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Abstract

Uncertain parameters appear in many optimization problems raised
by real-world applications. To handle such problems, several approaches
to model uncertainty are available, such as stochastic programming and
robust optimization. This study is focused on robust optimization, in
particular, the criteria to select and determine a robust solution. We
provide an overview on robust optimization criteria and introduce two
new classifications criteria for measuring the robustness of both scenarios
and solutions. They can be used independently or coupled with classical
robust optimization criteria and could work as a complementary tool for
intensification in local searches.

1 Introduction

Uncertain parameters appear in many optimization problems raised by real-
world applications. In general, uncertain data arise due to incomplete informa-
tion and undifferentiated information [37]. Several approaches are available to
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model them in the context of optimization problems, in particular stochastic pro-
gramming where uncertain data are modeled as random variables [56, 61]. How-
ever, such approach is limited to the cases where uncertainties have a stochastic
nature (which is not always the case) and when it is possible to identify the
probability distribution, which can be difficult to obtain, especially for large-
scale problems [9]. Many studies deal with stochastic programming approaches
and the pioneer models were proposed by Beale [8] and Dantzig [19].

Robust optimization has been applied in general as a way to self-protection
against undesirable impacts due to vague approximations, incomplete, impre-
cise, or ambiguous data. Readers are referred to [53] for an interesting survey
on different uses of robustness in the field of Operations Research. This study
is dedicated to robust optimization problems for which uncertain data are de-
fined as a set of possible values, usually called as scenarios. In this context,
the literature covers a large number of applications [43, 54, 57, 66], such as
scheduling [25, 28], facility location [3, 7, 26, 41], inventory [11, 17], finance
[15, 22, 27, 18, 55], queuing networks, stochastic systems and game theory
[13, 32, 35, 51], machine learning and statistics [10, 63, 62], and energy sys-
tems [14, 52].

The robust optimization approach considered here is then, an alternative to
stochastic programming where the optimization is done over a set of scenarios.
A scenario denotes the way to structure the uncertain data, where two common
ways of modeling are interval or discrete data. Interesting definitions for a
robust model and a robust solution are introduced by [36, 46]. Roughly, a robust
solution is related to the robust optimization criteria. For instance, whenever
a minmax objective function is addressed, a robust solution is the one which
minimizes the worst case. For the sake of clarity, let us consider the classical
Robust Shortest Path (RSP) problem as an example to show the use of interval
and discrete data. The RSP problem is defined on a digraph G = (V,A), where
V denotes the vertex-set while A is the set of arcs. An origin vertex t ∈ V
and a destination vertex d ∈ V are given, but the costs associated with each
arc (i, j) ∈ A are uncertain. Thus, such uncertain data can be modeled as an
interval (RSP-I) [lij , uij ], with lij , uij ∈ R, where uij ≥ lij ≥ 0, or else by a set of
discrete scenarios (RSP-D) S = {1, 2, ..q}, where every scenario k ∈ S specifies
a cost value ckij for each arc. Without loss of generality, using the interval data,

a scenario k is an assignment of arc costs ckij ∈ [lij , uij ], for all (i, j) ∈ A.
Three main components are related in the application of robust optimization

methods. These components are: (i) the way uncertain data are modeled (e.g.
with the use of scenarios), (ii) the selection of an appropriate robust optimization
criterion such as minmax, minmax regret, minmax relative regret, α-robustness,
bw -robustness, pw-robustness, referred here as Robust Optimization Criteria
(ROC), and (iii) the choice of a mathematical model and methods to generate
robust solutions [36].

In this study, different ROC and their main applications are reviewed. Then,
we introduce two Robust Classifications Criteria (RCC) that can be applied for
measuring the robustness of both scenarios and solutions. The alternative RCC
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proposed here can be used independently of other criteria, as an additional sup-
port to classical ROC, or still as a tool for intensification in local search strate-
gies. It is important to highlight that the proposed RCC are not optimization
criteria, instead they are a mesure of quality based on ranking (classification)
of solutions over all the scenarios considered. The remain of this work is orga-
nized as follows: a state-of-the-art on ROC is presented in Section 2, followed
by a detailed description of the proposed RCC in Section 3. Finally, concluding
remarks are given in Section 4.

2 State of the art on ROC

The robust optimization approach has been typically modeled with a set of sce-
narios defined with discrete or interval values [5], as previously mentioned. In ei-
ther case, decisions can be made according to one of the following ROC:minmax,
minmax regret, minmax relative regret, lexicographical criteria, α-robustness, bw-
robustness and pw-robustness, etc. These are the most common ROC to deal
with robust optimization problems, and their use mainly depend on the appli-
cation and the optimization goals. Below we review such criteria and provide
some practice cases for them.

The minmax family criteria, i.e, the absolute minmax, the minmax regret
and the minmax relative regret [53], are usually refereed as conservative criteria
since they aim at minimizing the possible losses whenever the worst case scenario
occurs [36].

The minmax criterion has been initially developed for game theory by Von
Neumann [48] for a two-player zero-sum game. The minmax dual problem relies
on maximizing the minimum gain, named maxmin. Both the minmax and the
maxmin are used whenever the worst case scenario can imply a major damage.
Extending the work of Von Neumann [48], Wald proposed a non-probabilistic
decision-making model based on the worst-case of a decision [59]. According
to the author’s definition, the decisions are ranked based on their worst-case
outcomes. This strategy discards the worst case scenario among the possible
decisions in an optimization process. Actually, the minmax criterion is one of
the most studied ROC and has been successfully applied to different problems
[12, 33, 36], such as: competitive situations, punctual risky decisions, robust
shortest path [31, 45, 65], robust minimum spanning tree [34, 44, 64], among
others.

Another possible ROC is the lexicographic minmax introduced by Dresher
[20], which extends the work of Von Neumann known as the nucleolus of a
matrix game in game theory. The idea consists in selecting a subset of optimal
strategies, based on the optimal solution of minmax, which take advantage of
the opponent player’s mistakes. In the lexicographic minmax not only the worst
case is minimized, as in the classical minmax. It also considers the second
worst case, the third worst, etc. Therefore, the lexicographic minmax refines
the concept of solution in the minmax approach, since it selects a unique set
of outcomes, but not necessarily a unique solution (if there is more than one
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solution, all solutions selected have the same distribution).
Extending the work [20], the lexicographic minmax has been studied by [49]

to improve the minmax when the uncertain data are modeled with discrete sce-
narios. The author in [49] also showed that the lexicographic minmax complies
with both “Pareto-Optimality Principle” and the “Principle of the Transfers”,
whereas the standard minmax may violate both principles. In accordance with
the “Pareto-Optimality Principle” all the objective functions are treated on the
same way without preferences and/or specific assumptions, and the Principle of
the Transfers is commonly recognized as the essential axiom for equity measure
[39]. Finally, the author showed that the solutions obtained by the lexicographic
minmax are better than those obtained by the minmax applying this criterion
to location problems [49]. The lexicographic minmax has been successfully ap-
plied to allocation problems [38, 60], location problems [47, 50], and sensor node
placement [2], as well as it has been modeled and integrated to mathematical
programming [1, 29]

The α-robustness has been proposed by Kaläı [30] to be less conservative
than the minmax. It extends the lexicographic minmax and is applied whenever
the uncertain data are modeled using discrete scenarios [49]. Both criteria,
the lexicographic minmax and the α-robustness, rank solutions considering the
worst scenarios. Concerning the α-robustness, a vector of solutions, called “ideal
solutions” are defined. An ideal solution is the best solution obtained for each
scenario, and it is used to compute deviations. Given a solution θ, an ideal
solution θ∗ and a set of scenarios S, the cost of θ, also called distance, is the
scenario k ∈ S where the difference between the cost of θ and the cost of θ∗ in
scenario k is maximum. For example, considering a problem with two scenarios,
if the ideal solution values for each scenario k ∈ S are given by cost(θ∗, k) =
{10, 8} and the cost of a solution θ for each scenario k ∈ S is cost(θ, k) =
{15, 10}, then the maximum deviation between cost(θ, k) and cost(θ∗, k) is equal
to 5. Recently, this criterion is used to treat uncertain attribute evaluations in
the outranking methods [21] which build a list of preferences following a set of
predetermined alternatives.

An alternative ROC to the minmax using discrete scenarios is presented by
Bertsimas and Sim [16]. The authors propose a robust integer programming
model that allows to control the conservatism degree of a solution by using
probabilistic bounds and violation constraints. Let n be the number of binary
variables for a discrete optimization problem with uncertain data associated
with the cost coefficients. Then, we solve the robust counterpart by solving
n+ 1 instances of the original problem. Besides, the authors have proposed an
algorithm for robust network flows using their model. This criterion has been
mostly used for solving facility location problems [6], robust prize-collecting
Steiner tree problems [4], robust knapsack problem [42] and the robust network
loading problem with dynamic routing [40].

Roy (2010) [53] argues the minmax approach fails to translate the robustness
since it focuses only on minimizing the worst case. Thus, the robust optimiza-
tion is defined in his work as the ability to prevent undesirable impacts when
uncertain data are handled. The author proposed a new ROC as an alternative
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for the minmax, named bw-robustness. A non-negative value b establishes a
threshold that cannot be exceeded on most of the scenarios, while the constant
w defines the value that cannot be exceeded by any scenario represented as fol-
lows, w ≤ maxθmink(vk(θ)), where k is a scenario, θ is a feasible solution and
vk(θ) is the cost of the feasible solution in a scenario. The bw-robustness is used
only when the scenarios correspond to discrete values and the number of scenar-
ios is very large. Like for the minmax family criteria, the bw-robustness can be
addressed as bw-absolute robustness, bw-absolute deviation and relative regret
bw-relative deviation. The bw-robustness has been successfully applied to the
robust shortest path problem [24] and to the robust military mission planning
problem [58] which consists of allocating resources and scheduling tasks during
a military mission in order to protect the city borders.

The pw -robustness criterion is an extension of the bw -robustness criterion
[23]. Thus, a solution is said to be robust whenever it ensures a w value for all
scenarios, and if it reaches a value b in a p percentage of scenarios.

3 Robust Classification Criteria

We suggest here two RCC for measuring the solutions quality, as well as the im-
pact of the scenarios over the solutions, named robust absolute rank and robust
mean rank. In terms of solutions quality, the general idea of the RCC is to pro-
vide an evaluation of solutions based on their evaluation over all the scenarios.
They do not look only for avoiding the worst case, neither for computing the
worst case, the second one, etc., like in the α-robustness, the bw-robustness and
the pw-robustness. The RCC focus on the number of times a solution obtain
the best results in its evaluation over a given set of scenarios. Thus, in terms
of evaluating a solution, it means that a solution is a good one if it is good in a
higher number of scenarios.

In terms of scenarios, the proposed criteria provide an evaluation consider-
ing the impact of the solutions found for a given scenario, by identifying the
scenarios which produce a higher number of better solutions.

The proposed RCC are less conservative than the minmax family and the
lexicographic family of criteria, and they can be applied to evaluate indepen-
dently the impact of applying an individual solution, as well as deciding about
the scenarios which has produced the best solutions. The RCC can be used as
main evaluation criteria, as well as a decision support tool for existing ROC.
An example for the latter is whenever one looks for avoiding the worst case,
and after that to classify the remaining solutions, i.e. a two stage evaluation.
These criteria provide complementary and useful information for intensification
in local search for a given scenario. An example where the intensification can be
done is whenever one deals with a robust version of a NP-hard problem which
implies to handle a NP-hard problem per scenario.

Let us consider a number of feasible solutions. Then, a way to evaluate the
solutions over all scenarios can be done by a classification, as well as to know
which scenarios have a higher impact on the solutions. For each known feasible
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solution, the robust absolute rank denotes the number of times for which the
considered solution is the best over all known solutions for a specific scenario.
Whenever a solution is the best for a specific scenario, it is assigned one point.
At the end, the number of times a solution has a minimal value, is kept. If for
a given scenario, two or more solutions draw for best solution, they all count as
best and one point is added to its robust absolute rank. Considering a solution,
the higher is its robust absolute rank, the better the solution is. Considering a
set of scenarios S, the robust absolute rank can also be applied for evaluating S
by taking the sum of all robust absolute rank for each known solution of S.

The robust mean rank is computed for every solution considering each sce-
nario. Let r be the position of a solution in a classification over a set of solutions.
Then, for a given solution and considering a set of S scenarios, the solution that
returns the best result for a specific scenario k receives one point, the one that
follows two points, and the one that returns the worst result receives rth points.
Whenever several solutions obtain the best result, they are all assigned one
point. Whenever two solutions have the second best value, they are both as-
signed two points. For every solution and every scenario, the corresponding
robust mean rank is equal to the mean number of points assigned to each solu-
tion. The smaller the robust mean rank, the better the corresponding solution
is. Considering a scenario k, the robust mean rank can also be applied for eval-
uating S by taking the sum of the robust mean rank for each feasible solution
of S.

An example for the RSP-D is provided in Figure 1. Tables 1 and 2 summa-
rize the corresponding values for some ROC and the proposed RCC. In Table 1,
each line corresponds to a possible solution for the graph depicted in Figure 1.
The next columns stand for their cost considering respectively, the first, the sec-
ond and the third scenario. Then, the remaining columns contain respectively
the values for the following criteria: minmax, minmax regret, and robust abso-
lute rank. Table 2 presents the classification for each solution in each scenario
according to the robust mean rank. The three columns of classification indicate
the points assigned for each solution in each scenario. The last column indicates
the robust mean rank per solution.

For the solution t−0−2−3−d, the robust absolute rank is set to a value of 2
because this solution is the best for two scenarios out of three scenarios. It can
be noticed that the solution t−0−3−d stands for the best one using the mean,
the minmax and the minmax regret criteria. On the contrary, the best solutions
using the robust absolute rank and the robust mean rank are t − 0 − 2 − 3 − d
and t − 1 − 2 − 4 − d because their cost evaluation is the best for a higher
number of scenarios. In fact, for some applications, the robustness may enclose
this idea: “robust solutions are those which are good and could be applied in
most of the scenarios considered”. Obviously, whenever a decision maker may
avoid the worst case, these criteria cannot be applied alone. But, they can be
coupled with a criteria from the minmax family considering the complementary
information that can be obtained obtain with the proposed RCC (quality of
solutions and the impact they have in the scenarios), opening opportunities for
sensitivity analysis.
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Figure 1: An example of graph with uncertain data represented by a discrete
set of values.

Table 1: Evaluating solutions for the robust shortest path problem.
Scenarios Evaluation

Solutions
costs

Mean minmax minmax regret
robust absolute

C1 C2 C3 rank
t− 0− 3− d 10 10 7 9.00 10 4 1
t− 0− 2− 3− d 13 7 7 9.00 13 7 2
t− 0− 2− 4− d 11 8 9 9.67 11 5 1
t− 1− 4− d 6 12 10 9.33 12 5 1
t− 1− 2− 3− d 10 12 6 9.33 12 5 1
t− 1− 2− 4− d 8 13 8 9.67 13 6 2
robust absolute rank

2 2 4
per scenario

Table 2: Applying the robust mean rank.

Solutions
Classification robust mean rank

k = 1 k = 2 k = 3 per solution
t− 0− 3− d 2 2 1 1.67
t− 0− 2− 3− d 2 1 1 1.33
t− 0− 2− 4− d 3 1 2 2.00
t− 1− 4− d 1 3 2 2.00
t− 1− 2− 3− d 1 3 2 2.00
t− 1− 2− 4− d 1 2 1 1.33
robust mean rank

1.83 2.00 1.33
per scenario

4 Concluding remarks

In spite of its simplicity, the proposed RCC enclose the idea of better solutions
in a higher number of scenarios, as well as, they provide an easy way to identify
the scenarios which has produced a higher number of better solutions. Contrary
to the minmax family criteria and the lexicographic ROC, the proposed criteria
provide a way to quantify a robust solution in a global perspective as the impact
of the scenarios over the solutions. The RCC can be used as independent or be
coupled with a ROC as a complementary information for the decision-making.
A possible direction is to apply these RCC for intensification in local searches.
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