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Abstract

Unification in propositional logics is an active re-
search area. In this paper, we introduce the results
we have obtained within the context of modal logics
and epistemic logics and we present some of the open
problems whose solution will have an important im-
pact on the future of the area.

Résumé

L’unification dans les logiques propositionnelles
est un domaine de recherche actif. Dans cet article,
nous présentons les résultats que nous avons obtenus
dans le cadre des logiques modales et des logiques
épistémiques et nous introduisons quelques uns des
problémes ouverts dont la résolution aura un impact
important sur 'avenir du domaine.

1 Introduction

The problem of solving equations was at the heart
of the algebra of logic created by Boole. In modern
terms, owing to the fact that given n € N and pairs
(p1,91)s .-, (¢©n, ¥n) of Boolean formulas, the system
consisting of the n equivalences o1 <> V1, ..., ©, < Uy,
can be readily transformed into an equivalent system

*Corresponding author. The addresses of the authors
are philippe.balbiani@irit.fr, cigdemgencer@aydin.edu.tr,
mojtaba.mojtahedi@ut.ac.ir, maryam.rostamigiv@irit.fr and
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X ¢ T consisting of only one equivalence, the pro-
blem of solving equations can be interpreted as a sa-
tisfiability problem, or as a unification problem. The
satisfiability problem asks whether the variables of x
can be uniformly replaced by constant formulas (i.e.
the formulas 1 and T) in such a way that the resul-
ting formula evaluates to 1 in the two-element Boolean
algebra. The unification problem asks whether the va-
riables of y can be uniformly replaced by formulas (i.e.
arbitrary formulas) in such a way that the resulting
formula evaluates to 1 under all truth assignments in
the two-element Boolean algebra.

Of relevance in many applications of Artificial In-
telligence, the satisfiability problem has given rise to
a significant corpus of results in automated reasoning.
This is borne out by the numerous problems having
translations to the satisfiability problem and by the
multifarious tools available to solve these translations.
In the case of most applied logics, a similar remark
also applies. Witness, the systematic interest falling on
optimal procedures deciding the satisfiability problem
of freshly designed applied logics rather than on ele-
gant axiomatizations explaining the meaning of their
logical connectives. In comparison, the unification pro-
blem has attracted less attention. The truth is that it
has been examined from a different angle : a desirable
output of the satisfiability problem is a model satis-
fying the given formula whereas a desirable output of
the unification problem is a substitution making the



given formula valid.

From a mathematical point of view, the unification
problem is strongly related to the admissibility pro-
blem which asks with respect to some predetermined
propositional logics L whether given a rule %,
every substitution turning 1, ..., ¢, into members of
L also turns x into a member of L. Firstly, since a
given formula ¢ is unifiable if and only if, when L is
consistent, the associated rule % is non-admissible, we
can turn any algorithm deciding the admissibility pro-
blem into an algorithm deciding the unification pro-
blem. Secondly, since a given rule £-:=2¥n js admis-

sible if and only if, when L is finitary !, every maximal
unifier of @1, ..., @, is also a unifier of x, we can turn,
when L is decidable, any algorithm producing minimal
complete sets of unifiers into an algorithm deciding the
admissibility problem 2. See Ghilardi [18, 19] for illus-
trations within the context of intuitionistic logic and
modal logics like K4 and S4. See also [17, 21].

From the point of view of Artificial Intelligence, uni-
fication in propositional logics is an active research
area and several applications of the unification pro-
blem in the maintenance of knowledge bases have been
considered. In this respect, within the context of a ter-
minology of concepts, we may ask whether given n € N
and pairs (C1,Dq),...,(Cp, Dy) of concept descrip-
tions, a substitution can make these pairs equivalent
by replacing some of their variables by appropriate
concept descriptions. Moreover, we may be interested
to obtain, if possible, the most general substitution
that can make the pairs equivalent. See the related
unification algorithms presented in [3, 4] for the des-
cription languages £L£ and F L.

The thing is that there is a wide variety of situa-
tions where the unification problem arises. Let us ex-
plain our motivation for considering them within the
context of Public Announcement Logic . Suppose the
epistemic formula ¢(p) describes a given initial situa-
tion in terms of the knowledge of a group of agents
about the list of parameter facts p = (p1,...,Pm)
and the epistemic formula ({x(pz)))u(p) represents
the knowledge of the group about p in a desirable final
situation (the t-part) after an executable public an-
nouncement concerning p and the list of variable facts
z = (x1,...,2,) (the x-part) has been performed. It

1. See Section 2 for a definition.

2. It is well-known that owing to its structural completeness,
Boolean logic has a decidable admissibility problem. It was only
after the results of Rybakov [29, 30] that it has been known
that intuitionistic logic and modal logics like K4 and S4 have a
decidable admissibility problem too.

3. In a multi-agent system, public announcements are atomic
actions performed by an outside observer consisting of publicly
announcing a formula [12, Chapter 4]. Perceived by all agents,
it is common knowledge that these public announcements are
truthful.

may happen that ¢(p) — ((x(pZ)))®(p) is not valid in
Public Announcement Logic. Hence, we may ask whe-

ther there are tuples ¢ = (1, ..., ¢,) of formulas such
that (p) — ({x(p$)))¥(p) is valid. Moreover, we may
be interested to obtain the most general tuple ¢ of
formulas such that ¢(p) — ((x(p®)))¥(p) is valid. In
Section 5, we will prove that some unifiable epistemic
formulas as above have always most general unifiers.

In this paper, we introduce the results we have ob-
tained within the context of modal logics and episte-
mic logics and we present some of the open problems
whose solution will have an important impact on the
future of the area.

2  Unification : preliminary definitions

Syntax We consider a propositional language with
a countably infinite set PAR of propositional parame-
ters (p, g, etc), a countably infinite set VAR of pro-
positional variables (x, y, etc), a countable set O of
operators and an arity function p: O — N. Atoms
(a, B, etc) are parameters, or variables. We denote this
language by PL. Its formulas are defined by the rule
v = a | o(e1,...,p,) where o ranges over O and
n = p(o). For all formulas ¢, its set of variables (in
symbols, var(y)) is defined as usual. Let (p1,po,...)
be an enumeration of PAR without repetitions and
(z1,x2,...) be an enumeration of VAR without repe-
titions. We write ¢(pT) to denote a formula whose pa-
rameters form a sublist of p = (p1,...,pm) and whose
variables form a sublist of Z = (x1,...,2,). We use
the standard definition for the notion of subformula.

Semantics Formulas of PL are interpreted in alge-
braic structures, or in relational structures : nondege-
nerate Boolean algebras in the case of Boolean logic,
Kripke frames in the case of modal logics, etc. A set
of values and a set of designated values are coming
with each of these structures : A and {14} in the case
of the nondegenerate Boolean algebra (A,04,%4,+4),
P(W) and {W} in the case of the Kripke frame (W, R),
etc. Models are pairs of the form (S,V) where S is a
structure and V is a truth assignment associating each
formula ¢ with a value V(p) in S. We shall say that
a formula ¢ is true in the model (S,V) if V(p) is a
designated value in S. Let C be a class of structures.
We shall say that a formula is C-valid if it is true in
all models based on a structure in C. The propositional
logic determined by C is the set of all C-valid formu-
las : BL in the case of Boolean logic, K4, S4, etc in
the case of modal logics, etc.

Substitutions A substitution is a homomorphism
o : PL — PL which moves at most finitely many va-



riables. It is parameter-free if for all variables z, o(z)
is parameter-free. It is ground if for all variables =z,
o(x) is variable-free. The composition of the substitu-
tions o and 7 is the substitution o o7 such that for all
variables z, (o o 7)(z) = 7(0(x)).

We shall say that a substitution o is C-equivalent to
a substitution 7 (in symbols ¢ ~ 7) if for all variables
x, each model associate o(z) and 7(z) with the same
value. We shall say that a substitution o is more ge-
neral than a substitution 7 (in symbols o < 7) if there
exists a substitution v such that o o v ~ 7. Obviously,
< contains ~. Moreover, on the set of all substitu-
tions, =~ is reflexive, symmetric and transitive and =
is reflexive and transitive. We shall say that a set
of substitutions is minimal if for all o,7 € X, if 0 < 7
then o = 7.

Unifiers We shall say that a formula ¢ is C-unifiable
if there exists a substitution o such that o(p) is C-
valid. In that case, o is a unifier of ¢. We traditionally
distinguish between elementary unification (ELU) and
unification with parameters (UWP). ELU is the pro-
blem of asking whether a given parameter-free formula
is C-unifiable. UWP is the problem of asking whether
a given formula is C-unifiable. It goes without saying
that the computability of the unification problem in a
propositional logic may vary according to whether one
considers ELU, or considers UWP.

We shall say that a set ¥ of unifiers of a C-unifiable
formula ¢ is complete if for all unifiers o of ¢, there
exists 7 € X such that 7 < ¢. It can be easily proved
that if a C-unifiable formula has minimal complete sets
of unifiers then these sets have the same cardinality.
Hence, an important question is the following [14] :
when a formula is C-unifiable, has it a minimal com-
plete set of unifiers? When the answer is “yes”, how
large is this set ?

Let ¢ be a C-unifiable formula. ¢ is said to be nullary
if there exists no minimal complete set of unifiers of
@, infinitary if there exists a minimal complete set of
unifiers of ¢ but there exists no finite one, finitary if
there exists a finite minimal complete set of unifiers of
¢ but there exists no with cardinality 1 and wunitary
if there exists a minimal complete set of unifiers of
¢ with cardinality 1. Obviously, the types “nullary”,
“infinitary”, “finitary” and “unitary” constitute a set of
jointly exhaustive and pairwise distinct situations for
each unifiable formula.

C — or the propositional logic determined by C —
is said to be nullary if there exists a nullary unifiable
formula, infinitary if every unifiable formula possesses
a minimal complete set of unifiers and there is an infi-
nitary unifiable formula, finitary if every unifiable for-
mula possesses a finite minimal complete set of unifiers

and there is a finitary unifiable formula and wnitary if
every unifiable formula possesses a minimal complete
set of unifiers with cardinality 1. Obviously, the types
“nullary”, “infinitary”, “finitary” and “unitary” consti-
tute a set of jointly exhaustive and pairwise distinct
situations for each propositional logic. Let us remark
that the type of a propositional logic may vary ac-
cording to whether one considers ELU, or considers
UWP.

3 Case of Boolean logic

Syntax and semantics In the case of Boolean lo-
gic, O consists of the usual Boolean connectives L, —
and V together with their usual arities. We denote the
associated language by BPL. The Boolean connectives
T, A, — and <« are defined by the usual abbreviations.

Formulas of BPL are interpreted in nondegenerate
Boolean algebras (A,04,%4,+4) — with A as set of
values and {14} as set of designated values — by
means of truth assignments V' such that V(L) = 04,

V(=p) = V() and V(p V) = V(p) +a V(9).

Computability of wunification The unification
problem in Boolean logic has been firstly investiga-
ted by Boole, his method involving successive elimina-
tion of variables [28]. In Boolean logic, both ELU and
UWP are decidable. To be more precise, ELU and
the satisfiability problem are inter-reducible whereas
UWP and the validity problem of V3-QBF-formulas
are inter-reducible. Hence, in Boolean logic, ELU is
NP-complete and UWP is II¥-complete. See [1] for a
comprehensive analysis.

Unification types Lowenheim [24] has given a for-
mula for the most general solution of a unification pro-
blem expressed in terms of a particular solution. Given
a unifier o of a unifiable formula ¢, let €7, be the sub-
stitution such that for all x € VAR, if x € var(p)
then €7 (z) = (p A x) V (e A o(x)) else € (z) = z.
By induction on the formula ), the reader may prove
that if var(y) C var(p) then ¢ — (e7,(¥) < ) and
¢ — (e5(¥) > o()) are valid. Since o is a uni-
fier of ¢, we obtain the validity of ¢ — €7(¢) and
¢ — €Z(¢). Moreover, for all unifers 7 of ¢ and for
all variables x, 7(e7, (7)) <> 7(x) is valid. Hence, €7 is
a unifier of ¢ and for all unifiers 7 of ¢, €7 < 7. Thus,
€, Is a most general unifier of ¢ : it constitutes by its
own a complete set of unifiers of p. Consequently, ¢ is
unitary.

In the case of ELU, given a unifiable parameter-free
formula ¢, we can define a most general unifier of it
by firstly considering a truth assignment V' in the two-

element Boolean algebra such that V(p) = 1 and by



secondly defining the substitution ¢ such that for all
x € VAR, if © € var(p) then €(z) = “if V(z) =
0 then ¢ A z else ¢ — 7 else €' () = z. Obviously,
the substitution € is equivalent to the substitution
€z defined in the previous paragraph when oy is the
parameter-free ground substitution such that for all
x € VAR, if x € var(p) then oy (z) = “if V(z) =
0 then L else T” else oy (x) = x.

Additional comments Restricting BPL to a lan-
guage (denoted BPL™) where — is the sole Boo-
lean connective makes the satisfiability problem tri-
vial seeing that every formula then becomes satis-
fiable. Nevertheless, the validity problem still remains
coNP-hard. So, all in all, BPL™ is at least easier than
BPL for what concerns the satisfiability problem, or
the validity problem. Surprisingly, the effect of restric-
ting BPL to BPL™ is opposite for what concerns the
unification problem. This opposite effect is visible for
example, in the formula @ — (p V ¢) which is unifiable
and non-unitary . It is unifiable : BP L -substitutions
like o, (z) =pV (¢Az) and o4(x) = (pAx)Vq are uni-
fiers of it ®. However, it is non-unitary. Let us see why.
Indeed, suppose it is unitary. Let 7 be a BPL ™ -unifier
of it such that 7 < 0, and 7 < 0. As can be proved by
induction on ¢ € BPL™, if o — (pV q) is valid then
p —  is valid, or ¢ — ¢ is valid. Since 7 is a unifier of
x — (pV q), therefore p — 7(x) is valid, or ¢ — 7(z)
is valid. Without loss of generality, suppose p — 7(x)
is valid. Since 7 =< o, therefore A(7(z)) + o4(z) is
valid for some substitution A. Since p — 7(x) is valid,
therefore p — ((p A x) V q) is valid : a contradiction.

This increased difficulty in the unification problem
has to be related to the fact that in BPL™, Boolean
logic is losing its structural completeness. In order to
understand why, let us consider the rule Z=2. As the
reader can prove, for all BPL ™ -formulas ¢, if ¢ — p
is valid then p — ¢ is valid. Hence, the considered rule
is admissible. Nevertheless, it is not derivable. Let us
see why. Indeed, suppose the rule is derivable. Thus,
by using the derivation theorem which still holds in
BPL™ [13, Chapter 9], the formula (z — p) — (p —
x) is valid : a contradiction.

The type of BPL” for UWP is unknown
and we conjecture that it is finitary. See Bal-
biani and Mojtahedi [8] for preliminary results. For
BPLT-ELU, it is relatively easy to prove that every
formula is unifiable and unitary. In order to unders-
tand why, let ¢ € BPL™ be a parameter-free formula.
Let + € VAR and ¢ € BPL be such that x does

4. In BPL™, the Boolean connective V is definable by (¢ V
¥) == ((p = ) = ¢).

5. As the reader can prove, formulas like p V (¢ A z) and
(p A )V q are definable in BPL™.

not occur in ¥ and ¢ < (¥ V ) is valid®. Let € be
the BPL ™ -substitution such that for all y € VAR,
if y = x then e(y) = ¢ — = else e(y) = y. Since x
does not occur in ¢ and ¢ <> (¢ V x) is valid, there-
fore e(¢) < (¥ V (v V z) — x)) is valid. Moreover,
for all BPL ™ -unifiers 7 of ¢ and for all y € VAR,
7(e(y)) < 7(y) is valid. Hence, € is a BPL ™ -unifier
of ¢ and for all BPL ™ -unifiers 7 of ¢, ¢ < 7. Thus,
€ is a most general unifier of ¢ : it constitutes by its
own a complete set of unifiers of . Consequently, ¢ is
unitary.

4 Case of modal logics

Syntax and semantics In the case of modal lo-
gics, on top of the Boolean connectives considered in
Section 3, O contains the modality O... (“necessarily,
...7) of arity 1. We denote the associated language by
MPL. The modality < ... (“possibly, ...”) of arity 1
is defined by the abbreviation : $p ::= =0O-¢p. For all
n > 0, we write 1...9, to mean o1 A ... A @,. We
write ¥ to mean —¢ and we write ¢! to mean ¢. For
all d > 0, we write 0<% to mean T when d = 0,
(o A OO<9"1y) otherwise and we write 0% to mean
¢ when d = 0, 009 1y otherwise. For all formulas 1),
we write [ to mean O(v) — ). For all formulas 1
and for all d > 0, we write [¢]<%p to mean T when
d =0, (pA[Y][1)]<?Lp) otherwise and we write [1)]%p
to mean ¢ when d = 0, [¢)][)]9" 1y otherwise. For all
formulas ¢, its modal degree (in symbols, deg(y)) is
defined as usual.

Formulas of M'PL are interpreted in Kripke frames
(W, R) — with P(W) as set of values and {W'} as set of
designated values — by means of truth assignments V'
such that V(L) =0, V(=) = W\ V(p), V(e V) =
V(p) UV(y) and V(Op) = {s € W : forall t €
W, if R(s,t) then t € V(p)}. In this section, we will
consider the modal logics enumerated in Table 1.

Computability of unification In some popular
modal logics, to solve the unification problem is not
a mere formality. The truth is that contrary to the
case of Boolean logic, there exists parameter-free for-
mulas that are satisfiable without being unifiable. To
see why, take the parameter-free formula ¢x A O—ux.
In many modal logics such as K4, S4, etc, this for-
mula is satisfiable. Nevertheless, it is known that if
this formula is unifiable in a modal logic L then L
is inconsistent [15, 27]. The thing is that, while atta-
cking the unification problem, little, if anything, from
the standard tools in modal logics (canonical models,

6. Given a parameter-free formula ¢ € BPL™, the existence
of z € VAR and ¢ € BPL such that z does not occur in ¢ and
¢ <> (¥ V z) is valid can be proved by induction on ¢.



Modal logics Class of Kripke frames

K All
KD Serial
KT Reflexive
KB Symmetric
KDB Serial symmetric

KTB Reflexive symmetric
KG Church-Rosser
KDG Serial Church-Rosser
KTG Reflexive Church-Rosser
K4 Transitive
S4 Reflexive transitive
S5 Reflexive transitive Euclidean
Alt, Deterministic

TABLE 1 — Some modal logics together with the classes
of Kripke frames that determine them.

filtrations, etc) is helpful — to such an extent that
the computability of the following problems re-
mains open : ELU in K and KB and UWP in
KD, KT, KDB, KTB and Alt;.

The case of Alt; constitutes a good example of what
are the difficulties of the unification problem in mo-
dal logics. Within the context of this modal logic, the
modality O corresponds in Kripke frames to a deter-
ministic binary relation similar to the binary relation
corresponding to the “next” modality of linear tem-
poral logics. It is well-known that Alt; gives rise to
an NP-complete satisfiability problem. Recently, by
reducing Alt;-FLU to the problem of determining
whether a graph contains an Hamiltonian path, Bal-
biani and Tinchev [9] have proved that Alt;-FLU is in
PSPACE. Nevertheless, the argument they have put
forward does not seem to be adaptable to the case of
Alt;-UWP and the computability of Alt,-UWP
remains open.

Luckily, in some other popular modal logics, to solve
the unification problem is relatively easy. For instance,
in modal logics L containing KD, ELU is in NP.
This can be proved by reducing L-ELU to the pro-
blem of determining whether, given a parameter-free
formula (%), there are tuples ¢ of atom-free formulas
uniformly replacing the variables in the tuple z such
that o(¢) is in KD. Owing to the fact that every atom-
free formula is KD-equivalent to 1, or KD-equivalent
to T, one readily observes that the atom-free formu-
las in ¢ uniformly replacing the variables in Z can be
restricted to the formulas | and T. This gives rise to
a nondeterministic algorithm able to solve L-ELU in
polynomial time.

If one considers a modal logic not containing KD, or
one interests in UWP then the complexity of the uni-

fication problem may dramatically increase. Investiga-
ted as a subproblem of the non-admissibility problem,
the unification problem has been proved by Ryba-
kov [29] to be decidable in modal logics such as K4, S4,
etc. Nevertheless, apart from the work of Jerdbek [22]
who has studied the computability of the admissibi-
lity problem in modal logics such as K4, S4, etc, the
computability of ELU and UWZP is still largely
terra incognita in most modal logics.

Unification types We have seen in Section 3 that in
Boolean logic, every unifiable formulas can be proved
to be unitary. In some modal logics, that is quite a
different matter. Consider for example, the formula
OxVO-ez. It is K-unifiable : substitutions like o1 (x) =
T and o (z) = L are unifiers of it. However, it is
finitary. Let us see why. Firstly, the above-mentioned
unifiers o+ and o constitute a complete set of unifiers
of it. This is a consequence of the fact that K satisfies
the modal disjunction property : for all formulas ¢, 1,
if dp v Oy is in K then ¢ is in K, or ¢ is in K.
Secondly, there exists no unifier 7 of Ox V O-z such
that 7 < o+ and 7 < ¢ . Indeed, suppose T is a unifier
such that 7 < o1 and 7 < ¢ | . Since 7 is a K-unifier of
Oz VO-z, therefore by the modal disjunction property,
7(z) is in K, or =7 () is in K. In the former case, since
7 = 0, therefore T <+ L is in K : a contradiction. In
the latter case, since 7 =< o, therefore L <+ T is in
K : a contradiction.

The existence of a finitary K-unifiable formula
does not imply that all K-unifiable formulas are fi-
nitary. Witness, the formula z — Oz put forward
by Jefdbek [23]. It is K-unifiable : substitutions like
or(r) = T and o4(x) = 0<%z AO%L for each d > 0
are unifiers of it. However, it is nullary. Let us see
why. Firstly, for all unifiers 7 of x — Oz, 7(z) is in
K, or 7(z) — 0%%8(7(#) | is in K. This is a conse-
quence of the fact that K satisfies the following va-
riant of the rule of margins : for all formulas ¢, if
@ — Oy is in K then ¢ is in K, or ¢ — 098(#) | ig
in K. Secondly, as the reader can prove, for all sub-
stitutions 7, 7(x) is in K iff o1 < 7 and for all uni-
fiers 7 of x — Oz, 7(z) — 0@ is in K iff
Odeg(r(x)) = 7- Thirdly, there exists no minimal com-
plete set of unifiers of £ — Oz. Indeed, suppose X is
a minimal complete set of unifiers of x — Oz. Since X
is complete, therefore let 7 € X be such that 7 < ay.
Since ¥ is a set of unifiers of © — O, therefore 7(z)
is in K, or 7(z) — 0%87®) | is in K. In the for-
mer case, o7 =< 7. Since 7 = 0, therefore o+ =< og.
Hence, T <+ L is in K : a contradiction. In the latter
case, since X is a set of unifiers of x — Oz, there-
fore ogeg(r(2)) = 7. Since X is complete, therefore let
p € ¥ be such that 1 X 0 geg(r(2))+1- As the reader can



Prove, Odeg(r(z))+1 = Odeg(7(x))" Since Odeg(7(x)) =T
and p =X Ogeg(r(x))+1, therefore p =< 7. Since I' is
minimal, therefore p = 7. Since Ggeg(r(2)) =X 7 and
B =2 Odeg(r(z))+1, therefore Ogeg(r(z)) =X Odeg(r(a))+1-
Thus, A(Udeg(f(w))(x)) g Udeg(r(z))—&-l(‘r) is in K for
some substitution A. Consequently, Odeg(T(@)+1]
Odee(7(#)) | is in K : a contradiction.

Because of the strong proximity between the mo-
dal logics K, KD, KT, KB, KDB and KTB in
terms of axiomatization/completeness and decida-
bility /complexity, the reader may wonder whether
Jerabek’s line of reasoning can be used as it is for KD,
KT, KB, KDB and KTB. Obviously, in this line of
reasoning, the formulas O%1 for each d > 0 play an
important role”. Unfortunately, when d > 1, 091 is
equivalent to 1 in KD, KT, KDB and KTB and is
equivalent to 01 in KB. It follows that Jerabek’s line
of reasoning has to be seriously adapted if one wants
to apply it to KD, KT, KB, KDB and KTB.

Using a parameter p, Balbiani and Gencer [6] have
considered the formula x — (p A [p]z) within the
context of KD. This formula is KD-unifiable : substi-
tutions like o, () = p and o4(x) = p A [p]<%z A [p]?L
for each d > 0 are unifiers of it. However, it is nul-
lary. To see why, it suffices to firstly prove that for
all unifiers 7 of z — (p A [plx), T(x) + p is in KD,
or 7(x) — [p]%87@) | is in KD, to secondly prove
that for all substitutions 7, 7(x) > p is in KD iff
op = 7 and for all unifiers 7 of z — (p A [p|z),
m(z) = [p]9e @) L is in KD iff 0geg(r(z)) = 7 and
to thirdly prove that there exists no minimal complete
set of unifiers of x — (p A [p]x).

Using distinct parameters p, ¢, Balbiani [5] and Bal-
biani and Gencer [7] have respectively considered the
formula (z — (p A [¢ly)) A (y — (¢ A [p]z)) within
the context of KT and the formula (p°¢° A ) —
[1°"][p'¢°)[p°¢°]z) within the context of KB, KDB
and K'TB. Following a line of reasoning similar to the
ones presented above, they have proved that the for-
mer formula is unifiable and nullary in KT and the
latter formula is unifiable and nullary in KB, KDB
and KTB.

The nullariness character of the modal logics KD,
KT, KB, KDB and KTB constitutes an answer to a
question put forward by Dzik [14, Chapter 5]. Never-
theless, this answer only concerns UWP, the types
of KD, KT, KB, KDB and KTB for ELU re-
maining unknown. Moreover, much remains to be
done, seeing that, for instance, the types of simple
Church-Rosser modal logics like KG, KDG and
KTG are unknown. As well, the type of the least
modal logic containing 0% is unknown for each

7. As well as the fact that for all d > 0, 0%+ 1 — 091 is
not valid.

d>2.

In a sense, the existence of a nullary unifiable for-
mula is the worst thing one can imagine about the uni-
fication type of a modal logic. Luckily, there exists mo-
dal logics where every unifiable formulas can be proved
to be unitary. This is the case of the modal logic S5.
In order to understand why, it suffices given a unifier
o of a unifiable formula ¢, to consider the substitu-
tion €Z such that for all z € VAR, if x € var(yp) then

€2 () - (B Ax) VvV (-Op Aa(x)) else €g(x) = x5
By induction on the formula v, the reader may prove
that if var(y) C var(p) then Op — (e7,(v) <> ) and
—0p — (e2(¥) <> a(¢)) are valid. Since o is a uni-
fier of o, we obtain the validity of Oy — €,(p) and
—0¢ — €7 (). Moreover, for all unifers 7 of ¢ and for
all variable x, 7(€7, (7)) <> 7(z) is valid. Hence, €, is a
unifier of ¢ and for all unifiers 7 of ¢, €, < 7. Thus,
€5, 1s a most general unifier of ¢ : it constitutes by its
own a complete set of unifiers of ¢. Consequently, ¢ is

unitary.

Additional comments The truth is that the above
line of reasoning proving the unitariness of every S5-
unifiable formula can be adapted to each modal lo-
gic where a modality V (“everywhere, ...”) of arity 1
playing the role of a universal modality is definable?.
The unitariness of every unifiable formula is a remar-
kable property of a modal logic seeing that it guaran-
tees the existence of a most general unifier for all its
unifiable formulas. Nevertheless, it does not constitute
a sufficient condition for the decidability of its unifica-
tion problem and its admissibility problem. After the
first results of Rybakov [29, 30] about the decidabi-
lity of the unification problem and the admissibility
problem in modal logics such as K4, S4, etc, it was an
open question to determine whether the decidability of
a modal logic ensures the decidability of its unification
problem and its admissibility problem. This question
has been negatively answered by Chagrov [11] who has
constructed a — rather artificial — decidable modal
logic with an undecidable admissibility problem. Later
on, Wolter and Zakharyaschev [32] has proved that the
unification problem and the admissibility problem are
undecidable in K, K4 and every modal logic between
K and K4 when the above-mentioned modality V is
definable.

Today, it is possible, without using the universal mo-
dality, to construct a very simple decidable modal logic
with an undecidable admissibility problem. Let us see

8. The reader will remark how this substitution looks like
the Lowenheim substitution considered in Section 3.

9. Enriching modal logics with the universal modality gives
rise to an EXP-complete satisfiability problem in the case of K
and a PSPACE-complete satisfiability problem in the case of
some simple extensions of K4 and S4 [20, 31].



how. In the case of the modal logic Alt; x Alt; —
the product of Alt; with itself —, on top of the Boo-
lean connectives considered in Section 3, O contains
the modalities Oy ... and Oy ... of arity 1. The mo-
dalities ¢ ... and Oy ... of arity 1 are defined by the
abbreviations : O 1= 2017 and Cop 1= Oy,
Formulas are interpreted in Kripke frames (W, Ry, Ry)
where Ry and Rs are deterministic binary relations on
W such that R1OR2 Q RQORl, R20R1 g R10R2
and Rl_1 oRy C Ryo Rl_1 — with P(W) as set of va-
lues and {W} as set of designated values — by means
of truth assignments V' such that V(Oyp) = {s € W :
for allt € W, if Ry (s,t) thent € V(¢)} and V(Oap) =
{s € W: forall t € W, if Ry(s,t) then ¢t € V(p)}.
It is well-known that in Alt; x Alt;, the satisfiability
problem is N P-complete [16, Theorem 8.53]. What is
maybe less known is that in Alt; x Alty, the validity
problem of rules is undecidable 1% [16, Theorem 8.54].
What is new is that in Alt; x Alt;, the admissibility
problem is undecidable. This can be proved by a reduc-
tion of the domino-tiling problem (II) an instance of
which consists of a 7-tuple (D, S1,S2, Dy, D4, D;, D,.)
where D is a finite set of domino-types, S; and So
are binary relations on D and D,, Dg4, D; and D,
are subsets of D. A tiling of such 7-tuple is a triple
(a1, a9, f) where a1, as are positive integers and f is a
function associating an element f(i1,i2) € D to each
(i1,42) € {1,...,a1} x {1,...,a2}. We shall say that
(a1, aq, f) is correct if the following conditions hold for
all iy € {1,...,a1} and for all i3 € {1,..., a2} :
— if i1 < a; then f(il,ig)slf(ﬁ + 1,i2),
— if iy < ap then f(i1,42)S2 f(i1,42 + 1),
— fla1,i2) € Dy,
— f(1,i2) € Dy,
o f(zhl) € Dla
— f(il,ag) e D,.
Let (D, S1,S2,D,, D4, D, D,) be an instance of (II)
with é1,...,d, a list of its domino-types. Let ¥, z and
x1,...,%, be pairwise distinct variables. Let ¢ be the
conjunction of the following formulas :
— 0409 (zp A xy) where 1 < k,l <n and k # [,
— O10s(zp — O V{z : 1 <1 <nand (6,d) €
S1}) where 1 < k <n,
— O0y09(xg — Og {2y :
So}) where 1 < k <n,
— y — (Oiy A Ogy),
— 2z — (012 AOg2),
— 7y — Uiy,
— -z — Uamz,
— O0x((yADO;L) = V{ag: 1<k <nandd€
D.}).
— Oa((y A —z) = O9(z = VW{e + 1 <k <

1 <1< nand (d,0) €

10. The rule % is walid if the validity of ¢1,...,¢n
implies the validity of x.

n and 0, € Dg})),
— Oy((ry A 2) = Oy — Vi : 1 <k <
n and 0, € D;})),
— O403((zA0O0L) = V{ag : 1 <k <nandd€
D, }).
Let 1 be the formula
— (CoyAC12AT1 00 V{zg : 1 <k <n})— (yVz).
What is remarkable is that there exists a correct tiling
iff the rule 2 is not admissible. Seeing that the domino-
tiling problem (II) is undecidable [26], this proves that
in Alt; x Alty, the admissibility problem is undeci-
dable. As for the computability of Alt; x Alt;-
ELU and Alt; x Alt;-UWP, it is open.

5 Case of multi-agent epistemic logics

Syntax and semantics In the case of multi-agent
epistemic logics, on top of the Boolean connectives
considered in Section 3, O consists of the modalities
Og ... (“agent a knows that ...”) of arity 1 where a
ranges over a countable set AGT of agents. We denote
the associated language by MAEPL. The modalities
Og - .. (“it is compatible with the knowledge of agent a
that ...”) of arity 1 are defined by the abbreviations :
Opp = 0, ~¢. We shall say that a formula ¢ is Boo-
lean if for all a € AGT, ¢ contains no occurrence of
the modality O,. For all a € AGT, we shall say that
a formula ¢ is a-restricted if for all b € AGT, if a # b
then ¢ contains no occurrence of the modality O;. For
all a € AGT, we shall say that a formula ¢ is a-monic
if for all b € AGT and for all formulas v, if Oy is
a subformula of ¢ then a = b, or ¥ is variable-free.
Obviously, for all a € AGT, every a-restricted formula
is a-monic.

Formulas of MAEPL are interpreted in multi-agent
Kripke frames (W,{R, : a € AGT}) by means of
truth assignments V' such that V(Oup) = {s € W :
for all t € W, if R,(s,t) then t € V(¢)}. In this sec-
tion, we will not reopen the debate about the reaso-
nableness of the notion of knowledge corresponding to
such-and-such class of multi-agent Kripke frames. We
will rather content ourselves with analyzing the effects
of the considered classes of multi-agent Kripke frames
on the computability of unification and the unifica-
tion types. In most cases, it is assumed that for all
a € AGT, the accessibility relation R, is an equiva-
lence relation ''. The associated modal logic is denoted
S5 4¢7- In few cases, it is moreover assumed that for all
a,b € AGT, the accessibility relations R, and R, are
in local agreement, i.e. for all s € W, R, (s) C Ry(s), or

11. In that case, for all a € AGT and for all s € W, we will
denote by Rq(s) the equivalence class modulo R, with s as its
representative.



Ry(s) C Ru(s). The associated modal logic is denoted
S54g7-

Computability of unification S54g7-ELU and
SSlng—ELU are NP-complete, seeing that the cor-
responding classes of multi-agent Kripke frames are
such that for all @ € AGT, R, is serial '2. Regarding
S5467-UWP and S5lf‘{g7—- UWP, their computa-
bility is a mystery.

Unification types In this paragraph, we consider
the class of multi-agent Kripke frames where for all a €
AGT, R, is an equivalence relation. If AGT is finite
then the modality V (“every agent knows that ...”) of
arity 1 defined by the abbreviation Vo ::= A{Ogp :
a € AGT} plays the role of a universal modality when
we restrict the discussion to the class of multi-agent
Kripke frames where for all a,b € AGT, R, and R}, are
in local agreement. In this case, following the argument
used in Section 4 for modal logics where a modality
playing the role of a universal modality is definable,
every unifiable formulas can be proved to be unitary.

Otherwise, that is to say if AGT is not finite, or
when we do not restrict the discussion to the class of
multi-agent Kripke frames where for all a,b € AGT,
R, and R; are in local agreement, the situation is
worse. To see why, use pairwise distinct parameters
p, ¢, and take the formula (z — Oz) A (-2 — B-z)
where for all formulas ¢, we write [y to mean
%1 [P0 2 [P Ol [pOq ]2 [p OOl [p O ]2
and we write By to mean pl¢®r!t — [ptq®r0)2[p°qtri];
[P°q r0)2[p° ¢ r )1 [p ¢rC]2 01 . Tt is S5 4g7-unifiable :
substitutions like o4(z) = 0<%z A9 L for each d > 0
and 74(xr) = —(B<?-~z A B?1) for each d > 0 are
unifiers of it. However, following a line of reasoning
similar to the ones developed above for K and KD,
the reader may prove that it is nullary.

Additional comments The existence of a nul-
lary S5 4g7-unifiable formula does not imply that all
S5 4g7-unifiable formulas are nullary. Witness, the
monic formulas. Indeed, let a € AGT and ¢ be an
a-monic formula. Suppose it is S5 4g7-unifiable. Since
¢ is a-monic, therefore for all b € AGT and for all
formulas ¥, if Oy1p is a subformula of ¢ then a = b,
or v is variable-free. Given an S5 4g7-unifier o of a ¢,
let €7, be the substitution such that for all = € VAR,
if z € var(p) then €7 (z) = (Qap Az) V (mOap Ao (z))
else €7 (x) = z. By induction on the a-monic formula

©
1, the reader may prove that if var(y) C var(y) then

12. The line of reasoning we have developed in Section 4 to
prove that ELU is in NP for each modal logic containing KD
can be applied in the multi-agent setting as well.

Oup = (e2(¥) < ¥) and ~Oup — (eZ(¥) < o())
are valid. Since ¢ is a unifier of ¢, we obtain the
validity of O — €Z(p) and —Oup — €Z(p). Mo-
reover, for all unifers 7 of ¢ and for all variable z,
7(eZ (7)) < 7(x) is valid. Hence, €7 is a unifier of ¢
and for all unifiers 7 of ¢, eg =< 7. Thus, e:; is a most
general unifier of ¢ : it constitutes by its own a com-
plete set of unifiers of . Consequently, ¢ is unitary.

In next section, we will apply this line of reasoning
to the monic MAEPL-formulas associated to some
simple epistemic planning problems.

6 Application to epistemic planning

On top of the Boolean connectives L, = and V consi-
dered in Section 3 and the modalities O, considered in
Section 5, let us define the modalities [[¢]] ... of arity
1 for each ¢ € MAEPL by the inductive abbrevia-
tions [[p]]lp == (¢ = p), [[P]]L = —o, [[@]]¢ ==
(p = =llelly), [PV x) == ([[¢]]¥ v [[#lx) and
[[]]Bath := (¢ — Ou[[p]]®). Let us define the moda-
lities (()) ... of arity 1 for each ¢ € MAEPL by the
abbreviations : ((¢)) = —[[¢]]-*. Within the set-
ting of Public Announcement Logic [12, Chapter 4], for
all o € MAEPL, the modalities [[¢]]... (“if ¢ holds
then after it is announced, . .. holds”) and {{(¢)) ... (“¢
holds and after it is announced, ... holds”) have been
used to formalize the notion of the public announce-
ment of ¢ which is the atomic action performed by an
outside observer, perceived by all agents and consis-
ting of publicly announcing . By means of these mo-
dalities together with the modality of common know-
ledge, one can faithfully represent all of the reasoning
in examples such as the muddy children puzzle.

The reader will remark that the formulas written
by using the modalities [[¢]] ... and {{¢)) ... where ¢
ranges over the set of all MAEP L-formulas are expo-
nentially more succinct than the MAEP L-formulas
they are the abbreviations of. Nevertheless, as pro-
ved by Lutz [25], the membership in S54g7 of for-
mulas written by using these modalities has the same
complexity as the membership in S5 467 of MAEPL-
formulas : PSPACE.

Suppose the formula ¢(p) describes a given initial
situation in terms of the knowledge of AGT-agents
about the list of parameter facts p = (p1,...,Pm)
and the formula ({x(pZ)))®(p) represents the know-
ledge of these agents about p in a desirable final si-
tuation (the v-part) after an executable public an-
nouncement concerning p and the list of variable facts
Z = (x1,...,2pn) (the x-part) has been performed.
It may happen that ¢(p) — ((x(pZ)))¥(p) is not
S5 ag7-valid. Hence, we may ask whether there are
tuples ¢ = (¢1,...,¢,) of formulas such that p(p) —



{{(x(pd)))¥(p) is valid. Moreover, we may be interes-
ted to obtain the most general tuple ¢ of formulas such
that ¢(p) — ((x(p¢)))1(p) is valid. Introduced in this
way, the formula ¢(p) — ((x(pT)))¥(p) constitutes a
special instance of what is now called an epistemic
planning problem. See [10] for a general introduction.

Consider for example, the formula ¥ — ((O,2))0px
where 1 is a variable-free MAEP L-formula, x is a va-
riable, a and b are distinct agents and y is a Boolean
variable-free MAEP L-formula. Considered as an epis-
temic planning problem, to solve this formula means to
ask whether there exists an MAEP L-formula ¢ such
that ¢ — ((0,0))0px — “in every situation where v
holds, a knows that ¢ holds and after it is announced
that a knows that ¢ holds, b knows that x holds” —
is Sbagr-valid. Since x is Boolean, therefore taking
into account the definition of the modalities [[¢]]...
and ({p))... for each ¢ € MAEPL, this is equiva-
lent to solve the formula ¢ — (O,x A Opx’) where
x' is the MAEPL-formula O,z — Y. Since O, cor-
responds in Kripke frames to an equivalence relation,
therefore this is equivalent to solve the conjunction k
of the formulas v — O,z and <pyp — x’. Since
and x are variable-free, therefore x is a-monic. Moreo-
ver, as the reader can prove, k is S5 4¢g7-unifiable iff
Cuth ANOpY — x is S5 gg7-valid. In that case, any sub-
stitution o such that o(z) = <41 is a unifier of it and
by applying the line of reasoning developed in the pa-
ragraph “Additional comments” of Section 5, one can
construct a most general unifier of it and of the given
formula ¢ — ((O,x))0px too.

More generally, one may be interested by solving for-
mulas like ¥ — ((Qex A Cayn A v oo A oym)) (Op, x1 A
... A Op,xn) where 9 is a variable-free MAEPL-
formula, m,n > 0, z and y1, ..., Y, are pairwise dis-
tinct variables, a and bq,...,b, are pairwise distinct
agents and xi,...,Xn are a-restricted variable-free
MAEP L-formulas. Considered as an epistemic plan-
ning problem, to solve this formula means to ask whe-
ther there exists MAEPL-formulas ¢ and 6,...,0,,
such that ¢ — (O A gl Ao A Oelm)) (Tp, x1 A
... A Op, xn) — “in every situation where ¢ holds, a
knows that ¢ holds, it is compatible with the know-
ledge of a that 6; holds for each i € {1,...,m} and
after it is announced that a knows that ¢ holds and it
is compatible with the knowledge of a that 6; holds for
each i € {1,...,m}, b; knows that x; holds for each
je{l,...,n}” —is S5 4g7-valid. Since x1, ..., xn are
a-restricted, therefore taking into account the defini-
tion of the modalities [[¢]] ... and ({(¢)) ... for each ¢ €
MAEPL, this is equivalent to solve the formula ¢ —
(BaZACYIA. - ACYmADp, X1 A. . Ay, x7,) Where X/
is the MAEPL-formula (O,z A1 Ao A Ym) —
x; for each j € {1,...,n}. Since Oy, ..., 0, corres-

pond in Kripke frames to equivalence relations, the-
refore this is equivalent to solve the conjunction s
of the formulas ¢ — (0,2 A Ooyr A oo A Ogym)
and Op, Y — x); where j ranges over {1,...,n}. Since
1 and x1,...,Xn are variable-free, therefore k is a-
monic. Moreover, as the reader can prove,  is S5 4g7-
unifiable iff Gy A Cptb — x; is S5ag7-valid for
each j € {1,...,n}. In that case, any substitution
o such that o(x) = Ou¢ and o(y;) = ¥ for each
j € {l,...,n} is a unifier of it and by applying the
line of reasoning developed in the paragraph “Addi-
tional comments” of Section 5, one can construct a
most general unifier of it and of the given formula
Y= (O Ay Ao ACYm )Y (Op, X1 Ao ADp, Xn)
too.

7 Conclusion

The modal logics like the ones considered in this pa-
per (K, KD, etc) have now limited mathematical in-
terest for what concerns axiomatization/completeness
and decidability /complexity. Nevertheless, with res-
pect to some predetermined propositional logic L,
considering the question of the determination of its
unification type and the question of the computability
of the unification problem it gives rise to is justified
from the following perspectives : methods for deciding
the L-unifiability of formulas can be used to unders-
tand what is the overlap between the properties formu-
las correspond to in L [2]; in case L is a description lo-
gic, unification algorithms can be used to detect redun-
dancies in L-based systems [3, 4] ; methods for deciding
the L-unifiability of formulas can be used to improve
the efficiency of theorem provers devoted to solve the
membership problem in L. One readily observes that,
while attacking the above-mentioned problems, little,
if anything, from the standard tools in modal logics
(canonical models, filtrations, etc) is helpful. In order
to successfully solve them, new techniques in modal lo-
gics must be developed and much remains to be done.
The study of unification in modal logics has still many
secrets to reveal.
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