 0 and δ > 0.

Using (20a) and the fact that LN0 (t) ≤ 1 for all t ≥ 0, it is straightforward to show that for every
0 ≤ s < t ≤ T such that |t− s| ≤ δ, we have∣∣LN0 (t)− LN0 (s)

∣∣ ≤ (λ− + λ+ + ΦP )δ +
∣∣XN

0 (t)
∣∣+
∣∣XN

0 (s)
∣∣. (22)

Choosing δ < δ0 := ε/(9(λ− + λ+ + ΦP )), we obtain that the �rst term on the r.h.s. of (22) is
less than ε/9 with probability one. Next, by the Markov inequality we have

P
(

sup
u∈[0,T ]

∣∣XN
0 (u)

∣∣ > ε/9

)
≤ 81

ε2N2
E

[
sup

u∈[0,T ]

(
XN

0 (Nu)
)2]

. (23)
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Using Doob's maximal inequality and (19a), we can then write that

E

[
sup

u∈[0,T ]
(XN

0 (Nu))2

]
≤ 2E

[
(XN

0 (NT ))2
]

= 2E
[
〈XN

0 〉(NT )
]
≤ 2(λ− + λ+ + ΦP )NT.

Combining the above, we obtain that

P
(

sup
u∈[0,T ]

∣∣XN
0 (u)

∣∣ > ε/9

)
≤ 162(λ− + λ+ + ΦP )T

ε2N
, (24)

which converges to 0 as N →∞. Consequently, with our choice of δ < δ0, we obtain that

lim sup
N→∞

P

 sup
0≤s<t≤T
|t−s|≤δ

∣∣LN0 (t)− LN0 (s)
∣∣ > ε

3

 = 0.

The same reasoning applies to the two other coordinates LN1 and LN2 and yields similar thresholds
δ1, δ2 > 0, which is more than enough to prove that if we take δ < min{δ0, δ1, δ2},

lim sup
N→∞

P
(
ω
(
LN , δ, T

)
> ε
)

= 0.

This shows (21) and the proof of Proposition 2.2 is therefore complete.

2.2 Uniqueness of the limit

Now that we have proved that the sequence of normalised processes is tight, it remains to show
that the deterministic system described in Theorem 1.1 is its only possible limit as N → ∞.
This is what we do in this section. To do so, we shall use the following lemmas, whose proofs
are postponed until the end of the section.

Lemma 2.3. For every t > 0, we have∫ t

0
(1I{M(Ns)=0} − πM (0))LN0 (s)ds

P−→
N→+∞

0.

Lemma 2.4. For every t > 0, we have∫ t

0
(1I{M(Ns)=1} − πM (1))LN2 (s)ds

P−→
N→+∞

0.

Suppose that the sub-sequence (LNk)k∈N converges weakly to a process (l0(t), l1(t), l2(t))t≥0.
By Proposition 2.2, we know that this process has continuous paths a.s. Furthermore, the
estimates (24) (and their analogues for XN

1 and XN
2 ) guarantee that the limit of the quadratic

variation process of each LNi is zero and (l0(t), l1(t), l2(t))t≥0 is therefore deterministic.
For every N ∈ N, let tN0 be the �rst time at which the polymer has length 0:

tN0 = min
{
t ∈ R+ : LN1 (t) = 0

}
.
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Similarly, let us de�ne t0 as the �rst time at which l1(t) takes the value 0. In both cases, if

the process considered does not reach 0, we set the corresponding t(N)
0 to +∞. Since 0 is an

absorbing state for the process
(
LN1 (t)

)
t∈R+

, we have{
LN1 (t) > 0 if t < tN0 ,

LN1 (t) = 0 if t ≥ tN0 .

Therefore, the system of equations (20) can be rewritten as follows: for all t < tN0

LN0 (t) = LN0 (0) + λ−t− λ+

∫ t

0
1I{M(Nu)=0}L

N
0 (u)du− ΦP

∫ t

0
LN0 (u)du+XN

0 (t),

LN1 (t) = LN1 (0)− λ−t+ λ+

∫ t

0
1I{M(Nu)=0}L

N
0 (u)du+ λ+

F

∫ t

0
1I{M(Nu)=1}L

N
2 (u)du+XN

1 (t),

LN2 (t) = LN2 (0) + ΦP

∫ t

0
LN0 (u)du− λ+

F

∫ t

0
1I{M(Nu)=1}L

N
2 (u)du+XN

2 (t),

and for all t ≥ tN0

LN0 (t) = LN0 (0) + λ−tN0 − λ+

∫ tN0

0
1I{M(Nu)=0}L

N
0 (u)du− ΦP

∫ t

0
LN0 (u)du+XN

0 (t),

LN1 (t) = 0,

LN2 (t) = LN2 (0) + ΦP

∫ t

0
LN0 (u)du− λ+

F

∫ tN0

0
1I{M(Nu)=1}L

N
2 (u)du+XN

2 (t).

Splitting the integral
∫ t∧tNk

0
0 into

∫ t
0 −

∫ t
t∧tNk

0

and decomposing 1I{M(Nku)=0} = πM (0) +

(1I{M(Nku)=0} − πM (0)), we can rewrite the above system of equations for t < t0 as

LNk
0 (t) = LNk

0 (0) + λ−t− (λ+πM (0) + ΦP )

∫ t

0
LNk

0 (u)du+XNk
0 (t)− λ−(t− t ∧ tNk

0 )

+ λ+πM (0)

∫ t

t∧tNk
0

LNk
0 (u)du− λ+

∫ t∧tNk
0

0
(1I{M(Nku)=0} − πM (0))LNk

0 (u)du,

LNk
1 (t) = LNk

1 (0)− λ−t+ λ+πM (0)

∫ t

0
LNk

0 (u)du+ λ+
FπM (1)

∫ t

0
LNk

2 (u)du+XNk
1 (t)

+ λ−(t− t ∧ tNk
0 ) + λ+

∫ t∧tNk
0

0
(1I{M(Nku)=0} − πM (0))LNk

0 (u)du

+ λ+
F

∫ t∧tNk
0

0
(1I{M(Nku)=1} − πM (1))LNk

2 (u)du− λ+πM (0)

∫ t

t∧tNk
0

LNk
0 (u)du

− λ+
FπM (1)

∫ t

t∧tNk
0

LNk
2 (u)du,

LNk
2 (t) = LNk

2 (0) + ΦP

∫ t

0
LNk

0 (u)du− λ+
FπM (1)

∫ t

0
LNk

2 (u)du+XNk
2 (t)

+ λ+
FπM (1)

∫ t

t∧tNk
0

LNk
2 (u)du− λ+

F

∫ t∧tNk
0

0
(1I{M(Nku)=1} − πM (1))LNk

2 (u)du.
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First, for every t < t0 we have the convergence in probability

t− (t ∧ tNk
0 )

P−→
k→+∞

0, (25)

and ∫ t

t∧tNk
0

LNk
0 (u)du

P−→
k→+∞

0 and
∫ t

t∧tNk
0

LNk
2 (u)du

P−→
k→+∞

0. (26)

Indeed, since for any i ∈ {0, 2} and any u ≤ t we have LNk
i (u) ≤ 1, then

0 ≤ E

[∫ t

t∧tNk
0

LNk
i (u)du

]
≤ tP

[
tNk
0 < t

]
.

But
lim sup
k→∞

P
[
tNk
0 < t

]
= lim sup

k→∞
P
[
LNk

1 (t) = 0
]
≤ inf

ε>0
P
[
l1(t) ≤ ε

]
= 0,

where the last but �rst inequality comes from the fact that (LNk
1 (t))k≥1 converges in distribution

to l1(t) and the last equality uses our assumption that t < t0. This last result proves (25). The
Markov inequality then gives us the two convergence results stated in (26).

Second, by assumption we have the convergence in distribution of (LNk)k≥1 to the determin-
istic process (l0(t), l1(t), l2(t))t≥0 and therefore(

LNk
0 (0), LNk

1 (0), LNk
2 (0)

) P−→
k→+∞

(
l0(0), l1(0), l2(0)

)
,

and (∫ t

0
LNk

0 (u)du ,

∫ t

0
LNk

2 (u)du

)
P−→

k→+∞

(∫ t

0
l0(u)du ,

∫ t

0
l2(u)du

)
. (27)

Thirdly, by (24) the sequence (XN
0 (t))N≥1 converges in probability to 0 (in fact this conver-

gence is uniform over [0, t]) and equivalent results hold for (XN
1 (t))N≥1 and (XN

2 (t))N≥1.
Finally, Lemmas 2.3 and 2.4 ensure the convergence in probability∫ t

0
(1I{M(Ns)=0} − πM (0))LN0 (s)ds

P−→
N→+∞

0

and ∫ t

0
(1I{M(Ns)=1} − πM (1))LN2 (s)ds

P−→
N→+∞

0.

Combining the above and using Slutsky's theorem, we can conclude that for every t < t0,

l0(t) = l0(0) + λ−t− (λ+πM (0) + ΦP )

∫ t

0
l0(u)du,

l1(t) = l1(0)− λ−t+ λ+πM (0)

∫ t

0
l0(u)du+ λ+

FπM (1)

∫ t

0
l2(u)du,

l2(t) = l2(0) + ΦP

∫ t

0
l0(u)du− λ+

FπM (1)

∫ t

0
l2(u)du.
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By the same type of arguments, we can prove that for every t > t0

l0(t) = l0(0) + λ−t0 − λ+πM (0)

∫ t0

0
l0(u)du− ΦP

∫ t

0
l0(u)du,

l1(t) = 0,

l2(t) = l2(0) + ΦP

∫ t

0
l0(u)du− λ+

FπM (1)

∫ t0

0
l2(u)du.

As l0 and l2 are two continuous functions, the functions t 7→
∫ t

0 l0(u)du and t 7→
∫ t

0 l2(u)du
are di�erentiable and for any t ≤ t0, we have

l′0(t) = λ− − πM (0)λ+l0(t)− ΦP l0(t),

l′1(t) = πM (0)λ+l0(t) + πM (1)λ+
F l2(t)− λ−, (28)

l′2(t) = ΦP l0(t)− πM (1)λ+
F l2(t),

while for any t > t0,

l′0(t) = −ΦP l0(t), l′1(t) = 0, l′2(t) = ΦP l0(t).

Solving these systems of equations, we obtain that the limiting process is necessarily the one
given in Theorem 1.1 and therefore this limit is unique. Since (LN )N≥1 is tight by Proposition 2.2,
we can conclude that the full sequence converges in distribution and Theorem 1.1 is proved. �

It remains to prove Lemmas 2.3 and 2.4. As the proofs are similar, we only give the proof of
Lemma 2.3.

Proof of Lemma 2.3. Let t > 0. We split the interval [0, t] into intervals of length ε > 0. This
gives us∣∣∣∣ ∫ t

0
(1I{M(Ns)=0} − πM (0))LN0 (s)ds

∣∣∣∣
≤

∣∣∣∣∣
b t
ε
c∑

k=1

∫ kε

(k−1)ε
(1I{M(Ns)=0} − πM (0))LN0 (s)ds

∣∣∣∣∣+

∣∣∣∣ ∫ t

b t
ε
cε

(1I{M(Ns)=0} − πM (0))LN0 (s)ds

∣∣∣∣
≤
b t
ε
c∑

k=1

∣∣∣∣ ∫ kε

(k−1)ε
(1I{M(Ns)=0} − πM (0))LN0 ((k − 1)ε)ds

∣∣∣∣
+

b t
ε
c∑

k=1

∣∣∣∣ ∫ kε

(k−1)ε
(1I{M(Ns)=0} − πM (0))

(
LN0 (s)− LN0 ((k − 1)ε)

)
ds

∣∣∣∣
+

∣∣∣∣ ∫ t

b t
ε
cε

(1I{M(Ns)=0} − πM (0))LN0 (bt/εcε)ds
∣∣∣∣

+

∣∣∣∣ ∫ t

b t
ε
cε

(1I{M(Ns)=0} − πM (0))
(
LN0 (s)− LN0 (bt/εcε)

)
ds

∣∣∣∣. (29)

Now since LN0 ((k − 1)ε) ∈ [0, 1] for every k, we have∣∣∣∣ ∫ kε

(k−1)ε
(1I{M(Ns)=0} − πM (0))LN0 ((k − 1)ε)ds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ kε

(k−1)ε
(1I{M(Ns)=0} − πM (0))ds

∣∣∣∣. (30)
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and likewise∣∣∣∣ ∫ kε

(k−1)ε
(1I{M(Ns)=0}−πM (0))(LN0 (s)−LN0 ((k−1)ε)ds

∣∣∣∣ ≤ ∫ kε

(k−1)ε

∣∣∣LN0 (s)−LN0 ((k−1)ε)
∣∣∣ds. (31)

We now control each of these terms.
First, since M is an irreducible Markov jump process on a �nite state space, the ergodic

theorem applies and gives us that for every 0 < s1 < s2, we have the almost sure convergence∫ s2

s1

1I{M(Ns)=0}ds =
1

N

∫ Ns2

Ns1

1I{M(s)=0}ds
a.s.−→

N→+∞
πM (0)(s2 − s1).

Applying this result with s1 = (k − 1)ε and s2 = kε (or s2 = t when k = bt/εc+ 1) for each
of the �nitely many values of k of interest, we obtain that

bt/εc∑
k=1

∣∣∣∣∣
∫ kε

(k−1)ε
(1I{M(Ns)=0} − πM (0))ds

∣∣∣∣+

∣∣∣∣∣
∫ t

b t
ε
cε

(1I{M(Ns)=0} − πM (0))ds

∣∣∣∣ a.s.−→
N→+∞

0. (32)

Second, recall from (20a) that for every 0 ≤ s′ ≤ s, we have∣∣LN0 (s)− LN0 (s′)
∣∣ ≤ (λ− + λ+ + ΦP )(s− s′) +

∣∣XN
0 (s)−XN

0 (s′)
∣∣.

Applying this result with s′ = (k−1)ε and s ∈ [(k−1)ε, kε] and combining them with (24) (with
T = t), we obtain that for C := λ− + λ+ + ΦP + 2/9,

lim
N→∞

P

(∫ kε

(k−1)ε

∣∣∣LN0 (s)− LN0 ((k − 1)ε)
∣∣∣ds ≥ Cε2

)
= 0.

Consequently,

lim
N→∞

P

 b tε c∑
k=1

∫ kε

(k−1)ε

∣∣∣LN0 (s)− LN0 ((k − 1)ε)
∣∣∣ds+

∫ t

b t
ε
cε

∣∣∣LN0 (s)− LN0 (bt/εcε)
∣∣∣ds ≥ Cε2

(⌊ t
ε

⌋
+ 1
)

≤ lim
N→∞

{ b t
ε
c∑

k=1

P

(∫ kε

(k−1)ε

∣∣∣LN0 (s)− LN0 ((k − 1)ε)
∣∣∣ds ≥ Cε2

)

+ P

(∫ t

b t
ε
cε

∣∣∣LN0 (s)− LN0 (bt/εcε)
∣∣∣ds ≥ Cε2

)}
= 0 (33)

Coming back to (29), combining (30), (31), (32) and (33), and observing that Cε2(bt/εc+ 1) =
O(Cεt) as ε tends to 0, we obtain that

lim
N→∞

P
(∣∣∣∣ ∫ t

0
(1I{M(Ns)=0} − πM (0))LN0 (s)ds

∣∣∣∣ ≥ (Ct+ 1)ε

)
= 0.

Since ε was arbitrary, this proves Lemma 2.3.
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3 Large population asymptotics

In this section, we prove Theorem 1.2. Recall that for every N ∈ N, the Markov process ZN
takes its values in the spaceM∗I ⊂ M

(1)
I , respectively de�ned in (15) and (16). Recall also our

notation

〈ZNt , f〉 =

∫
I
f(i)ZNt (di),

whenever this integral makes sense. Let D be the set of all functions onM(1)
I of the form

ϕf : Z 7→ ϕ
(
〈Z, f〉

)
, (34)

with f a bounded measurable function on I and ϕ a function of class C1 on R.
Since the rescaled process

(
ZNt
)
t∈R+

is a Markov jump process with bounded rates for every

N ∈ N, its in�nitesimal generator GN applied to any ϕf ∈ D is given by: for every Z ∈M(1)
I ,

GNϕf (Z) =λ+Z(M, 1)
N−1∑
l=1

NZ(S, l)

(
ϕf

(
Z +

δ(S,l+1)

N
−
δ(S,l)

N
−
δ(M,1)

N

)
− ϕf (Z)

)

+ λ+
FZ(P, 1)

N−1∑
l=1

NZ(F, l)

(
ϕf

(
Z +

δ(F,l+1)

N
−
δ(F,l)

N
−
δ(P,1)

N

)
− ϕf (Z)

)

+ λ−
∑

T∈{S,F}

N∑
l=1

NZ(T, l)

(
ϕf

(
Z +

δ(T,l−1)

N
1I{l≥2} −

δ(T,l)

N
+
δ(M,1)

N

)
− ϕf (Z)

)

+ ΦPNZ(M, 1)

(
ϕf

(
Z +

δ(P,1)

N
−
δ(M,1)

N

)
− ϕf (Z)

)
+ Φ+

F

N∑
l=1

NZ(S, l)

(
ϕf

(
Z +

δ(F,l)

N
−
δ(S,l)

N

)
− ϕf (Z)

)

+ Φ−F

N∑
l=1

NZ(F, l)

(
ϕf

(
Z +

δ(S,l)

N
−
δ(F,l)

N

)
− ϕf (Z)

)
, (35)

where for simplicity we have written Z(T, l) for Z({(T, l)}). Furthermore,
(
ZNt
)
t∈R+

satis�es

the property that for every ϕf ∈ D, the process
(
YNt (ϕf )

)
t∈R+

de�ned by:

(
YNt (ϕf )

)
t∈R+

def
=

(
ϕf

(
ZNt
)
− ϕf

(
ZN0
)
−
∫ t

0
GNϕf

(
ZNs
)
ds

)
t∈R+

(36)

is a mean-zero martingale with predictable quadratic variation given for all t ≥ 0 by

〈YN (ϕf )〉t =

∫ t

0
yNs (ϕf )ds, (37)
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where, writing this time KN
t (T, l) for ZNt ({(T, l)}),

yNt (ϕf )
def
= λ+KN

t (M, 1)
N−1∑
l=1

NKN
t (S, l)

(
ϕf

(
ZNt +

δ(S,l+1)

N
−
δ(S,l)

N
−
δ(M,1)

N

)
− ϕf

(
ZNt
))2

+ λ+
FK

N
t (P, 1)

N−1∑
l=1

NKN
t (F, l)

(
ϕf

(
ZNt +

δ(F,l+1)

N
−
δ(F,l)

N
−
δ(P,1)

N

)
− ϕf

(
ZNt
))2

+ λ−
∑

T∈{S,F}

N∑
l=1

NKN
t (T, l)

(
ϕf

(
ZNt +

δ(T,l−1)

N
1I{l≥2} −

δ(T,l)

N
+
δ(M,1)

N

)
− ϕf

(
ZNt
))2

+ ΦPNKN
t (M, 1)

(
ϕf

(
ZNt +

δ(P,1)

N
−
δ(M,1)

N

)
− ϕf

(
ZNt
))2

+ Φ+
F

N∑
l=1

NKN
t (S, l)

(
ϕf

(
ZNt +

δ(F,l)

N
−
δ(S,l)

N

)
− ϕf

(
ZNt
))2

+ Φ−F

N∑
l=1

NKN
t (F, l)

(
ϕf

(
ZNt +

δ(S,l)

N
−
δ(F,l)

N

)
− ϕf

(
ZNt
))2

.

Hence, the semimartingale decomposition of ϕf (ZN ) reads

ϕf

(
ZNt
)

= ϕf

(
ZN0
)

+ VNt (ϕf ) + YNt (ϕf ), t ≥ 0 (38)

with

VNt (ϕf )
def
=

∫ t

0
GNϕf

(
ZNs
)
ds.

3.1 Tightness

As a �rst step in the proof of Theorem 1.2, we show the tightness of (ZN )N∈N.
Let I∆ be the one-point compacti�cation of I. In this subsection, we use the classical trick

of seeing our sequence of processes as taking values in the spaceMI∆ of all �nite measures on

I∆. In the next subsection, we shall show that any limit point actually takes its values inM(1)
I .

Proposition 3.1 (Tightness). The sequence
(
ZN
)
N∈N is tight in DMI∆

[0,∞).

Proof of Proposition 3.1. Since the total mass of each ZNt is bounded by 1 and since the set of
all measures on I∆ with total mass bounded by 1 is compact (hence the fact that we consider the
one-point compacti�cation of I), the compact containment condition holds for (ZN )N≥1 seen as
a sequence in DMI∆

[0,∞). By Theorem 3.9.1 in [11], tightness of (ZN )N≥1 will follow from the

tightness of (ϕf (ZN ))N≥1 for every ϕf ∈ D.
Let thus f be a bounded measurable function on I∆ and ϕ ∈ C1(R). We use the standard

Aldous-Rebolledo criterion [1, 20]. First, the tightness of (ϕf (ZNt ))N≥1 for every t ≥ 0 is obvious

from the boundedness of f and the fact that the total mass of ZNt is bounded by 1.
Second, we have to prove that for any T > 0, any sequence of stopping times (TN )N≥1

bounded by T and for every ε > 0, there exists δ > 0 and N0 ∈ N such that for all ∀N ≥ N0

and θ ∈ [0, δ],

P
(∣∣∣∣∫ TN+θ

TN

GNϕf
(
ZNt
)
dt

∣∣∣∣ > ε

)
≤ ε, (39)
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and

P
(∣∣∣∣∫ TN+θ

TN

yNt (ϕf )dt

∣∣∣∣ > ε

)
≤ ε. (40)

Plugging the de�nition of ϕf (Z) = ϕ(〈Z, f〉) in the expression for GNϕf , Taylor expanding
ϕ and writing ‖ϕ′‖f for the supremum of ϕ′ over [−‖f‖∞, ‖f‖∞], we obtain that

∣∣∣GNϕf (ZNt ) ∣∣∣ ≤‖ϕ′‖f‖f‖∞(3λ+KN
t (M, 1)

N−1∑
l=1

KN
t (S, l) + 3λ+

FK
N
t (P, 1)

N−1∑
l=1

KN
t (F, l)

+ 3λ−
∑

T∈{S,F}

N∑
l=1

KN
t (T, l) + 2ΦPKN

t (M, 1) + 2Φ+
F

N∑
l=1

KN
t (S, l)

+ 2Φ−F

N∑
l=1

KN
t (F, l)

)
+ o(1), (41)

where the remainder term tends to 0 uniformly in N and t. By construction (since the total
mass of each ZNt is bounded by 1), for every type T ∈ {S, F} we have

KN
t (M, 1) ≤ 1, KN

t (P, 1) ≤ 1,
N∑
l=1

KN
t (T, l) ≤ 1,

and hence∣∣GNϕf (ZNs ) ∣∣ ≤ ‖ϕ′‖f‖f‖∞ (3λ+ + 3λ+
F + 6λ− + 2ΦP + 2Φ+

F + 2Φ−F
)
+o(1)

def
= C1+o(1). (42)

Therefore, taking δ = ε/(2C1), we see that there exists N0 ∈ N such that for every N ≥ N0 and
θ ∈ [0, δ],

P
(∣∣∣∣∫ TN+θ

TN

GNϕf
(
ZNt
)
dt

∣∣∣∣ > ε

)
= 0

and (39) is satis�ed.
We prove (40) in exactly the same way, noticing that the squared increments in the expression

for yNt (ϕf ) give rise to a bound on |yNt (ϕf )| of the form C2/N+o(1/N), where again the remainder
term is uniform in t. Proceeding this way, we obtain a stronger result than (40), namely that
the predictable quadratic variation of ϕf (ZN ) vanishes as N →∞, uniformly over compact time
intervals: by the Markov inequality and then Doob's maximal inequality,

P
(

sup
t∈[0,T ]

∣∣YNt (ϕf )
∣∣ > ε

)
≤ 1

ε2
E
[

sup
t∈[0,T ]

∣∣YNt (ϕf )
∣∣2] ≤ 2

ε2
E
[
〈YN (ϕf )〉T

]
≤ 2C2T

Nε2
+ o

(
1

N

)
,

(43)
which tends to 0 as N →∞. As a corollary to this result, we obtain that any potential limit for
(ZN )N≥1 must be deterministic. Since (43) implies (40), all the points in the Aldous-Rebolledo
criterion have now been checked and we can conclude that (ϕf (ZN ))N≥1 is tight in DR[0,∞) for
every ϕf ∈ D, and �nally that the sequence (ZN )N≥1 is tight in DMI∆

[0,∞).
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3.2 Large population limit

We now complete the proof of Theorem 1.2 by checking that all the assumptions of Theo-
rem 4.8.10 in [11] are met. Tightness in DMI∆

[0,∞) was obtained in the previous subsection
and we now want to prove that, if we de�ne the operator G∞ on D (the set of all functions of
the form ϕ(〈·, f〉) with ϕ ∈ C1(R) and f : I → R bounded measurable) by: for every Z ∈MI ,

G∞ϕf (Z) = ϕ′(〈Z, f〉)
{
λ+Z(M, 1)

+∞∑
l=1

Z(S, l) (f(S, l + 1)− f(S, l)− f(M, 1))

+ λ+
FZ(P, 1)

+∞∑
l=1

Z(F, l) (f(F, l + 1)− f(F, l)− f(P, 1))

+ λ−
∑

T∈{S,F}

+∞∑
l=1

Z(T, l)
(
f(T, l − 1)1I{l≥2} − f(T, l) + f(M, 1)

)
+ ΦPZ(M, 1) (f(P, 1)− f(M, 1))

+ Φ+
F

+∞∑
l=1

Z(S, l) (f(F, l)− f(S, l)) + Φ−F

+∞∑
l=1

Z(F, l) (f(S, l)− f(F, l))

}
, (44)

then for every ϕf ∈ D and t, s > 0, every k ∈ N, 0 ≤ t1 < · · · < tk ≤ t < t+ s and βi ∈ Cb(MI),
we have

lim
N→∞

E
[(
ϕf
(
ZNt+s

)
− ϕf

(
ZNt
)
−
∫ t+s

t
G∞ϕf

(
ZNu
)
du

)( k∏
i=1

βi
(
ZNti
))]

= 0. (45)

Once this result is shown, we shall prove that any potential limiting process takes its value in
M(1)
I , on which every G∞ϕf is a continuous and bounded function, which will also prove that

tightness of (ZN )N≥1 holds in DM(1)
I

[0,∞) (by Corollary 3.9.3 in [11]). Finally, we shall prove

that there is at most one possible limit for (ZN )N≥1, which is the deterministic solution to

the DM(1)
I

[0,∞)-martingale problem associated to (G∞, δZ0) or, equivalently, the M(1)
I -valued

solution to the system of equations stated in Theorem 1.2. Combining these arguments, we shall
be able to use Theorem 4.8.10 in [11] to conclude that the limiting process exists and (ZN )N≥1

indeed converges to it in DM(1)
I

[0,∞).

Let us thus start by showing (45). Using the decomposition (38), we have for every N ∈ N,

E
[(
ϕf
(
ZNt+s

)
− ϕf

(
ZNt
)
−
∫ t+s

t
GNϕf

(
ZNu
)
du

)( k∏
i=1

βi
(
ZNti
))]

= 0. (46)

It thus remains to prove that

lim
N→∞

E
[ ∫ t+s

t

∣∣GNϕf(ZNu )− G∞ϕf(ZNu )∣∣du] = 0, (47)
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since then ∣∣∣∣E[(ϕf(ZNt+s)− ϕf(ZNt )− ∫ t+s

t
G∞ϕf

(
ZNu
)
du

)( k∏
i=1

βi
(
ZNti
))]∣∣∣∣

=

∣∣∣∣E[(∫ t+s

t

(
GNϕf

(
ZNu
)
− G∞ϕf

(
ZNu
))
du

)( k∏
i=1

βi
(
ZNti
))]∣∣∣∣

≤
( k∏
i=1

‖βi‖∞
)
E
[ ∫ t+s

t

∣∣GNϕf(ZNu )− G∞ϕf(ZNu )∣∣du]→ 0

as N →∞, and we obtain (45).
Coming back to the de�nition of GNϕf and performing a Taylor expansion of ϕ, it is straight-

forward to obtain that there exists a sequence (εN )N≥1 tending to 0 such for any Z ∈M(1)
I ,∣∣GNϕf (Z)− G∞ϕf (Z)

∣∣ ≤ εN .
Using this result, the fact that for every N ∈ N and t ≥ 0 we have 〈ZNt , 1〉 ≤ 1, the bound (42)
and the dominated convergence theorem, we can conclude that (47) holds true and the proof of
(45) is complete.

Second, let us show that any potential limit point (zt)t≥0 for (ZN )N≥1 satis�es that zt ∈M(1)
I

for every t ≥ 0. We already know from the subsection on tightness that each zt is deterministic
and that its total mass is bounded by 1. It only remains to show that zt gives no mass to the
�in�nity� point of I∆ (i.e., to polymers of in�nite length). Let thus t ≥ 0 and N large enough
for (17) to hold. Since the elongation rate of each polymer is bounded by λ∗ = max{λ+, λ+

F },
the probability that at time t a given polymer is of length at least K0 + k is bounded by the
probability that the sum of k i.i.d exponential random variables with parameter λ∗ is less than
t, that is:

P
( k∑
i=1

Ei < t

)
= P

(
exp

(
−

k∑
i=1

Ei

)
> e−t

)
≤ et

(
λ∗

λ∗ + 1

)k
,

where the last inequality uses the Markov inequality. Since by construction ZNt has at most
N atoms (or �polymers�), another use of the Markov inequality gives us that for every k ∈ N,
ε ∈ (0, 1) and N large enough (independently of k and ε)

P
(
〈ZNt , 1I{l≥K0+k}〉 > ε

)
≤ 1

ε
E
[
〈ZNt , 1I{l≥K0+k}〉

]
≤ 1

εN
Net

(
λ∗

λ∗ + 1

)k
.

Since we suppose that ZNt converges in distribution to zt, we can take the limit as N → ∞ in
the above to obtain

P
(
〈zt, 1I{l≥K0+k}〉 > ε

)
≤ 1

ε
et
(

λ∗

λ∗ + 1

)k
. (48)

Together with the fact that zt is not random, we obtain that for every ε ∈ (0, 1), there exists
k(ε) ∈ N such that ε−1et(λ∗/(λ∗ + 1))k(ε) < 1 and so

〈zt, 1I{l≥K0+k(ε)}〉 ≤ ε.

Taking ε to 0, we can conclude that zt puts no mass on in�nitely long polymers, i.e., zt ∈M(1)
I .
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Thirdly, let us check that any potential limit Z for (ZN )N≥1 satis�es the system of equations
stated in Theorem 1.2. As recalled earlier, we know from (43) that Z is deterministic (since
we assumed that the limit of the initial value ZN0 was deterministic). Using (45) along the
subsequence of (ZN )N≥1 converging to Z, we can conclude that for every bounded measurable
function f on I (taking ϕ = Id),(

〈Zt, f〉 − 〈Z0, f〉 −
∫ t

0
G∞Idf (Zs)ds

)
t≥0

is a martingale, which is thus constant equal to 0. Taking now f = 1I{(T,l)} for (T, l) ∈ I, we
obtain the integrated version of the di�erential equation for kt(T, l) = Zt({(T, L)}) given in
Theorem 1.2, namely

kt(T, L) = k0(T, l) +

∫ t

0
G∞Id1I(T,l)

(Zs)ds. (49)

Since the integrand in the above expression is bounded, the function t 7→ kt(T, l) is di�erentiable
and we can therefore di�erentiate it to obtain the corresponding line in the system of Theorem 1.2.

Finally, let us prove that this system has at most one solution with trajectories inM(1)
I . Let

thus (zt)t≥0 and (z̃t)t≥0 be two solutions to the limiting system of equations in Theorem 1.2 such

that z0 = z̃0 and zt, z̃t ∈ M(1)
I for all t ≥ 0. Let f be a bounded measurable function on I such

that ‖f‖∞ ≤ 1. From the above, for every t ≥ 0, we have∣∣〈zt, f〉 − 〈z̃t, f〉∣∣ =

∣∣∣∣ ∫ t

0

(
G∞Idf (zs)− G∞Idf (z̃s)

)
ds

∣∣∣∣. (50)

Let us consider each term in G∞Idf (zs)−G∞Idf (z̃s) separately to obtain a bound on the integral
on the r.h.s. of (50). We have∣∣∣∣λ+

∫ t

0

( ∞∑
l=1

{
zs(M, 1)zs(S, l)− z̃s(M, 1)z̃s(S, l)

}
f(S, l + 1)

)
ds

∣∣∣∣
= λ+

∣∣∣∣ ∫ t

0

( ∞∑
l=1

{
zs(M, 1)(zs(S, l)− z̃s(S, l)) + (zs(M, 1)− z̃s(M, 1))z̃s(S, l)

}
f(S, l + 1)

)
ds

∣∣∣∣
= λ+

∣∣∣∣ ∫ t

0

(
zs(M, 1)〈zs − z̃s, 1I(S,·)f(S, ·+ 1)〉+ 〈zs − z̃s, 1I(M,1)〉

∞∑
l=1

z̃s(S, l)f(S, l + 1)

)
ds

∣∣∣∣.
(51)

By assumption, the total mass of zs and z̃s is bounded by 1, and so

0 ≤ zs(M, 1) ≤ 1 and

∣∣∣∣ ∞∑
l=1

z̃s(S, l)f(S, l + 1)

∣∣∣∣ ≤ ‖f‖∞〈z̃s, 1〉 ≤ 1.

As a consequence, the r.h.s. of (51) is bounded by

λ+

∫ t

0

{∣∣〈zs − z̃s, 1I(S,·)f(S, ·+ 1)〉
∣∣+ ∣∣〈zs − z̃s, 1I(M,1)〉

∣∣}ds ≤ 2λ+

∫ t

0
sup
‖φ‖∞≤1

∣∣〈zs, φ〉 − 〈z̃s, φ〉∣∣ds.
Proceeding in the same way for all the other terms in the generator, we obtain that∣∣〈zt, f〉 − 〈z̃t, f〉∣∣ ≤ (6λ+ + 6λ+

F + 6λ− + 2ΦP + 2Φ+
F + 2Φ−F

) ∫ t

0
sup
‖φ‖∞≤1

∣∣〈zs, φ〉 − 〈z̃s, φ〉∣∣ds,
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and since this inequality holds for every bounded measurable f such that ‖f‖∞ ≤ 1, we can
write that for every t ≥ 0,

sup
‖φ‖∞≤1

∣∣〈zt, φ〉−〈z̃t, φ〉∣∣ ≤ (6λ+ + 6λ+
F + 6λ−+ 2ΦP + 2Φ+

F + 2Φ−F
) ∫ t

0
sup
‖φ‖∞≤1

∣∣〈zs, φ〉−〈z̃s, φ〉∣∣ds.
By Gronwall's lemma,

sup
‖φ‖∞≤1

∣∣〈zt, φ〉 − 〈z̃t, φ〉∣∣ ≤ ( sup
‖φ‖∞≤1

∣∣〈z0, φ〉 − 〈z̃0, φ〉
∣∣)e(6λ++6λ+

F +6λ−+2ΦP +2Φ+
F +2Φ−F )t = 0.

Since every bounded measurable function can be written as a multiple of a function φ such that
‖φ‖∞ ≤ 1, we obtain that 〈zt, f〉 = 〈z̃t, f〉 for every bounded measurable f , and hence zt = z̃t

for all t ≥ 0 and the system of Theorem 1.2 has at most one solution with trajectories inM(1)
I .

We have now checked that all the conditions of Theorem 4.8.10 in [11] were satis�ed and
we can therefore conclude that, as N tends to in�nity, (ZN )N≥1 converges in distribution in

DM(1)
I

[0,∞) to the unique solution with values inM(1)
I of the system stated in Theorem 1.2. �

We end this section with some heuristics that are con�rmed by the simulations discussed
in the next section. In order to compare the large population limit of Theorem 1.2 with the
�uid limit of Theorem 1.1, recall that informally, for a given N , LN0 in the single polymer model
corresponds to KN (M, 1), LN2 corresponds to KN (P, 1) and LN1 corresponds to MN

inF (de�ned
in (13)). The same correspondence can be made between the limiting objects, if we de�ne

minF (t)
def
=

+∞∑
l=1

l(kt(S, l) + kt(F, l)).

(This quantity may be in�nite.) Moreover, writing for any t ≥ 0,

F∞(t) = lim
N→+∞

FN (t) =
+∞∑
l=1

kt(S, l) +
+∞∑
l=1

kt(F, l)

for the amount of �real� polymers at time t in the limiting population process, we see that the
quantity

∑+∞
l=1 kt(S, l)/F

∞(t) corresponds to the proportion of those polymers which are simple
and we expect it to be close to πM (0) when t is large (recall that πM (0) is the proportion of
time that a single polymer spends not bound with a formin at stationarity). Although we have
no proof of this fact, Figures 6 and 7 show two examples where this convergence happens.

Finally, summing the corresponding equations in the system of ODE stated in Theorem 1.2,
we obtain the following system which can be more easily compared with the result of Theorem 1.1.

Corollary 3.2. In the limit as N → +∞, the distribution of monomers among the di�er-
ent sup-populations (free monomers, inserted in a polymer or in a G-actin/pro�lin complex) is
described by the following system of ODE:

d
dtkt(M, 1) = λ−F∞(t)− λ+F∞(t)kt(M, 1)

∑+∞
l=1 kt(S, l)− ΦPkt(M, 1)

d
dtminF (t) = λ+F∞(t)kt(M, 1)

∑+∞
l=1 kt(S, l) + λ+

FF
∞(t)kt(P, 1)

∑+∞
l=1 kt(F, l)− λ−F∞(t)

d
dtkt(P, 1) = ΦPkt(M, 1)− λ+

FF
∞(t)kt(P, 1)

∑+∞
l=1 kt(F, l).
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4 Simulations

4.1 Single actin polymer

In this section, we exhibit an interesting example of behaviour for a single long polymer, that
highlights the role of the di�erent proteins. The parameters chosen in these simulations are fairly
arbitrary and do not come from biological measurements. Investigating more biologically-driven
examples and the e�ect of sudden parameter changes on the behaviour of the system will be the
object of future work.

Figure 3 shows the evolution of the system with N = 1000, λ+ = 10, λ− = 2, λ+
F = 100,

ΦP = 10, Φ+
F = 1 and Φ−F = 1, starting with a unique actin polymer of length 334, 333 free

monomers and 333 G-actin/pro�lin complexes. That is, initially a third of the monomers in the
system are free, another third are associated with a pro�lin and the rest sits in the polymer.

Figure 3 is divided into three graphs. On the top left, we show the evolution in time of
the number of free monomers, LN0 (t). The graph on the top right presents the evolution of the
length of the polymer, LN1 (t), and the graph at the bottom corresponds to the evolution of the
number of G-actin/pro�lin complexes, LN2 (t). Each graph displays four plots. The oscillating
solid line shows a single realisation of the stochastic system of Section 1.2.1 with N = 1000
and the parameters expounded above. The smooth solid line represents N times the �uid limit
described in Theorem 1.1 (so that we compare numbers instead of proportions of monomers).
The dashed line represents (N times) the �uid limit that we would obtain if we assumed that
the polymer was constantly in normal mode. Finally, the alternated dashed line represents (N
times) the �uid limit that we would obtain if we assumed that the polymer was always in fast
mode.

In this particular example, we observe that if the system stays in normal mode, the length
of the polymer converges quickly to 0 because too many free monomers are captured by the
polymer or by pro�lins and the rate at which depolymerisation re-creates free monomers is not
fast enough to compensate. In contrast, if the polymer is constantly in fast mode or if it switches
modes, the length of the polymer converges to a nonzero equilibrium. Noticeably, the polymer
length at equilibrium is longer in the case of mode switching than in the case when the polymer
remains in the state with the highest rate of polymerisation. As can be remarked on the two
other graphs, this phenomenon is due to the fact that the switching between modes enables
the polymer to use the two types of �resources� (free monomers and G-actin/pro�lin complexes)
more e�ciently, allowing the pool of free monomers not to be depleted (so that they can be
consumed during the elongation of the polymer in normal mode, or be used to replenish the pool
of complexes).

4.2 Population of actin polymers

Figure 4 displays the evolution of a population of actin polymers with the same set of parameters
as in Figure 3, namely λ+ = 10, λ− = 2, λ+

F = 100, ΦP = 10, Φ+
F = 1 and Φ−F = 1. In order to

compare the limiting models for a single polymer and for a population of competing polymers,
we start with an analogous initial distribution of monomers into free monomers, and monomers
sequestered in polymers or complexes: 33, 3% of free monomers, 33, 4% of monomers included
in a polymer and 33, 3% of monomers in G-actin/ pro�lin complexes. Moreover, to match the
conditions of Theorem 1.2 we start with 50% of the polymers being simple and 50% being
associated with a formin, all of them being of length 30. Finally, we use the Euler explicit
method with a time pitch dt = 0.001. Note that here we only compare the limits obtained in
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Figure 3: Evolution of the system described by the model for a single actin polymer with N =
1000, λ+ = 10, λ− = 2, λ+

F = 100, ΦP = 10, Φ+
F = 1 and Φ−F = 1. Initially, there are a (unique)

polymer of length 334, 333 free monomers and 333 G-actin/pro�lin complexes. Left: evolution of
the number of free monomers. Middle: evolution of the length of the polymer. Right: evolution
of the number of G-actin/pro�lin complexes. On each graph, we plot a single realisation of the
stochastic system for N = 1000, the �uid limit given in Theorem 1.1 (i.e., N times li(t)), the
�uid limit one would obtain by assuming that the system stays in normal mode and the �uid
limit one would obtain by assuming that the system remains in fast mode all the time.

Theorems 1.1 and 1.2, and therefore we directly consider N =∞.
In Figure 4, the same quantities are shown as in Figure 3, but for a population of actin

polymers. Figure 4 is divided into three graphs. On the top left, we show the evolution in time
of the proportion of free monomers in the population, kt(M, 1). The graph on the top right
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Figure 4: Evolution of the system described by the limiting model for a population of actin
polymers with dt = 0.001, λ+ = 10, λ− = 2, λ+

F = 100, ΦP = 10, Φ+
F = 1 and Φ−F = 1,

starting with 33% of free monomers, 33% of G-actin/pro�lin complexes and 34% of monomers
included within polymers of length 30. Left: evolution of the proportion of free monomers.
Middle: evolution of the proportion of monomers included in a polymer. Right: evolution of
the proportion of G-actin/pro�lin complexes. On each graph, we plot the �uid limit given in
Theorem 1.1, the large population limit given in Theorem 1.2, the large population limit obtained
by assuming that the system stays in normal mode and the large population limit obtained by
assuming that the system stays in fast mode.

presents the evolution of the proportion of monomers included in a polymer,

minF (t) =

+∞∑
l=1

l(kt(S, l) + kt(F, l)),

and the graph at the bottom gives the evolution in time of the proportion G-actin/pro�lin
complexes available in the population, kt(P, 1). On each graph, we display four plots. The
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(a) Initial polymers of length 30 (b) Initial polymers of length 3

Figure 5: Evolution of the distribution of the polymer lengths with dt = 0.001, λ+ = 10, λ− = 2,
λ+
F = 100, ΦP = 10, Φ+

F = 1 and Φ−F = 1, starting with 33% of free monomers, 33% of G-
actin/pro�lin complexes and 34% of monomers included in polymers. In each graph, we plot the
distribution at di�erent times. The red dashed line represents the distribution after stabilisation
when assuming that all polymers are blocked in fast mode.

solid line represents the large population limit described in Theorem 1.2. The coloured dashed
line (resp. coloured alternated dashed line) represents the large population limit that we would
obtain if we assumed that all polymers were stuck in normal mode (resp. fast mode - in these
cases, initially all the polymers are simple, resp., associated with a formin). Finally, the thin
black dashed line represents the equilibrium state in the �uid limit obtained in the single polymer
model and shown in Figure 3.

In this particular example, we can observe that the qualitative behaviour of a population
of polymers bears some similarity with the �uid limit for a single long polymer. Indeed, if
all polymers are blocked in normal mode, the proportion of monomers inserted in a polymer
converges quickly to 0 because a large fraction of free monomers is quickly captured by pro�lins
and cannot be converted again into free monomers (since there is no accelerated polymerisation),
so that they can no longer be used in polymer elongation. In contrast, when the polymers can
switch modes or when they all remain in fast mode, the proportion of monomers inserted in a
polymer stabilises to a non-zero value. However, this time the �equilibrium� is lower in the case
with switching than in the constantly fast mode. This can be explained by the fact that the large
number of polymers in the system compete for the same order of magnitude of free monomers
(themselves also captured by pro�lins) and so the pool of free monomers is constantly kept at
a low level, which impedes the elongation of the simple polymers. In this case, mode switching
thus does not allow a better use of the di�erent pools of monomers.

Let us now consider the polymer lengths in our large population limit to see what is the impact
of mode switching on their distribution. Figure 5 presents the evolution of the distribution of
the polymer lengths with the same set of parameters as in Figure 4. We start with the same
proportion as previously, 33, 3% of free monomers, 33, 3% of G-actin/pro�lin complexes and
33, 4% of monomers included in a polymer. In Figure 5a we start with polymers of length 30,
whereas on Figure 5b we start with polymers of length 3. In each graph, we plot the distribution
of the polymer lengths obtained in Theorem 1.2 at di�erent times and in dashed line we plot the
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Figure 6: Convergence of the proportion of simple polymers (resp., polymers bound with a
formin) towards πM (0) (resp., πM (1)) with dt = 0.001, λ+ = 10, λ− = 2, λ+

F = 100, ΦP = 10,
Φ+
F = 1 and Φ−F = 1, starting with 33% of free monomers, 33% of G-actin/pro�lin complexes

and 34% of monomers included in polymers. Initially, we start with 50% of simple polymers and
50% of polymers bound with a formin, all of length 30.

distribution at which the system seems to stabilise (in the simulations) when we assume that all
polymers are blocked in fast mode.

First, comparing Figure 5a and Figure 5b, we see that the distribution in length depends on
the initial condition. Indeed, if the polymers are initially shorter, at later times they are globally
shorter but more numerous. In contrast, if we start with longer polymers, at later times they
are longer, the variance in polymer length is larger but there are fewer polymers.

Second, let us compare the distributions of the polymer lengths at di�erent times, the distri-
bution after stabilisation (in red) and the distribution assuming that all polymers remain in fast
mode (red dashed line) in Figure 5a. As in Figure 4, we see that the proportion of polymers is
larger when the polymers are blocked in fast mode. But we can also observe that the polymer
lengths are globally shorter than when polymers switch modes. We can therefore conclude that
mode switching allows to have longer polymers but limits the proportion of monomers included
in polymers, and thus it limits the number of polymers.

Although we are not able to prove analytically that, in the limiting process obtained in The-
orem 1.2, the proportion of polymers bound with a formin approaches the stationary probability
πM (1) that a single polymer is in �fast� mode (in the terminology of the single polymer model of
Section 1.2), we checked this intuition by simulation. In Figure 6, we plot the evolution of the
quantities ∑+∞

l=1 kt(S, l)

F∞(t)
and

∑+∞
l=1 kt(F, l)

F∞(t)
,

where as earlier

F∞(t) =

+∞∑
l=1

kt(S, l) +

+∞∑
l=1

kt(F, l)
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Figure 7: Convergence of the proportion of simple polymers (resp., polymers bound with a
formin) towards πM (0) (resp., πM (1)) with dt = 0.001, λ+ = 10, λ− = 2, λ+

F = 100, ΦP = 10,
Φ+
F = 8 and Φ−F = 2, starting with 33% of free monomers, 33% of G-actin/pro�lin complexes

and 34% of monomers included in polymers. Initially, we start with 50% of simple polymers and
50% of polymers with formin, all of length 30.

is the total amount of �real� polymers (thus excluding monomers and complexes) in the system
at time t. The parameters and initial state are the same as before. Since Φ+

F = Φ−F , in this case
we have πM (0) = 0.5 = πM (1) and the initial proportion of polymers bound with a formin is
also 0.5. As we see in Figure 6, after an initial very small shift (whose origin is not clear), the
proportion of polymers converges again to the value 0.5, which con�rms our intuition.

Using this approximation, the system of ODE proposed in Corollary 3.2 can be rewritten for
large times as

d
dtkt(M, 1) = λ−F∞(t)− λ+πM (0)F∞(t)2kt(M, 1)− ΦPkt(M, 1)

d
dtminF (t) = λ+πM (0)F∞(t)2kt(M, 1) + λ+

FπM (1)F∞(t)2kt(P, 1)− λ−F∞(t)

d
dtkt(P, 1) = ΦPkt(M, 1)− λ+

FπM (1)F∞(t)2kt(P, 1).

If we compare this system to the limiting evolution obtained in (28) for a single polymer, we
observe that in the above, the elongation rates (spontaneous or with a formin) are multiplied by
the square of the amount of polymers F∞. Therefore, it appears that elongation is more slowed
down by the competition between polymers than the other transitions.

Since in Figure 6 the initial proportion of polymers bound with a formin was set to be equal
to its (supposed) equilibrium value, we explored what happens in other cases by choosing a
di�erent set of parameters. Figure 7 displays the same quantities as Figure 6 but with the
following set of parameters: λ+ = 10, λ− = 2, λ+

F = 100, ΦP = 10, Φ+
F = 8 and Φ−F = 2.

We start again with the same initial state (33% of free monomers, 34% of monomers included
in a polymer, 33% of monomers in G-actin/pro�lin complexes, 50% of polymers being simple,
50% being associated with a formin and all polymers being of length 30). By (3), this time we
have (πM (0), πM (1)) = (0.2, 0.8) and Figure 7 con�rms again the suspected convergence (with
another initial overshoot by a very small amount that we cannot explain).
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