
Solving large p-median problems
using a Lagrangean heuristic

Andréa Cynthia Santos
andrea@isima.fr

1

Research Report LIMOS/RR-09-03

8 juin 2009

1LIMOS, Campus des cézeaux, 63173, Aubière - B108

Abstract

The p-median problem consists in locating p medians in a given graph, such
that the total cost of assigning each demand to the closest median is min-
imized. In this work, a Lagrangean heuristic is proposed and it uses two
dual information to build primal solutions. It outperforms a classic heuristic
based on the same Lagrangean relaxation. Variable fixing tests are used to
reduce the size of the problems and a local search procedure is also applied.
Variable fixing strategies eliminate 90% of arcs on average. Computational
results are reported for large graph instances with about 4000 nodes and 14
millions arcs.

Keywords: Lagrangean heuristics, primal-dual heuristics, p-median prob-
lem.

Résumé

Le problème des p-médianes consiste à installer p usines parmi un ensemble
de localisations dans un graphe et à associer chaque client à l’usine la plus
proche, en minimisant la somme des coûts (distances) de connexion des clients
aux usines. Dans ce travail, une heuristique lagrangienne qui utilise deux
informations duales pour générer des solutions primales est proposée. Les
résultats produits par cette heuristique sont meilleurs que les résultats pro-
duits par l’heuristique classique basée sur la même relaxation langrangienne.
Des tests de réduction de variables sont utilisés pour réduire la taille des
problèmes et une recherche locale est appliquée. Les stratégies de fixation
de variables éliminent environ 90% des arcs. Des résultats numériques sont
présentés pour des instances jusqu’à environ 4000 sommets et 14.000.000
arcs.

Mots clés : Heuristiques lagrangiennes, heuristiques primal-dual, problème
des p-médianes.

1

1 Introduction

Let G = (V, A) be a directed graph with a set V of vertices and a set A of
arcs. Let cij ∈ <, ∀(i, j) ∈ A, be the cost of assigning a demand j ∈ V to
a median i ∈ V (medians are also referred to facilities or locations in the
literature). Given a positive integer 0 < p ≤ |V |, the p-median problem
consists in selecting p medians in V such that the total cost of assigning each
demand to the closest median is minimized. This problem belongs to the set
of NP-hard problems on general graphs G for an arbitrary p [13].

The interest of solving p-median problems appears as it is the core of
many location problems and because of its large number of applications. For
example, several location applications are found in [27] and cluster analysis
are shown in [15, 21]. The amount of work dedicated to this problem has sig-
nificantly increased in the last decade [22], and there is a clear improvement in
the state of the art for the problem. Advanced heuristics such as Lagrangean
heuristics [26] and metaheuristics [25], and sophisticated exact algorithms
such as the branch-and-price-and-cut [2], and the semi-lagrangean relaxation
[7] have been proposed. Improvements on the polyhedral characteristics for
the p-median have been done, for example in [11]. Moreover, efficient variable
fixing strategies for a problem close to the p-median are presented in [8]. For
further investigation, readers are referred to the following surveys: work [22]
provides insightful information for more than 200 articles on the classic ver-
sion of the p-median problem. An overview on heuristics and metaheuristics
approaches can be found in [9, 16]. For the state of the art and theoretical
analysis see, for example, [27, 28].

In this work, a new Lagrangean heuristic is proposed on a classic La-
grangean relaxation, as presented in [20]. The typical heuristic for that
Lagrangean relaxation does not perform well as mentioned in [8] and it uses
a single criterion to choose the medians. The heuristic proposed in this work
uses two criteria to select the medians. The second criterion uses an in-
formation from the dual solution to build a primal solution. Some efficient
reduction tests are applied and the proposed heuristic is coupled with a lo-
cal search. The subgradient method of [17] is used to compute Lagrangean
multipliers. The algorithm is tested on the OR-library [3] and on the TSP-
Library [23] instances. Results show that the Lagrangean heuristic suggested
here outperforms results obtained using a classic Lagrangean heuristic. The
variable fixing tests eliminate 90% of arcs on average. After reductions, it
only remains a core that contains the hardness of each instances. Instances
for which optimality was not proved, duality gaps are lower than 2%. Some
remaining gaps are closed by using the branch-and-cut tree of a commercial
solver.

2

This paper is organized as follows: a mathematical formulation is pre-
sented in Section 2. A Lagrangean relaxation based on the referred formu-
lation is described in Section 3. In Section 4, the Lagrangean heuristic is
described in detail. Section 5 is dedicated to the reduction tests. Compu-
tational results are reported in Section 6 and some concluding remarks are
given in Section 7.

2 Problem formulation

Binary variables xii are associated with every node i ∈ V to identify if node
i is chosen as a median. Variables xij are associated with every arc (i, j) ∈ A
to state whether node j is connected to the median i or not. Then, the
p-median problem can be formulated as follows:

min
∑

(i,j)∈A

cijxij st. (1)

∑

i:(i,j)∈A

xij + xjj = 1 ∀j ∈ V (2)

∑

i∈V

xii = p (3)

xij ≤ xii ∀(i, j) ∈ A (4)

xii ∈ {0, 1} ∀i ∈ V (5)

xij ≥ 0 ∀(i, j) ∈ A (6)

The objective function (1) minimizes the total cost of assigning each node
j to a median i. Equations (2) state that either a node j is connected to one
median or j is a median. Constraint (3) ensures that p nodes are chosen as
median. Inequalities (4) state that a node j can be connected to a node i
only if i is a median. Variables x are defined in Constraints (5) and (6).

A feasible solution S for the p-median problem can be represented as a
set of p clusters: a cluster qi is a set of nodes with one median i (xii = 1)
and with nodes {j1, j2, ..., jl} (l ≤ |V | − p) connected to i by an arc, that
is (xij = 1). Thus, a solution S = {q1, q2, ..., qp}, with no arcs between the
clusters. Figure 1 illustrates a feasible solution S for a graph with |V | = 25,
p = 3, and a total cost equal to 546.

3

11
2

7

10 14

21

23
12

0

17

24

22
4

5

6 8

9

13

31

48

10

29 38
4

10

7
21

22

9
16

15

16
18

19

20 21

32 28

50

65

24

27
1329

11

32

Figure 1: Example of a solution with three clusters.

3 Lagrangean relaxation

Different Lagrangean relaxations based on the formulation (1)-(6) can be
found in the literature: [20], [10], [14], and [19]. In this work, the Lagrangean
relaxation proposed by [20] is used since it produces very good lower bounds.
Lagrange multipliers λj ∈ < are associated to the Constraints (2), which are
dualized. The corresponding Lagrangean dual problem is as follows:

L1(λ) = min
∑

i∈V

∑

j∈V

(cij − λj) · xij +
∑

j∈V

λj st. (7)

Constraints (3) - (6).

Let dij = cij − λj be the Lagrangean costs. For each node i ∈ V , its
associated auxiliary cost is defined as fi = dii +

∑
j∈V \{i} min{0, dij}. Thus,

L1(λ) can be reformulated as:

L′
1(λ) = min

∑

i∈V

fixii +
∑

j∈V

λj st. (8)

∑

i∈V

xii = p (9)

xii ∈ {0, 1} ∀i ∈ V (10)

The Lagrangean subproblem (8)-(10) corresponds to a simple enumera-
tion of the p facilities with the smallest costs fi. This Lagrangean relaxation
has the integrality property. Thus, the best lower bound attained using this
Lagrangean relaxation is equal to the lower bound of the linear relaxation
for the problem (1)-(6). The subgradient method of [17] is used to compute
Lagrangean multipliers λj. At each subgradient iteration k, multipliers λk

j

are calculated as well as the auxiliary costs fk
i . Then, since the p-median

4

is a minimization problem, medians with the smallest auxiliary cost are se-
lected for the dual solution. Moreover, each node j not chosen as median is
connected to the median i (xij = 1), whenever dk

ij < 0 and xii = 1. Arcs
included in the solution have an associated negative Lagrangean cost. They
have contributed in the computation of the auxiliary costs fk

i , ∀i ∈ V , at
iteration k.

4 Lagrangean heuristics

Lagrangean heuristics have been successfully applied to a large number of
problems in the literature, see for example [1, 6]. In particular, for the
p-median problem and its variants, Lagrangean heuristics are presented in
[5, 26]. A basic characteristic of these strategies is the use of dual Lagrangean
information to produce primal solutions.

Let us assume that, at each subgradient iteration k, the vector fk contains
the auxiliary costs fi in increasing order : fk = [fk

1 ≤ fk
2 ≤ ... ≤ fk

p ≤ fk
p+1 ≤

... ≤ fk
|V |]. The p first nodes are the set of medians for the dual problem.

Let UBk and LBk be respectively the current values of the upper and of the
lower bounds, at iteration k. Moreover, UB∗ and LB∗ are respectively the
best values of the upper and of the lower bounds found so far.

The classic primal heuristic for relaxation (8)-(10), denoted here of Classic
Lagrangean heuristic (Classic LH), consists in generating a primal solution
at each subgradient iteration k as follows: the p nodes with the smallest asso-
ciated auxiliary costs in the vector fk are taken as medians. The remaining
|V | − p nodes are connected to the closest median. This is a straightforward
way to generate primal solutions based on Lagrangean relaxation (8)-(10).
The Classic LH worst case complexity is O(p · |V |). Unfortunately, results
are not very good. This fact has motivated the investigation of better ways
to improve primal solutions using dual information.

In the Lagrangean dual problem L′
1(λ), the dual solution for L′

1(λ) may
contains clusters connected by arcs. Figure 2 illustrates a dual solution with
violations in an iteration of the subgradient method using L′

1(λ). The dot-
ted lines can be interpreted as an indecision about the connection of those
nodes. Moreover, the second type of violation corresponds to the nodes
2, 7, 10, 11, 14, 21 and 23 which are not medians, neither they are connected
to a median. These kind of violations occurs quite often and it leads to the
following questions: how does it impact the primal solutions? is it possi-
ble to take advantage of those violations to improve a primal heuristic such
as the Classic LH ? These violations can be reduced once the subgradient
method converges. However, earlier good upper bounds are met, better for

5

the convergence of the subgradient method.

12

0

17

24

3

1

22
4

5

6 8

9

13

15

16
18

19

20

2 7 10 11 14 21 23

Figure 2: Example of violations in a dual solution.

To avoid the transfer of those indecisions (see Figure 2) from a dual
solution to a primal solution, the heuristic proposed here, denoted Collecting
medians, consists in taking the p first nodes with the smallest auxiliary costs
as median, if there are no arcs between the medians in a dual solution. Thus,
the Collecting medians considers the nodes in ascending order of fk, and it
selects a node as a median if it is not connected to the previous medians.
After evaluating fk until the position |V |, if less than p medians are selected,
the procedure performs an additional step. It consists in considering the
nodes with the smallest auxiliary cost from p + 1 to |V |, then from 1 to p as
a median (this step is seldom performed). In doing so, feasibility is ensured.
In the additional step, the test of connection with the previous medians is
not performed. The |V | − p nodes are connected to the closest median. For
example, using the Collecting medians based on the dual solution shown in
Figure 2, node 3 is not chosen as a median since it has auxiliary cost f3

bigger than f22 and f12, and it has a direct connection with the median 12.
The first step to select the medians takes O(p · |V |) in the worst case. The
additional step consumes up to O(|V |) time in the worst case. Connecting
the remaining nodes still remains O(p · |V |). Thus, the Collecting medians
worst case complexity is O(p · |V |).

4.1 Local search procedure

Two local search procedures are used. The first is called optimizing clusters
local search and it is used at each iteration of the subgradient method. The
second one is the swap local search introduced by [29]. Efficients implemen-

6

tations for the swap local search is proposed by [30, 24]. The neighbourhood
of the swap local search is bigger than the optimizing clusters local search,
and it consumes a larger running time at each iteration. As a consequence, it
is applied when a best upper bound is attained or after performing a number
of iterations without improving the best upper bound found so far.

The optimizing cluster local search procedure is as follows: given a feasible
solution S, for each cluster qi, a local search move consists in building a new
cluster q′i having the same set of vertices in qi, such that one of the vertices in
this cluster {j1, j2, j3, ..., jl}, (l ≤ |V | − p), say jk, will act as its new median.
A move is accepted under two conditions: first, it reduces the cost of S and
second, it is the best move in a cluster qi. This step consumes p · (|V | − p)
time in the worst case.

An iteration of this local search consists in investigating every cluster
qi ∈ S. After that, if at least one move is done in a cluster, an additional test
is performed. Given a node j connected to the median i, the test checks if
there is a median l 6= i such that clj ≤ cij. This test is done for all node j that
are not median and that do not belong to the cluster qi. This step requires
(|V | − p) · p time in the worst case. Thus, an iteration of this local search
consumes p · (|V | − p) time in the worst case. The local search procedure
stops when no improving move is found. An example is shown in Figure 3.
A cluster qi is shown in Figure 3-(a) where i is its median. All possible
neighbour clusters are depicted in Figures 3-(b) to 3-(d). If at least a move
is done in one cluster, the additional step mentioned above is performed.

i

j2

j1 j3

(a)

i

j2

j1 j3

i

j2

j1 j3

i

j2

j1 j3

(b)

(d)(c)

Figure 3: Example of the optimizing cluster local search move.

A typical local search for the p-median problem [29] consists in finding the
best swap between a median and a non-median node. Given a solution S and
a candidate to be median j, the procedure computes the highest cost gain of

7

introducing j as a median in S and the smallest cost loss of removing a current
median i in S. Whenever, the total cost of S is improved and it corresponds to
the best move in the neighbourhood, the move is performed. The procedure
stops when no improving move is found. [30] and [24] implementations for
this local search consume at each iteration, O(|V |2) time in the worst case.
The difference relies on updating the data structures which are speed up
though the use of extra memory in [24]. [30] implementation is used in this
work.

5 Problem reduction tests

Reduction tests allow variables to be fixed and thus the problem size is
reduced. For the sake of clarity, fixing a variable associated to a node (xii)
and to an arc (xij) is respectively referred to here as node fixing and as arc
fixing. For the p-median problem, fixing a node to one implies that only p−1
medians need to be chosen afterward. Fixing a node to zero implies that the
number of nodes able to be a median is reduced. Decisions can also be taken
to fix arcs to zero or to one. The tests used here are adapted from [8].

For every variable fixing test described in this section, the vector fk con-
tains the auxiliary costs fk

i in increasing order as mentioned in Section 4.
Moreover, let V0 and V1 be respectively the set of medians fixed to 0 and
fixed to 1, as well as A0 and A1 represent respectively the set of arcs fixed to
0 and fixed to 1.

The main idea to fix arcs to zero is to check if: including an arc in the
solution will lead to a lower bound greater than the best upper bound found
so far. If so, the arc cannot belong to an optimal solution. The first test to
fix an arc to zero is as follows: given a median i, a node j not median, and
dk

ij the Lagrangean cost of arc (i, j). If (i, j) /∈ A0, dk
ij > 0 and Inequality (11)

holds, arc (i, j) can be fixed to zero. Thus, A0 = A0 ∪ {(i, j)}.

LBk + dk
ij > UB∗ (11)

The second test to fix an arc to zero is as follows: given two nodes j
and l that are both not medians, thus, arc (j, l) is not in the current dual
solution. Suppose that (j, l) is in an optimal solution. Then, j should be
median and a median should be removed from the current dual solution. The
dropped median is the one which contributes the least to the lower bound
value. Its removal gives an under-estimation of the lower bound value with
p − 1 medians. If (j, l) /∈ A0, dk

jl > 0 and Inequality (12) is satisfied, then
A0 = A0 ∪ {(j, l)}.

8

LBk − fk
p + fk

j + dk
jl > UB∗ (12)

The general idea to fix nodes is similar to the one to fix arcs: if forcing a
node to be a median (it implies that one of the current medians is removed) or
if removing a current median (it means a new node is selected as a median)
from a dual solution leads to a lower bound greater than the best upper
bound found so far, variables are fixed. Fixing nodes result in fixing arcs
afterwards.

The first test used to fix a median to zero is as follows: given a node
j that is not a median in the current dual solution, suppose that j is in
an optimal solution. Forcing j in the solution implies removing one of the
current medians. The selected dropped median is the one which contributes
the least to the lower bound (fk

p). If node j /∈ V0 and Inequality (13) is
satisfied, j cannot be a median in an optimal solution and V0 = V0 ∪ {j}.
Consequently, if j cannot be a median in an optimal solution, j has no ingoing
arcs. Thus, A0 = A0∪{(j, l)} for all (j, l) ∈ V . This test starts with the node
j with the highest associated auxiliary cost, that is (fk

|V |), and it is carried

out until Inequality (13) does not hold anymore.

LBk − fk
p + fk

j > UB∗ (13)

The second test is applied to fix medians to one. It consists in assuming
a current median is not in an optimal solution. The median i with the
smallest auxiliary cost is kept because it is the one which most contributes
to the current lower bound value. By doing so, a node j not median with the
smallest associated auxiliary cost, that is fk

p+1, enters the solution. Whenever
i is a median in the current dual solution, i /∈ V1 and Inequality (14) holds,
node i is necessarily a median in an optimal solution. Thus, V1 = V1 ∪ {i}.
If i is necessarily a median in an optimal solution, then every outgoing arc of
i can be fixed to zero. In this case, A0 = A0 ∪ {(j, i)} for all (j, i) ∈ A. The
test starts with the median with the smallest auxiliary cost and it is applied
until Inequality (14) does not hold anymore.

LBk − fk
i + fk

p+1 > UB∗ (14)

Another consequence of fixing a median i to one is: given an arc (i, j)
that belongs to the current dual solution (that is dij < 0). If (i, j) /∈ A1 and
Inequality (15) holds, this arc necessarily belongs to an optimal solution.
Then, A1 = A1 ∪ {(i, j)}. That means also node j is never a median in an
optimal solution. Then, the consequences given above to fix a median to zero
is applied to node j.

9

LBk − dk
ij > UB∗ (15)

Some simple logical implications are used, basically to try to fix variables
xii to one. The aim is to take advantage of the large number of arcs eliminated
from the problem. The first logical implication checks if a node is necessarily
a median in an optimal solution: if j /∈ V1, and if every outgoing arc of j is
in A0, then j ∈ V1.

The second logical implication is as follows: given a node l ∈ V0 with only
one outgoing arc, say (i, l), and with all other outgoing arcs already fixed to
zero. Then, arc (i, l) can be fixed to one, A1 = A1 ∪ {(i, l)}. Furthermore,
in this case, i is necessarily a median in an optimal solution because l is
assigned to node i. Thus, if i /∈ V , V1 = V1 ∪ {i} and all consequences to fix
a median to one are applied to node i.

6 Computational results

The experiments were carried out on a Core 2 Duo machine with 2.66 GHz
of clock and 4 Gb of RAM memory. Cplex 11 is used to close the remaining
gaps. The parameter uppercutoff is set to the UB∗ found by the heuristic
Collecting medians. All other parameters are left to default values. Results
are reported for the OR-library (OR-LIB) and for the TSP-Library (TSP-
LIB) instances. The OR-LIB Instances with a bold name are those for which
Cplex has run out of memory. The TSP-LIB instances with a bold name
are those classified as difficult in [7]. The Euclidean distances for the TSP-
LIB instances are truncated as in [2, 7]. The parameters of subgradient
method are set as suggested in [4]: 1000 subgradient iterations are run and
the parameter π is divided by 2 each time 5% of the total number of iterations
are attained.

In the first experiment, a comparison between the Classic LH and the
Collecting medians is done. In this experiment, the variable fixing tests
and the local search procedures are not used in the algorithm. The goal is
to observe the real benefit of using the Collecting medians heuristic. The
Classic LH is carried out at each iteration of the subgradient method. The
same strategy is used for the Collecting medians. Results for a subset of
the OR-LIB instances are presented in Table 1. The remaining instances
of this group have similar results. Each line corresponds to an instance.
Columns (Instances), (p) and (O∗) indicate respectively the instance name,
the amount of medians and the optimal values. The linear relaxation (LR)
obtained using the Cplex is given. Moreover, for both the Classic LH and the
Collecting medians heuristic, the lower bound (LB), the upper bound (UB),

10

Cplex Classic LH Collecting medians
Instances |V | |A| p O∗ LR LB UB GAP time LB UB GAP time

pmed26

600 359,400

5 9917 9854 9854 10008 1.56% 13.00 9854 9924 0.71% 13.03
pmed27 10 8307 8302 8301 8310 0.11% 12.81 8301 8307 0.07% 12.91
pmed28 60 4498 4498 4498 4520 0.49% 13.17 4498 4498 0.00% 4.75
pmed29 120 3033 3033 3033 3155 4.02% 13.69 3033 3034 0.03% 14.00
pmed30 200 1989 1989 1989 2246 12.92% 14.42 1989 1989 0.00% 9.61
pmed31

700 489,300

5 10086 10026 10026 10086 0.60% 18.11 10026 10086 0.60% 18.34
pmed32 10 9297 9293 9291 9333 0.45% 17.95 9291 9297 0.06% 18.22
pmed33 70 4700 4700 4700 4790 1.91% 18.53 4700 4700 0.00% 7.66
pmed34 140 3013 3013 3013 3205 6.37% 19.42 3013 3014 0.03% 19.66
pmed35

800 639,200
5 10400 10302 10302 10401 0.96% 23.72 10302 10401 0.96% 23.78

pmed36 10 9934 9833 9833 10309 4.84% 23.61 9833 9972 1.41% 23.69
pmed37 80 5057 5057 5057 5146 1.76% 24.25 5057 5057 0.00% 10.03
pmed38

900 809,100
5 11060 10947 10947 11316 3.37% 31.00 10947 11070 1.12% 31.19

pmed39 10 9423 9364 9364 9546 1.94% 30.67 9364 9423 0.63% 30.80
pmed40 90 5128 5128 5128 5159 0.60% 31.92 5128 5128 0.00% 13.34

Table 1: Comparative results between the Classic LH and the Collecting medians for the OR-Library instances.

11

the relative gap (GAP) (computed as (100 · (UB − LB)/LB)), and the time
in seconds (time) are presented.

The Collecting medians performs better than the Classic LH, closing gaps
or reducing them. Results obtained by the Collecting medians are particu-
larly promising because neither local search or reduction tests are used in
this experiment. Results for the complete version of the Collecting medians
heuristic is given later in this paper.

For nine out of fifteen instances in this subset (values highlighted in bold
on the column UB), the Collecting medians heuristic has met the optimal
values. While, the Classic LH has found the optimal value for only one in-
stance. For these nine instances, if there is a gap using the Collecting medi-
ans heuristic is due to the lower bound values. In terms of lower bounds, the
Lagrangean relaxation attains the theoretical limit for almost all instances,
except for the pmed27 and pmed32. For these instances in particularly, it
seems the theoretical limit was attained independent of the upper bound
quality. However, this is not the case for the TSP-LIB instances.

6.1 Calibrating the variable fixing phase

Most work for the p-median problem does not check when the reduction
tests are more likely to be efficient. Thus, a computational experiment was
carried out to decide when to start the reduction tests. Variable fixing tests
were introduced in the Lagrangean relaxation at each iteration after running
the Collecting medians heuristic. Then, for each instance, the first iteration
where the reduction tests start working was kept. Results are summarized
in Table 2 for a subset of the OR-LIB instances. The remaining instances
have similar results. Columns (Iteration), (LB), (UB) and (GAP) contain
respectively the iteration number, the lower bound, the upper bound, and
the relative gap which corresponds to the first iteration where the reduction
tests start to work.

Results show that the reduction tests start to work when the gaps fall
below 5%. Considering all the instances, the reduction tests begin to work
earlier when the number of medians is smaller.

6.2 Results for the complete version of the Collecting

medians heuristic

The complete version of the Collecting medians heuristic includes the two
local search procedures and the variables fixing tests. At each iteration k of
the subgradient method, a primal solution Sk is computed using the Collect-
ing medians heuristic. Then, Sk is submitted to the optimizing cluster local

12

Instances |V | |A| p Iteration LB UB GAP

pmed32

700 489,300

10 158 9226 9422 2.12%
pmed33 70 223 4694 4753 1.26%
pmed34 140 137 2985 3060 2.51%
pmed35

800 639,200
5 105 10160 10538 3.72%

pmed36 10 154 9764 10012 2.54%
pmed37 80 162 5042 5089 0.93%
pmed38

900 809,100
5 103 10723 11170 4.17%

pmed39 10 156 9311 9480 1.82%
pmed40 90 204 5119 5164 0.88%

Table 2: Calibration results for the variable fixing phase using the OR-LIB
instances.

search procedure. The swap local search is run whenever an upper bound
is better than the best upper bound found so far, or when 10 iterations is
performed without improving the best upper bound known. Finally, the re-
duction tests are applied when the gap falls down 5%. 1000 iterations of the
subgradient method are performed. After running 1000 iterations, if at least
10% of the current variables are fixed, data structures are cleaned and new
subgradient iterations are authorized.

The TSP-LIB instances are used to illustrate the performance of the
complete version of the Collecting medians because they are difficult instances
containing a million to about fourteen millions of arcs. Cplex solver is not
able to treat the TSP-LIB instances because it run out of memory. Results
for a complete version of the Collecting medians heuristic are presented in
Tables 3 and 4. The follow instances were tested: rl1304 with 10, 100, 300
and 500 medians, fl1400 with 100, 200, 300, 400 and 500 medians, ul1432
with 20, 50, 100, 200, 300 and 400 medians, vm1748 with 10, 20, 50, 100,
300, 400 and 500 medians, d2103 with 10, 20, 50, 100, 200 and 300 medians,
pcb3038 with 5, 100, 150, 200, 300, 400 and 500 medians, and fl3795 with
150, 200, 300, 400 and 500 medians. Results for a subset of the TSP-LIB
instances is shown. The remaining instances have similar results. Table 3
contains the amount of variables fixed for each problem. The instance name
(Instance), the number of nodes (|V |), and the number of arcs (|A|), and the
amount of medians (p) are given. Columns (|V0|), (|V1|), (|A0|) and (|A1|)
correspond respectively to the number of nodes fixed to zero, the number of
nodes fixed to one, the number of arcs fixed to zero, and the number of arcs
fixed to one. Moreover, the total percentage of fixed nodes (% fixed nodes)
and of fixed arcs (% fixed arcs) are also given.

Most of the instances have a strong reduction of arcs fixed to zero with

13

Instances |V | |A| p |V0| |V1| |A0| |A1|
% fixed % fixed

nodes arcs

rl1304 1,304 1,699,112
100 719 1 1,689,634 11 55.21 99.44
300 879 187 1,697,639 796 81.75 99.96
500 565 224 1,697,709 615 60.51 99.95

fl1400 1,400 1,958,600
100 696 11 1,930,917 4 50.50 98.59
200 0 11 1,804,505 0 0.79 92.13
500 0 0 1,908,805 0 0.00 97.46

u1432 1,432 2,049,192
50 128 0 1,836,028 0 8.94 89.60

100 595 1 2,031,969 0 41.62 99.16
200 140 0 2,006,989 0 9.78 97.94

vm1748 1,748 3,053,756
10 1464 0 2,964,753 0 83.75 97.09
20 1121 0 2,936,963 0 64.13 96.18
50 1411 1 3,041,545 39 80.78 99.60

d2103 2,103 4,420,506
100 0 0 1,662,465 0 0.00 37.61
200 0 1 4,205,165 0 0.05 95.13
300 0 1 3,978,526 0 0.05 90.00

pcb3038 3,038 9,226,406
200 37 0 8,938,597 0 1.22 96.88
400 1515 13 9,177,383 78 50.30 99.47
500 215 1 9,004,981 1 7.11 97.60

fl3795 3,795 14,398,230
200 0 1 13,501,977 0 0.03 93.78
300 24 5 14,062,089 0 0.76 97.67
400 0 5 13,707,447 0 0.13 95.20

Table 3: Variables fixing results for the TSP-LIB instances.

14

millions of arcs eliminated. Considering all the forty instances tested for the
TSP-LIB, on average, 31.1% of nodes and 90.79% of arcs are fixed. For the
TSP-LIB instances, in particularly, the variables fixing phase is an important
tool to help proving optimality. After fixing several variables, it remains only
a difficult core for each problem.

Table 4 contains the results obtained for the TSP-LIB instances. Columns
(Instances), (p), and (O∗) correspond respectively to the instance name, the
amount of medians, and the optimal values. For the Collecting medians
heuristics, the lower bound (LB), the upper bound (UB), the relative gap
(GAP) (computed as (100 · (UB − LB)/LB)), and the time in seconds (time)
round up are presented. Columns (final GAP) and (+time) give respectively
the final gap and the extra time required to close the remaining gaps by using
the Cplex solver. The symbol (-) means the solver has ran out of memory.
Whenever there is a gap on the column (final GAP), it corresponds to the gap
before the Cplex solver ran out of memory. That is the case of the instance
fl1400 and p = 500 medians.

For the forty TSP-LIB instances tested, the heuristic Collecting medians
produces gaps really small. It allows to prove optimality for 30 out of 40
instances efficiently, specially considering its size. For some instances, even
with a really small gap, cplex does not prove optimality because it ran out
of memory. This happens for 10 out of 40 instances tested. They are fl1400
with 300, 400 and 500 medians, ul1432 with 400 medians, d2103 with 50 et
100 medians, and fl3795 with 150, 200, 400 and 500 medians. However, some
difficult instances were solved as fl3795 with 300 nodes. For those 10 difficult
instances, its core is now available and it can be exploited in future work
using, for example, a specialized branch-and-cut tree. Using the Classic LH,
it is possible to prove optimality for only 10 out of 40 TSP-LIB instances
because of the produced gaps. For example, the best, the worst and the
average gaps for this subset of instances are respectively 0.11%, 5.30% and
1.95%. It leads also to a weaker variables fixing: about 10% of nodes and
50% of arcs.

7 Conclusions

A new Lagrangean heuristic is proposed in this work. The Collecting medians
heuristic uses two dual information to build primal solutions: the auxiliary
costs and the selection of medians which is composed independent clusters
in a dual solution. By doing so, it somehow avoids the transfer of indeci-
sions from a dual to a primal solution. Computational results show that the
Collecting medians outperforms the Classic LH.

15

Collecting medians Cplex

Instances p O∗ LB UB GAP
time final +time

(s) GAP (s)

rl1304
100 491,639 491,496 491,664 0.034 270 0.00 1.63
300 177,326 177,318 177,326 0.005 423 0.00 0.01
500 97,024 97,018 97,024 0.006 557 0.00 0.03

fl1400

100 15,962 15,960 15,970 0.063 323 0.00 3.55
200 8,806 8,791 8,846 0.626 520 0.00 3,293.44
500 3,764 3,756 3,766 0.266 433 0.15 13,195.05

u1432

50 362,072 361,597 362,427 0.230 378 0.00 2,601.75
100 243,793 243,719 243,821 0.042 347 0.00 3.20
200 159,887 159,838 159,934 0.060 370 0.00 11.69

vm1748
10 2,983,645 2,981,277 2,983,645 0.079 388 0.00 192.76
20 1,899,680 1,897,839 1,899,680 0.097 505 0.00 124.72
50 1,004,331 1,004,203 1,004,331 0.013 507 0.00 0.95

d2103

100 unknown 193,793 195,511 0.887 1364 - -
200 117,753 117,727 117,985 0.219 1361 0.00 78.14
300 90,471 90,267 90,752 0.537 1393 0.00 443.95

pcb3038
200 237,399 237,276 237,540 0.111 2558 0.00 448.36
400 156,276 156,267 156,281 0.009 2483 0.00 7.58
500 134,798 134,774 134,817 0.032 2697 0.00 59.08

fl3795

200 53,928 53,866 54,041 0.325 4754 - -
300 39,586 39,570 39,611 0.104 5245 0.00 11,602.83
400 31,354 31,331 31,452 0.386 6294 - -

Table 4: Results for the complete version of the Collecting medians for the TSP-LIB instances.

16

Additionally, variables fixing tests are used to reduce the size of the prob-
lems. In general, the amount of reductions is very significant. For the TSP-
LIB instances, millions of arcs are eliminated (on average, 90% of arcs are
eliminated). Moreover, it is also shown, the reduction tests start to work and
to be more efficient when the gaps are within 5%. This is important because
it avoids applying the reduction tests at every subgradient iteration, and con-
sequently time is saved. Furthermore, two local search procedures are also
used to improve the Collecting medians heuristic. Consequently, optimality
is proved for difficult instances using the complete version of the Collecting
medians and Cplex solver.

A simple idea is used here to improve the lower and the upper bounds
qualities. It reinforces the fact that it is well worth using the problem char-
acteristics to improve primal and dual solutions. As a future work, the
Lagrangean relaxation can be used as a base for a more sophisticated algo-
rithm such as a branch-and-bound tree or a relax-and-cut algorithm [12, 18].
Another possibility is to use the Collecting medians heuristic as a prepro-
cessing phase since it strongly reduces the size of the problems. Moreover,
characteristics of the difficult core for the TSP-LIB instances could be also
investigated.

References

[1] R. Andrade, A. P. Lucena, and N. Maculan. Using lagragian dual infor-
mation to generate degree constrained spanning trees. Discrete Applied
Mathematics, 154(5):703–717, 2006.

[2] P. Avella, A. Sassano, and I. Vasil’ev. Computational study of large-
scale p-median problems. Mathematical Programming: Series A and B,
109(1):89–114, 2007.

[3] J. E. Beasley. OR-Library: Distributing test problems by electronic
mail. Journal of the Operational Research Society, 41:1069–1072, 1990.

[4] J. E. Beasley. Lagrangean relaxation. In C. Reeves, editor, Modern
Heuristic Techniques for Combinatorial Problems, pages 243–303. Wiley,
New York, 1993.

[5] J.E. Beasley. Lagrangean heuristics for location problems. European
Journal of Operational Research, 65(3):383–399, 1993.

[6] A. Belloni and A. Lucena. A lagrangian heuristic for the linear ordering
problem. In M.G.C. Resende and J. Pinho de Sousa, editors, Metaheuris-

17

tics: Computer Decision-Making, pages 123–151. Kluwer Academic Pub-
lishers, 2003.

[7] C. Beltran, C. Tadonki, and J.-Ph Vial. Solving the p-median problem
with a semi-lagrangean relaxation. Computational Optimization and
Applications, 35(2):239 – 260, 2006.

[8] O. Briant and D. Naddef. The optimal diversity management problem.
Operations Research, 52(4):515–526, 2000.

[9] M. E. Captivo. The p -median problem: A survey of metaheuristic
approaches. European Journal of Operations Research, 179(3):65–74,
2007.

[10] N. Christophides and J. E. Beasley. A tree search algorithm for the p-
median problem. European Journal of Operations Research, 10(2):196–
204, 1982.

[11] I. R. de Farias Jr. A family of facets for the uncapacited p median
polytope. Operations Research Letters, 28:161–167, 2001.

[12] L. Escudero, M. Guignard, and K. Malik. A Lagrangean relax-and-cut
approach for the sequential ordering problem with precedence relation-
ships. Annals of Operations Research, 50:219–237, 1994.

[13] M.R. Garey and D.S. Johnson. Computers and intractability: A guide
to the theory of NP-Completeness. W.H. Freeman, New York, 1979.

[14] P. Hanjoul and D. Peeters. A comparasion of two dual-based procedures
for solving the p-median problem. European Journal of Operational
Research, 20(3):387–396, 1985.

[15] P. Hansen and B. Jaumard. Cluster analysis and mathematical pro-
gramming. Mathematical programming, 79(1–3):191–215, 1997.

[16] P. Hansen and N. Mladenović. Complement to a comparative analysis of
heuristics for the p-median problem. Source, Statistics and Computing,
18(1):41–46, 2008.

[17] M. Held and R. M. Karp. The travelling-salesman problem and mini-
mum spanning trees. Operations Research, 18:1138–1162, 1970.

[18] A. Lucena. Non delay relax-and-cut algorithms. Annals of Operations
Research, 140:375–410, 2005.

18

[19] P. B. Mirchandani, A. Oudjit, and R.T. Wong. Multidimensional exten-
sions and a nested dual approach for the m-median problem. European
Journal of Operations Research, 21(1):121–137, 1985.

[20] C. Narula, U. I. Ogbu, and H. M. Samuelsson. An algorithm for the
p-median problem. Operations Research, 25(4):709–713, 1977.

[21] M. R. Rao. Cluster analysis and mathematical programming. Journal
of the American Statical Association, 6(335):622–626, 1971.

[22] J. Reese. Solutions methods for the p-median problem: an annotated
bibliography. Networks, 48(3):125–142, 2006.

[23] G. Reinelt. TSPLIB − A traveling salesman problem library. ORSA
Journal on Computing, 3:376–384, 1991.

[24] M. G. C. Resende and R. F. Werneck. On the implementation of a swap-
based local search procedure for the p-median problem. In Proceedings
of the fifth workshop on algorithm engineering and experiments, pages
119–127, Philadelphia, 2003. SIAM.

[25] M. G. C. Resende and R. F. Werneck. A hybrid heuristic for the p-
median problem. Journal of Heuristics, 10(1):59–88, 2004.

[26] E. L. F. Senne and L. A. N. Lorena. Lagrangean/surrogate heuristics for
p-medians problems. Computing Tools for Modeling, Optimization and
Simulation: Interfaces in Computer Science and Operations Research,
pages 115–130, 2000.

[27] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks:
a survey part i: the p-center and p-median problems. Management
Science, 29(4):482–497, 1983.

[28] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks: a
survey part ii: exploiting tree network structure. Management Science,
29(4):498–511, 1983.

[29] M. B. Teitz and P. Bart. Heuristic methods for estimating the general-
ized vertex median of a weighted graph. Operations Research, 16(5):955–
961, 1968.

[30] R. Whitaker. A fast algorithm for the greedy interchange of large-scale
clustering and median location problems. Information systems and op-
erations research (INFOR), 21:95–108, 1983.

19

