
HAL Id: hal-02301925
https://hal.science/hal-02301925v2

Preprint submitted on 28 Jul 2020 (v2), last revised 20 Jan 2021 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative and Algorithmic aspects of Barrier
Synchronization in Concurrency

Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

To cite this version:
Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski. Quantitative and Algorithmic
aspects of Barrier Synchronization in Concurrency. 2020. �hal-02301925v2�

https://hal.science/hal-02301925v2
https://hal.archives-ouvertes.fr

Discrete Mathematics and Theoretical Computer Science DMTCS vol. (subm.):1, by the authors, #rev

Quantitative and Algorithmic aspects of
Barrier Synchronization in Concurrency˚

Olivier Bodini1 Matthieu Dien2 Antoine Genitrini3 Frédéric Peschanski3

1 Université Sorbonne Paris Nord, Laboratoire d’Informatique de Paris Nord, CNRS, UMR 7030, F-93430, Vil-
letaneuse, France. Olivier.Bodini@lipn.univ-paris13.fr

2 Normandie Université, UNICAEN, ENSICAEN, CNRS, UMR 6072, GREYC, F-14000 Caen, France. Matthieu.
Dien@unicaen.fr

3 Sorbonne Université, CNRS, UMR 7606, Laboratoire d’Informatique de Paris 6 - LIP6 -, F-75005 Paris, France.
{Antoine.Genitrini,Frederic.Peschanski}@lip6.fr

received 2019-09-30,

In this paper we address the problem of understanding Concurrency Theory from a combinatorial point of view. We
are interested in quantitative results and algorithmic tools to refine our understanding of the classical state explosion
phenomenon arising in concurrency. This paper is essentially focusing on the the notion of synchronization from
the point of view of combinatorics. As a first step, we address the quantitative problem of counting the number of
executions of simple processes interacting with synchronization barriers. We elaborate a systematic decomposition
of processes that produces a symbolic integral formula to solve the problem. Based on this procedure, we develop a
generic algorithm to generate process executions uniformly at random. For some interesting sub-classes of processes
we propose very efficient counting and random sampling algorithms. All these algorithms have one important char-
acteristic in common: they work on the control graph of processes and thus do not require the explicit construction of
the state-space.

Keywords: Barrier synchronization, Combinatorics, Uniform random generation, Partial Order Theory.

1 Introduction
Schematically, the behaviour of a concurrent process can be seen as a set of atomic actions performed
according to a certain ordering. In the concurrent paradigm, processes are decomposed in independent
logical units often called threads (or sub-processes) which perform a subset of the atomic actions. Because
a thread executes its actions independently of the others, a given process (set of threads) may have different
possible executions.

One of the main problematic of concurrency theory is to check safety properties of processes i.e. check
that all the possible executions are safe with respect to some logical proposition. In that context, the
number of executions (which may be huge) is an obstruction. This is a symptom of the so-called “state

˚This research was partially supported by the ANR MetACOnc project ANR-15-CE40-0014.

ISSN subm. to DMTCS c© by the authors by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/
Olivier.Bodini@lipn.univ-paris13.fr
Matthieu.Dien@unicaen.fr
Matthieu.Dien@unicaen.fr
{Antoine.Genitrini,Frederic.Peschanski}@lip6.fr

2 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

explosion”, a defining characteristic of concurrency. To understand, and possibly overcome, such “explo-
sion”, we study the combinatorial problem of counting the number of executions of processes with respect
to their number of actions. On a more practical side, finding efficient counting algorithms (for process
sub-classes) enables the statistical analysis of process behaviors, based on the sampling of random ex-
ecutions. This is the second problem we address in our research project on the combinatorial study of
concurrent systems.

Our methodology is to study these problems by considering models of concurrent processes of increas-
ing expressivity. We modelize these processes using discrete structures such as trees, partial orders and
acyclic digraphs.

For example in [12] the processes we study can only perform atomic actions and fork child threads. This
model is quite simple from a concurrency point of view but allows to study the fundamental “feature” of
parallelism. In terms of combinatorics, we studied trees (representing processes) and their increasing
labelings (representing their executions), using tools of analytic combinatorics (see [15]).

In [11] we enrich this primitive language with non-determinism: the mechanism allowing a process to
choose between executing one or another thread. For example, a process controlling a coffee machine
may execute a thread or another depending of the button pressed by its user.

Given a process, all of its threads are executed in a common environment and share resources (e.g.
computer memory, network, time). To access these resources, threads have to agree on an order to do it
(e.g. a thread read a file then another one writes inside). This communication may be achieved by another
fundamental “feature” of concurrent processes: synchronization. In the present paper, our objective is
to isolate that mechanism. For this, we introduce a simple process calculus (an abstract programming
language) whose only non-trivial concurrency feature is a principle of barrier synchronization. This is
here understood intuitively as the single point of control where multiple thread have to “meet” before
continuing. This is one of the important building blocks for concurrent and parallel systems [19]. The
main property of that process calculus is that it bridges semantics of concurrent processes and preorder.
Particularly, the processes without deadlock (those which terminate) corresponds to partial orders.

As a first step, we show that counting executions of concurrent processes is a difficult problem, even in
the case of our calculus with limited expressivity. Thus, one important goal of our study is to investigate
interesting sub-classes for which the problem becomes “less difficult”. To that end, we elaborate in this pa-
per a systematic decomposition of arbitrary processes, based on only four rules: (B)ottom, (I)ntermediate,
(T)op and (S)plit. Each rule explains how to remove one node from the control graph of a process while
taking into account its contribution in the number of possible executions. Indeed, one main feature of
this BITS-decomposition is that it produces a symbolic integral formula to solve the counting problem.
Based on this procedure, we develop a generic algorithm to sample process executions uniformly at ran-
dom. Since the algorithm is working on the control graph of processes, it provides a way to statistically
analyze processes without constructing their state-space explicitly. In the worst case, the algorithm can-
not of course overcome the hardness of the problem it solves. However, depending on the rules allowed
during the decomposition, and also on the strategy (the order of applications of the rules) adopted, we
isolate interesting sub-classes wrt. the counting and random sampling problem. We identify well-known
structural sub-classes such as fork-join parallelism [17] and asynchronous processes with promises [21].
In particular for these sub-classes we develop dedicated counting and random sampling algorithms: once
the strategy is well understood, we further can simplify the decomposition in order to exhibit algorithms
that not really removes nodes one by one.

A larger sub-class that we find particularly interesting is what we call the “BIT-decomposable” pro-

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 3

cesses, i.e. only allowing the three rules (B), (I) and (T) in the decomposition. The counting formula
we obtain for such processes is of a linear size (in the number of atomic actions in the processes, or
equivalently in the number of vertices in their control graph).

Related work
Our study intermixes viewpoints from concurrency theory, order-theory as well as combinatorics (espe-
cially enumerative combinatorics and random sampling). The heaps combinatorics (studied for example
in [1]) provides a complementary interpretation of concurrent systems. One major difference is that this
concerns “true concurrent” processes based on the trace monoid, while we rely on the alternative in-
terleaving semantics. A related uniform random sampler for networks of automata is presented in [4].
Synchronization is interpreted on words using a notion of “shared letters”. This is very different from
the “structural” interpretation as joins in the control graph of processes. For the generation procedure
[1] requires the construction of a “product automaton”, whose size grows exponentially in the number of
“parallel” automata. By comparison, all the algorithms we develop are based on the control graph, i.e.
the space requirement remains polynomial (unlike, of course, the time complexity in some cases). Thus,
we can interpret this as a space-time trade-of between the two approaches. A related approach is that of
investigating the combinatorics of lassos, which is connected to the observation of state spaces through
linear temporal properties. An uniform random sampler for lassos is proposed in [23]. The generation
procedure takes place within the constructed state-space, whereas the techniques we develop do not re-
quire this explicit construction. However lassos represent infinite executions whereas for now we only
handle finite (or finite prefixes) of executions.

A coupling from the past (CFTP) procedure for the uniform random generation of linear extensions
is described, with relatively sparse details, in [20]. The approach we propose, based on the continuous
embedding of partial order sets into the hypercube, is quite complementary. A similar idea is used in [3]
for the enumeration of Young tableaux using what is there called the density method. The paper [18]
advocates the uniform random generation of executions as an important building block for statistical
model-checking. A similar discussion is proposed in [25] for random testing. The leitmotiv in both cases
is that generating execution paths without any bias is difficult. Hence an uniform random sampler is very
likely to produce interesting and complementary tests, if comparing to other test generation strategies.

Our work can also be seen as a continuation of the algorithm and order studies [24] orchestrated by
Ivan Rival in late 1980’s only with powerful new tools available in the modern combinatorics toolbox.

Outline of the paper
In Section 2 we introduce a minimalist calculus of barrier synchronization. We show that the control
graphs of processes expressed in this language are isomorphic to arbitrary partially ordered sets (posets)
of atomic actions. From this we deduce our rather “negative” starting point: counting executions in this
simple language is intractable in the general case. In Section 3 we define the BITS-decomposition, and we
use it in Section 4 to design a generic uniform random sampler. In Section 5 we discuss various sub-classes
of processes related to the proposed decomposition, and for some of them we explain how the counting
and random sampling problem can be solved efficiently. In Section 6 we propose an experimental study
of the algorithm toolbox discussed in the paper.

Note that we provide online(i) the full source code developed in the realm of this work, as well as the

(i) https://gitlab.com/ParComb/combinatorics-barrier-synchro.git

https://gitlab.com/ParComb/combinatorics-barrier-synchro.git

4 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

benchmark scripts. This paper is an updated and extended version of papers [9] and [8]. It contains new
material, especially the study of the interesting process sub-classes. The proofs in this extended version
are also more detailed.

2 Modelization of processes
As a starting point, we recast our problem in combinatorial terms. The idea is to relate the syntactic
domain of process specifications to the semantic domain of process behaviors. Our model of concur-
rent process is seen as a set of atomic actions associated with a set of precedence rules between some of
theses actions. As mentioned above, we introduce, in this work, a synchronization feature, called bar-
rier synchronization processes in order to modelize synchronization in concurrent systems with suitable
properties to deal with a combinatorial study.

2.1 Synctatic and semantic domain
Let us start with the description of the process calculus we will deal with through the paper. First we
describe its syntactic domain, i.e. the way the processes are built.

Definition 2.1 (Syntax of barrier synchronization processes). We consider countably infinite sets A of
(abstract) atomic actions (denoted by Greek letters α, β, γ, . . . in the following), and B of barrier names
(denoted by capital letters B,C,G, . . .). The set P of processes is defined by the following grammar:

P ::= 0 (termination)
| α.P (atomic action and prefixing)
| xByP (synchronization)
| νpBqP (barrier and scope)
| P ‖ Q (parallel)

where P,Q P P, α P A and B P B.

The language has very few constructors and is purposely of limited expressivity (there is no constructor
with infinite control flow such as recursion). Processes in this language can only perform atomic actions,
fork child processes and interact using a basic principle of synchronization barrier.

Informally, the operator . allows to execute consecutively two processes, while the operator ‖ gives the
opportunity to execute two processes in parallel. The two other operators allow to fork and synchronize
sub-processes.

Example 2.1. We present here three basic examples allowing us to illustrate valid processes and then,
after having described the semantics we are interested in, to give their behaviors.

α1.α2.0 (1)
pα1.α2.0q ‖ pβ1.β2.0q (2)
νpBq rα1.xBy α2.0 ‖ xBy β1.0 ‖ γ1.xBy 0s . (3)

The first example (1) is built putting two distinct atomic actions consecutively, followed by the termination
of the process.

The second example (2) is nothing else than putting in parallel composition the first example and a copy
of it. Since both sub-processes terminate, there is no further need of 0 in the whole process.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 5

In all the paper we consider all the atomic actions to be distinct, thus their names convey no combinatorial
meaning.

Finally we exhibit a process (3) dealing with the notion of barrier. First a new barrier nameB is created.
The sub-processes underlying in its scope contain somewhere a synchronization according this barrier B.
The use of this operator will be highlighted with its semantic behavior.

According to our grammar, we can also build the following process α1.xByα2.0. In fact, there is no
specification constraint forbidding a synchronization for an unknown barrier. But as the reader will see
after the semantic description, the latter example will get invalid through the semantics we will define.

In the semantic domain, we study for a given process the set of all its possible executions. The formal
definition of each of the constructors are given below by an operational semantics (see Definition 2.2).
But before going into details we present how the processes presented as examples will behave.

Our simplest example (1) is composed of just one execution path (or execution). In fact the process
must execute sequentially the action α1 followed by α2 and then it reaches 0. This execution is denoted
in the following as pα1, α2q.

The second example (2) is the parallel composition of two sub-processes like the previous one. We
are dealing with an interleaving semantics. Thus the valid executions are obtained through the inter-
leaving (or the shuffling) of the executions of each sub-process. We In that case there are six possible
executions corresponding to the interleaving of the two sub-processes: pα1, α2, β1, β2q, pα1, β1, α2, β2q,
pα1, β1, β2, α2q, pβ1, α1, α2, β2q, pβ1, α1, β2, α2q and pβ1, β2, α1, α2q.

To conclude that series of examples we show the use of the synchronization constructors of the lan-
guage. The ν constructor binds a barrier name inside the scope of a process. In some sense, νpBq
broadcast the barrier knowledge of B to every sub-processes in its scope. The chevrons constructor xBy
performs the synchronization of a process on the bounded barrier B: a sub-process reaching xBy stops its
execution until all the sub-processes containing xBy (i.e. knowing B) reach this step. Let us focus on our
example (3).

The process starts with the declaration of a barrier B, then three sub-processes are put in parallel, all
of them being in the scope of B, i.e. containing a synchronization step xBy. Thus the whole process first
performs the actions α1 or γ1 (in the two possible interleaving orders, either pα1, γ1q or pγ1, α1q). We
then reach the state in which all the sub-processes agree to synchronize on barrier B (it was not the case
before thus the synchronization could not appear earlier). The remaining process to execute is:

νpBq rxBy α2.0 ‖ xBy β1.0 ‖ xBy 0s .

So the barriers can be “crossed” and the executions can end by any interleaving of α2 and β1. Finally,
the semantics of the whole example is the set of the four executions pα1, γ1, α2, β1q, pα1, γ1, β1, α2q,
pγ1, α1, α2, β1q and pγ1, α1, β1, α2q.

Now we state more formally these executions by the mean of an operational semantics. An operational
semantics describes how a process is executed given its inductive syntactic structure. The formalism of
operational semantics is similar to the one of sequent calculus: above the line there is a conjunction of
“hypothesis”, the bottom part corresponds to the derivation of a process (the performing of a step). In that
context, an execution of a process is formalized as a sequence of derivation steps.

6 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

The operational semantics below characterizes processes transitions of the form P
α
ÝÑ P 1 in which P

can perform action α to reach its (direct) derivative P 1.

Definition 2.2 (Operational semantics). The operational semantics related to the process language is the
following:

α.P
α
ÝÑ P

(act) P
α
ÝÑ P 1

P ‖ Q α
ÝÑ P 1 ‖ Q

(lpar)
Q

α
ÝÑ Q1

P ‖ Q α
ÝÑ P ‖ Q1

(rpar)

syncBpP q“Q waitBpQq P
α
ÝÑ P 1

νpBqP
α
ÝÑ νpBqP 1

(lift)
syncBpP q“Q waitBpQq Q

α
ÝÑ Q1

νpBqP
α
ÝÑ Q1

(sync)

with:

»

—

—

—

—

—

—

—

—

–

syncBp0q“0

syncBpα.P q“α.P

syncBpP‖Qq“syncBpP q‖syncBpQq

syncBpνpBqP q“νpBqP

@C‰B, syncBpνpCqP q“νpCq syncBpP q

syncBpxByP q“P

@C‰B, syncBpxCyP q“xCyP

»

—

—

—

—

—

—

—

—

–

waitBp0q“false

waitBpα.P q“waitBpP q

waitBpP‖Qq“waitBpP q_waitBpQq

waitBpνpBqP q“false

@C‰B, waitBpνpCqP q“waitBpP q

waitBpxByP q“true

@C‰B, waitBpxCyP q“waitBpP q

The rule (act) allows to derive a process prefixed by an action. The rules (lpar) and (rpar) derives the left
or the right process of a parallel composition, if both sides can be derived then both rules can be applied:
that is the interleaving semantics.

The rule (sync) above explains the synchronization semantics for a given barrier B. The rule is non-
trivial given the broadcast semantics of barrier synchronization. The definition is based on two auxiliary
functions. First, the function syncBpP q produces a derivative process Q in which all the possible syn-
chronizations on barrier B in P have been effected. If Q has a sub-process that cannot yet synchronize on
B, then the predicate waitBpQq is true and the synchronization on B is said incomplete. In this case the
rule (sync) does not apply, however the transitions within P can still happen through (lift).

For the sake of comprehension, an example of a derivation of the process (3) is given in the next section.

2.2 The control graph of a process
By using the semantic domain we define the notion of execution of a process.

Definition 2.3 (Execution). An execution σ of a process P is a finite sequence pα1, . . . , αnq such that
there exist a set of processes P 1α1

, . . . , P 1αn and a path P α1
ÝÑ P 1α1

. . .
αn
ÝÝÑ P 1αn with P 1αn Û (no transition

is possible from P 1αn).

We assume that the occurrences of the atomic actions in a process expression all have distinct labels,
α1, . . . , αn. This is allowed since the actions are uninterpreted in the semantics (cf. Definition 2.2). Thus,
each action α in an execution σ can be associated to a unique position, which we denote by σpαq. For
example if σ “ pα1, . . . , αk, . . . , αnq, then σpαkq “ k.

As announced before, we give an example of a derivation for the process (3).

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 7

Example 2.2. We note P the previous example process α1.xBy α2.0 ‖ xBy β1.0 ‖ γ1.xBy 0 (without the
νpBq). Now we begin the derivation of the execution pα1, γ1, β1, α2q of νpBqP .

Using the (lift) we perform a step from νpBqP to νpBqP 1 where P 1 “ xBy α2.0 ‖ xBy β1.0 ‖ γ1.xBy 0,
which corresponds to the transition νpBqP α1

ÝÑ νpBqP 1. Note that it is possible because syncBpP q “ P

, waitBpP q “ true and P α1
ÝÑ P 1 by the (act) rule.

In the same way, we can use the (lift) again to perform the transition P 1
γ1
ÝÑ P 2 “ xBy α2.0 ‖

xBy β1.0 ‖ xBy 0.
Now, the rule (sync) (with Q “ syncBpP

2q “ α2.0 ‖ β1.0 ‖ 0 and waitBpQq “ false) allows to

“consume” the barrier B and so to continue the computation with the transition P 2 β1
ÝÑ α2.0 ‖ 0 ‖ 0. It

remains one sub-process α2.0 and two ended processes 0, all in parallel. So the rule (lpar) allows to take
the transition α2

ÝÑ and ends this example.

Until now, we only presented examples of processes which can be derived with the operational seman-
tics. Of course, that is not always the case.

Definition 2.4 (Deadlocks). Let P be a process. We say that an execution of P reaches a deadlock
situation (or just a deadlock) if none of the rules of the operational semantics can be applied. In that case
we say that P is deadlocked.

Example 2.3. The example α1.xByα2.0 we presented above is deadlocked. In fact, no synchronization
on B is possible. But there are also cases that are more intricate.

Let P be the process νpBqνpCq rxByxCy α.0 ‖ xCyxBy β.0s. Because of the alternation of barriers in
different orders in the two parallel sub-processes, P is deadlocked.

The problem of detecting deadlocks is an important question in the context of concurrent systems and
often a difficult one (e.g. PSPACE-complete for Petri nets [14]). However, due to the limited expressivity
of barrier synchronization processes, it is easier here. To show this, we introduce the causal ordering
relation over the atomic actions of a process.

Definition 2.5 (Cause, direct cause). Let P be a process. An action α of P is said a cause of another
action β, denoted by α ă β, if and only if for any execution σ of P we have σpαq ă σpβq. Moreover, α
is a direct cause of β, denoted by α ă β if and only if α ă β and there is no γ such that α ă γ ă β. The
relation ă obtained from P is denoted by POpP q.

A partially ordered set (or poset) P is a couple pS,ĺP q where S is a set of elements and ĺP is a binary
relation over the elements S which is reflexive, antisymmetric and transitive. When there is no ambiguity
we will denote the relation by ĺ and get S and P mixed up.
Given a poset P , a linear extension of P is a total ordering ă (a connected, antisymmetric and transitive
relation) of its element such that if @a, b P P, a ĺ P ñ a ă b. We may denote a linear extension by
x1 ă x2 ă . . . or px1, x2, . . . q.

Proposition 2.1. POpP q is a partially ordered set (poset) with covering ă, capturing the causal ordering
of the actions of P . Executions of P are equivalent to linear extensions in POpP q.

A directed acyclic graph (or DAG) is a directed graph D “ pV,Aq where V is the vertex set and
A Ă V ˆ V is the arc set and such that there is no directed path from a vertex to itself.

The covering relationÑ (or covering DAG) of a poset P is an irreflexive, antisymmetric and intransitive
relation such that @a, b P P, a Ñ b ñ Ec P P, a ĺ c ^ c ĺ b. The vertex set of the covering DAG is the
set of elements of P .

8 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

A labeling of a graph of vertex set V is a bijection γ : V Ñ t1, . . . , |V |u associating a unique integer
to each vertex. When a graph is labeled each vertex can be identified by its label.

Given a poset, there is a natural injection from the set of its linear extensions to the set of the labelings
of its covering DAG which is obtained by labeling the vertices by their rank in a linear extension.

The covering of a partial order is by construction a DAG, hence the description of POpP q itself is
simply the transitive closure of the covering, yielding Opn2q edges over n elements. The worst case
(maximizing the number of edges) is a complete bipartite graph with two sets of n vertices each connected
by n2 edges (cf. Fig. 1).

νpBq rα1.xBy ‖ α2.xBy ‖ . . . ‖ αn.xBy ‖ xBy.β1 ‖ xBy.β2 ‖ . . . ‖ xBy.βns

α1 α2 ¨ ¨ ¨ αn

β1 β2 ¨ ¨ ¨ βn

Fig. 1: A process of size 2n and its control graph with 2n nodes and n2 edges.

For most practical concerns we will only consider the covering, i.e. the intransitive DAG obtained by
the transitive reduction of the order. It is possible to direclty construct this control graph, according to the
following definition.

Definition 2.6 (Construction of control graphs). Let P be a process. Its control graph is ctgpP q “ xV,Ey,
constructed inductively as follows:

»

—

—

—

—

–

ctgp0q “ xH,Hy
ctgpα.P q “ α; ctgpP q
ctgpνpBqP q “

Â

xBy ctgpP q
ctgpxByP q “ xBy; ctgpP q
ctgpP ‖ Qq “ ctgpP q Y ctgpQq with xV1, E1y Y xV2, E2y “ xV1 Y V2, E1 Y E2y,

with

$

’

’

&

’

’

%

x; xV,Ey “ xV Y txu, tpx, yq | y P sourcespEq _ pE “ H^ y P V quy
sourcespEq “ ty | py, zq P E ^ Ex, px, yq P Eu
Â

xByxV,Ey “ xV ztxByu, Ez tpx, yq | x ‰ y ^ px “ xBy _ y “ xBqyu
Y tpα, βq | tpα, xByq, pxBy, βqu Ď Euy.

Given a control graph Γ, the notation x ; Γ corresponds to prefixing the graph by a single atomic
action. The set sourcespEq corresponds to the sources of the edges in E, i.e. the vertices without an
incoming edge. And

Â

xBy Γ removes an explicit barrier node and connect all the processes ending in B
to the processes starting from it. In effect, this realizes the synchronization described by the barrier B.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 9

We illustrate the construction on a simple process below:

ctgpνpBqνpCqrxByxCya.0||xByxCyb.0sq “
â

xBy

â

xCy

pctgpxByxCya.0q Y ctgpxByxCyb.0qq

“
â

xBy

â

xCy

xtxBy, xCy, au, tpxBy, xCyq, pxCy, aquyu
YxtxBy, xCy, bu, tpxBy, xCyq, pxCy, bquy

“
â

xBy

â

xCy

xtxBy, xCy, a, bu, tpxBy, xCyq, pxCy, aq, pxCy, bquy

“
â

xBy

xtxBy, a, bu, tpxBy, aq, pxBy, bquy

“ xta, bu,Hy

The graph with only two unrelated vertices and no edge is the correct construction. Now, slightly
changing the process we see how the construction fails for deadlocked processes.

ctgpP q “
â

xBy

â

xCy

pctgpxByxCya.0q Y ctgpxCyxByb.0qq

“
â

xBy

â

xCy

xtxBy, xCy, au, tpxBy, xCyq, pxCy, aquyu Y xtxCy, xBy, bu, tpxCy, xByq, pxBy, bquy

“
â

xBy

â

xCy

xtxBy, xCy, a, bu, tpxBy, xCyq, pxCy, aq, pxCy, xByq, pxBy, bquy

“
â

xBy

xtxBy, a, bu, tpxBy, xByq, pxBy, aq, pxBy, bquy

“ xta, bu, tpxBy, xByq, pxBy, aq, pxBy, bquy

In the final step, the barrier xBy cannot be removed because of the self-loop. So there are two witnesses
of the fact that the construction failed: there is still a barrier name in the process, and there is a cycle in
the resulting graph.

Theorem 2.2. Let P be a process, then P has a deadlock if and only if ctgpP q has a cycle. Moreover,
if P is deadlock-free (hence it is a DAG) then pα, βq P ctgpP q if and only f α ă β (hence the DAG is
intransitive).

Proof idea: The proof is not difficult but slightly technical. The idea is to extend the notion of execution
to go “past” deadlocks, thus detecting cycles in the causal relation. The details are given in Appendix A
not to overload the core of the paper.

In Fig. 2 (top) we describe a system Sys written in the proposed language, together with the covering
of POpSysq, i.e. its control graph (bottom). We also indicate the number of its possible executions, a
question we address next.

2.3 The counting problem
One may think that in such a simple setting, any behavioral property, such as the counting problem that
interests us, could be analyzed efficiently e.g. by a simple induction on the syntax. However, the devil is
well hidden inside the box because of the following fact.

10 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

Sys “ init.νpG1, G2, J1q. r step1.νpIOq pstep2.xG1ystep3.xIOystep4.xG2yxJ1yend ‖ load.xform.xIOy0q
‖ gen.yield1. pxG1y0 ‖ yield2.xG2y0q

‖ fork.νpJ2q pcomp1.xJ2y0 ‖ comp2.1.comp2.2.xJ2y0 ‖ xJ2yjoin.xJ1y0q s

init step1

gen

step2 step3 step4 end

yield1 yield2

load xform

fork comp1

comp2.1 comp2.2

join

Fig. 2: An example process with barrier synchronizations (top) and its control graph (bottom). The process is of size
16 and it has exactly 1975974 possible executions.

Theorem 2.3. Let U be a partially ordered set. Then there exists a barrier synchronization process P
such that POpP q is isomorphic to U .

Proof sketch: Consider G the (intransitive) covering DAG of a poset U . We suppose each vertex of G
to be uniquely identified by a label ranging over α1, α2, . . . , αn. The objective is to associate to each
such vertex labeled α a process expression Pα. The construction is done backwards, starting from the
sinks (vertices without outgoing edges) of G and bubbling-up until its sources (vertices without incoming
edges).

There is a single rule to apply, considering a vertex labeled α whose children have already been pro-
cessed, i.e. in a situation depicted as follows:

α

. . .Pβ1 Pβk

Pα “ xBαyα. rxBβ1
y0 ‖ . . . ‖ xBβky0s .

In the special case α is a sink we simply define Pα “ xBαyα.0. In this construction it is quite obvious
that α ă βi for each of the βi’s, provided the barriers Bα, Bβ1

, . . . , Bβk are defined somewhere in the
outer scope.

At the end we have a set of processes Pα1 , . . . , Pαn associated to the vertices ofG and we finally define
P “ νpBα1q . . . νpBαnq rPα1 ‖ . . . ‖ Pαns.

That POpP q has the same covering as U is a simple consequence of the construction.

Corollary 1. Let P be a non-deadlocked process. Then xα1, . . . , αny is an execution of P if it is a linear
extension of POpP q. Consequently, the number of executions of P is equal to the number of linear
extensions of POpP q.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 11

We now reach our “negative” result that is the starting point of the rest of the paper: there is no efficient
algorithm to count the number of executions, even for such simplistic barrier processes.

Corollary 2. Counting the number of executions of a (non-deadlocked) barrier synchronization process
with n atomic actions is 7P -complete(ii).

This is a direct consequence of [13] since counting executions of processes boils down to counting
linear extensions in (arbitrary) posets.

3 BITS-Decomposition of a process: shrinking a process to ob-
tain a symbolic enumeration of executions

We describe in this section a generic (and symbolic) solution to the counting problem, based on a system-
atic decomposition of finite posets (thus, by Theorem 2.2, of process expressions) through their covering
DAG (i.e. control graphs).

3.1 Decomposition scheme

(B)ottom (I)ntermediate (T)op (S)plit

x

y

x

x

y

z

x

z

y

z

z x y

x y

x y

Ψ1 “
ş1

x
Ψ.dy Ψ1 “

şz

x
Ψ.dy Ψ1 “

şz

0
Ψ.dy Ψ1 “ Ψxăy `Ψyăx

Fig. 3: The BITS-decomposition and the construction of the counting formula.

In Fig. 3 we introduce the four decomposition rules that define the BITS-decomposition. The first
three rules are somehow straightforward. The (B) rule (resp. (T) rule) allows to consume a node with
no outgoing (resp. incoming) edge and one incoming (resp. outgoing) edge. In a way, these two rules
consume the “pending” parts of the DAG. The (I) rule allows to consume a node with exactly one incoming
and outgoing edge. The final (S) rule takes two incomparable nodes x, y and decomposes the DAG in two
variants: the one for x ă y and the one for the converse y ă x.

We now discuss the main interest of the decomposition: the incremental construction of an integral
formula that solves the counting problem. The calculation is governed by the equations specified below
the rules in Fig. 3, in which the current formula Ψ is updated according to the definition of Ψ1 in the
equations(iii).

Note that in the (S) rule Ψxăy (resp. Ψyăx) denotes the integral formula computed over the DAG with
the added arc y Ñ x (resp. xÑ y).

(ii) A function f is in 7P if there is a polynomial-time non-deterministic Turing machine M such that for any instance x, fpxq is the
number of executions of M that accept x as input. See for example[2].

(iii) Here Ψ1 does not denote the derivative, it is just a convenient notation when iterated.

12 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

Theorem 3.1. The integral formula built by the BITS-decomposition is equal to the number of linear
extensions of the corresponding poset. Moreover, the applications of the BITS-rules are confluent, in the
sense that all the sequences of (valid) rules reduce the DAG to an empty graph(iv).

The precise justification of the integral computation and the proof for the theorem above are postponed
to Section 3.2 below. We first consider an example.

Example 3.1. Illustrating the BITS-decomposition scheme.
x1

x2

x3 x4

x5 x6

x7

x8

Tx1

x2

x3 x4

x5 x6

x7

x8

Stx3,x4u

x2

x4

x3

x6x5

x7

x8

where x4 ă x3

Ix7

x2

x4

x3

x6x5

x8

Ix5 . . .

Ψ “ 1 Ψ1 “

ż x2

0

Ψdx1
Ψ2 “

Ψ1x3ăx4

` Ψ1x4ăx3

Ψ3 “

ż x8

x4

Ψ2x4ăx3
dx7

The DAG to decompose (on the left) is of size 8 with nodes x1, . . . , x8. The decomposition is non-
deterministic, multiple rules apply, e.g. we could “consume” the node x7 with the (I) rule. Also, the
(S)plit rule is always enabled. In the example, we decide to first remove the node x1 by an application of
the (T) rule. We then show an application of the (S)plit rule for the incomparable nodes x3 and x4. The
decomposition should then be performed on two distinct DAGs: one for x3 ă x4 and the other one for
x4 ă x3 (the one pictured in the figure above). We illustrate the second choice, and we further eliminate
the nodes x7 then x5 using the (I) rule, etc. Ultimately all the DAGs are decomposed and we obtain the
following integral computation:

Ψ “

ż 1

x2“0

ż 1

x4“x2

ż 1

x3“x4

ż 1

x6“x3

ż 1

x8“x6

ż x8

x5“x3

ż x8

x7“x4
ˆ

1|x4ăx3
¨

ż x2

x1“0

1 ¨ dx1 ` 1|x3ăx4
¨

ż x2

x1“0

1 ¨ dx1

˙

dx7dx5dx8dx6dx3dx4dx2 “
8` 6

8!
.

The result means that there are exactly 14 distinct linear extensions in the example poset.

3.2 Embedding in the hypercube: the order polytope
The justification of our decomposition scheme is based on the continuous embedding of posets into the
hypercube, as investigated in [26].

Definition 3.1 (Order polytope). Let P “ pE,ăq be a poset of size n. Let C be the unit hypercube
defined by C “ tpx1, . . . , xnq P Rn | @i, 0 ď xi ď 1u. For each constraint xi ă xj P P we define the
convex subset Si,j “ tpx1, . . . , xnq P Rn | xi ď xju, i.e. one of the half spaces obtained by cutting Rn
with the hyperplane tpx1, . . . , xnq P Rn | xi ´ xj “ 0u. Thus, the order polytope CP of P is

Cp “
č

xiăxjPP

Si,j X C.

(iv) At the end of the decomposition, the DAG is in fact reduced to a single node, which is removed by an integration between 0
and 1.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 13

Each linear extension, seen as a total order, can similarly be embedded in the unit hypercube. Then,
the order polytopes of the linear extensions of a poset P form a partition of the poset embedding Cp as
illustrated in Figure 4.

Cp0,1,0q

Bp1,1,0q

Ap1,0,0qOp0,0,0q

Ep0,0,1q
Dp0,1,1q

Gp1,1,1q

Fp1,0,1q

C
B

A
O

E

D
G

F

C
B

A
O

E

D
G

F

Fig. 4: From left to right: the unit hypercube, the embedding of the total order 1 ă 2 ă 3 and the embedding of the
poset P “ pt1, 2, 3u, t1 ă 2uq divided in its three linear extensions.

The number of linear extensions of a poset P , written |LE pP q|, is then characterized as a volume in
the embedding.

Theorem 3.2. ([26, Corollary 4.2]) Let P be a poset of size n then its number of linear extensions is
|LE pP q| “ n! ¨ VolpCP q where VolpCP q is the volume, defined by the Lebesgue measure, of the order
polytope CP .

The integral formula introduced in the BITS-decomposition corresponds to the computation of VolpCpq,
hence we may now give the key-ideas of Theorem 3.1.

Proof of Theorem 3.1: We begin with the (S) rule. Applied on two incomparable elements x and y,
the rule partitions the polytope in two regions: one for x ă y and the other for y ă x. Obviously, the
respective volume of the two disjoint regions must be added. We focus now on the (I) rule. In the context
of Lebesgue integration, the classic Fubini’s theorem allows to compute the volume V of a polytope P as
an iteration on integrals along each dimension, and this in all possible orders, which gives the confluence
property. Thus,

V “

ż

r0,1sn
1P pxqdx “

ż

r0,1s

. . .

ż

r0,1s

1P ppx, y, z, . . . qqdxdydz . . . ,

1P being the indicator function of P such that 1P ppx, y, z, . . . qq “
ź

α actions

1Pαpαq,with Pα the projection

of P on the dimension associated to α. By convexity of P , the function 1Py is the indicator function of
a segment rx, zs. So the following identity holds:

ş

P
1Py pyqdy “

şz

x
dy. Finally, the two other rules (T)

and (B) are just special cases (taking x “ 0, alternatively z “ 1).

Corollary 3. ([26]) The order polytope of a linear extension is a simplex and the simplices of the linear
extensions are isometric, thus of the same volume.

4 Uniform random generation of process executions
In this section we describe a generic algorithm for the uniform random generation of executions of barrier
synchronization processes. The algorithm is based on the BITS-decomposition and its embedding in

14 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

the unit hypercube. It has two essential properties. First, it is directly working on the control graph
(equivalently on the corresponding poset), and thus does not require the explicit construction of the state-
space of processes. Second, it generates possible executions of processes at random according to the
uniform distribution. This is a guarantee that the sampling is not biased and reflects the actual behavior
of the processes.

Algorithm 1 Uniform sampling of a simplex of the order polytope

function SAMPLEPOINT(v)(I “
şb

a
fpyiqdyi)

C Ð evalpIq
U Ð UNIFORMpa, bq

Yi Ð the solution t of
şt

a
1
C fpyiqdyi “ U

if f is not a symbolic constant then
SAMPLEPOINTpftyi Ð Yiuq

else return the Yi’s

The input of Algorithm 1 is a poset over the set of points tx1, . . . , xnu (or equivalently its covering
DAG). The decomposition scheme of Section 3 produces an expression as an integral formula I of the
form

ş1

0
F pyn, . . . , y1q dyn ¨ ¨ ¨ dy1 with F a symbolic integral formula over the points x1, . . . , xn. The yi

variables represent a permutation of the poset points giving the order followed along the decomposition.
Thus, the variable yi corresponds to the i-th removed point during the decomposition. We remind the
reader that the evaluation of the formula I gives the number of linear extensions of the partial order. Now,
starting with the complete formula, the variables y1, y2, . . . will be eliminated, in turn, in an “outside-in”
way. Algorithm 1 takes place at the i-th step of the process. At this step, the considered formula is of the
following form:

ż b

a

ˆ
ż

¨ ¨ ¨

ż

1 dyn ¨ ¨ ¨ dyi`1

˙

looooooooooooooomooooooooooooooon

fpyiq

dyi.

Note that in the subformula fpyiq the variable yi can only occur (possibly multiple times) as an integral
bound.

In the algorithm, the variable C gets the result of the numerical computation of the integral I at the
given step. Next we draw (with UNIFORM) a real number U uniformly at random between the integration
bounds a and b. Based on these two intermediate values C and U , we perform a numerical solving of
variable t in the integral formula corresponding to the slice of the polytope along the hyperplan yi “ U .
The result, a real number between a and b, is stored in variable Yi. The justification of this step is further
discussed in the proof sketch of Theorem 4.1 below.

As long as I contains an integral, the algorithm is applied recursively by substituting the variable yi in
the integral bounds of I by the numerical value Yi. If no integral remains, all the computed values Yi’s
are returned. As illustrated in Example 4.1 below, this allows to select a specific linear extension in the
initial partial ordering. The justification of the algorithm is given by the following theorem.

(v) The Python/SageMath implementation of the random sampler is available at the following location: https://gitlab.com/
ParComb/combinatorics-barrier-synchro/blob/master/code/RandLinExtSage.py

https://gitlab.com/ParComb/combinatorics-barrier-synchro/blob/master/code/RandLinExtSage.py
https://gitlab.com/ParComb/combinatorics-barrier-synchro/blob/master/code/RandLinExtSage.py

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 15

Theorem 4.1. Algorithm 1 uniformly samples a point of the order polytope with aOpnq complexity in the
number of integrations.

Proof: The problem is reduced to the uniform random sampling of a point p in the order polytope P . This
is a classical problem about marginal densities that can be solved by slicing the polytope and evaluating
incrementally the n continuous random variables associated to the coordinates of p. More precisely,
during the calculation of the volume of the polytope P , the last integration (of a univariate polynomial
ppyq) done from 0 to 1 corresponds to integrating according to the variable y along the subsets defined
by the polytope P So, the polynomial ppyq{

ş1

0
ppyqdy is nothing but the density function of the random

variable Y . Thus, we can generate Y according to this density and fix it. When this is done, we can
inductively continue with the previous integrations to draw all the random variables associated to the
coordinates of p. The linear complexity of Algorithm 1 follows from the fact that each partial integration
deletes exactly one variable (which corresponds to one node). Of course at each step a possibly costly
computation of the counting formula is required.

We now illustrate the sampling process based on Example 3.1 (page 12).

Example 4.1. First we assume that the whole integral formula has already been computed. To simplify
the presentation we only consider (S)plit-free DAGs i.e. decomposable without the (S) rule. Note that it
would be easy to deal with the (S)plit rule: it is sufficient to uniformly choose one of the DAGs processed
by the (S) rule w.r.t. their number of linear extensions.

For example, taking back the DAG of Example 3.1, the DAG with constraint “x4 ă x3” will be choosed
with probability 8

14 : the number of its linear extension divided by the number of linear extension of the
“full” DAG. Thus the following formula holds:

ż 1

0

ˆ
ż 1

x2

ż 1

x4

ż 1

x3

ż 1

x6

ż x8

x4

ż x8

x3

ż x2

0

dx1dx5dx7dx8dx6dx3dx4

˙

dx2 “
8

8!
.

In the equation above, the sub-formula between parentheses would be denoted by fpx2q in the explanation
of the algorithm. Now, let us apply the Algorithm 1 to that formula in order to sample a point of the order
polytope. In the first step the normalizing constant C is equal to 8!

8 , we draw U uniformly in r0, 1s and so
we compute a solution of 8!

8

şt

0
. . . dx2 “ U . That solution corresponds to the second coordinate of a the

point we are sampling. And so on, we obtain values for each of the coordinates:

"

X1 “ 0.064 . . . , X2 “ 0.081 . . . , X3 “ 0.541 . . . , X4 “ 0.323 . . . ,
X5 “ 0.770 . . . , X6 “ 0.625 . . . , X7 “ 0.582 . . . , X8 “ 0.892 . . .

These points belong to a simplex of the order polytope. Note that almost surely each coordinates are
different. To find the corresponding linear extension we compute the rank of that vector, i.e. the order
induced by the values of the coordinates correspond to a linear extension of the original DAG:

px1, x2, x4, x3, x7, x6, x5, x8q.

This is ultimately the linear extension returned by the algorithm.

16 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

5 Characterization of important process sub-classes and link with
BIT-decomposition

Thanks to the BITS decomposition scheme, we can generate a counting formula for any (deadlock-free)
process expressed in the barrier synchronization calculus, and derive from it a dedicated uniform random
sampler. However the (S)plit rule generates two summands, thus if we cannot find common calculations
between the summands the resulting formula can grow exponentially in the size of the process. If we
avoid splits in the decomposition, then the counting formula remains of linear size. This is, we think, a
good indicator that the sub-class of so-called “BIT-decomposable” processes is worth investigating for its
own sake. In this section, we first give some illustrations of the expressivity of this sub-class, and we then
study the question of what it is to be not BIT-decomposable.

Also, the first two subsections are extended results based on previously published papers. The first
subsection extends the results of [6],[8], [7] and [10] by identifying the fragment of barrier synchroniza-
tion calculus corresponding to the studied partial orders and providing unpublished proofs. Moreover, the
second subsection presents results on a family of processes which is a generalization of the one studied
in [10].

5.1 From tree posets to fork-join parallelism
In the following interesting sub-classes of processes, we aim at deriving quantitative properties as the
number of processes of a given size, or the average number of executions. To deal with such questions
the context of analytic combinatorics is natural. So let us first recall some general notions of analytic
combinatorics. This formalism will also allow us to reprove classical results like hook length formulas by
using our BIT-decomposition.

5.1.1 Combinatorial classes and specifications
A combinatorial classA is a set of discrete structures (words, graphs, etc) with a size function |¨| : AÑ N
such that for every non-negative integer n every set An “ tα P A | |α| “ nu is finite. We denote an the
cardinal of An.

A combinatorial class may be a labeled one if its elements are labeled as defined before.
The ordinary (resp. exponential) generating function A (resp. Ã) associated to an unlabeled (resp.

labeled) combinatorial class A is defined by :

Apzq “
ÿ

ně0

anz
n Ãpzq “

ÿ

ně0

an
zn

n!

Labeled combinatorial classes may be defined using symbolic specifications. This equational language
allows to define, inductively, labeled and unlabeled combinatorial classes using the following operators
(where A and B are labeled combinatorial classes): E (neutral class), Z (atomic class) A ` B (disjoint
union), A ‹ B (labeled product), SEQpAq (sequence of elements of A), SETpAq (set of elements of A),
A˝ ‹ B (boxed product). Then the so-called symbolic method translates these definitions in terms of
generating function.

A typical example is the symbolic specification of the class C of Cayley trees (labeled spanning trees
of graphs) :

C “ Z ‹ SET pCq

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 17

Whose exponential generating function verifies:

C̃pzq “ z ¨ exp
´

C̃pzq
¯

The boxed product(vi) forces the smallest label to be present in the left-hand structure. Thus it allows to
define classes of increasingly labeled structures. For example, we can transform the previous specification
into the one of the class G of increasingly labeled Cayley trees :

G “ Z˝ ‹ SET pGq G̃pzq “

ż

exp
´

G̃pzq
¯

dz.

For a comprehensive study of symbolic specifications and generating functions, one can read the first
chapter of [15].

5.1.2 Tree processes
If the control-graph of a process is decomposed with only the B(ottom) rule (or equivalently the T(op)
rule), then it is rather easy to show that its shape is that of a tree. These are processes that cannot do much
beyond forking sub-processes. For example, based on our language of barrier synchronization it is very
easy to encode processes whose control-graphs are the (rooted) binary trees:

T ::“ 0 | α.pT ‖ T q or e.g. T ::“ 0 | νB pα.xBy0 ‖ xByT ‖ xByT q . (4)

The good news is that the combinatorics on trees is well-studied. This study relies on the combina-
torial interpretation of processes as discrete structures then the use of tools from the theory of analytic
combinatorics (see [15] for a reference).

The equations (4) are very similar to the combinatorial specification B of binary trees i.e.

B “ E ` Z ˆB2,

which is the way we study syntactic processes.
Concerning the semantic, as mentioned in Corollary 1, executions of a process P correspond to linear

extensions of the poset POpP q. Another point of view is to consider increasing labelings of the cover-
ing DAG which are isomorphic to linear extensions. Hence we can derive from the previous unlabeled
specification for B the combinatorial class of binary tree processes, a labeled specification for R the
combinatorial class of their executions:

R “ E ` Z˝ ‹R2.

In the paper [11] we provide a thorough study of such processes, and in particular we describe very
efficient counting and uniform random generation algorithms. Of course, this is not a very expressive
sub-class in terms of concurrency.

5.1.3 Fork-join processes and Multi Bulk Synchronous Parallel computing (BSP)
Thankfully, many results on trees generalize rather straightforwardly to fork-join parallelism, a sub-class
we characterize inductively in Fig. 5. Informally, this proof system imposes that processes use their
(vi) C “ A˝ ‹ B, Cpzq “

ş

A1pzq ¨Bpzqdz

18 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

β $FJ 0

β $FJ P

β $FJ α.P

β $FJ P β $FJ Q

β $FJ P ‖ Q

B::β $FJ P

β $FJ νpBq P

β $FJ P

B::β $FJ xBy.P

Fig. 5: A proof system for fork-join processes.

P ::“ νBra.
“

νBgb.pd.xBgy0 ‖ e.xBgy0 ‖ xBgyg.xBry0q
‖ c.f.xBry0
‖ xBry νBb h.pi.xBby0 ‖ j.xBby0 ‖ xBbyk.lq

‰

a

b c

d e
f

g

h

i j

k

l

Fig. 6: A fork-join process.

synchronization barriers according to a stack discipline. When synchronizing, only the last created barrier
is available, which exactly corresponds to the traditional notion of a join in concurrency. The Fig. 6 gives
an example of fork-join process P where the colored vertices correspond to “forks” and their relatives
“joins” (note that h is both a fork and a join vertex). Like for binary tree processes we can design a
combinatorial specification of the combinatorial class F of fork-join processes:

F “ E ` Z ˆ F ` Z ˆ F2 ˆ F .

Let us explain this specification from the proof system of Fig. 5. The first term E corresponds to the axiom
(the leftmost rule) of Fig. 5; the second termZˆF corresponds to the processes prefixed by an action; the
last term Z ˆ F2 ˆ F corresponds to processes composed of two parallel processes (third rule) prefixed
by a barrier declaration (B added in the stack β in the fourth rule) and such that the next barrier reached
should have the same name as the last barrier stacked (fifth rule).

That computation model is more realistic than the tree processes. Actually, the Multi Bulk Synchronous
Parallel (Multi-BSP) model of computations (see the seminal paper [28]) can be seen as a fork-join model
of computations. The Multi-BSP model defines a tree of nested computational components: the leaves
are the processors and the inner vertices are computers and more. For example, a height 4 tree would
be a data center (the root of the tree), composed of server racks (depth 1), each composed of servers
(depth 2) with several multi-core processors (depth 3). Then the Multi-BSP model sets that each vertex
obey to the original BSP model. The BSP model states that processing units computations are divided
in superstep composed of (asynchronous) computations, communications requests (between processing

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 19

units) and ending by a barrier synchronization during which the communications are processed. So su-
persteps at depth i correspond to fork-join processes where i barriers names are visible, put another way
it corresponds to sub-DAGs of depth i from the root.

5.1.4 The ordered product
Like in the case of binary tree processes we can derive the class of increasingly labeled fork-join processes
corresponding to their executions. But unlike the previous case, the boxed product is not expressive
enough to give a specification of such increasingly labeled class. Here we need a global constraint over
the labels such that the labels of the upper part (corresponding to the zˆF2 term) are smaller than the one
of the bottom part of the poset (the last F term). That is the purpose of the ordered product, introduced
in the context of species theory (see [5]), that we studied with an analytic combinatorics point of view in
[8].

Definition 5.1. Let A and B be two labeled combinatorial classes and α and β be two structures respec-
tively in A and in B. We define the class of labeled structures induced by α and β:

α ‹ β “

pα, f|α|pβqq | f|α|p¨q shifts the labels from β by |α|
(

.

Note that f|α| is a relabeling function which shifts the labels of β (from 1 to |beta|) by |α|. So the pair
pα, f|α|pβqq as labels from 1 to |α| inside the α part and from 1` |α| to |β| ` |α| inside the f|α|pβq part.
This guarantees that the set α ‹ β is a set of well-labeled objects.

We extend the ordered product to combinatorial classes:

A ‹ B “
ď

αPA, βPB
α ‹ β.

In fact, the ordered product ofA ‹ B contains objects from the product A ‹B such that all the labels of
component of A are smaller that the ones of the component of B.

As usual, this operator over combinatorial classes translates into an operator over generating func-
tions. Before introducing that translation we first recall the classical integral transforms: the combinatorial
Laplace and the Borel transforms(vii). From a combinatorial point of view, they define a bridge between
exponential generating functions and ordinary generating functions. More precisely, we have respectively

Lc

˜

ÿ

ně0

an
zn

n!

¸

“
ÿ

ně0

anz
n; Bc

˜

ÿ

ně0

anz
n

¸

“
ÿ

ně0

an
zn

n!
.

From a functional point of view, the combinatorial Laplace and the Borel transforms correspond re-
spectively to

Lcpfq “

ż 8

0

expp´tqfpztqdt;

Bcpfq “
1

2iπ

ż c`i8

c´i8

exppztq

t
f

ˆ

1

t

˙

dt,

(vii) cf. Appendix B in which we recall the relations between the classical Laplace and Borel transforms and their combinatorial
definitions.

20 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

where the real constant c is greater than the real part of all singularities of fp1{tq{t.
Analogously to the traditional Laplace transform, the product of Laplace transforms can be expressed

with a convolution product:

z ¨ Lcpfq ¨ Lcpgq “ Lc

ˆ
ż z

0

fptqgpz ´ tqdt

˙

.

Equivalently

Lcpfq ¨ Lcpgq “ Lc

ˆ
ż z

0

fptqg1pz ´ tqdt` gp0qfpzq

˙

.

We denote by f ˚ g the combinatorial convolution
şz

0
fptqg1pz ´ tqdt` gp0qfpzq.

Proposition 5.1. LetA and B be two labeled combinatorial classes. The exponential generating function
Cpzq, associated to C “ A ‹ B, satisfies the three following equations (according to the context: formal
or integrable functions)

Cpzq “ Bc pLcApzq ¨ LcBpzqq

“
ÿ

ně0

řn
k“0 akbn´k

n!
zn

“ Apzq ˚Bpzq.

The proof necessitates some background on the use of combinatorial Borel and Laplace transform. The
reader will find some general ideas in Appendix B.

Proof: Using Definition 5.1, we note that an object from C is given by an object from A and one from
B only by shifting the labels of the second one. Thus the number of objects of size n in C is given by
řn´1
k“1 Ak ¨Bn´k.

Note that the sum can also be derived more directly from a computation of the general term of BpLpApzqq¨
LpBpzqqq.

Observe that the ordered product gives a combinatorial interpretation of this adapted convolution. Note
that the integral interpretation is valid when both generating function Apzq and Bpzq are integrable in
their domain of definition. However, for example if Apzq “ 1{p1´ zq, although LcApzq is not analytic,
the function Apzq can be a component of the ordered product.

5.1.5 Combinatorics of fork-join processes
The introduction of the ordered product allows us to define several classes of increasingly labeled fork-join
processes with different constraints. Here we focus on the class F` of fork-join processes with `-nested
fork nodes (i.e. at most 2` processes can be run in parallel) which modelizes Multi-BSP architectures with
` levels of components. The specification of such process is built the same way than a specification for
simple varieties of trees of height `:

F0 “ SEQ
ě1
Z

F` “ Z ` Z ˆ F` ` Z ˆ F2
`´1 ˆ F`.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 21

Thanks to the ordered product we can define a specification N` for these fork-join processes with
increasing labelings corresponding to their executions:

N0 “ SET
ě1
Z

N` “ Z ` Z˝ ‹N` ` Z˝ ‹
`

N 2
`´1

‹ N`
˘

.

Proposition 5.2. The generating function N` of the class N` verifies the following equations
$

&

%

LcpN0pzqq “
z

1´ z
LcpN`pzqq “

z

1´ z ´ z LcpN`´1q e LcpN`´1q
.

where Apzq eBpzq is the colored product defined in [8] by LcpBcpApzqq ¨ BcpBpzqqq.

Proof: The derivation is direct using the following standard properties of the combinatorial Laplace and
Borel transforms:

Lc

ˆ
ż

Apzq

˙

“ z LcpApzqq and LcpApzq
2q “ LcpApzqq e LcpApzqq.

Proposition 5.3. LcpN`q is a rational function with numerator P`pzq and denominator Q`pzq of degree
d` that are smaller than d̄` satisfying

$

&

%

d̄0 “ 1

d̄` “
pd̄`´1 ` 1qpd̄`´1 ` 2q

2
.

Moreover P` and Q` are coprime and have only simple roots.

Proof: Before proving that claim by induction, we recall a basic property of combinatorial Laplace trans-
form

Lcpe
azq “

1

1´ az
.

For the base case N0pzq the proof is direct: N0pzq “ exppzq ´ 1 and so LcpN0q “
z

1´z .

Now suppose, for some ` ě 1, that N`´1pzq “
P`´1pzq
Q`´1pzq

where P`´1 and Q`´1 are polynomials of
degree d`´1. Then by proposition 5.2 and induction hypothesis we have

LcpN`pzqq “
z

1´ z ´ z
´

P`´1pzq
Q`´1pzq

e
P`´1pzq
Q`´1pzq

¯ .

By partial fraction decomposition we can write

P`´1pzq

Q`´1pzq
“ γ`´1 `

d`´1
ÿ

i“1

α
p`´1q
i

1´ β
p`´1q
i z

,

22 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

where the α, β and γ are complex constants. So the combinatorial Borel transform of that function is a
sum of αp`´1q

i exp
´

β
p`´1q
i z

¯

. Thus we have

P`´1pzq

Q`´1pzq
e
P`´1pzq

Q`´1pzq
“Lc

˜

γ2
`´1 ` 2γ`´1

ÿ

i

α
p`´1q
i exp

´

β
p`´1q
i z

¯

`
ÿ

i,j

α
p`´1q
i α

p`´1q
j exp

´

pβ
p`´1q
i ` β

p`´1q
j qz

¯

¸

.

By Laplace transform, that sum of exponential factors becomes a partial fraction expansion containing
pd`´1`1qpd`´1`2q

2 poles (the βi and their products). Due to eventual cancellation, if fact the later equations
is an upper bound for d` and it is denoted d̄` in the proposition statement. Every pole is simple by
induction hypothesis (all the βi are different). Thus LcpN`pzqq is a rational function with the claimed
properties.

Using a computer algebra system like [27], we compute LcpN2pzqq:

LcpN2pzqq “
´ 4

5
x10 ` 51

20
x9 ´ 639

160
x8 ` 2501

640
x7 ´ 1627

640
x6 ` 2897

2560
x5 ´ 11

32
x4 ` 87

1280
x3 ´ 1

128
x2 ` 1

2560
x

x10 ´ 333
80

x9 ` 77
10

x8 ´ 1121
128

x7 ` 8729
1280

x6 ´ 9647
2560

x5 ` 3811
2560

x4 ´ 33
80

x3 ` 97
1280

x2 ´ 21
2560

x` 1
2560

.

For ` “ 3 the numerator and the denominator are of degree 66, thus the calculation becomes very hard.

Corollary 4. The average number of executions of size n fork-join processes with a fork-depth of 2
satisfies:

lim
nÑ8

rznsF2pzq

rznsLcpN2pzqq
“ σ ¨ ρ´n,

where σ – 89.367 and ρ – 0.65912.

The proof is a direct application of singularity analysis.

5.1.6 Hook-length formula
To conclude that section we present the hook-length formula (which we introduced in [8]). Hook length
formulas in trees allow to compute the number of possible increasing labeling of a tree structure. He we
obtain the extension for fork-join processes.

That formula has the benefit of emphasizing the correspondence between the fork-join processes and
the class of series-parallel posets. In the decomposition both the (B) and the (I) rule are needed, but
following a tree-structured strategy. Using a good strategy allow to obtain the result very efficiently as we
will note.

For this, we need to define two kind of sub-structures found in fork-join covering DAGs. Let P be a
fork-join process. A largest series component X of P is a connected sub-process of P whose direct an-
cestor is a fork node, and whose direct descendant is the corresponding join node. The set of largest series
components of P is denoted by SeP . Similarly, a largest parallel component Y of P is a disconnected
sub-process composed by the two largest series components associated to the same pair of fork/join nodes.
The set of largest parallel components of P is denoted by PaP .

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 23

Theorem 5.4. (Hook-length formula for fork-join processes). The number of linear extensions of a fork-
join process P is

|LE pP q| “

ś

Y PPaP |Y |!
ś

XPSeP |X|!
.

An application of the formula for our example in Fig. 6 gives p2! 6! 2!q { p1! 1! 4! 2! 1! 1!q “ 2880{48 “
60. Thus there are 60 different linear extensions induced by our example.

Proof: Here we provide a new proof (different from the one given in [8]) based on the BIT rules. The
theorem can be demonstrated using Möhring’s formula [22], however a direct proof based on the integral
formula of the BI-decomposition is proposed here.

The proof relies on an induction on the size of the process P . Suppose the result is correct for fork-join
processes of size smaller than n. Take into account the process P of size n. First suppose P is a series of
its root p and a second fork-join process Q. Thus the size of Q is n ´ 1. Then, by inductive assumption
on Q, we have

|LE pQq| “

ś

Y PPaQ |Y |!
ś

XPSeQ |X|!
.

However, the last integration for Q in the context of P is between α and 1 instead of 0 and 1. Thus

|LE pP q|

|P |!
“

ż 1

0

ˆ
ż α

0

|LE pQq|

p|Q| ´ 1q!
p1´ qq|Q|´1dq

˙

dp

“

ż 1

0

|LE pQq|

|Q|!
p1´ pq|Q|dp “

|LE pQq|

p|Q| ` 1q!
.

We deduce |LE pP q| “ |LE pQq|; furthermore SeQ “ SeP and PaQ “ PaP , so the hook-length
formula for P is satisfied.

Let us suppose P has a root p that is a fork node. We use its encoding as a tree to easily describe P .
The root p has three subtrees P1, P2 and Q. The recursive strategy and the inductive assumption reduces
all these three substructures to three nodes p1, p2 and q. The last integration for P1 and P2 are between p
and q, thus

ΨP1
“
|LE pP1q|

p|P1| ´ 1q!
pp1 ´ qq

|P1|´1, ΨP2
“
|LE pP2q|

p|P2| ´ 1q!
pp2 ´ qq

|P2|´1.

The last integration for Q is between p and 1, thus

ΨQ “
|LE pQq|

p|Q| ´ 1q!
p1´ qq|Q|´1.

Then we can, for example, reduce p1,p2,q and finally p with respectively the rules I, I, B and B. Thus

|LE pP q|

|P |!
“

ż 1

0

ˆ
ż 1

p

ˆ
ż q

p

ˆ
ż q

p

ΨP1
dp1

˙

¨ΨP2
dp2

˙

¨ΨQdq

˙

dp.

Let us recall the following equation, proved by repeated integration by parts
ż 1

a

p1´ xqr ¨ px´ aqsdx “
r! s!

pr ` s` 1q!
p1´ aqr`s`1.

24 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

Using this last result we compute

|LE pP q|

|P |!
“

ż 1

0

p|P1| ` |P2|q! ¨ |LE pP1q| ¨ |LE pP2q| ¨ |LE pQq|

|P1|! ¨ |P2|! ¨ p|P1| ` |P2| ` |Q|q!
p1´ pq|P1|`|P2|`|Q|dp (5)

“

ˆ

|P1| ` |P2|

|P1|

˙

|LE pP1q| ¨ |LE pP2q| ¨ |LE pQq|

p|P1| ` |P2| ` |Q| ` 1q!
. (6)

Note that SeP “ SeP1
Y SeP2

Y SeQ Y tP1, P2u , PaP “ PaP1
Y PaP2

Y PaQ Y tpP1, P2qu and
|P | “ |P1| ` |P2| ` |Q| ` 1.
By induction hypothesis we have

@A P tP1, P2, Qu, |LE pAq| “

ś

Y PPaA |Y |!
ś

XPSeA |X|!
,

and so 6 can be rewritten:

|LE pP q| “

ś

Y PPatpP1,P2qu
|Y |!

ś

XPSetP1,P2u
|X|!

¨

ś

Y PPaP1
YPaP2

YPaQ |Y |!
ś

XPSeP1
YSeP2

YSeQ |X|!

“

ś

Y PPaP |Y |!
ś

XPSeP |X|!
,

which ends the proof by induction.

Corollary 5. For a fork join process of size n the counting problem is of complexity Opnq in number of
arithmetic operations.
It exists a uniform sampler (using an optimal number of random bits up to a constant factor) with com-
plexity Opn

?
nq on average.

Proof: The counting algorithm is easily derived from the hook-length formula. First we need to compute
and memoize the values of the factorial of the integers from 1 to n. Then a traversal of the graph in a
“bottom-up” fashion allows to collect the sizes of the largest series and parallel components. At each step
a constant number of arithmetic operations is done (because the factorials have been precomputed), and
so the Opnq complexity.

The uniform sampler proceeds by induction. If the process falls in theZˆF class then it draws a linear
extension of the sub-process in F prefixed by an action. Else, the process falls in the ZˆF2ˆF class. In
that case a linear extension is sampled for each sub-process, then the two extensions of the up processes
are shuffled and concatenated to the one of the bottom process. The number of random bits used by the
shuffling procedure is the key to achieve the claimed optimality. Details are given in [7] and out of the
scope here. To show the Opn

?
nq time complexity note that each vertex is manipulated a number of times

proportional to its depth in the tree-like structure, and so the sum of these numbers is proportional to the
path length of the tree: Opn

?
nq in average in this tree model (see for example in [15, p. 185]).

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 25

5.2 Asynchronism with promises
We now discuss another interesting sub-class of processes that can also be characterized inductively on
the syntax of our process calculus, but this time using the three BIT-decomposition rules (in a controlled
manner). The stack discipline of fork-join processes imposes a form of synchronous behavior: all the
forked processes must terminate before a join may be performed. To support a form of asynchronism,
a basic principle is to introduce promise processes. In concurrent programming, it is often the case that
the logic of a program is mainly iterative (step by step) and implemented in a “main” thread, but time
consuming computations are needed to go through all the program. In that case it is convenient to spawn
“promise” threads at the beginning of the master thread that will gather the results only when needed. A
very common encounter of that method is the rendering of web pages. The rendering of the whole page
(the main thread) is not blocked by the loading of a video because the loading is done in a promise thread.

H $ctrl 0

π $ctrl P

π $ctrl α.P

π $ctrl P

π Y tBu $ctrl xBy.P

B R π π Y tBu $ctrl P Q ÒB

π $ctrl νpBq pP ‖ Qq

with Q ÒB iff Q ” α.R and R ÒB or Q ” xBy.0

Fig. 7: A proof system for promises.

In Fig. 7 we define a simple inductive process structure composed as follows. A main control thread
can perform atomic actions (at any time), and also fork a sub-process of the form νpBq pP ‖ Qq but with
a strong restriction:

• a single barrier B is created for the sub-processes to interact,

• the left sub-process P must be the continuation of the main control thread,

• the right sub-process Q must be a promise, which can only perform a sequence of atomic actions
and ultimately synchronize with the control thread.

We are currently investigating this class as a whole, but we already obtained interesting results for the
arch-processes in [10]. An arch-process follows the constraint of Fig. 7 but adds further restrictions. The
main control thread can still spawn an arbitrary number of promises, however there must be two separate
phases for the synchronization. After the first promise synchronizes, the main control thread cannot spawn
any new promise. In [10] a supplementary constraint is added (for the sake of algorithmic efficiency): each
promise must perform exactly one atomic action, and the control thread can only perform actions when
all the promises are running. In this paper, we remove this rather artificial constraint considering a larger,
and more useful process sub-class.

In Fig. 8 (left) is represented the structure of a generalized arch-process. The ai’s actions are the
promise forks, and the synchronization points are the cj’s. The constraint is thus that all the ai’s occur
before the cj’s.

Theorem 5.5. The number of executions of a promise process can be calculated in Opn2q arithmetic
operations, using a dynamic programming algorithm based on memoization.

Proof: Start with a a generalized arch-process P and denote by `P its number of executions.

26 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

‚a1a1,1‚a1,r1 ‚a2 ‚

ak‚
ak,1‚

ak,rk ‚
c1 ‚
c1,1‚

c1,t1 ‚
c2 ‚

‚ck

‚b1,s1

‚b1,1

‚b2,s2

‚b2,1

‚bk,sk

‚bk,1

‚a1a1,1‚a1,r1‚a2 ‚

ak‚
ak,1‚

ak,rk ‚
c1 ‚
c1,1‚

c1,t1 ‚
c2 ‚

‚ck

‚b1,1

P

‚a1a1,1‚a1,r1 ‚a2 ‚

ak‚
ak,1‚

ak,rk ‚
c1 ‚
c1,1‚

c1,t1 ‚
c2 ‚

‚ck

‚b1,1

b1,1‚

‚b1,1

A

BC

Fig. 8: The structure of a promise process (left) and the inclusion-exclusion counting principle (right).

To simplify the approach, let us first modify the first promise. First we replace the promise from a1 to c1
and containing the sequence b1,1, . . . b1,s1 by two promises both from a1 to c1. The first promise contains
only b1,1 and the second one contains the rest of the sequence (if it remains actions) b1,2, . . . , b1,s1 . Let
us denote by P̃ this new process. The number `P is equal to the number of executions `P̃ of P̃ divided by
s1, because now b1,1 is shuffled with b1,2, . . . , b1,s1 .

Let us now introduce some inclusion-exclusion argument in order to count the number of executions
of P̃ . The basic idea is the following, but we will refine it. If we replace the synchronization of b1,1 in c1,
later in the control thread by another in ck, then we allow new executions that are not correct for P̃ thus in
order to remove them we remove the number of executions of the process where a new promise starting
at c1 and synchronizing at ck and containing only b1,1.

In the right hand-side of Fig. 8 we go one step further. There we focus on the control thread and the
promise associated to b1,1. To obtain a clear representation we omit to draw the other promises. Thus
the representation associated to P̃ is the leftmost one, in black (but the first promise withb1,1, . . . b1,s1 is
divided in two promises). Let us denote the partially colored processes A (in red), B (in blue) and C (in
green). Thus the number of executions `P̃ “ `A ´ `B ` `C .

Let us denote by Ã the process A where b1,1 is removed. The executions of A are such that b1,1 can
appear everywhere between a1 and ck in the executions of Ã. Thus `A “ pn ´ 2q ¨ `Ã. And remark
that Ã is a promise process (of size n´ 1), thus we can go recursively inside it to compute its number of
executions.

In the process B, we can insert the action b1,1 in the front of the promise starting at ak, i.e. just before
bk,1. Doing this reduces the numbers of executions (due to the shuffling) by a factor 1{psk ` 1q and the
new process is now a promise process.

Finally, for the process C we can insert b1,1 just before ak,1 but this choice reduces the numbers of
executions by a factor 1{prk ` 1q but the new process is now a promise process. With the same argument
as before we can continue recursively.

Finally, the proof of Theorem 5.5, for a promise process P is derived from the fact that you must con-
sider all promise processes induced by our transformations, but where the only two values that are chang-
ing through the recursive calls are rk and sk. In fact both sequences pak,rqr“1,...,rk and pbk,sqs“1,...,sk

can be increased at most by n nodes (arriving from promises). Thus we deduce that using a dynamical

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 27

programming approach with memoization of the calculated values gives the value `P is Opn2q arithmetic
operations.

From this counting procedure we developed a uniform random sampler following the principles of the
recursive method, as described in [16].

Algorithm 2 Uniform random sampling
We suppose here that all the promises do contain a single action. We must take care of a factor in the
counting part of the algorithm.

1: function SAMPLING(A)
2: if PromiseCountpAq “ 0 then
3: return ControlThreadpAq
4: r :“ RAND_INTp1, `Aq
5: pos :“ 1` StartPositionpA, 1q
6: Ã :“ RemovePromisepA, 1q
7: while r ą 0 and pos ď EndPositionpA, 1q do
8: Ā :“ InsertControlThreadpÃq, pos, b1,1q
9: r :“ r ´ `Ā

10: pos :“ pos` 1

11: return SAMPLINGpĀq
The function PromiseCountpAq returns the numbers of promises of the processA.
The function ControlThreadpAq returns the sequence of actions in the main control thread ofA.
The function RAND_INTpa, bq returns uniformly sampled integer between a and b included.
The function StartPositionpA, 1q returns the position of the postpone action related to the first promise.
The function RemovePromisepA, 1q removes the first promise of first promiseA.
The function EndPositionpA, 1q returns the position of the synchronization action related to the first promise.
The function InsertControlThreadpÃq, pos, b1,1q inserts the action associated to the first promise b1,1 in the control thread
of Ãq, at position pos returns the position of the synchronization action related to the first promise.

Theorem 5.6. Let P be a promise-process of size n. Algorithm 2 is a uniform sampler of the linear
extensions of P with Opn4q time-complexity in the number of arithmetic operations.

Here we remark a big combinatorial change by comparing promise processes to arch-processes (from
paper [10]). In fact, in the latter case the sub-problem induced by the second process (associated to
B) was exactly the same as the one of P . And thus, there the uniform recursive sampling could be
obtained efficiently inOpnq arithmetic operations (once a quadratic time complexity pre-computation has
be memoized).

Proof: One notable aspect is that in order to get rid of the forbidden case of executions associated to the
“virtual” promise B we cannot only do rejection (because the induced complexity would be exponential).

Thus in the promise process, we adapt the recursive method by proceeding by case analysis: for each
possibility for the insertion of b1,1 in the main control thread we compute the relative probability for the
associated process P . Thus for each action, we have at most n possibility of insertion, thus n problems
analogous to the pre-computation to calculate. And globally we have at most n actions to insert in the
control thread. This gives the complexity Opn4q.

28 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

6 Experimental study

Algorithm Class Count. Unif. Rand. Gen. Reference
FJ Fork-join Opnq Opn ¨

?
nq on average [7]

ARCH Arch-processes Opn2q Opn4q worst case [10]/Theorem 5.6
BIT BIT-decomposable ? ? Theorem 3.1

CFTP(viii) All processes – Opn3 ¨ log nq expected [20]

Tab. 1: Summary of counting and uniform random sampling algorithms (time complexity figures with n: number of
atomic actions).

In this section, we put into use the various algorithms for counting and generating process executions
uniformly at random. Tab. 1 summarizes these algorithms and the associated worst-case time complexity
bounds (when known). We implemented all the algorithms in Python 3, and we did not optimize for
efficiency, hence the numbers we obtain only give a rough idea of their performances. For the sake of
reproducibility, the whole experimental setting is available in the companion repository, with explanations
about the required dependencies and usage. The computer we used to perform the benchmark is a standard
laptop PC with an I7-8550U CPU, 8Gb RAM running Manjaro Linux. As an initial experiment, the
example of Fig. 2 is BIT-decomposable, so we can apply the BIT and CFTP algorithms. The counting (of
its 1975974 possible executions) takes about 0.3s and it takes about 9 milliseconds to uniformly generate
an execution with the BIT sampler, and about 0.2s with CFTP. For “small” state spaces, we observe that
BIT is always faster than CFTP.

FJ size 7LE FJ gen (count) BIT gen (count) CFTP gen
10 19 0.00001 s (0.0002 s) 0.0006 s (0.03 s) 0.04 s
30 109 0.00002 s (0.0002 s) 0.02 s (0.03 s) 1.8 s
40 6 ¨ 106 0.00004 s (0.0003 s) 3.5 s (5.2 s) 5.6 s
63 4 ¨ 1029 0.0005 s (0.03 s) Mem. crash (Crash) 55 s

217028 2 ¨ 10292431 8.11 s (3.34 s) Mem. crash (Crash) Timeout

Arch size 7LE ARCH gen (count) BIT gen (count) CFTP gen
10:2 43 0.00002 s (0.00004 s) 0.002 s (0.000006 s) 0.04 s
30:2 9.8 ¨ 108 0.003 s (0.0009 s) 0.000007 s (0.0004 s) 1.5 s
30:4 6.9 ¨ 1010 0.001 s (0.005 s) 0.000007 s (0.004 s) 2.5 s

100:2 1.3 ¨ 1032 0.75 s (0.16 s) Mem. crash (Crash) 6 5.6 s
100:32 1 ¨ 1053 2.7 s (0.17 s) Mem. crash (Crash) 6 5.9 s
200:66 10130 54 s (31 s) Mem. crash (Crash) Timeout

Tab. 2: Benchmark results for BIT-decomposable classes: FJ and Arch.

(viii) The CFTP algorithm is the only one we did not design, but only implement. Its complexity is Opn3 ¨ log nq (randomized)
expected time.

(viii) For arch-processes of size 100 with 2 arches or 32, the CFTP algorithm timeouts (30s) for almost all of the input graphs.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 29

For a more thorough comparison of the various algorithms, we generated random processes (uniformly
at random among all processes of the same size) in the classes of fork-join (FJ) and arch-processes as
discussed in Section 5, using our own Arbogen tool(ix) or an ad hoc algorithm for arch-processes (presented
in the companion repository). For the fork-join structures, the size is simply the number of atomic actions
in the process. It is not a surprise that the dedicated algorithms we developed in [7] outperforms the
other algorithms by a large margin. In a few seconds it can handle extremely large state spaces, which is
due to the large “branching factor” of the process “forks”. The arch-processes represent a more complex
structure, thus the numbers are less “impressive” than in the FJ case. To generate the arch-processes
(uniformly at random), we used the number of atomic actions as well as the number of spawned promises
as main parameters. Hence an arch of size ‘n:k’ has n atomic actions and k spawned promises. Our
dedicated algorithm for arch-process is also rather effective, considering the state-space sizes it can handle.
In less than a minute it can generate an execution path uniformly at random for a process of size 200 with
66 spawned promises, the state-space is in the order of 10130. Also, we observe that in all our tests
the observable “complexity” is well below Opn4q. The reason is that we perform the pre-computations
(corresponding to the worst case) in a just-in-time (JIT) manner, and in practice we only actually need
a small fractions of the computed values. However the random sampler is much more efficient with the
separate pre-computation. As an illustration, for arch-processes of size 100 with 32 arches, the sampler
becomes about 500 times faster. However the memory requirement for the pre-computation grows very
quickly, so that the JIT variant is clearly preferable.

In both the FJ and arch-process cases the current implementation of the BIT algorithms is not entirely
satisfying. One reason is that the strategy we employ for the BIT-decomposition is quite “oblivious”
to the actual structure of the DAG. As an example, this strategy handles fork-joins far better than arch-
processes. In comparison, the CFTP algorithm is less sensitive to the structure, it performs quite uniformly
on the whole benchmark. We are still confident that by handling the integral computation with an ad-hoc
method, the BIT algorithms could handle much larger state-spaces. For now, they are only usable up-to a
size of about 40 nodes (already corresponding to a rather large state space).

7 Conclusion and future work
The process calculus presented in this paper is quite limited in terms of expressivity. In fact, as the
paper makes clear it can only be used to describe (intransitive) directed acyclic graphs! However we
still believe it is an interesting “core synchronization calculus”, providing the minimum set of features
so that processes are isomorphic to the whole combinatorial class of partially ordered sets. Of course,
to become of any practical use, the barrier synchronization calculus should be complemented with e.g.
non-deterministic choice (as we investigate in [11]).

Moreover, the extension of our approach to iterative processes remains full of largely open questions.
Another interest of the proposed language is that it can be used to define process (hence poset) sub-

classes in an inductive way. We give two illustrations in the paper with the fork-join processes and
promises. This is complementary to definitions wrt. some combinatorial properties, such as the “BIT-
decomposable” sub-classes. The class of arch-processes (which we study in [10] and the promise pro-
cesses introduced here) is also interesting: it is a combinatorially-defined sub-class of the inductively-
defined asynchronous processes with promises. We see as quite enlightening the meeting of these two

(ix) Arbogen is uniform random generation for context-free grammar structures: cf. https://github.com/fredokun/
arbogen.

https://github.com/fredokun/arbogen
https://github.com/fredokun/arbogen

30 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

distinct points of view: concurrency theory and combinatorics.
Even for the “simple” barrier synchronizations, our study is far from being finished because we are, in a

way, also looking for “negative” results. The counting problem is hard, which is of course tightly related to
the infamous “combinatorial explosion” phenomenon in concurrency. We in fact believe that the problem
remains intractable for the class of BIT-decomposable processes, but this is still an open question that we
intend to investigate further. By delimiting more precisely the “hardness” frontier, we hope to find more
interesting sub-classes for which we can develop efficient counting and random sampling algorithms.

References
[1] S. Abbes and J. Mairesse. Uniform generation in trace monoids. In MFCS 2015, volume 9234 of

LNCS, pages 63–75. Springer, 2015.

[2] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge University
Press, 2009.

[3] C. Banderier, P. Marchal, and M. Wallner. Rectangular Young tableaux with local decreases and the
density method for uniform random generation (short version). In GASCom 2018, Athens, Greece,
June 2018.

[4] N. Basset, J. Mairesse, and M. Soria. Uniform sampling for networks of automata. In Concur 2017,
volume 85 of LIPIcs, pages 36:1–36:16. Schloss Dagstuhl, 2017.

[5] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-like Structures. Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, 1998.

[6] O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H. Hwang. Increasing diamonds. In E. Kranakis,
G. Navarro, and E. Chávez, editors, LATIN 2016: Theoretical Informatics - 12th Latin American
Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, volume 9644 of Lecture Notes in
Computer Science, pages 207–219. Springer, 2016.

[7] O. Bodini, M. Dien, A. Genitrini, and F. Peschanski. Entropic Uniform Sampling of Linear Exten-
sions in Series-Parallel Posets. In 12th International Computer Science Symposium in Russia (CSR),
pages 71–84, 2017.

[8] O. Bodini, M. Dien, A. Genitrini, and F. Peschanski. The Ordered and Colored Products in Analytic
Combinatorics: Application to the Quantitative Study of Synchronizations in Concurrent Processes.
In 14th SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO), pages 16–30, 2017.

[9] O. Bodini, M. Dien, A. Genitrini, and F. Peschanski. The combinatorics of barrier synchronization.
In Proceedings of the 40th International Conference on Application and Theory of Petri Nets and
Concurrency, PETRI NETS 2019, pages 386–405, 2019.

[10] O. Bodini, M. Dien, A. Genitrini, and A. Viola. Beyond series-parallel concurrent systems: The case
of arch processes. In Analysis of Algorithms, AofA 2018, volume 110 of LIPIcs, pages 14:1–14:14,
2018.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 31

[11] O. Bodini, A. Genitrini, and F. Peschanski. The combinatorics of non-determinism. In FSTTCS’13,
volume 24 of LIPIcs, pages 425–436. Schloss Dagstuhl, 2013.

[12] O. Bodini, A. Genitrini, and F. Peschanski. A Quantitative Study of Pure Parallel Processes. Elec-
tronic Journal of Combinatorics, 23(1):P1.11, 39 pages, 2016.

[13] G. Brightwell and P. Winkler. Counting linear extensions is #P-complete. In STOC, pages 175–181,
1991.

[14] J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey. J. Inf. Process. Cybern.,
30(3):143–160, 1994.

[15] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Univ. Press, 2009.

[16] P. Flajolet, P. Zimmermann, and B. V. Cutsem. A calculus for the random generation of labelled
combinatorial structures. Theor. Comput. Sci., 132(2):1–35, 1994.

[17] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms. J. Parallel Distrib.
Comput., 22(2):251–267, 1994.

[18] R. Grosu and S. A. Smolka. Monte Carlo model checking. In TACAS’05, volume 3440 of LNCS,
pages 271–286. Springer, 2005.

[19] D. Hensgen, R. A. Finkel, and U. Manber. Two algorithms for barrier synchronization. International
Journal of Parallel Programming, 17(1):1–17, 1988.

[20] M. Huber. Fast perfect sampling from linear extensions. Discrete Mathematics, 306(4):420–428,
2006.

[21] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure calls in
distributed systems. In PLDI’88, pages 260–267. ACM, 1988.

[22] R. H. Möhring. Computationally Tractable Classes of Ordered Sets. Institut für Ökonometrie und
Operations Research: Report. 1987.

[23] J. Oudinet, A. Denise, M.-C. Gaudel, R. Lassaigne, and S. Peyronnet. Uniform Monte-Carlo model
checking. In FASE 2011, volume 6603 of LNCS. Springer, 2011.

[24] I. Rival, editor. Algorithms and Order. NATO Science Series. Springer, 1988.

[25] K. Sen. Effective random testing of concurrent programs. In Automated Software Engineering
ASE’07, pages 323–332. ACM, 2007.

[26] R. P. Stanley. Two poset polytopes. Discrete & Computational Geometry, 1:9–23, 1986.

[27] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.5.0), 2018.
https://www.sagemath.org.

[28] L. G. Valiant. A bridging model for multi-core computing. Journal of Computer and System Sci-
ences, 77(1):154–166, 2011.

32 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

A Appendix: Extended semantics
In this appendix we give a detailed proof for Theorem 2.2, which establishes the connection between
processes and their control graph. One limitation of the semantics given in the main body of the paper is
that deadlocks are not recorded: deadlocked executions simply stops.

α.P
α
ùñ P

(eact)
xByP

xBy
ùùñ P

(esig)
P

xBy
ùùñ P 1 Q

xBy
ùùñ Q1

P ‖ Q
xBy
ùùñ P 1 ‖ Q1

(ejoin)

P
µ
ùñ P 1

P ‖ Q µ
ùñ P 1 ‖ Q

(elpar)
Q

µ
ùñ Q1

P ‖ Q µ
ùñ P ‖ Q1

(erpar)

P
µ
ùñ P 1 µ ‰ xBy

νpBq P
µ
ùñ νpBq P 1

(elift)
P

xBy
ÝÝÑ P 1

νpBqP
xBy
ùùñ P 1

(esync)

Fig. 9: Variant of the semantics with explicit barriers.

We thus consider in Fig. 9 a more detailed semantics that preserve all the information of the process
executions, especially by keeping track of the barrier used in the synchronization steps.

Proposition A.1. P α
ÝÑ P 1 ùñ DB1, . . . , Bn pn ě 0q, P

xB1y
ùùùñ . . .

xBny
ùùùñ Pα

α
ùñ P 1.

Proof: This is by rule induction on the standard semantics.

This means that any execution σ of the standard semantics can be translated to an extended execution
σ with explicit barriers.

Definition A.1 (Extended execution of a process). An extended execution σ of P is a finite sequence
xµ1, . . . , µny such that there is a set of processes P 1µ1

, . . . , P 1µn and a path P
µ1
ùñ P 1µ1

. . .
µn
ùñ P 1µn with

P 1µn œ. The extended behavior of a process P is the set of all its extended executions.

An important property is that even for a deadlocked process there exists (at least) an extended execution
eventually reaching a termination.

Proposition A.2. If P is not a termination (e.g. not 0, nor 0 ‖ 0, etc.), then there exist µ and P 1 such that
P

µ
ùñ P 1.

Proof: This is trivial by induction on the syntax since except for terminated processes (e.g. 0 or an
equivalent form such as pνBq0, 0 ‖ 0, etc.) it is a simple fact that at least one rule of Fig. 9 is enabled.

Now the connection between normal and extended executions is straightforward.

Proposition A.3. Let P a deadlock-free process and σ one of its extended executions. Then there is a
normal execution σ of P that is exactly σ with all its explicit barriers removed.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 33

Proof: This is by definition of the executions and Proposition A.1, of course assuming that deadlock-free
process always have normal transition until their completion.

We now promote the causal relations to extended executions.

Definition A.2 (Extended cause, extended direct cause). Let P be a process. An action α of P is said
an extended cause of another action β, denoted by αďβ, iff for any extended execution σ of P we have
σpαq ď σpβq. Moreover, α is an extended direct cause of β, denoted by αăβ iff αăβ and there is no γ
such that αăγăβ.

For deadlock-free processes the normal and extended causal relation coincide.

Proposition A.4. Let P a deadlock-free process. Then αăβ iff α ă β.

Proof: This is a direct consequence of Proposition A.3.

We are now concerned with deadlocked processes.

Proposition A.5. A process P has a deadlock if and only if there is an extended execution σ and a barrier
B such that the event xBy is repeated at least twice in σ.

Proof: A simple observation is that the only rule that can generate an immediate deadlock is (sync). So a
deadlocked process P must have a subprocess of the form νpBq Q such that rule (sync) only can be trig-
gered but for syncBpQq “ Q1 we have waitBpQ1q “ true. In the extended executions the event xBy will
still be recorded forQ. But going back to the standard semantics, there must be one of the subprocesses of
Q1 of the form xByR since waitBpQ1q “ true and such that Q1 is distinct from Q (otherwise the deadlock
is caused by another barrier). Eventually in at least one of the executions of Q1 another event xBy will
occur because the extended executions are guaranteed deadlock-free (by Proposition A.2). Finally, since
Q1 is a derivative ofQ it must be the case that the event xBy occurs twice in at least one execution σ going
through both Q and Q1.

Hitherto, we have all the required properties concerning the extended executions, we thus turn to the
control graph construction, now extended with explicit barriers.

Definition A.3 (Construction of extended control graphs). Let P be a process term. Its extended control
graph is ectgpP q “ xV,Ey, constructed inductively as follows:
»

—

—

—

—

–

ectgp0q “ xH,Hy
ectgpα.P q “ α; ectgpP q
ectgpνpBqP q “ ectgpP q
ectgpxByP q “ xBy; ectgpP q
ectgpP ‖ Qq “ ectgpP q Y ectgpQq

The main difference with the normal control graph is that the barrier synchronizations are not removed
along the construction.

If we only consider the atomic actions, then we have the very interesting property that the normal and
extended control graph indeed coincide. We denote by α ;` β a path in ectgpP q such that α and β are
atomic actions, and in the considered path only barrier events may occur.

Proposition A.6. α;` β P ectgpP q if and only if α; β P ctgpP q.

34 Olivier Bodini, Matthieu Dien, Antoine Genitrini, Frédéric Peschanski

Proof: This is trivial given the similarity of the definitions of ctg and ectg. As long as only the atomic
actions (and not the barrier events) are considered, the definition generate exactly the same depedencies,
although it might be the case that many barrier events must be traversed from α in order to reach β.

Moreover, there is now a bijection between the extended control graph edges and the extended direct
causes.

Proposition A.7. α;` β P ectgpP q iff αăβ.

Proof: This derives easily from the propositions above.

We now have all the building blocks for our main proof.

Proof of Theorem 2.2: If P is deadlocked then we know a barrier event xBy occurs at least twice in
a given extended execution σ (according to Proposition A.5). Moreover, the two occurrences cannot be
consecutive otherwise the rule (ejoin) would have collapsed them initially. Hence there is at least an action
that is at the same time a cause for and caused by the event xBy. Put in other terms we have a cycle in
both ectgpP q and ctgpP q. Now if we consider a deadlock-free process P then if α; β P ctgpP q we have
α ;` β P ectgpP q (by Proposition A.6) hence αăβ (by Proposition A.7). Finally, by Proposition A.4
we can conclude the proof.

B The context of Borel and Laplace transform
Let us recall here classical relations between combinatorial Laplace transform and the traditional Laplace
transform. By definition, the traditional Laplace transform is defined byLf “

ş8

0
expp´ztqfptqdt instead

of Lcf “
ş8

0
expp´tqfpztqdt.

This operator is clearly linear. By a simple change of variable, we get that Lfpzq “ 1

z
pLcfq

`

1
z

˘

or

equivalently Lcfpzq “
1

z
pLfq

`

1
z

˘

(Notice the perfect involution.)
Laplace transforms admit a functional inverse called Borel transforms. This transform also has an

integral representation: for traditional Laplace transforms, the Borel transform is

Bpfq “ 1

2iπ

ż c`i8

c´i8

exppztqfptqdt

where c is greater than the real part of all singularities of fptq.

By analogy, the combinatorial Borel transform is Bcpfq “
1

2iπ

şc`i8

c´i8

exppztq

t
fp1{tqdt where c is

greater than the real part of all singularities of fp1{tq{t. The link with traditional Borel transforms is
Bcpfq “ Bp1{zfp1{zqq or equivalently Bpfq “ Bcpfp1{zqq1 “ Bcp1{zfp1{zqq

Now, let us essentially concentrate our attention on combinatorial transforms. Combinatorial Laplace

transforms create a bridge between exponential generating functions (
ř

ně0 an
zn

n!
) and ordinary generat-

ing functions (
ř

ně0 anz
n). Precisely, we have

Lcp
ÿ

ně0

an
zn

n!
q “

ÿ

ně0

anz
n.

Quantitative and Algorithmic aspects of Barrier Synchronization in Concurrency 35

Reciprocally, we have

Bcp
ÿ

ně0

anz
nq “

ÿ

ně0

an
zn

n!
.

From those formulas on formal series, one can easily derive the following identities:

• Lcf 1 “ 1
z pLcf ´ f0q

• Lcp
ş

fq “ zLcf

• Bcpzfq “
ş

Bcf

• Bcp f´f0z q “ pBcfq1

As for traditional Laplace transforms, the product of Laplace transform can be express using convolu-
tion product. We have

zLcf ˆ Lcg “ Lcp
ż z

0

fptqgpz ´ tqdtq,

or equivalently

Lcf ˆ Lcg “ Lcp
ż z

0

fptqg1pz ´ tqdt` g0fpzqq.

Observe that the ordered product, in fact, gives a combinatorial interpretation of this adapted convolution.
We denote by f ˚ g the combinatorial convolution

şz

0
fptqg1pz ´ tqdt` g0fpzq.

The product of combinatorial Borel transforms can also be expressed with convolution in the complex
plane as follow: using the traditional

Bf ˆ Bg “ Bp 1

2iπ

ż c`i8

c´i8

fptqgpz ´ tqdtq,

and compose it with the latter identities leads to the following formula

Bcf ˆ Bcg “ Bcp
1

2iπ

ż c`i8

c´i8

1

p1´ ztqt
fp1{tqgpz{p1´ ztqqdtq.

	Introduction
	Modelization of processes
	Synctatic and semantic domain
	The control graph of a process
	The counting problem

	BITS-Decomposition of a process: shrinking a process to obtain a symbolic enumeration of executions
	Decomposition scheme
	Embedding in the hypercube: the order polytope

	Uniform random generation of process executions
	Characterization of important process sub-classes and link with BIT-decomposition
	From tree posets to fork-join parallelism
	Combinatorial classes and specifications
	Tree processes
	Fork-join processes and Multi Bulk Synchronous Parallel computing (BSP)
	The ordered product
	Combinatorics of fork-join processes
	Hook-length formula

	Asynchronism with promises

	Experimental study
	Conclusion and future work
	Appendix: Extended semantics
	The context of Borel and Laplace transform

