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A gentle introduction to unification in modal logics

Unification in propositional logics is an active research area. In this paper, we introduce the results we have obtained within the context of modal logics and epistemic logics and we present some of the open problems whose solution will have an important impact on the future of the area.

Résumé

L'unification dans les logiques propositionnelles est un domaine de recherche actif. Dans cet article, nous présentons les résultats que nous avons obtenus dans le cadre des logiques modales et des logiques épistémiques et nous introduisons quelques uns des problèmes ouverts dont la résolution aura un impact important sur l'avenir du domaine.

Introduction

The problem of solving equations was at the heart of the algebra of logic created by Boole. In modern terms, owing to the fact that given n ∈ N and pairs (ϕ 1 , ψ 1 ), . . . , (ϕ n , ψ n ) of Boolean formulas, the system consisting of the n equivalences ϕ 1 ↔ ψ 1 , . . ., ϕ n ↔ ψ n can be readily transformed into an equivalent system χ ↔ consisting of only one equivalence, the problem of solving equations can be interpreted as a satisfiability problem, or as a unification problem. The satisfiability problem asks whether the variables of χ can be uniformly replaced by constant formulas (i.e. the formulas ⊥ and ) in such a way that the resulting formula evaluates to 1 in the two-element Boolean algebra. The unification problem asks whether the variables of χ can be uniformly replaced by formulas (i.e. arbitrary formulas) in such a way that the resulting formula evaluates to 1 under all truth assignments in the two-element Boolean algebra.

Of relevance in many applications of Artificial Intelligence, the satisfiability problem has given rise to a significant corpus of results in automated reasoning. This is borne out by the numerous problems having translations to the satisfiability problem and by the multifarious tools available to solve these translations. In the case of most applied logics, a similar remark also applies. Witness, the systematic interest falling on optimal procedures deciding the satisfiability problem of freshly designed applied logics rather than on elegant axiomatizations explaining the meaning of their logical connectives. In comparison, the unification problem has attracted less attention. The truth is that it has been examined from a different angle : a desirable output of the satisfiability problem is a model satisfying the given formula whereas a desirable output of the unification problem is a substitution making the given formula valid.

From a mathematical point of view, the unification problem is strongly related to the admissibility problem which asks with respect to some predetermined propositional logics L whether given a rule ϕ1,...,ϕn χ , every substitution turning ϕ 1 , . . . , ϕ n into members of L also turns χ into a member of L. Firstly, since a given formula ϕ is unifiable if and only if, when L is consistent, the associated rule ϕ ⊥ is non-admissible, we can turn any algorithm deciding the admissibility problem into an algorithm deciding the unification problem. Secondly, since a given rule ϕ1,...,ϕn χ is admissible if and only if, when L is finitary 1 , every maximal unifier of ϕ 1 , . . . , ϕ n is also a unifier of χ, we can turn, when L is decidable, any algorithm producing minimal complete sets of unifiers into an algorithm deciding the admissibility problem 2 . See Ghilardi [START_REF] Ghilardi | Unification in intuitionistic logic[END_REF][START_REF] Ghilardi | Best solving modal equations[END_REF] for illustrations within the context of intuitionistic logic and modal logics like K4 and S4. See also [START_REF] Gencer | Unifiability in extensions of K4[END_REF][START_REF] Iemhoff | On the admissible rules of intuitionistic propositional logic[END_REF].

From the point of view of Artificial Intelligence, unification in propositional logics is an active research area and several applications of the unification problem in the maintenance of knowledge bases have been considered. In this respect, within the context of a terminology of concepts, we may ask whether given n ∈ N and pairs (C 1 , D 1 ), . . . , (C n , D n ) of concept descriptions, a substitution can make these pairs equivalent by replacing some of their variables by appropriate concept descriptions. Moreover, we may be interested to obtain, if possible, the most general substitution that can make the pairs equivalent. See the related unification algorithms presented in [START_REF] Baader | Unification in the description logic EL[END_REF][START_REF] Baader | Unification of concept terms in description logics[END_REF] for the description languages EL and FL 0 .

The thing is that there is a wide variety of situations where the unification problem arises. Let us explain our motivation for considering them within the context of Public Announcement Logic 3 . Suppose the epistemic formula ϕ(p) describes a given initial situation in terms of the knowledge of a group of agents about the list of parameter facts p = (p 1 , . . . , p m ) and the epistemic formula χ(px) ψ(p) represents the knowledge of the group about p in a desirable final situation (the ψ-part) after an executable public announcement concerning p and the list of variable facts x = (x 1 , . . . , x n ) (the χ-part) has been performed. It 1. See Section 2 for a definition. 2. It is well-known that owing to its structural completeness, Boolean logic has a decidable admissibility problem. It was only after the results of Rybakov [START_REF] Rybakov | A criterion for admissibility of rules in the model system S4 and the intuitionistic logic[END_REF][START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF] that it has been known that intuitionistic logic and modal logics like K4 and S4 have a decidable admissibility problem too.

3. In a multi-agent system, public announcements are atomic actions performed by an outside observer consisting of publicly announcing a formula [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF]Chapter 4]. Perceived by all agents, it is common knowledge that these public announcements are truthful.

may happen that ϕ(p) → χ(px) ψ(p) is not valid in Public Announcement Logic. Hence, we may ask whether there are tuples φ = (φ 1 , . . . , φ n ) of formulas such that ϕ(p) → χ(p φ) ψ(p) is valid. Moreover, we may be interested to obtain the most general tuple φ of formulas such that ϕ(p) → χ(p φ) ψ(p) is valid. In Section 5, we will prove that some unifiable epistemic formulas as above have always most general unifiers.

In this paper, we introduce the results we have obtained within the context of modal logics and epistemic logics and we present some of the open problems whose solution will have an important impact on the future of the area.

Unification : preliminary definitions

Syntax We consider a propositional language with a countably infinite set PAR of propositional parameters (p, q, etc), a countably infinite set VAR of propositional variables (x, y, etc), a countable set O of operators and an arity function ρ : O -→ N. Atoms (α, β, etc) are parameters, or variables. We denote this language by PL. Its formulas are defined by the rule ϕ ::= α | o(ϕ 1 , . . . , ϕ n ) where o ranges over O and n = ρ(o). For all formulas ϕ, its set of variables (in symbols, var(ϕ)) is defined as usual. Let (p 1 , p 2 , . . .) be an enumeration of PAR without repetitions and (x 1 , x 2 , . . .) be an enumeration of VAR without repetitions. We write ϕ(px) to denote a formula whose parameters form a sublist of p = (p 1 , . . . , p m ) and whose variables form a sublist of x = (x 1 , . . . , x n ). We use the standard definition for the notion of subformula.

Semantics Formulas of PL are interpreted in algebraic structures, or in relational structures : nondegenerate Boolean algebras in the case of Boolean logic, Kripke frames in the case of modal logics, etc. A set of values and a set of designated values are coming with each of these structures : A and {1 A } in the case of the nondegenerate Boolean algebra (A, 0 A , A , + A ), P(W ) and {W } in the case of the Kripke frame (W, R), etc. Models are pairs of the form (S, V ) where S is a structure and V is a truth assignment associating each formula ϕ with a value V (ϕ) in S. We shall say that a formula ϕ is true in the model (S, V ) if V (ϕ) is a designated value in S. Let C be a class of structures. We shall say that a formula is C-valid if it is true in all models based on a structure in C. The propositional logic determined by C is the set of all C-valid formulas : BL in the case of Boolean logic, K4, S4, etc in the case of modal logics, etc.

Substitutions A substitution is a homomorphism σ : PL -→ PL which moves at most finitely many va-riables. It is parameter-free if for all variables x, σ(x) is parameter-free. It is ground if for all variables x, σ(x) is variable-free. The composition of the substitutions σ and τ is the substitution σ • τ such that for all variables x, (σ • τ )(x) = τ (σ(x)).

We shall say that a substitution σ is C-equivalent to a substitution τ (in symbols σ τ ) if for all variables x, each model associate σ(x) and τ (x) with the same value. We shall say that a substitution σ is more general than a substitution τ (in symbols σ τ ) if there exists a substitution υ such that σ • υ τ . Obviously, contains . Moreover, on the set of all substitutions, is reflexive, symmetric and transitive and is reflexive and transitive. We shall say that a set Σ of substitutions is minimal if for all σ, τ ∈ Σ, if σ τ then σ = τ .

Unifiers We shall say that a formula ϕ is C-unifiable if there exists a substitution σ such that σ(ϕ) is Cvalid. In that case, σ is a unifier of ϕ. We traditionally distinguish between elementary unification (ELU) and unification with parameters (UWP). ELU is the problem of asking whether a given parameter-free formula is C-unifiable. UWP is the problem of asking whether a given formula is C-unifiable. It goes without saying that the computability of the unification problem in a propositional logic may vary according to whether one considers ELU, or considers UWP.

We shall say that a set Σ of unifiers of a C-unifiable formula ϕ is complete if for all unifiers σ of ϕ, there exists τ ∈ Σ such that τ σ. It can be easily proved that if a C-unifiable formula has minimal complete sets of unifiers then these sets have the same cardinality. Hence, an important question is the following [START_REF] Dzik | Unification Types in Logic, Wydawnicto Uniwersytetu Slaskiego[END_REF] : when a formula is C-unifiable, has it a minimal complete set of unifiers ? When the answer is "yes", how large is this set ?

Let ϕ be a C-unifiable formula. ϕ is said to be nullary if there exists no minimal complete set of unifiers of ϕ, infinitary if there exists a minimal complete set of unifiers of ϕ but there exists no finite one, finitary if there exists a finite minimal complete set of unifiers of ϕ but there exists no with cardinality 1 and unitary if there exists a minimal complete set of unifiers of ϕ with cardinality 1. Obviously, the types "nullary", "infinitary", "finitary" and "unitary" constitute a set of jointly exhaustive and pairwise distinct situations for each unifiable formula.

C -or the propositional logic determined by Cis said to be nullary if there exists a nullary unifiable formula, infinitary if every unifiable formula possesses a minimal complete set of unifiers and there is an infinitary unifiable formula, finitary if every unifiable formula possesses a finite minimal complete set of unifiers and there is a finitary unifiable formula and unitary if every unifiable formula possesses a minimal complete set of unifiers with cardinality 1. Obviously, the types "nullary", "infinitary", "finitary" and "unitary" constitute a set of jointly exhaustive and pairwise distinct situations for each propositional logic. Let us remark that the type of a propositional logic may vary according to whether one considers ELU, or considers UWP.

Case of Boolean logic

Syntax and semantics In the case of Boolean logic, O consists of the usual Boolean connectives ⊥, ¬ and ∨ together with their usual arities. We denote the associated language by BPL. The Boolean connectives , ∧, → and ↔ are defined by the usual abbreviations. Formulas of BPL are interpreted in nondegenerate Boolean algebras (A, 0 A , A , + A ) -with A as set of values and {1 A } as set of designated values -by means of truth assignments V such that

V (⊥) = 0 A , V (¬ϕ) = V (ϕ) A and V (ϕ ∨ ψ) = V (ϕ) + A V (ψ).

Computability of unification

The unification problem in Boolean logic has been firstly investigated by Boole, his method involving successive elimination of variables [START_REF] Rudeanu | Boolean Functions and Equations[END_REF]. In Boolean logic, both ELU and UWP are decidable. To be more precise, ELU and the satisfiability problem are inter-reducible whereas UWP and the validity problem of ∀∃-QBF-formulas are inter-reducible. Hence, in Boolean logic, ELU is NP-complete and UWP is Π P 2 -complete. See [START_REF] Baader | On the complexity of Boolean unification[END_REF] for a comprehensive analysis.

Unification types Löwenheim [START_REF] Löwenheim | Über das Auflösungsproblem im logischen Klassenkalkül[END_REF] has given a formula for the most general solution of a unification problem expressed in terms of a particular solution. Given a unifier σ of a unifiable formula ϕ, let σ ϕ be the substitution such that for all x ∈ VAR, if x ∈ var(ϕ)

then σ ϕ (x) = (ϕ ∧ x) ∨ (¬ϕ ∧ σ(x)) else σ ϕ (x) = x. By induction on the formula ψ, the reader may prove that if var(ψ) ⊆ var(ϕ) then ϕ → ( σ ϕ (ψ) ↔ ψ) and ¬ϕ → ( σ ϕ (ψ) ↔ σ(ψ)) are valid.
Since σ is a unifier of ϕ, we obtain the validity of ϕ → σ ϕ (ϕ) and ¬ϕ → σ ϕ (ϕ). Moreover, for all unifers τ of ϕ and for all variables x, τ ( σ ϕ (x)) ↔ τ (x) is valid. Hence, σ ϕ is a unifier of ϕ and for all unifiers τ of ϕ, σ ϕ τ . Thus, σ ϕ is a most general unifier of ϕ : it constitutes by its own a complete set of unifiers of ϕ. Consequently, ϕ is unitary.

In the case of ELU, given a unifiable parameter-free formula ϕ, we can define a most general unifier of it by firstly considering a truth assignment V in the twoelement Boolean algebra such that V (ϕ) = 1 and by secondly defining the substitution such that for all

x ∈ VAR, if x ∈ var(ϕ) then (x) = "if V (x) = 0 then ϕ ∧ x else ϕ → x" else (x) = x.
Obviously, the substitution is equivalent to the substitution

σ V
ϕ defined in the previous paragraph when σ V is the parameter-free ground substitution such that for all

x ∈ VAR, if x ∈ var(ϕ) then σ V (x) = "if V (x) = 0 then ⊥ else " else σ V (x) = x.
Additional comments Restricting BPL to a language (denoted BPL → ) where → is the sole Boolean connective makes the satisfiability problem trivial seeing that every formula then becomes satisfiable. Nevertheless, the validity problem still remains coNP-hard. So, all in all, BPL → is at least easier than BPL for what concerns the satisfiability problem, or the validity problem. Surprisingly, the effect of restricting BPL to BPL → is opposite for what concerns the unification problem. This opposite effect is visible for example, in the formula x → (p ∨ q) which is unifiable and non-unitary4 . It is unifiable : BPL → -substitutions like σ p (x) = p ∨ (q ∧ x) and σ q (x) = (p ∧ x) ∨ q are unifiers of it5 . However, it is non-unitary. Let us see why. Indeed, suppose it is unitary. Let τ be a BPL → -unifier of it such that τ σ p and τ σ q . As can be proved by

induction on ϕ ∈ BPL → , if ϕ → (p ∨ q) is valid then p → ϕ is valid, or q → ϕ is valid. Since τ is a unifier of x → (p ∨ q), therefore p → τ (x) is valid, or q → τ (x) is valid. Without loss of generality, suppose p → τ (x) is valid. Since τ σ q , therefore λ(τ (x)) ↔ σ q (x) is valid for some substitution λ. Since p → τ (x) is valid, therefore p → ((p ∧ x) ∨ q) is valid : a contradiction.
This increased difficulty in the unification problem has to be related to the fact that in BPL → , Boolean logic is losing its structural completeness. In order to understand why, let us consider the rule x→p p→x . As the reader can prove, for all BPL → -formulas ϕ, if ϕ → p is valid then p → ϕ is valid. Hence, the considered rule is admissible. Nevertheless, it is not derivable. Let us see why. Indeed, suppose the rule is derivable. Thus, by using the derivation theorem which still holds in

BPL → [13, Chapter 9], the formula (x → p) → (p → x) is valid : a contradiction.
The type of BPL → for UWP is unknown and we conjecture that it is finitary. See Balbiani and Mojtahedi [START_REF] Balbiani | Unification in the implication fragment of Boolean Logic[END_REF] for preliminary results. For BPL → -ELU, it is relatively easy to prove that every formula is unifiable and unitary. In order to understand why, let ϕ ∈ BPL → be a parameter-free formula. Let x ∈ VAR and ψ ∈ BPL be such that x does not occur in ψ and ϕ ↔ (ψ ∨ x) is valid 6 . Let be the BPL → -substitution such that for all y ∈ VAR, if y = x then (y) = ϕ → x else (y) = y. Since x does not occur in ψ and ϕ ↔ (ψ ∨ x) is valid, therefore (ϕ) ↔ (ψ ∨ ((ψ ∨ x) → x)) is valid. Moreover, for all BPL → -unifiers τ of ϕ and for all y ∈ VAR, τ ( (y)) ↔ τ (y) is valid. Hence, is a BPL → -unifier of ϕ and for all BPL → -unifiers τ of ϕ, τ . Thus, is a most general unifier of ϕ : it constitutes by its own a complete set of unifiers of ϕ. Consequently, ϕ is unitary.

Case of modal logics

Syntax and semantics In the case of modal logics, on top of the Boolean connectives considered in Section 3, O contains the modality 2 . . . ("necessarily, . . .") of arity 1. We denote the associated language by MPL. The modality 3 . . . ("possibly, . . .") of arity 1 is defined by the abbreviation : 3ϕ ::= ¬2¬ϕ. For all n ≥ 0, we write ϕ 1 . . . ϕ n to mean ϕ 1 ∧ . . . ∧ ϕ n . We write ϕ 0 to mean ¬ϕ and we write ϕ 1 to mean ϕ. For all d ≥ 0, we write 2 <d ϕ to mean when d = 0, (ϕ ∧ 22 <d-1 ϕ) otherwise and we write 2 d ϕ to mean ϕ when d = 0, 22 d-1 ϕ otherwise. For all formulas ψ, we write [ψ]ϕ to mean 2(ψ → ϕ). For all formulas ψ and for all d ≥ 0, we write 

V such that V (⊥) = ∅, V (¬ϕ) = W \ V (ϕ), V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ) and V (2ϕ) = {s ∈ W : for all t ∈ W, if R(s, t) then t ∈ V (ϕ)}.
In this section, we will consider the modal logics enumerated in Table 1.

Computability of unification

In some popular modal logics, to solve the unification problem is not a mere formality. The truth is that contrary to the case of Boolean logic, there exists parameter-free formulas that are satisfiable without being unifiable. To see why, take the parameter-free formula 3x ∧ 3¬x. In many modal logics such as K4, S4, etc, this formula is satisfiable. Nevertheless, it is known that if this formula is unifiable in a modal logic L then L is inconsistent [START_REF] Fagin | What is an inference rule ?[END_REF][START_REF] Porte | The deducibilities of S5[END_REF]. The thing is that, while attacking the unification problem, little, if anything, from the standard tools in modal logics (canonical models, 6. Given a parameter-free formula ϕ ∈ BPL → , the existence of x ∈ VAR and ψ ∈ BPL such that x does not occur in ψ and ϕ ↔ (ψ ∨ x) is valid can be proved by induction on ϕ. The case of Alt 1 constitutes a good example of what are the difficulties of the unification problem in modal logics. Within the context of this modal logic, the modality 2 corresponds in Kripke frames to a deterministic binary relation similar to the binary relation corresponding to the "next" modality of linear temporal logics. It is well-known that Alt 1 gives rise to an NP-complete satisfiability problem. Recently, by reducing Alt 1 -ELU to the problem of determining whether a graph contains an Hamiltonian path, Balbiani and Tinchev [START_REF] Balbiani | Unification in modal logic Alt 1[END_REF] have proved that Alt 1 -ELU is in PSPACE. Nevertheless, the argument they have put forward does not seem to be adaptable to the case of Alt 1 -UWP and the computability of Alt 1 -UWP remains open.

Luckily, in some other popular modal logics, to solve the unification problem is relatively easy. For instance, in modal logics L containing KD, ELU is in NP. This can be proved by reducing L-ELU to the problem of determining whether, given a parameter-free formula ϕ(x), there are tuples φ of atom-free formulas uniformly replacing the variables in the tuple x such that ϕ( φ) is in KD. Owing to the fact that every atomfree formula is KD-equivalent to ⊥, or KD-equivalent to , one readily observes that the atom-free formulas in φ uniformly replacing the variables in x can be restricted to the formulas ⊥ and . This gives rise to a nondeterministic algorithm able to solve L-ELU in polynomial time.

If one considers a modal logic not containing KD, or one interests in UWP then the complexity of the uni-fication problem may dramatically increase. Investigated as a subproblem of the non-admissibility problem, the unification problem has been proved by Rybakov [START_REF] Rybakov | A criterion for admissibility of rules in the model system S4 and the intuitionistic logic[END_REF] to be decidable in modal logics such as K4, S4, etc. Nevertheless, apart from the work of Jeȓábek [START_REF] Jeȓábek | Complexity of admissible rules[END_REF] who has studied the computability of the admissibility problem in modal logics such as K4, S4, etc, the computability of ELU and UWP is still largely terra incognita in most modal logics.

Unification types

We have seen in Section 3 that in Boolean logic, every unifiable formulas can be proved to be unitary. In some modal logics, that is quite a different matter. Consider for example, the formula 2x∨2¬x. It is K-unifiable : substitutions like σ (x) = and σ ⊥ (x) = ⊥ are unifiers of it. However, it is finitary. Let us see why. Firstly, the above-mentioned unifiers σ and σ ⊥ constitute a complete set of unifiers of it. This is a consequence of the fact that K satisfies the modal disjunction property : for all formulas ϕ, ψ,

if 2ϕ ∨ 2ψ is in K then ϕ is in K, or ψ is in K.
Secondly, there exists no unifier τ of 2x ∨ 2¬x such that τ σ and τ σ ⊥ . Indeed, suppose τ is a unifier such that τ σ and τ σ ⊥ . Since τ is a K-unifier of 2x∨2¬x, therefore by the modal disjunction property, τ (x) is in K, or ¬τ (x) is in K. In the former case, since τ σ ⊥ , therefore ↔ ⊥ is in K : a contradiction. In the latter case, since τ σ , therefore ⊥ ↔ is in K : a contradiction.

The existence of a finitary K-unifiable formula does not imply that all K-unifiable formulas are finitary. Witness, the formula x → 2x put forward by Jeȓábek [START_REF] Jeȓábek | Blending margins : the modal logic K has nullary unification type[END_REF]. It is K-unifiable : substitutions like σ (x) = and σ d (x) = 2 <d x ∧ 2 d ⊥ for each d ≥ 0 are unifiers of it. However, it is nullary. Let us see why. Firstly, for all unifiers τ of x → 2x, τ (x) is in K, or τ (x) → 2 deg(τ (x)) ⊥ is in K. This is a consequence of the fact that K satisfies the following variant of the rule of margins : for all formulas ϕ, if

ϕ → 2ϕ is in K then ϕ is in K, or ϕ → 2 deg(ϕ) ⊥ is in K.
Secondly, as the reader can prove, for all substitutions τ , τ (x) is in K iff σ τ and for all uni-

fiers τ of x → 2x, τ (x) → 2 deg(τ (x)) ⊥ is in K iff σ deg(τ (x))
τ . Thirdly, there exists no minimal complete set of unifiers of x → 2x. Indeed, suppose Σ is a minimal complete set of unifiers of x → 2x. Since Σ is complete, therefore let τ ∈ Σ be such that τ σ 0 . Since Σ is a set of unifiers of x → 2x, therefore τ (x) is in K, or τ (x) → 2 deg(τ (x)) ⊥ is in K. In the former case, σ τ . Since τ σ 0 , therefore σ σ 0 . Hence, ↔ ⊥ is in K : a contradiction. In the latter case, since Σ is a set of unifiers of x → 2x, therefore σ deg(τ (x))

τ . Since Σ is complete, therefore let µ ∈ Σ be such that µ σ deg(τ (x))+1 . As the reader can 

(x)) ↔ σ deg(τ (x))+1 (x) is in K for some substitution λ. Consequently, 2 deg(τ (x))+1 ⊥ → 2 deg(τ (x)) ⊥ is in K : a contradiction.
Because of the strong proximity between the modal logics K, KD, KT, KB, KDB and KTB in terms of axiomatization/completeness and decidability/complexity, the reader may wonder whether Jeȓábek's line of reasoning can be used as it is for KD, KT, KB, KDB and KTB. Obviously, in this line of reasoning, the formulas 2 d ⊥ for each d ≥ 0 play an important role 7 . Unfortunately, when d ≥ 1, 2 d ⊥ is equivalent to ⊥ in KD, KT, KDB and KTB and is equivalent to 2⊥ in KB. It follows that Jeȓábek's line of reasoning has to be seriously adapted if one wants to apply it to KD, KT, KB, KDB and KTB.

Using a parameter p, Balbiani and Gencer [START_REF] Balbiani | KD is nullary[END_REF] have considered the formula x → (p ∧ [p]x) within the context of KD. This formula is KD-unifiable : substitutions like σ p (x) = p and σ d (x) = p ∧ [p] <d x ∧ [p] d ⊥ for each d ≥ 0 are unifiers of it. However, it is nullary. To see why, it suffices to firstly prove that for all unifiers τ of x → (p

∧ [p]x), τ (x) ↔ p is in KD, or τ (x) → [p] deg(τ (x))
⊥ is in KD, to secondly prove that for all substitutions τ , τ (x) ↔ p is in KD iff σ p τ and for all unifiers τ of x → (p

∧ [p]x), τ (x) → [p] deg(τ (x)) ⊥ is in KD iff σ deg(τ (x))
τ and to thirdly prove that there exists no minimal complete set of unifiers of x → (p ∧ [p]x).

Using distinct parameters p, q, Balbiani [START_REF] Balbiani | Remarks about the unification type of some non-symmetric non-transitive modal logics[END_REF] and Balbiani and Gencer [START_REF] Balbiani | About the unification type of simple symmetric modal logics[END_REF] have respectively considered the formula (x → (p ∧ [q]y)) ∧ (y → (q ∧ [p]x)) within the context of KT and the formula (p 0 q 0 ∧ x) → [p 0 q 1 ][p 1 q 0 ][p 0 q 0 ]x) within the context of KB, KDB and KTB. Following a line of reasoning similar to the ones presented above, they have proved that the former formula is unifiable and nullary in KT and the latter formula is unifiable and nullary in KB, KDB and KTB.

The nullariness character of the modal logics KD, KT, KB, KDB and KTB constitutes an answer to a question put forward by Dzik [START_REF] Dzik | Unification Types in Logic, Wydawnicto Uniwersytetu Slaskiego[END_REF]Chapter 5]. Nevertheless, this answer only concerns UWP, the types of KD, KT, KB, KDB and KTB for ELU remaining unknown. Moreover, much remains to be done, seeing that, for instance, the types of simple Church-Rosser modal logics like KG, KDG and KTG are unknown. As well, the type of the least modal logic containing 2 d ⊥ is unknown for each 7. As well as the fact that for all d ≥ 0,

2 d+1 ⊥ → 2 d ⊥ is not valid. d ≥ 2.
In a sense, the existence of a nullary unifiable formula is the worst thing one can imagine about the unification type of a modal logic. Luckily, there exists modal logics where every unifiable formulas can be proved to be unitary. This is the case of the modal logic S5. In order to understand why, it suffices given a unifier σ of a unifiable formula ϕ, to consider the substitution σ ϕ such that for all x ∈ VAR, if x ∈ var(ϕ) then

σ ϕ (x) = (2ϕ ∧ x) ∨ (¬2ϕ ∧ σ(x)) else σ ϕ (x) = x 8
. By induction on the formula ψ, the reader may prove that if var(ψ) ⊆ var(ϕ) then 2ϕ → ( σ ϕ (ψ) ↔ ψ) and ¬2ϕ → ( σ ϕ (ψ) ↔ σ(ψ)) are valid. Since σ is a unifier of ϕ, we obtain the validity of 2ϕ → σ ϕ (ϕ) and ¬2ϕ → σ ϕ (ϕ). Moreover, for all unifers τ of ϕ and for all variable x, τ ( σ ϕ (x)) ↔ τ (x) is valid. Hence, σ ϕ is a unifier of ϕ and for all unifiers τ of ϕ, σ ϕ τ . Thus, σ ϕ is a most general unifier of ϕ : it constitutes by its own a complete set of unifiers of ϕ. Consequently, ϕ is unitary.

Additional comments

The truth is that the above line of reasoning proving the unitariness of every S5unifiable formula can be adapted to each modal logic where a modality ∀ ("everywhere, . . .") of arity 1 playing the role of a universal modality is definable 9 . The unitariness of every unifiable formula is a remarkable property of a modal logic seeing that it guarantees the existence of a most general unifier for all its unifiable formulas. Nevertheless, it does not constitute a sufficient condition for the decidability of its unification problem and its admissibility problem. After the first results of Rybakov [START_REF] Rybakov | A criterion for admissibility of rules in the model system S4 and the intuitionistic logic[END_REF][START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF] about the decidability of the unification problem and the admissibility problem in modal logics such as K4, S4, etc, it was an open question to determine whether the decidability of a modal logic ensures the decidability of its unification problem and its admissibility problem. This question has been negatively answered by Chagrov [START_REF] Chagrov | Decidable modal logic with undecidable admissibility problem[END_REF] who has constructed a -rather artificial -decidable modal logic with an undecidable admissibility problem. Later on, Wolter and Zakharyaschev [START_REF] Wolter | Undecidability of the unification and admissibility problems for modal and description logics[END_REF] has proved that the unification problem and the admissibility problem are undecidable in K, K4 and every modal logic between K and K4 when the above-mentioned modality ∀ is definable.

Today, it is possible, without using the universal modality, to construct a very simple decidable modal logic with an undecidable admissibility problem. Let us see 8. The reader will remark how this substitution looks like the Löwenheim substitution considered in Section 3. 9. Enriching modal logics with the universal modality gives rise to an EXP-complete satisfiability problem in the case of K and a PSPACE-complete satisfiability problem in the case of some simple extensions of K4 and S4 [START_REF] Hemaspaandra | The price of universality[END_REF][START_REF] Shapirovsky | Downward-directed transitive frames with universal relations[END_REF].

how. In the case of the modal logic Alt 1 × Alt 1the product of Alt 1 with itself -, on top of the Boolean connectives considered in Section 3, O contains the modalities 2 1 . . . and 2 2 . . . of arity 1. The modalities 3 1 . . . and 3 2 . . . of arity 1 are defined by the abbreviations : 3 1 ϕ ::= ¬2 1 ¬ϕ and 3 2 ϕ ::= ¬2 2 ¬ϕ. Formulas are interpreted in Kripke frames (W, R 1 , R 2 ) where R 1 and R 2 are deterministic binary relations on

W such that R 1 • R 2 ⊆ R 2 • R 1 , R 2 • R 1 ⊆ R 1 • R 2 and R -1 1 • R 2 ⊆ R 2 • R -1
1 -with P(W ) as set of values and {W } as set of designated values -by means of truth assignments V such that V (2 What is new is that in Alt 1 × Alt 1 , the admissibility problem is undecidable. This can be proved by a reduction of the domino-tiling problem (Π) an instance of which consists of a 7-tuple (D, S 1 , S 2 , D u , D d , D l , D r ) where D is a finite set of domino-types, S 1 and S 2 are binary relations on D and D u , D d , D l and D r are subsets of D. A tiling of such 7-tuple is a triple (a 1 , a 2 , f ) where a 1 , a 2 are positive integers and f is a function associating an element f (i 1 , i 2 ) ∈ D to each (i 1 , i 2 ) ∈ {1, . . . , a 1 } × {1, . . . , a 2 }. We shall say that (a 1 , a 2 , f ) is correct if the following conditions hold for all i 1 ∈ {1, . . . , a 1 } and for all i 2 ∈ {1, . . . , a 2 } :

1 ϕ) = {s ∈ W : for all t ∈ W, if R 1 (s, t) then t ∈ V (ϕ)} and V (2 2 ϕ) = {s ∈ W : for all t ∈ W, if R 2 (s, t) then t ∈ V (ϕ)}. It is well-known that in Alt 1 × Alt 1 ,
-if i 1 < a 1 then f (i 1 , i 2 )S 1 f (i 1 + 1, i 2 ), -if i 2 < a 2 then f (i 1 , i 2 )S 2 f (i 1 , i 2 + 1), -f (a 1 , i 2 ) ∈ D u , -f (1, i 2 ) ∈ D d , -f (i 1 , 1) ∈ D l , -f (i 1 , a 2 ) ∈ D r . Let (D, S 1 , S 2 , D u , D d , D l , D r
) be an instance of (Π) with δ 1 , . . . , δ n a list of its domino-types. Let y, z and x 1 , . . . , x n be pairwise distinct variables. Let φ be the conjunction of the following formulas :

-

2 1 2 2 ¬(x k ∧ x l ) where 1 ≤ k, l ≤ n and k = l, -2 1 2 2 (x k → 2 1 {x l : 1 ≤ l ≤ n and (δ k , δ l ) ∈ S 1 }) where 1 ≤ k ≤ n, -2 1 2 2 (x k → 2 2 {x l : 1 ≤ l ≤ n and (δ k , δ l ) ∈ S 2 }) where 1 ≤ k ≤ n, -y → (2 1 y ∧ 2 2 y), -z → (2 1 z ∧ 2 2 z), -¬y → 2 1 ¬y, -¬z → 2 2 ¬z, -2 1 2 2 ((y ∧ 2 1 ⊥) → {x k : 1 ≤ k ≤ n and δ k ∈ D u }), -2 2 ((y ∧ ¬z) → 2 1 (z → {x k : 1 ≤ k ≤ 10.
The rule ϕ 1 ,...,ϕn χ is valid if the validity of ϕ 1 , . . . , ϕn implies the validity of χ.

n and δ k ∈ D d })), -2 1 ((¬y ∧ z) → 2 2 (y → {x k : 1 ≤ k ≤ n and δ k ∈ D l })), -2 1 2 2 ((z ∧ 2 2 ⊥) → {x k : 1 ≤ k ≤ n and δ k ∈ D r }). Let ψ be the formula -(3 2 y∧3 1 z∧2 1 2 2 {x k : 1 ≤ k ≤ n}) → (y∨z).
What is remarkable is that there exists a correct tiling iff the rule φ ψ is not admissible. Seeing that the dominotiling problem (Π) is undecidable [START_REF] Lutz | Conservative extensions in expressive description logics[END_REF], this proves that in Alt 1 × Alt 1 , the admissibility problem is undecidable. As for the computability of Alt 1 × Alt 1 -ELU and Alt 1 × Alt 1 -UWP, it is open.

Case of multi-agent epistemic logics

Syntax and semantics In the case of multi-agent epistemic logics, on top of the Boolean connectives considered in Section 3, O consists of the modalities 2 a . . . ("agent a knows that . . .") of arity 1 where a ranges over a countable set AGT of agents. We denote the associated language by MAEPL. The modalities 3 a . . . ("it is compatible with the knowledge of agent a that . . .") of arity 1 are defined by the abbreviations : 3 a ϕ ::= ¬2 a ¬ϕ. We shall say that a formula ϕ is Boolean if for all a ∈ AGT , ϕ contains no occurrence of the modality 2 a . For all a ∈ AGT , we shall say that a formula ϕ is a-restricted if for all b ∈ AGT , if a = b then ϕ contains no occurrence of the modality 2 b . For all a ∈ AGT , we shall say that a formula ϕ is a-monic if for all b ∈ AGT and for all formulas ψ, if 2 b ψ is a subformula of ϕ then a = b, or ψ is variable-free. Obviously, for all a ∈ AGT , every a-restricted formula is a-monic.

Formulas of MAEPL are interpreted in multi-agent Kripke frames (W, {R a : a ∈ AGT }) by means of truth assignments V such that V (2 a ϕ) = {s ∈ W : for all t ∈ W, if R a (s, t) then t ∈ V (ϕ)}. In this section, we will not reopen the debate about the reasonableness of the notion of knowledge corresponding to such-and-such class of multi-agent Kripke frames. We will rather content ourselves with analyzing the effects of the considered classes of multi-agent Kripke frames on the computability of unification and the unification types. In most cases, it is assumed that for all a ∈ AGT , the accessibility relation R a is an equivalence relation 11 . The associated modal logic is denoted S5 AGT . In few cases, it is moreover assumed that for all a, b ∈ AGT , the accessibility relations R a and R b are in local agreement, i.e. for all s ∈ W , R a (s) ⊆ R b (s), or R b (s) ⊆ R a (s). The associated modal logic is denoted S5 la AGT .

Computability of unification S5 AGT -ELU and S5 la AGT -ELU are NP-complete, seeing that the corresponding classes of multi-agent Kripke frames are such that for all a ∈ AGT , R a is serial 12 . Regarding S5 AGT -UWP and S5 la AGT -UWP, their computability is a mystery.

Unification types

In this paragraph, we consider the class of multi-agent Kripke frames where for all a ∈ AGT , R a is an equivalence relation. If AGT is finite then the modality ∀ ("every agent knows that . . .") of arity 1 defined by the abbreviation ∀ϕ ::= {2 a ϕ : a ∈ AGT } plays the role of a universal modality when we restrict the discussion to the class of multi-agent Kripke frames where for all a, b ∈ AGT , R a and R b are in local agreement. In this case, following the argument used in Section 4 for modal logics where a modality playing the role of a universal modality is definable, every unifiable formulas can be proved to be unitary.

Otherwise, that is to say if AGT is not finite, or when we do not restrict the discussion to the class of multi-agent Kripke frames where for all a, b ∈ AGT , R a and R b are in local agreement, the situation is worse. To see why, use pairwise distinct parameters p, q, r and take the formula (x → x) ∧ (¬x → ¬x) where for all formulas ϕ, we write ϕ to mean [p 0 q 0 r 0 ] 1 [p 0 q 0 r 1 ] 2 [p 0 q 1 r 0 ] 1 [p 0 q 1 r 1 ] 2 [p 1 q 0 r 0 ] 1 [p 1 q 0 r 1 ] 2 ϕ and we write ϕ to mean p 1 q 0 r 1 → [p 1 q 0 r 0 ] 2 [p 0 q 1 r 1 ] 1 [p 0 q 1 r 0 ] 2 [p 0 q 0 r 1 ] 1 [p 0 q 0 r 0 ] 2 2 1 ϕ. It is S5 AGT -unifiable : substitutions like σ d (x) = <d x ∧ d ⊥ for each d ≥ 0 and τ d (x) = ¬( <d ¬x ∧ d ⊥) for each d ≥ 0 are unifiers of it. However, following a line of reasoning similar to the ones developed above for K and KD, the reader may prove that it is nullary.

Additional comments

The existence of a nullary S5 AGT -unifiable formula does not imply that all S5 AGT -unifiable formulas are nullary. Witness, the monic formulas. Indeed, let a ∈ AGT and ϕ be an a-monic formula. Suppose it is S5 AGT -unifiable. Since ϕ is a-monic, therefore for all b ∈ AGT and for all formulas ψ, if 2 b ψ is a subformula of ϕ then a = b, or ψ is variable-free. Given an S5 AGT -unifier σ of a ϕ, let σ ϕ be the substitution such that for all x ∈ VAR,

if x ∈ var(ϕ) then σ ϕ (x) = (2 a ϕ ∧ x) ∨ (¬2 a ϕ ∧ σ(x)) else σ ϕ (x) = x.
By induction on the a-monic formula ψ, the reader may prove that if var(ψ) ⊆ var(ϕ) then 12. The line of reasoning we have developed in Section 4 to prove that ELU is in NP for each modal logic containing KD can be applied in the multi-agent setting as well.

2 a ϕ → ( σ ϕ (ψ) ↔ ψ) and ¬2 a ϕ → ( σ ϕ (ψ) ↔ σ(ψ)) are valid. Since σ is a unifier of ϕ, we obtain the validity of 2 a ϕ → σ ϕ (ϕ) and ¬2 a ϕ → σ ϕ (ϕ). Moreover, for all unifers τ of ϕ and for all variable x, τ ( σ ϕ (x)) ↔ τ (x) is valid. Hence, σ ϕ is a unifier of ϕ and for all unifiers τ of ϕ, σ ϕ τ . Thus, σ ϕ is a most general unifier of ϕ : it constitutes by its own a complete set of unifiers of ϕ. Consequently, ϕ is unitary.

In next section, we will apply this line of reasoning to the monic MAEPL-formulas associated to some simple epistemic planning problems. The reader will remark that the formulas written by using the modalities [[ϕ]] . . . and ϕ . . . where ϕ ranges over the set of all MAEPL-formulas are exponentially more succinct than the MAEPL-formulas they are the abbreviations of. Nevertheless, as proved by Lutz [START_REF] Lutz | Complexity and succinctness of Public Announcement Logic[END_REF], the membership in S5 AGT of formulas written by using these modalities has the same complexity as the membership in S5 AGT of MAEPLformulas : PSPACE.

Suppose the formula ϕ(p) describes a given initial situation in terms of the knowledge of AGT -agents about the list of parameter facts p = (p 1 , . . . , p m ) and the formula χ(px) ψ(p) represents the knowledge of these agents about p in a desirable final situation (the ψ-part) after an executable public announcement concerning p and the list of variable facts x = (x 1 , . . . , x n ) (the χ-part) has been performed. It may happen that ϕ(p) → χ(px) ψ(p) is not S5 AGT -valid. Hence, we may ask whether there are tuples φ = (φ 1 , . . . , φ n ) of formulas such that ϕ(p) → χ(p φ) ψ(p) is valid. Moreover, we may be interested to obtain the most general tuple φ of formulas such that ϕ(p) → χ(p φ) ψ(p) is valid. Introduced in this way, the formula ϕ(p) → χ(px) ψ(p) constitutes a special instance of what is now called an epistemic planning problem. See [START_REF] Bolander | Epistemic planning for single-and multi-agent systems[END_REF] for a general introduction.

Consider for example, the formula ψ → 2 a x 2 b χ where ψ is a variable-free MAEPL-formula, x is a variable, a and b are distinct agents and χ is a Boolean variable-free MAEPL-formula. Considered as an epistemic planning problem, to solve this formula means to ask whether there exists an MAEPL-formula φ such that ψ → 2 a φ 2 b χ -"in every situation where ψ holds, a knows that φ holds and after it is announced that a knows that φ holds, b knows that χ holds"is S5 AGT -valid. Since χ is Boolean, therefore taking into account the definition of the modalities [[ϕ]] . . . and ϕ . . . for each ϕ ∈ MAEPL, this is equivalent to solve the formula ψ → (2 a x ∧ 2 b χ ) where χ is the MAEPL-formula 2 a x → χ. Since 2 b corresponds in Kripke frames to an equivalence relation, therefore this is equivalent to solve the conjunction κ of the formulas ψ → 2 a x and 3 b ψ → χ . Since ψ and χ are variable-free, therefore κ is a-monic. Moreover, as the reader can prove, κ is S5 AGT -unifiable iff 3 a ψ ∧ 3 b ψ → χ is S5 AGT -valid. In that case, any substitution σ such that σ(x) = 3 a ψ is a unifier of it and by applying the line of reasoning developed in the paragraph "Additional comments" of Section 5, one can construct a most general unifier of it and of the given formula ψ → 2 a x 2 b χ too.

More generally, one may be interested by solving formulas like ψ → 2 a x ∧ 3 a y 1 ∧ . . . ∧ 3 a y m (2 b1 χ 1 ∧ . . . ∧ 2 bn χ n ) where ψ is a variable-free MAEPLformula, m, n ≥ 0, x and y 1 , . . . , y m are pairwise distinct variables, a and b 1 , . . . , b n are pairwise distinct agents and χ 1 , . . . , χ n are a-restricted variable-free MAEPL-formulas. Considered as an epistemic planning problem, to solve this formula means to ask whether there exists MAEPL-formulas φ and θ 1 , . . . , θ m such that ψ → 2 a φ ∧ 3 a θ 1 ∧ . . . ∧ 3 a θ m (2 b1 χ 1 ∧ . . . ∧ 2 bn χ n ) -"in every situation where ψ holds, a knows that φ holds, it is compatible with the knowledge of a that θ i holds for each i ∈ {1, . . . , m} and after it is announced that a knows that φ holds and it is compatible with the knowledge of a that θ i holds for each i ∈ {1, . . . , m}, b j knows that χ j holds for each j ∈ {1, . . . , n}" -is S5 AGT -valid. Since χ 1 , . . . , χ n are a-restricted, therefore taking into account the definition of the modalities [[ϕ]] . . . and ϕ . . . for each ϕ ∈ MAEPL, this is equivalent to solve the formula ψ → (2 a x∧3 a y 1 ∧. . .∧3 a y m ∧2 b1 χ 1 ∧. . .∧2 bn χ n ) where χ j is the MAEPL-formula (2 a x ∧ 3 a y 1 ∧ . . . ∧ 3 a y m ) → χ j for each j ∈ {1, . . . , n}. Since 2 b1 , . . . , 2 bn corres-pond in Kripke frames to equivalence relations, therefore this is equivalent to solve the conjunction κ of the formulas ψ → (2 a x ∧ 3 a y 1 ∧ . . . ∧ 3 a y m ) and 3 bj ψ → χ j where j ranges over {1, . . . , n}. Since ψ and χ 1 , . . . , χ n are variable-free, therefore κ is amonic. Moreover, as the reader can prove, κ is S5 AGTunifiable iff 3 a ψ ∧ 3 bj ψ → χ j is S5 AGT -valid for each j ∈ {1, . . . , n}. In that case, any substitution σ such that σ(x) = 3 a ψ and σ(y j ) = ψ for each j ∈ {1, . . . , n} is a unifier of it and by applying the line of reasoning developed in the paragraph "Additional comments" of Section 5, one can construct a most general unifier of it and of the given formula ψ → 2 a x ∧ 3 a y 1 ∧ . . . ∧ 3 a y m (2 b1 χ 1 ∧ . . . ∧ 2 bn χ n ) too.

Conclusion

The modal logics like the ones considered in this paper (K, KD, etc) have now limited mathematical interest for what concerns axiomatization/completeness and decidability/complexity. Nevertheless, with respect to some predetermined propositional logic L, considering the question of the determination of its unification type and the question of the computability of the unification problem it gives rise to is justified from the following perspectives : methods for deciding the L-unifiability of formulas can be used to understand what is the overlap between the properties formulas correspond to in L [START_REF] Baader | Unification in modal and description logics[END_REF] ; in case L is a description logic, unification algorithms can be used to detect redundancies in L-based systems [START_REF] Baader | Unification in the description logic EL[END_REF][START_REF] Baader | Unification of concept terms in description logics[END_REF] ; methods for deciding the L-unifiability of formulas can be used to improve the efficiency of theorem provers devoted to solve the membership problem in L. One readily observes that, while attacking the above-mentioned problems, little, if anything, from the standard tools in modal logics (canonical models, filtrations, etc) is helpful. In order to successfully solve them, new techniques in modal logics must be developed and much remains to be done. The study of unification in modal logics has still many secrets to reveal.

  [ψ] <d ϕ to mean when d = 0, (ϕ ∧ [ψ][ψ] <d-1 ϕ) otherwise and we write [ψ] d ϕ to mean ϕ when d = 0, [ψ][ψ] d-1 ϕ otherwise. For all formulas ϕ, its modal degree (in symbols, deg(ϕ)) is defined as usual. Formulas of MPL are interpreted in Kripke frames (W, R) -with P(W ) as set of values and {W } as set of designated values -by means of truth assignments

  prove, σ deg(τ (x))+1 σ deg(τ (x)) . Since σ deg(τ (x)) τ and µ σ deg(τ (x))+1 , therefore µ τ . Since Γ is minimal, therefore µ = τ . Since σ deg(τ (x)) τ and µ σ deg(τ (x))+1 , therefore σ deg(τ (x)) σ deg(τ (x))+1 . Thus, λ(σ deg(τ (x))
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  Application to epistemic planning On top of the Boolean connectives ⊥, ¬ and ∨ considered in Section 3 and the modalities 2 a considered in Section 5, let us define the modalities [[ϕ]] . . . of arity 1 for each ϕ ∈ MAEPL by the inductive abbreviations [[ϕ]]p ::= (ϕ → p), [[ϕ]]⊥ ::= ¬ϕ, [[ϕ]]¬ψ ::= (ϕ → ¬[[ϕ]]ψ), [[ϕ]](ψ ∨ χ) ::= ([[ϕ]]ψ ∨ [[ϕ]]χ) and [[ϕ]]2 a ψ ::= (ϕ → 2 a [[ϕ]]ψ). Letus define the modalities ϕ . . . of arity 1 for each ϕ ∈ MAEPL by the abbreviations : ϕ ψ ::= ¬[[ϕ]]¬ψ. Within the setting of Public Announcement Logic [12, Chapter 4], for all ϕ ∈ MAEPL, the modalities [[ϕ]] . . . ("if ϕ holds then after it is announced, . . . holds") and ϕ . . . ("ϕ holds and after it is announced, . . . holds") have been used to formalize the notion of the public announcement of ϕ which is the atomic action performed by an outside observer, perceived by all agents and consisting of publicly announcing ϕ. By means of these modalities together with the modality of common knowledge, one can faithfully represent all of the reasoning in examples such as the muddy children puzzle.

Table 1 -

 1 Some modal logics together with the classes of Kripke frames that determine them.

	Modal logics	Class of Kripke frames
	K	All
	KD	Serial
	KT	Reflexive
	KB	Symmetric
	KDB	Serial symmetric
	KTB	Reflexive symmetric
	KG	Church-Rosser
	KDG	Serial Church-Rosser
	KTG	Reflexive Church-Rosser
	K4	Transitive
	S4	Reflexive transitive
	S5	Reflexive transitive Euclidean
	Alt 1	Deterministic

filtrations, etc) is helpful -to such an extent that the computability of the following problems remains open : ELU in K and KB and UWP in KD, KT, KDB, KTB and Alt 1 .

  the satisfiability problem is N P -complete [16, Theorem 8.53]. What is maybe less known is that in Alt 1 × Alt 1 , the validity problem of rules is undecidable 10 [16, Theorem 8.54].

In BPL → , the Boolean connective ∨ is definable by (ϕ ∨ ψ) ::= ((ϕ → ψ) → ψ).

As the reader can prove, formulas like p ∨ (q ∧ x) and (p ∧ x) ∨ q are definable in BPL → .

In that case, for all a ∈ AGT and for all s ∈ W , we will denote by Ra(s) the equivalence class modulo Ra with s as its representative.
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