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Boundary singularities of semilinear elliptic

equations with Leray-Hardy potential

Huyuan Chen∗

Laurent Véron †

Abstract

We study existence and uniqueness of solutions of (E1) −∆u + µ
|x|2u + g(u) = ν in Ω,

u = λ on ∂Ω, where Ω ⊂ RN+ is a bounded smooth domain such that 0 ∈ ∂Ω, µ ≥ −N
2

4 is
a constant, g a continuous nondecreasing function satisfying some integral growth condition
and ν and λ two Radon measures respectively in Ω and on ∂Ω. We show that the situation
differs considerably according the measure is concentrated at 0 or not. When g is a power
we introduce a capacity framework which provides necessary and sufficient conditions for the
solvability of problem (E1).
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1 Introduction

If µ is a real number and N ≥ 2, the Schrödinger operator Lµ, defined in a domain Ω ⊂ RN by

Lµu := −∆u+
µ

|x|2
u,

plays a fundamental role in analysis, because of Hardy’s inequality, and in theoretical physics
in connexion with uncertainty principle. When the singular point 0 belongs to Ω, there exists a
critical value

µ0 = −
(
N − 2

2

)2

.

If µ ≥ µ0 the operator Lµ is bounded from below because of Hardy inequality∫
Ω
|∇φ|2 + µ0

∫
Ω

φ2

|x|2
dx ≥ 0 for all φ ∈ C∞0 (Ω). (1.1)

Sharp properties of this inequality has been studied by Brezis and Vazquez [8]. When µ ≥ µ0,
we studied in [14] the Hardy equation with absorption semi-linearity{

Lµu+ g(u) = ν in Ω

u = 0 on ∂Ω
(1.2)

for a Radon measure ν being able to be supported at origin in a bounded smooth domain
Ω, where g is a continuous nondecreasing function, by using systematically a notion of weak
solutions introduced in [13] associated to a dual formulation with a specific weight function
because of the Leray-Hardy potential. In this framework, weak solutions to (1.2) in a class of
weighted measures are obtained provided that g satisfies some integrability condition. When
this integrability condition is not satisfied by g, not all measures in the above class are suitable
for solving (1.2). This is called the supercritical case. In the supercritical case and when
g(r) = |r|p−1r with p > 1, we showed that the set of suitable measures is associated to a
property of absolute continuity with respect to some Bessel capacity.

In this article we are interested in the configuration where the singular point of the Leray-
Hardy potential lies on the boundary of the domain Ω and we study the following equation{

Lµu+ g(u) = ν in Ω

u = λ on ∂Ω,

where ν and λ are bounded Radon measures respectively on Ω and ∂Ω. When µ = 0 the first
study is due to Gmira and Véron [17] who proved the existence and uniqueness of a very weak
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solution. Such a solution u is a function belonging to L1(Ω) such that ρg(u) ∈ L1(Ω), where
ρ(x) = dist (x, ∂Ω), satisfying∫

Ω
(−u∆ζ + g(u)ζ) dx = −

∫
∂Ω

∂ζ

∂n
dν

for all ζ ∈ C1
c (Ω) such that ∆ζ ∈ L∞(Ω). The condition for the existence and uniqueness of a

solution is ∫ ∞
1

(g(s)− g(−s)) s−
2N
N−1ds <∞. (1.3)

When µ 6= 0, a typical domain is Ω = RN+ := {x = (x′, xN ) = (x1, ..., xN ) = xN > 0}. There
exists a critical value

µ ≥ µ1 := −N
2

4
,

which is a fundamental value for the operator Lµ, being the best constant of the Hardy inequality∫
RN+
|∇φ|2 + µ1

∫
RN+

φ2

|x|2
dx ≥ 0 for all φ ∈ C∞0 (RN+ ).

If RN+ is replaced by a bounded domain Ω satisfying the condition

(C1) 0 ∈ ∂Ω , Ω ⊂ RN+ and 〈x,n〉 = O(|x|2) for all x ∈ ∂Ω,

where n = nx is the outward normal vector at x, this inequality is never achieved and there
exists a remainder [9]: if we set RΩ = max

z∈Ω
|z|, there holds

∫
Ω
|∇φ|2 + µ1

∫
Ω

φ2

|x|2
dx ≥ 1

4

∫
Ω

φ2

|x|2 ln2(|x|R−1
Ω )

dx for all φ ∈ C∞0 (Ω). (1.4)

Note that the last condition in (C1) holds if Ω is a C2 domain. Put

α+ := α+(µ) = 1− N

2
+

√
µ+

N2

4
and α− := α−(µ) = 1− N

2
−
√
µ+

N2

4
.

If Ω satisfies (C1) there exists `Ωµ > 0 defined by

`Ωµ := min

{∫
Ω

(
|∇v|2 +

µ

|x|2
v2

)
dx : v ∈ C1

c (Ω),

∫
Ω
v2dx = 1

}
.

If µ ≥ µ1 this first eigenvalue is achieved in the space Hµ(Ω) which is the closure of C1
c (Ω) for

the norm

v 7→ ‖v‖Hµ(Ω) :=

√∫
Ω

(
|∇v|2 +

µ

|x|2
v2

)
dx.
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Note that Hµ(Ω) = H1
0 (Ω) if µ > µ1, H1

0 (Ω) $ Hµ1(Ω) and the imbedding of Hµ1(Ω) in L2(Ω)
is compact. We proved in [15] the positive eigenfunction γΩ

µ ∈ Hµ(Ω) of Lµ associated to the

first eigenvalue `Ωµ satisfies {
LµγΩ

µ = `Ωµγ
Ω
µ in Ω

γΩ
µ = 0 on ∂Ω \ {0}

and there exist c1 > c2 > 0 and c̃ > 0 such that for all x ∈ Ω \ {0}

(i) c2|x|α+−1ρ(x) ≤ γΩ
µ (x) ≤ c1|x|α+−1ρ(x),

(ii) |∇γΩ
µ (x)| ≤ c̃

γΩ
µ (x)

ρ(x)
.

(1.5)

This function will play the role as a weight function. Inequality (1.4) implies the existence of
the Green kernel GΩ

µ with corresponding Green operator GΩ
µ . The Poisson kernel KΩ

µ of Lµ in
Ω×∂Ω is constructed in [15], by a simple truncation as in [31] if µ ≥ 0, and by a more elaborate
approximation in the general case. When µ > 0 the kernel has the property that

KΩ
µ (x, 0) = 0 for all x ∈ Ω \ {0},

by [31, Theorem A.1]. The singular kernel φΩ
µ is the analogue in a bounded domain of the explicit

singular solution x 7→ φµ(x) =| x |α−−1 xN defined in RN+ , and it satisfies for all x ∈ Ω \ {0},

c3|x|α−−1ρ(x) ≤ φΩ
µ (x) ≤ c4|x|α−−1ρ(x) if µ > µ1, (1.6)

and

c5|x|−
N
2 (| ln |x||+ 1)ρ(x) ≤ φΩ

µ1
(x) ≤ c6|x|−

N
2 (| ln |x||+ 1)ρ(x). (1.7)

We assume that Ω is a bounded smooth domain such that 0 ∈ ∂Ω and its normal vector
eN = (0, · · · , 0, 1) ∈ RN at origin in the sequel. We define the γΩ

µ -dual operator L∗µ of Lµ by

L∗µζ = −∆ζ − 2

γΩ
µ

〈∇γΩ
µ ,∇ζ〉+ `Ωµ ζ for all ζ ∈ C1,1(Ω).

It satisfies the following commutating property

Lµ(γΩ
µ ζ) = γΩ

µL∗µζ.

Denote by M(Ω; γΩ
µ ) the set of Radon measures ν in Ω such that

sup

{∫
Ω
ζd|λ| : ζ ∈ Cc(Ω), 0 ≤ ζ ≤ γΩ

µ

}
:=

∫
Ω
γΩ
µ d|ν| <∞.

Thus, if ν ∈M+(Ω; γΩ
µ ) the measure γΩ

µ ν is a bounded measure in Ω. We also set

βΩ
µ (x) = −

∂γΩ
µ

∂n

⌊
∂Ω
. (1.8)
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The space of Radon measures λ on ∂Ω \ {0} such that

sup

{∫
∂Ω\{0}

ζd|λ| : ζ ∈ Cc(∂Ω \ {0}), 0 ≤ ζ ≤ βΩ
µ

}
:=

∫
∂Ω\{0}

βΩ
µ d|λ| <∞,

is denoted by M(∂Ω;βΩ
µ ). The extension of λ ∈ M+(∂Ω;βΩ

µ ) as a measure βΩ
µ λ in ∂Ω is given

by∫
∂Ω
ζd(βΩ

µ λ) = sup

{∫
∂Ω
υβΩ

µ dλ : υ ∈ Cc(∂Ω \ {0}), 0 ≤ υ ≤ ζ
}

for all ζ ∈ C(∂Ω) , ζ ≥ 0

and βΩ
µ λ = βΩ

µ λ+ − βΩ
µ λ− if λ is a signed measure in M(∂Ω;βΩ

µ ), and this defines the set

M(∂Ω;βΩ
µ ) of all such extensions. The Dirac mass at 0 does not belong to M(∂Ω;βΩ

µ ), but it

is the limit of sequences of measures in this space. We proved in [15] that if ν ∈ M+(Ω; γΩ
µ ),

λ ∈M(∂Ω;βΩ
µ ) and k ∈ R, the function

u = GΩ
µ [ν] + KΩ

µ [λ] + kφΩ
µ := HΩ

µ [(ν, λ+ kδ0)]

is the unique function belonging to L1(Ω, ρ−1dγΩ
µ ) satisfying∫

Ω
uL∗µζdγΩ

µ =

∫
Ω
ζd(γΩ

µ ν) +

∫
∂Ω
ζd(βΩ

µ λ) + kcµζ(0)

for all ζ ∈ Xµ(Ω) =
{
ζ ∈ C(Ω) s.t. γΩ

µ ζ ∈ Hµ(Ω) and ρL∗µζ ∈ L∞(Ω)
}

, where

cµ =


2
√
µ− µ1

∫
SN−1

+

φ2
1dS if µ > µ1,(

N
2 − 1

) ∫
SN−1

+

φ2
1dS if µ = µ1,

and φ1 is the positive eigenfunction of ∆SN−1 in SN−1
+ := {(x′, xN ) ∈ RN : |x| = 1, xN > 0}

with zero Dirichlet boundary condition with respect to the first eigenvalue.

Let g : R 7→ R be a continuous nondecreasing function satisfying rg(r) ≥ 0. Thanks to this
result we can construct of weak solutions of the problem{

Lµu+ g(u) = ν in Ω

u = λ+ kδ0 on ∂Ω.
(1.9)

Definition 1.1 Let (ν, λ) ∈M(Ω; γΩ
µ )×M(∂Ω;βΩ

µ ) and k ∈ R. A function u ∈ L1(Ω, ρ−1dγΩ
µ )

is a weak solution of (1.9) if g(u) ∈ L1(Ω, dγΩ
µ ) and∫

Ω

(
uL∗µζ + g(u)ζ

)
dγµ =

∫
Ω
ζd(γµν) +

∫
∂Ω
ζd(βΩ

µ λ) + kcµζ(0) for any ζ ∈ Xµ(Ω).
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We set

p∗µ = 1− 2

α−
=
N + 2 + 2

√
µ− µ1

N − 2 + 2
√
µ− µ1

and p∗∗µ = 1− 2

α+
=
N + 2− 2

√
µ− µ1

N − 2− 2
√
µ− µ1

. (1.10)

Note that p∗0 = N+1
N−1 , p∗µ1

= N+2
N−2 , p∗∗µ is defined only if N ≥ 3 and −N2

4 ≤ µ < 1−N .

Our first result deals with the existence of a solution with an isolated singularity on boundary:

Theorem A Assume N ≥ 3 and µ ≥ µ1, or N = 2 and µ > µ1, and let g : R 7→ R be a
continuous nondecreasing function such that rg(r) ≥ 0. If there holds∫ ∞

1
(g(s)− g(−s)) s−1−p∗µds <∞ if µ > µ1, (1.11)

or ∫ ∞
1

(g(s ln s)− g(−s ln |s|)) s−1−p∗µ1ds <∞ if µ = µ1, (1.12)

then for any k ∈ R there exists a unique weak solution ukδ0 to{
Lµu+ g(u) = 0 in Ω

u = kδ0 on ∂Ω.

Furthermore,

lim
x→0

ukδ0(x)

φΩ
µ (x)

=
k

cµ
.

When the measures do not charge the point 0, we have a result which is similar as the one
proved in [17].

Theorem B Assume N ≥ 3 and µ ≥ µ1, or N = 2 and µ > µ1, and let g : R 7→ R be a
continuous nondecreasing function such that rg(r) ≥ 0 satisfying∫ ∞

1
(g(s)− g(−s)) s−1−p∗0ds <∞. (1.13)

Then for any (ν, λ) ∈M(Ω; γΩ
µ )×M(∂Ω;βΩ

µ ) there exists a unique weak solution u to{
Lµu+ g(u) = ν in Ω

u = λ on ∂Ω.

Finally we construct a solution to (1.9) without restriction on the measures by gluing so-
lutions corresponding to Theorems A and B provided g satisfies the weak ∆2-condition already
introduced in [14]:

There exists a continuous nondecreasing positive function K : R+ 7→ R+ such that

|g(s+ r)| ≤ K(|r|) (|g(s)|+ |g(r)|) for all (s, r) ∈ R× R s.t. sr ≥ 0. (1.14)
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Theorem C Assume N ≥ 3 and µ ≥ µ1, or N = 2 and µ > µ1, and let g : R 7→ R be a
continuous nondecreasing function such that rg(r) ≥ 0 satisfying the weak ∆2-condition and∫ ∞

1
(g(s)− g(−s)) s−1−min{p∗µ,p∗0}ds < +∞. (1.15)

Then for any (ν, λ) ∈M(Ω; γΩ
µ )×M(∂Ω;βΩ

µ ) and k ∈ R there exists a solution u to the problem
(1.9).

A nonlinearity g for which problem (1.9) admits a solution is called subcritical. A couple of
measures (ν, λ) for which problem (1.9) admits a solution is called g-good. In the supercritical
case all the measures are not g-good. Besides the problem at 0 where (1.11)-(1.12) may or may
not be satisfied, the admissibility of a measure depends on its concentration expressed in terms
of Bessel capacities. We denote these capacities by cR

d

α,q where d = N or N−1. In this framework
we consider only the case where g(r) = gp(r) := |r|p−1r with p > 1. The following theorem is
proved.

Theorem D Assume µ ≥ µ1 and p > 1.
1- A measure ν ∈ M(Ω; γΩ

µ ) is gp-good if and only if it is absolutely continuous with respect to

the cR
N

2,p′-capacity.

2- A measure λ ∈M(∂Ω;βΩ
µ ) is gp-good if and only if it is absolutely continuous with respect to

the cR
N−1

2
p
,p′

-capacity.

Similarly we have a characterization of removable singularities.

Theorem E Assume µ ≥ µ1, p > 1 and K ⊂ Ω is compact. Then any weak solution of{
Lµu+ gp(u) = 0 in Ω ∩Kc

u = 0 on ∂Ω ∩Kc
(1.16)

can be extended as a solution of the same equation in Ω vanishing on ∂Ω if and only if
(i) cR

N

2,p′(K) = 0 if K ⊂ Ω.

(ii) cR
N−1

2
p
,p′

(K) = 0 if K ⊂ ∂Ω \ {0}.

(iii) cR
N

2,p′(K) = 0 and cR
N−1

2
p
,p′

(K ∩ ∂Ω) if K ⊂ Ω \ {0}.

(iv) cR
N−1

2
p
,p′

(K) = 0 and p ≥ p∗µ if 0 ∈ K ⊂ ∂Ω and K \ {0} 6= {∅}.

(v) cR
N

2,p′(K ∩ Ω) = 0, cR
N−1

2
p
,p′

(K ∩ ∂Ω) = 0 and p ≥ p∗µ if 0 ∈ K ⊂ Ω and K ∩ Ω 6= {∅}.

At end we characterize the behaviour of solutions of{
Lµu+ gp(u) = 0 in Ω

u = h on ∂Ω \ {0},
(1.17)

where h ∈ C3(∂Ω). When p ≥ p∗µ we prove that u is indeed the very weak solution of{
Lµu+ gp(u) = 0 in Ω

u = h on ∂Ω.
(1.18)
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The techniques we use are extensions of charaterization of singularities developed studies in [17]
and [18]. We associate a problem on SN−1

+ :{
−∆′ω + (Λp,N + µ)ω + gp(ω) = 0 in SN−1

+

ω = 0 on ∂SN−1
+ ,

(1.19)

where

Λp,N =
2

p− 1

(
N − 2p

p− 1

)
.

Let Sµ,p (resp. S+
µ,p) denote the set of solutions (resp. positive solutions) of (1.19). We set

p̃∗µ = 1 +
2

a−
=
N + 2 + 2

√
µ− µ2

N − 2 + 2
√
µ− µ2

and p̃∗∗µ = 1 +
2

a+
=
N + 2− 2

√
µ− µ2

N − 2− 2
√
µ− µ2

, (1.20)

where µ2 = −
(
N+2

2

)2
. Note that p̃∗∗µ is defined only if N ≥ 9 and −N2

4 ≤ µ < −2N . The
introduction of the numbers a+ and a−, will be explained in the proof of the theorem. Then we
have

Theorem F Assume µ ≥ µ1 and p > 1.

1- Sµ,p is not reduced to {0} if and only if Λp,N + µ+N − 1 < 0, that is
(i) either 1 < p < p∗µ,
(ii) or N ≥ 3, µ1 ≤ µ < 1−N and p > p∗∗µ .

2- If S+
µ,p is non-empty, it is reduced to one element ωµ.

3- All the elements of Sµ,p have constant sign if Λp,N +µ+N − 1 < Λp,N +µ+ 2N ≤ 0, that is:
(i) when µ ≥ 1−N and p̃∗µ ≤ p < p∗µ,
(ii) when N ≥ 3, −2N ≤ µ < 1−N and either p̃∗µ ≤ p < p∗µ or p∗∗µ < p,
(iii) when N ≥ 9 and µ1 ≤ µ < −2N and either p̃∗µ ≤ p < p∗µ or p∗∗µ < p ≤ p̃∗∗µ .

Since any solution of (1.17) satisfies

|u(x)| ≤ c7ρ(x)|x|−
p+1
p−1 for all x ∈ Ω ∩Br0 , (1.21)

for some r0 > 0 and c7 > 0 depending on N, p and Ω, we flatten the boundary as in [17], define

the new function ũ(y) by this change of variable, set v(t, σ) = r
2
p−1 ũ(r, σ) with t = ln r and

study the limit set Ev of the new equation satisfied by v(t, .) when t→ −∞. This limit set is a
connected compact subset of Eµ. If u ≥ 0, Ev ⊂ E+

µ . Thus we prove the following.

Theorem G Assume µ ≥ µ1, h ∈ C3(∂Ω) and u ∈ C2(Ω)∩C(Ω\{0}) is a nonnegative solution
of (1.17). If 1 < p < p∗µ then

(i) either

lim
Ω 3 x→ 0

x
|x| → σ ∈ SN−1

+

|x|
2
p−1u(x) = ωµ(σ), (1.22)

(ii) or there exists ` > 0 such that

u(x) = `KΩ
µ (x, 0)(1 + o(1)) as x ∈ Ω, x→ 0, (1.23)
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and u is the weak solution of{
Lµu+ gp(u) = 0 in Ω

u = h+ c`δ0 on ∂Ω.
(1.24)

When u is a signed solution, the situation is more delicate and we obtain only partial results.

Theorem H Assume µ ≥ µ1, h ∈ C3(∂Ω) and u ∈ C2(Ω) ∩ C(Ω \ {0}) is a solution of (1.17).
If p̃∗µ ≤ p < p∗µ, then
(a) either

lim
Ω 3 x→ 0

x
|x| → σ ∈ SN−1

+

|x|
2
p−1u(x) = ±ωµ(σ), (1.25)

(b) or

lim
Ω 3 x→ 0

x
|x| → σ ∈ SN−1

+

|x|
2
p−1u(x) = 0. (1.26)

If we assume furthermore that p̃∗µ < p and (1.26) is verified, then there exists ` ∈ R such that
(1.23) and (1.24) hold.

In two cases the limit set is reduced to a single element of Eµ, whatever is the structure of
this set.

Theorem I Assume µ ≥ µ1, h ∈ C3(∂Ω) and u ∈ C2(Ω)∩C(Ω \ {0}) is a solution of (1.17)).

1- If N + 2
√
µ− µ1 < 4 and p = 3, then there exists ω ∈ Sµ,p such that

lim
Ω 3 x→ 0

x
|x| → σ ∈ SN−1

+

|x|
2
p−1u(x) = ω(σ).

2- If N = 2 and 1 < p < 1 + 2√
µ+1

, then

lim
Ω 3 x→ 0
x
|x| → σ ∈ S1+

|x|
2
p−1u(x) = ω(σ),

where ω is a solution of−ω′′ +
(
µ−

( 2

p− 1

)2)
ω + gp(ω) = 0 on (0, π)

ω(0) = ω(π) = 0.
(1.27)

Furthermore, if ∂Ω is locally a straigh tline near 0 and the limit in (1.27) is zero, there exists
` ∈ R such that (1.23) holds.

We end this article with a removability result.



Leray-Hardy equations with absorption 10

Theorem J Assume µ ≥ µ1, p ≥ p∗µ, h ∈ C3(∂Ω) and u ∈ C2(Ω) ∩ C(Ω \ {0}) is a solution of
(1.17). Then u is actually the weak solution of (1.18).

The rest of this paper is organized as follows. In section 2, we recall Kato’s inequality
and prove the existence and uniqueness of semilinear elliptic equation with measures sources
when the nonlinearity is subcritical. Section 3 is devoted to deal with the supcritical case by
connecting the measures with Bessel capacities. Finally, we analyze the behaviors of solutions
provided regular boundary conditions by considering associated problem on semi-sphere.

2 The subcritical case

2.1 Kato inequality

Proposition 2.1 Let N ≥ 2, µ ≥ µ1 and g : Ω× R 7→ R be a continuous function satisfying

g(s1, x) ≥ g(s2, x) if x ∈ RN+ and s1 ≥ s2.

If u and v belong to C1,1(Ω) ∩ C(Ω \ {0}) satisfy{
Lµu+ g(x, u) ≥ Lµv + g(x, v) in Ω

u ≥ v on ∂Ω \ {0}

and

lim inf
r→0

sup
x 3 Ω
|x| = r

v(x)− u(x)

φΩ
µ (x)

≤ 0,

then v ≤ u in Ω.

Proof. Set w = v − u, then Lµw + h(x)w = 0 where

h(x) =

 g(x, v)− g(x, u)

w
if w 6= 0

0 if w = 0.

Hence h ≥ 0. For ε > 0, we set Wε = v − u − εφΩ
µ . Then Wε ∈ C0,1

c (Ω \ {0}). There exists a
sequence {rn} tending to 0 such that

Wε(x) < 0 for |x| = rn,

and there holds
−∆Wε +

µ

|x|2
Wε + hWε ≤ 0.

Multiplying by (Wε)+ := max{0,Wε} and integrating yields, since (Wε)+ ∈ C1,1
c (Ω \ {0})∫

Ω\Brn

(
| ∇(Wε)+ |2 +

µ1

|x|2
(Wε)

2
+

)
dx ≤ 0.
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Hence (Wε)+ = 0 in Ω \Brn , we get the result by letting rn → 0 first and then ε→ 0. �

The following form of Kato’s inequality for Schrödinger operators with Hardy-Leray potential
with boundary singularity singularity is important in our approach of the concept of weak
solutions to (1.9).

Proposition 2.2 [15, Lemma 3.1] Assume N ≥ 3 and µ ≥ µ1, or N = 2 and µ > µ1. Then
for any (f, h) ∈ L1(Ω, dγΩ

µ ) × L1(∂Ω, dβΩ
µ ) there exists a unique function u ∈ L1(Ω, |x|−1dγΩ

µ )
satisfying ∫

Ω
uL∗µζ dγΩ

µ =

∫
Ω
ζf dγΩ

µ +

∫
∂Ω
h dβΩ

µ for all ζ ∈ Xµ(Ω).

Furthermore, for any ζ ∈ X+
µ (Ω) = {ζ ∈ Xµ(Ω) : ζ ≥ 0}, there holds∫

Ω
|u|L∗µζdγΩ

µ (x) ≤
∫

Ω
ζfsgn(u)dγΩ

µ (x) +

∫
∂Ω
|h|ζdβΩ

µ (x′)

and ∫
Ω
u+L∗µζdγΩ

µ (x) ≤
∫

Ω
ζfsgn+(u)dγΩ

µ (x) +

∫
∂RN+

h+ζdβ
Ω
µ (x′).

Let σΩ
µ ∈ Hµ(Ω) be the unique variational solution of

LµσΩ
µ =

γΩ
µ

min{lΩµ , ρ}
in Ω and σΩ

µ = 0 on ∂Ω,

then σΩ
µ belongs to C2(Ω \ {0}) and satisfies (see [15, Appendix]

(i) γΩ
µ ≤ σΩ

µ ≤ c7γ
Ω
µ in Ω,

(ii) ∇σΩ
µ (x) ∼ ∇γΩ

µ (x) as x→ 0.

Furthermore
∂σΩ

µ

∂n
< 0 on ∂Ω \ {0}. The function η =

σΩ
µ

γΩ
µ

which verifies

L∗µη =
1

min{lΩµ , ρ}
in Ω, (2.1)

plays an important role as a test function because of the following estimates that it satisfies

1 ≤ η ≤ c7 and |∇η| ≤ c7ρ
−1 in Ω. (2.2)

2.2 Proof of Theorem A

Assume Ω ⊂ B1 and let k > 0. If µ > µ1, we have by (1.5) and (1.6)∫
Ω
g(kφµ)dγµ ≤ c9

∫
BR

g(c8|x|α−)|x|α+dx ≤ c10

∫ R

0
g(c8r

α−)rα++N−1dr

≤ c11

∫ ∞
R1/α−

g(s)s
−1+

α++N

α− ds = c11

∫ ∞
R1/α−

g(s)s−1−p∗µ <∞,
(2.3)
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where φµ(x) = |x|α−−1xN ≥ φΩ
µ (x) in Ω, and p∗µ is defined in (1.10). If µ = µ1 we obtain

similarly ∫
Ω
g(kφµ1)dγΩ

µ1
≤ c11

∫ ∞
R1/α−

g(s ln s)s−
2N
N−2ds <∞.

For r > 0 small enough set Ωr = Ω \ Br, ∂Ωr = Γ1,r ∪ Γ2,r where Γ1,r = Bc
r ∩ ∂Ω and

Γ2,r = ∂Br ∩ Ω. We consider the problem{
Lµv + g(v) = 0 in Ωr

v = kφΩ
µ on ∂Ωr.

(2.4)

The associated functional where G(r) =

∫ r

0
g(s)ds is expressed by

Jrµ(v) =

∫
Ωr

(
1

2
|∇v|2 +

µ

2|x|2
v2 +G(v)

)
dx

and defined over Hr = {v ∈ H1(Ωε) : v = kφΩ
µ on ∂Ωr}. Any v ∈ Hr can be written as

v = kφΩ
µ + w where w ∈ H1

0 (Ωr), then Jrµ(v) = Jrµ(kφΩ
µ + w) = J̃rµ(w), where

J̃rµ(w) =

∫
Ωr

(
1

2
|∇w|2 +

µ

2|x|2
w2 +G(w + kφΩ

µ )

)
dx+

k2

2

∫
Ωr

(
|∇φΩ

µ |2 +
µ

|x|2
(φΩ
µ )2

)
dx

+

∫
Ωr

(
〈∇φΩ

µ ,∇w〉+
µ

|x|2
φΩ
µw

)
dx

=

∫
Ωr

(
1

2
|∇w|2 +

µ

2|x|2
w2 +G(w + kφΩ

µ )

)
dx+

k2

2

∫
Ωr

(
|∇φΩ

µ |2 +
µ

|x|2
(φΩ
µ )2

)
dx

+

∫
Ωr

ηLµφΩ
µdx+

∫
∂Ωr

∂φΩ
µ

∂n
wdS

≥ 1

4

∫
Ωr

w2

|x|2 ln2(|x|)
dx+

k2

2

∫
Ωr

(
|∇φΩ

µ |2 +
µ

|x|2
(φΩ
µ )2

)
dx,

since w ∈ H1
0 (Ωr), (1.4) holds and G ≥ 0. Hence J̃rµ and therefore Jrµ is coercive and since it

is convex, it admits a unique minimum ur, which is the unique classical solution of (2.4) by
standard regularity and by Proposition 2.1 such that 0 < ur ≤ φΩ

µ in Ωr.
By monotonicity 0 < ur ≤ ur′ in Ωr′ if r ∈ (0, r′). Let uk = limr→0 ur. Because of (2.3),

g(ur)→ g(u0) in L1(Ω; dγΩ
µ ). Let γr := γΩr

µ be the first eigenfuntion of the operator

ω 7→ −∆ω +
µ

|x|2
ω in H1

0 (Ωr)

with corresponding eigenvalue `r := `Ωrµ . We normalize γr by γr(x0) = 1 for some fixed x0 in

Ω 1
4
. Then `r > `Ωµ and `r → `Ωµ when r → 0. Furthermore γr → γΩ

µ uniformly on Ωr for any
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δ > 0, where γΩ
µ (x0) = 1. If ζ ∈ Xµ(Ω), we have

0 =

∫
Ωr

ζγr (Lµur + g(ur)) dx

=

∫
Ωr

(
(−γr∆ζ − 2〈∇γr,∇ζ〉+ `rζγr)ur + ζγrg(ur)

)
dx− k

∫
Γ2,r

ζ
∂γr
∂n

φΩ
µdS.

(2.5)

Since

−
∫

Γ2,r

∂γr
∂n

φΩ
µdS =

∫
Ωε

φΩ
µ∆γrdS −

∫
Ωr

γr∆φ
Ω
µdS = −`ε

∫
Ωr

γrφ
Ω
µdx,

then, letting r → 0,

lim
r→0

∫
Γ2,r

∂γr
∂n

φΩ
µdS = `Ωµ

∫
Ω
γΩ
µ φ

Ω
µdx.

Noting from (2.5) that

lim
r→0

∫
Ωr

(
(−γr∆ζ − 2〈∇γr,∇ζ〉+ `rζγr)ur + ζγrg(ur)

)
dx =

∫
Ω

(
ukL∗µζ + ζg(uk)

)
dγΩ

µ ,

we infer ∫
Ω

(
ukL∗µζ + ζg(uk)

)
dγΩ

µ = cN,µ,Ωkζ(0), (2.6)

with

cN,µ,Ω = `Ωµ

∫
Ω
γΩ
µ φµdx.

Since x 7→ kφΩ
µ (x) satisfies (2.4) with g = 0, it satisfies also (2.6), always with g = 0. Combining

this result with the uniqueness and the estimates given in [15, Proposition 2.1], we can compute
the explicit value of cN,µ,Ω = cµ. �

2.3 Proof of Theorem B

We first assume that (ν, λ) ∈ M+(Ω; γΩ
µ ) × M+(∂Ω;βΩ

µ ). Since g satisfies (1.3) and Lµ is
uniformly elliptic in Ωr, it follows from [30, Section 3] that the problem

Lµu+ g(u) = νε in Ωr

u = λε on Γ1,r := ∂Ω ∩Bc
r

u = 0 on Γ2,r := Ω ∩ ∂Br,
(2.7)

admits a unique weak solution uε,r, where νε = νεχBcε , λε = λεχBcε and 0 < r < ε/2.
By the comparison principle, for 0 < ε′ < ε and 0 < r′ < r there holds

(i) 0 < uε,r < uε′,r′ and (ii) uε,r ≤ GΩr
µ [νε] + KΩr

µ [λε] ≤ GΩ
µ [ν] + KΩ

µ [λ] in Ωr,

where GΩr
µ and KΩr

µ denote respectively the Green and the Poisson potentials of the operator

Lµ in Ωr. The mappings r 7→ uε,r, r 7→ GΩr
µ and r 7→ KΩr

µ are decreasing. We set uε = lim
r→0

uε,r,

then
0 ≤ uε ≤ GΩ

µ [νε] + KΩ
µ [λε] ≤ GΩ

µ [ν] + KΩ
µ [λ]. (2.8)
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If ζ ∈ Xµ(Ω) vanishes in some neighbourhood of 0, there holds for r > 0 small enough,∫
Ωr

(
uε,rL∗µζ + g(uε,r)ζ

)
dγΩ

µ =

∫
Ωr

ζd(γΩ
µ νε) +

∫
Γ1,δ

ζd(βΩ
µ λε).

Letting r → 0, we obtain the identity∫
Ω

(
uεL∗µζ + g(uε)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε). (2.9)

Because uε is Lµ-harmonic in Ω ∩ Bε and vanishes on ∂Ω ∩ Bε, it satisfies uε(x) ≤ c12γ
Ω
µ (x) if

x ∈ Ω ∩ B ε
2

for some c12 > 0 depending also on ε, and (γΩ
µ (x))−1uε(x) → c13 ≥ 0 when x → 0

by [15, Section 3]. Let ζ ∈ Xµ(Ω) and

`n(x) =


0 if |x| < 1

n

1
2 −

1
2 cos

(
nπ
(
|x| − 1

n

))
if 1

n ≤ |x| ≤
2
n

1 if |x| > 2
n .

(2.10)

We set ζn = `nζ. Then∫
Ω

(
uεL∗µζn + g(uε)ζn

)
dγΩ

µ =

∫
Ω
ζnd(γΩ

µ νε) +

∫
∂Ω
ζnd(βΩ

µ λε). (2.11)

Firstly we observe that∫
Ω
ζnd(γΩ

µ νε) +

∫
∂Ω
ζnd(βΩ

µ λε)→
∫

Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε) as n→∞.

Then, for n large enough,∫
Ω
g(uε)ζndγ

Ω
µ =

∫
Ω r

2

g(uε)ζndγ
Ω
µ +

∫
Ω∩B r

2

g(uε)ζndγ
Ω
µ =: An +Bn.

BecauseGΩ
µ andKΩ

µ are respectively equivalent toGΩ
0 andKΩ

0 in Ω r
2
, the condition (1.13), jointly

with (2.8), implies that An is bounded independently of n and converges to

∫
Ω r

2

g(uε)ζdγ
Ω
µ . If

µ ≥ 1−N , α+ is nonnegative thus g(uε)ζnγ
Ω
µ is bounded in B r

2
. If µ1 ≤ µ < 1−N , then α+ < 0

and we have

|Bn| ≤
∫

Ω∩B r
2

g(c12)ζndγ
Ω
µ ≤

∫ r

0
g(c12r

α+)rα++N−1dr ≤ 1

α+

∫ ∞
r

1
α+

g(c12s)s
N
α+ ds <∞

since N
α+
≤ −1− N+2

N−2 < −1− N+1
N−1 and (1.13) holds. Therefore

lim
n→∞

∫
Ω
g(uε)ζndγ

Ω
µ =

∫
Ω
g(uε)ζdγ

Ω
µ .
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Finally, we perform the estimates∫
Ω
uεL∗µζndγΩ

µ = Cn +Dn + En

with

Cn =

∫
Ω
`nuεL∗µζdγΩ

µ , Dn =

∫
Ω
ζuεL∗µ`ndγΩ

µ , En = −2

∫
Ω
uε〈∇ζ,∇`n〉dγΩ

µ .

Since uε satisfies (2.8) it follows from [15, Theorem D] that it is bounded in L1(Ω, ρ−1dγΩ
µ )

independently of ε. Hence

lim
n→∞

Cn =

∫
Ω
uεL∗µζdγΩ

µ .

Using the fact that uε(x) ∼ c13γ
Ω
µ (x) and ζ(x) = ζ(0)(1 + o(1)) when x→ 0 we obtain∫

Ω
ζuεL∗µ`ndγΩ

µ = c13ζ(0)

∫
Ω∩

(
B 2
n
\B 1

n

) (−(γΩ
µ )2∆`n − 2γΩ

µ 〈∇`n,∇γΩ
µ 〉
)
dx+ o(1) = o(1),

since `′n( 1
n) = `′n( 2

n) = 0 and γΩ
µ vanishes on ∂Ω. Similarly

lim
n→∞

En = 0.

These facts imply that∫
Ω

(
uεL∗µζ + g(uε)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε) for any ζ ∈ Xµ(Ω). (2.12)

Notice that from the above derivation, (2.12) holds true for ζ = η, where η is defined in (2.12).
Hence uε is the weak solution of{

Lµu+ g(u) = νε in Ω

u = λε on ∂Ω.
(2.13)

Because of uniqueness, ε 7→ uε is increasing and u := lim
ε→0

uε satisfies

0 ≤ u ≤ GΩ
µ [ν] + KΩ

µ [λ] in Ω.

If we take ζ = η defined by (2.1) we deduce from (2.12)∫
Ω

(
uε
ρ

+ g(uε)η

)
dγΩ

µ =

∫
Ω
ηd(γΩ

µ νε) +

∫
∂Ω
ηd(βΩ

µ λε).

The right-hand side of the above identity converges to

∫
Ω
ηd(γΩ

µ ν) +

∫
∂Ω
ηd(βΩ

µ λ). Then by

monotone convergence∫
Ω

(
u

ρ
+ g(u)η

)
dγΩ

µ =

∫
Ω
ηd(γΩ

µ ν) +

∫
∂Ω
ηd(βΩ

µ λ).
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This implies that uε → u in L1(Ω, ρ−1dγΩ
µ ) and g(uε)→ g(u) in L1(Ω, dγΩ

µ ) as ε→ 0+. Therefore,
since any ζ ∈ Xµ(Ω), satisfies |ζ| ≤ cη for some c > 0, we infer∫

Ω

(
uL∗µζ + g(u)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ ν) +

∫
∂Ω
ζd(βΩ

µ λ),

which completes the proof when the two measures are nonnegative.
In the general case we use the Jordan decomposition ν = ν+ − ν−, λ = λ+ − λ− where

ν+, ν−, λ+ and λ− are nonnegative. Let ν±ε and λ±ε be ν±χΩε
and λ±χ

∂Ω∩Bcε
respectively. We

denote by u+
ε,r the solution of (2.7) corresponding to the couple (ν+

ε , λ
+
ε ) and by u−ε,r the solution

of 
Lu− g(u) = ν−ε in Ωr

u = λ−ε in Γ1,r

u = 0 in Γ2,r.

Then −u−ε,r ≤ min{0, uε,r} ≤ max{0, uε,r} ≤ u+
ε,r. The mapping r 7→ u+

ε,r (resp. r 7→ u−ε,r) is

monotone increasing and we set u+
ε = lim

r→0
u+
ε,r (resp. u−ε = lim

r→0
u−ε,r). The mapping r 7→ uε,r has

no reason to be monotone, but by standard regularity theory there exists {rj} converging to 0
and uε ∈ Lqloc (1 < q < N

N−1) such that uε,rj → uε in Lqloc(Ω) and a.e. in Ω. Hence uε satisfies
(2.9). Since (2.11) holds we derive that uε satisfies (2.13). We end the proof as in the first case,
using dominated convergence theorem. �

2.4 Proof of Theorem C

We first assume that ν, λ and k are nonnegative. For 0 < r < ε/4 we consider the problem
Lµu+ g(u) = νε in Ωr

u = λε on Γ1,r

u = kφΩ
µ on Γ2,r.

(2.14)

The solution is denoted by uε,k,r and we recall that uε,r is the solution of (2.7). There holds

max{uε,r, ukδ0} ≤ uε,k,r ≤ uε + kKΩ
µ [δ0] in Ωr. (2.15)

Furthermore uε,k,r ≤ uε,k,r′ if 0 < r′ < r. Since uε and kKΩ
µ [δ0] belong to L1(Ω, ρ−1dγΩ

µ ) it

implies that uε,k,r converges in L1(Ω, ρ−1dγΩ
µ ) and almost everywhere to uε,k when r → 0. Since

γΩ
µ is a supersolution for the equation Lµu + g(u) = 0 in Ωr, for any 0 < ε0 < ε/4 there exists
c14 > 0 depending on ε0 such that for 0 < r ≤ ε0/4,

uε,r(x) ≤ c14γ
Ω
µ (x) for all x ∈ Bε0 ∩ Ωr.

For any σ > 0 there exists rσ > 0 such that for any r < rσ, uε,r ≤ σKΩ
µ [δ0] in Brσ ∩Ωr. Therefore

uε + kKΩ
µ [δ0] ≤ (k + σ)KΩ

µ [δ0] in Brσ ∩ Ω. This implies

g(uε,k,r) ≤ g((k + σ)KΩ
µ [δ0]) in Ωr ∩Brσ . (2.16)
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Then we obtain, with R = diam Ω and some c > 0,∫
Ω
g((k + σ)KΩ

µ [δ0])dγΩ
µ ≤

∫ R

0
g(c|x|α−)|x|α+dx

=
1

|α−|

∫ ∞
R

1
α−
g(ct)t

N+α+−α−
α− dt ≤ 1

|α−|

∫ ∞
R

1
α−
g(ct)t−1−p∗µ <∞.

This implies in particular that∫
Ωr∩Brσ

g((k + σ)KΩ
µ [δ0])dγΩ

µ ≤
1

|α−|

∫ ∞
R

1
α−
g(ct)t−1−p∗µ . (2.17)

In the set Ωrσ , we have kKΩ
µ [δ0] ≤ crα−σ for some c > 0. By the local ∆2-condition, we deduce

g(uε,r,k) ≤ g(uε + kKΩ
µ [δ0]) ≤ K(crα−σ ) (g(uε) + g(crα−σ )) . (2.18)

Because g(uε) is bounded in L1(Ωr, dγ
Ω
µ ) independently of r by Theorem B, we infer from (2.16),

(2.17) and (2.18) that g(uε,k,r) is bounded in L1(Ωr, dγ
Ω
µ ) independently of r. Let ζ ∈ Xµ(Ω)

vanishing near 0, then for r small enough,∫
Ω

(
uε,k,rL∗µζ + g(uε,k,r)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε).

Using the mononoticity of r 7→ uε,k,r and the dominated convergence theorem we get∫
Ω

(
uε,kL∗µζ + g(uε,k)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε).

As we notice it, the singular measure kδ0 cannot appear in this formulation. If ζ ∈ Xµ(Ω) we
set ζn = `nζ where `n is defined in (2.10). Then∫

Ω

(
uε,kL∗µζ + g(uε,k)ζ

)
`ndγ

Ω
µ −

∫
Ω∩

(
B 2
n
\B 1

n

)Anuε,kdγΩ
µ =

∫
Ω
ζ`nd(γΩ

µ νε) +

∫
∂Ω
ζ`nd(βΩ

µ λε),

where
An = ζ∆`n + 2〈∇`n,∇ζ〉+ 2α+ζ〈∇`n,

x

|x|2
〉.

Clearly we have that

lim
n→∞

∫
Ω

(
uε,kL∗µζ + g(uε,k)ζ

)
`ndγ

Ω
µ =

∫
Ω

(
uε,kL∗µζ + g(uε,k)ζ

)
dγΩ

µ

and

lim
n→∞

(∫
Ω
ζ`nd(γΩ

µ νε) +

∫
∂Ω
ζ`nd(βΩ

µ λε)

)
=

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε).

Next

An=

[
n2π2

2
cos

(
nπ

(
|x| − 1

n

))
+
nπ(N − 1 + 2α+)

2|x|
sin

(
nπ

(
|x| − 1

n

))]
(ζ(0) + o(1)) +O(n).
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Using (2.15) with δ = 0 and the fact that uε = o(KΩ
µ [δ0]) near 0, we obtain after a technical but

straightforward computation

lim
n→∞

∫
Ω∩

(
B 2
n
\B 1

n

)Anuε,kdγΩ
µ = kcµζ(0). (2.19)

By the normalization chosen it follows that uε,k satisfies∫
Ω

(
uε,kL∗µζ + g(uε,k)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε) + kcµζ(0). (2.20)

Hence uε,k is the weak solution of{
Lµu+ g(u) = νε in Ω

u = λε + kδ0 on ∂Ω.

The end of the proof in the nonnegative case is standard: we observe that the mapping ε 7→ uε,k
is nondecreasing. We denote by uk its limit when ε → 0. If ζ ∈ Xµ(Ω), the right-hand side of
(2.20) converges to ∫

Ω
ζd(γΩ

µ ν) +

∫
∂Ω
ζd(βΩ

µ λ) + kcµζ(0) as ε→ 0.

If we take ζ = η, by property (2.2), (2.19) becomes

lim sup
n→∞

∫
Ω∩

(
B 2
n
\B 1

n

)Anuε,kdγΩ
µ ≤ kcµ sup

Ω
η, (2.21)

and when ε→ 0,∫
Ω

(
uk
ρ

+ g(uk)η

)
dγΩ

µ ≤
∫

Ω
ηd(γΩ

µ νε) +

∫
∂Ω
ηd(βΩ

µ λε) + kcµ sup
Ω
η. (2.22)

Thus, by the monotone convergence theorem we have that uε,k → uk in L1(Ω, ρ−1)dγΩ
µ ) and

g(uε,k) → g(uk) in L1(Ω, dγΩ
µ ) as ε → 0. Therefore, by the dominated convergence theorem we

conclude that for any ζ ∈ Xµ(Ω) there holds∫
Ω

(
ukL∗µζ + g(uk)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ ν) +

∫
∂Ω
ζd(βΩ

µ λ) + kcµζ(0).

Hence uk is the weak solution of (1.9). When ν and λ are signed measures and k is a real
number, we use the Jordan decomposition of ν = ν+ − ν− and λ = λ+ − λ− and assume for
example that k is nonnegative and we construct the solutions u+

ε,k,r of
Lµu+ g(u) = ν+

ε in Ωr

u = λ+
ε on Γ1,r

u = ukδ0 on Γ2,r
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and u−ε,δ of 
Lµu− g(u) = ν−ε in Ωr

u = λ−ε on Γ1,r

u = 0 on Γ2,r.

Then the function uε,k,r of (2.14) satisfies −u−ε,r ≤ min{0, uε,k,r} ≤ max{0, uε,k,r} ≤ u+
ε,k,r. Since

u+
ε,k,r is monotone with respect to r with limit u+

ε,k, we obtain, as in the proof of Theorem B,

the existence of a limit uε,k of a sequence uε,k,rj , a.e. and in Lqloc(Ω), and uε,k satisfies (2.17) for
any ζ ∈ Xµ(Ω) which vanishes near 0.

Since u−ε,r is Lµ Harmonic in Ω ∩Bε, u−ε,r = 0 on (∂Ω ∩Bε) \ {0} and charges no Dirac mass
at origin in the weak sense, then

−u−ε,r ≥ −c15γ
Ω
µ on Ω ∩ ∂B ε

2

for some c15 > 0 dependent of ε. Thus, there exists c16 > 0 such that

uε,k,r ≥ ukδ0 − c16γ
Ω
µ := w for all x ∈ Ω ∩B ε

2
.

Combining these estimates with (2.15) (applied to u+
ε,r,k) we obtain

ukδ0 − c16γ
Ω
µ ≤ uε,k,r ≤ u+

ε,r + kKΩ
µ [δ0] ≤ u+

ε + kKΩ
µ [δ0] in Ω ∩B ε

2
, (2.23)

where u+
ε,r and u+

ε are the solutions of (2.13) with r > 0 and r = 0 respectively with νε and λε
replaced by ν+

ε and λ+
ε . Thanks to estimate (2.23) we infer as in the case where νε and λε are

nonnegative that uε,k satisfies (2.20). We also have

−u−ε ≤ min{0, uε,k} ≤ max{0, uε,k} ≤ u+
ε,k

and
g(−u−ε ) ≤ min{0, g(uε,k)} ≤ max{0, g(uε,k)} ≤ g(u+

ε,k).

Then there exist a function uk ∈ Lqloc(Ω) (1 < q < N
N−1) and a sequence {εj} converging to 0

such that uεj ,k → uk L
q
loc(Ω) and a.e. in Ω. Since g(u+

ε,k) and g(−u−ε ) converge in L1(Ω, dγΩ
µ )

and u+
ε,k and u−ε in L1(Ω, ρ−1dγΩ

µ ), it follows that g(uε,k) and uε,k endow the same properties.
This is sufficient to see that (2.20) implies (2.22), which ends the proof. �

3 The supercritical case

3.1 Reduced measures

We present here the notion of reduced measure which has been introduced by Brezis, Marcus and
Ponce [7]. This notion turned out to be a very useful tool for analyzing supercritical problems.
Since many results are simple adaptations of similar ones used in [14], we will state most of them
without detailled proofs. We assume that g is a continuous nondecreasing function vanishing at
0 and for ` > 0, we set

g`(r) =

{
min{g(r), g(`)} if r ≥ 0

max{g(−`), g(r)} if r < 0.
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If k ∈ R+, and (ν, λ) ∈M+(Ω; γΩ
µ )×M+(∂Ω;βΩ

µ ) we denote by u` the solution of{
Lµu+ g`(u) = ν in Ω

u = λ+ kδ0 on ∂Ω.
(3.1)

Existence of u` comes from Theorem C.

Proposition 3.1 Let k ∈ R+, and (ν, λ) ∈M+(Ω; γΩ
µ )×M+(∂Ω;βΩ

µ ), then ` 7→ u` is monotone
decreasing and converges to some function u∗ when ` → ∞ and there exists a real number
k∗ ∈ [0, k] and two measures (ν∗, λ∗) ∈ M+(Ω; γΩ

µ ) ×M+(∂Ω;βΩ
µ ) satisfying 0 ≤ ν∗ ≤ ν and

0 ≤ λ∗ ≤ λ such that u∗ is a weak solution of{
Lµu+ g`(u) = ν∗ in Ω

u = λ∗ + k∗δ0 on ∂Ω.
(3.2)

Furthermore the correspondence (ν, λ, k) 7→ (ν∗, λ∗, k∗) is nondecreasing.

Proof. The monotonicity is clear. By Fatou’s lemma u∗ := lim
`→∞

u` satisfies∫
Ω

(
u∗L∗µζ + g(u∗)ζ

)
dγΩ

µ ≤
∫

Ω
ζd(γΩ

µ ν) +

∫
∂Ω
ζd(βΩ

µ λ) + kcµζ(0) for all ζ ∈ Xµ(Ω), ζ ≥ 0.

The function u∗ is the largest subsolution of problem (1.9). Since the mapping

ζ 7→
∫

Ω

(
u∗L∗µζ + g(u∗)ζ

)
dγΩ

µ for all ζ ∈ C∞c (Ω)

is a positive distribution, it is a positive measure denoted by ν∗. It is smaller than ν, hence it
belongs to M+(Ω; γΩ

µ ). Similarly the function u∗ admits a boundary trace λ∗ on ∂Ω \ {0} which

is a positive Radon measure smaller than λ. Hence λ∗ ∈ M+(∂Ω∗;βΩ
µ ). By using (1.1), it is

extended as a measure on ∂Ω, still denoted by λ∗. If ζ ∈ Xµ(Ω) vanishes near 0, there holds∫
Ω

(
u∗L∗µζ + g(u∗)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ ν
∗) +

∫
∂Ω
ζd(βΩ

µ λ
∗).

Let v be the solution of {
Lµv + g(v) = ν∗ in Ω

v = λ∗ on ∂Ω.

Existence is standard since u∗ exists. Furthermore v is a subsolution of problem (1.9) hence it
is smaller than u∗. Therefore w = u∗ − v is nonnegative and it satisfies{

Lµw + g(u∗)− g(v) = 0 in Ω

w = 0 on ∂Ω \ {0}.

Let ψ ∈ Hµ be the solution of{
Lµψ = g(u∗)− g(v) in Ω

ψ = 0 on ∂Ω,
(3.3)
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then w + ψ is a nonnegative Lµ-harmonic function vanishing on ∂Ω \ {0}. By [15, Theorem A]
there exists k∗ ≥ 0 such that

lim
x→0

(w + ψ)(x)

γΩ
µ (x)

= k∗,

and ∫
Ω

(w + ψ)L∗µζdγΩ
µ = k∗cµζ(0) for all ζ ∈ Xµ(Ω).

It follows from (3.3) that this implies

lim
x→0

w(x)

φΩ
µ (x)

= k∗,

and ∫
Ω

(
wL∗µζ + ζ(g(u∗)− g(v))

)
dγΩ

µ = k∗cµζ(0) for all ζ ∈ Xµ(Ω).

Since u∗ = w + v and∫
Ω

(
vL∗µζ + ζg(v)

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ ν
∗) +

∫
∂Ω
ζd(βΩ

µ λ
∗) for all ζ ∈ Xµ(Ω)

we infer∫
Ω

(
u∗L∗µζ + g(u∗)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ ν
∗) +

∫
∂Ω
ζd(βΩ

µ λ
∗) + k∗cµζ(0) for all ζ ∈ Xµ(Ω).

The last assertion is obvious. �

Definition 3.1 The triplet of measures (ν∗, λ∗, k∗δ0) is called the reduced triplet associated to
(ν, λ, kδ0). If (ν∗, λ∗, k∗δ0) = (ν, λ, kδ0) the triplet is called g-good.

Lemma 3.2 Let (ν, λ, k) and (ν ′, λ′, k′) in M+(Ω; γΩ
µ ) ×M+(∂Ω;βΩ

µ ) × R+. If ν ′ ≤ λ, λ′ ≤ λ
and k′ ≤ k and (ν, λ, k) = (ν∗, λ∗, k∗), then (ν ′, λ′, k′) = (ν ′∗, λ′∗, k′∗).

Proof. For ` > 0, let u` = u`,ν,λ,k be the solution of (3.1). We define similarly u′` = u′`,ν′,λ′,k′ .
Then u′` ≤ u` for any ` > 0. Then u` ↓ u∗ and u′` ↓ u′∗ as ` → ∞ where u∗ u′∗ are the
solution of (1.9) with sources (ν∗, λ∗, k∗), (ν ′∗, λ′∗, k′∗) respectively, and these convergences hold
in L1(Ω, ρ−1dγΩ

µ ) by the previous proposition. Since (ν, λ, k) = (ν∗, λ∗, k∗), then

Lµ(u` − u∗) + g`(u`)− g`(u∗) = g(u∗)− g`(u∗)

and we deduce from Proposition 2.2 that∫
Ω

(u` − u∗)ρ−1dγΩ
µ +

∫
Ω
|g`(u`)− g`(u∗)|ηdγΩ

µ ≤
∫

Ω
(g(u)− g`(u))ηdγΩ

µ .

Because |g`(u`)− g`(u∗)| ≤ |g`(u`)− g(u∗)|+ g(u∗)− g`(u∗) we get∫
Ω
|g`(u`)− g`(u∗)|ηdγΩ

µ ≤ 2

∫
Ω

(g(u∗)− g`(u∗))ηdγΩ
µ → 0 as `→∞.
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Since g`(u
′
`) ≤ g`(u`), it follows by Vitali’s theorem that g`(u

′
`) converges to g(u′∗) in L1(Ω, dγΩ

µ ).
Letting ` → ∞ in the weak formulation of the equation satisfied by u′` we conclude that u′∗

verifies∫
Ω

(
u′∗L∗µζ + g(u′∗)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ ν
′) +

∫
∂Ω
ζd(βΩ

µ λ
′) + k′cµζ(0) for all ζ ∈ Xµ(Ω).

This implies the claim. �

As a consequence we have

Proposition 3.3 The triplet (ν∗, λ∗, k∗δ0) is the largest g-good triplet smaller than (ν, λ, kδ0).

Lemma 3.4 Let (ν, λ, k) in M+(Ω; γΩ
µ ) ×M+(∂Ω;βΩ

µ ) × R+. The two next statements are
equivalent:
(i) The triplet (ν, λ, k) is g-good.
(ii) For any ε > 0, 0 ≤ k′ ≤ k, (νε, λε, k

′) is g-good.

Proof. We recall that νε = χΩε
ν and λε = χ

∂Ω∩Bcε
λ.

(i) implies (ii) by Lemma 3.2.
Conversely, if (νε, λε, k

′) is g-good for any ε > 0 and k′ ∈ [0, k], let uε,k′ be the solution of{
Lµu+ g(u) = νε in Ω

u = λε + k′δ0 on ∂Ω.
(3.4)

Then map (ε, k′) 7→ uε,k′ is nonincreasing in ε and nondecreasing in k′. There holds∫
Ω

(
uε,k′L∗µζ + g(uε,k′)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε) + k′cµζ(0) for all ζ ∈ Xµ(Ω).

From (2.22) we have that∫
Ω

(
uε,k′ρ

−1 + g(uε,k′)η
)
dγΩ

µ ≤
∫

Ω
ηd(γΩ

µ νε) +

∫
∂Ω
ηd(βΩ

µ λε) + k′cµ sup
Ω
η.

Put u = lim
(ε,k′)→(0,k)

uε,k′ . By the monotone convergence theorem,

∫
Ω

(
uρ−1 + g(u)η

)
dγΩ

µ =

∫
Ω
ηd(γΩ

µ ν) +

∫
∂Ω
ηd(βΩ

µ λ) + kcµη(0).

Therefore uε,k′ → u in L1(Ω, ρ−1dγΩ
µ ) and g(uε,k′) → g(u) in L1(Ω, dγΩ

µ ) as ε → 0+. Going to
the limit in (3.4) yields the claim. �

Remark. The previous result is a particular case of the following result: If {(νn, λn, kn)} ⊂
M+(Ω; γΩ

µ )×M+(∂Ω;βΩ
µ )×R+ is an increasing sequence of g-good triplet converging to (ν, λ, k) ∈

M+(Ω; γΩ
µ )×M+(∂Ω;βΩ

µ )× R+, then (ν, λ, k) is g-good.
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3.2 Capacitary framework, good measures and removable sets

In the sequel, we set g(r) = gp(r) := |r|p−1r with p > 1. The following a priori estimate of
Keller-Osserman type is standard and easy to prove (see e.g. [18], [23]).

Lemma 3.5 Let p > 1, µ ∈ R, G ⊂ RN be a domain such that 0 /∈ G. There exist constants
A > 0, B ≥ 0 depending on N , p, µ such that any compact subset F of ∂G, possibly empty, and
any solution v of {

Lµv + gp(v) = 0 in G

v = 0 on ∂G \ ({0} ∪ F ),

there holds

|v(x)| ≤ Amax
{
|x|−

2
p−1 ,

(
dist (x, F )

− 2
p−1

)}
+B for all x ∈ G.

Proof of Theorem D. Since gp satisfies the uniform ∆2-condition, i.e. K(|r|) is constant in
inequality (1.14), if (ν, 0, 0), (0, λ, 0) and (0, 0, kδ0) are gp-good, then (ν, λ, kδ0) is also gp-good,
and conversely. Assume now that (ν, λ, 0) is gp-good, or, equivalently, for any ε > 0, (νε, λε, 0),
is gp-good. Let uε be the solution of (3.4) with k′ = 0. Let Ω̃ε be a smooth domain such that
Ωε ⊂ Ω̃ε ⊂ Ω ε

2
. Then ũε := uεbΩ̃ε satisfies

Lµũε + gp(ũε) = νε in Ω̃ε

ũε = λε on ∂Ω ∩ ∂Ω̃ε

ũε = uε on ∂Ω̃ε ∩ Ω.

Furthermore µ
|x|2 is bounded in Ω̃ε. Hence the Green operator G−∆+µ|.|−2

relative to Ω̃ε is

equivalent of the one relative to −∆ and νε ∈ M+(Ω; ρ). Let Ω̃ε,t = {x ∈ Ω̃ε : ρ(x) > t} and
νε,t = χ

Ω̃ε,t
νε. The bounded measure νε,t is gp-good in Ω̃ε. From [2], this holds if and only if for

any Borel set K ⊂ Ω̃ε,
cR

N

2,p′(K) = 0 =⇒ νε,t(K) = 0.

Assume now E ⊂ Ω is a compact set such that cR
N

2,p′(E) = 0. Then cR
N

2,p′(E ∩ Ω̃ε,t) = 0 and thus

νε,t(E ∩ Ω̃ε,t) = 0. By the monotone convergence theorem, it implies

lim
ε→0

lim
t→0

νε,t(E ∩ Ω̃ε,t) = lim
ε→0

νε(E ∩ Ω̃ε) = ν(E) = 0.

Similarly, using Marcus-Véron results on the boundary trace (see e.g. [23]) λ is gp-good if and

only if λε vanishes on compact sets E ⊂ ∂Ω̃ε such that cR
N−1

2
p
,p′

(E) = 0. Clearly λ shares this

property.

Conversely, if ν (resp. λ) vanishes on compact sets E ⊂ Ω (resp. E ⊂ ∂Ω) such that

cR
N

2,p′(E) = 0 (resp. cR
N

2
p
,p′

(E) = 0), then ν+ (resp. λ+) has the same property. Hence we can

assume that ν (resp. λ) is nonnegative. Clearly νε (resp. λε) shares also this property. If
0 < t < ε we denote by Ω∗t a smooth domain such that Ωε ⊂ Ω∗t ⊂ Ω and Ω∗t ∩ B t

2
= 0

there exists an increasing sequence {νε,n} (resp. {λε,n}) of positive bounded measures belong
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to W−2,p(Ω) (resp. W
− 2
p
,p

(∂Ω)) converging to νε (resp. λε). The measures νε,n (resp. λε,n)
are gp-good relatively to the open set Ω∗t . Therefore there exists a sequence of solutions {ũε,t n}
satisfying weakly 

Lµũε,t n + gp(ũε,t n) = νε,n in Ω∗t

ũε,t n = λε,n on ∂Ω ∩ ∂Ω∗t

ũε,t n = 0 on ∂Ω∗t ∩ Ω.

Letting n→∞, we infer that ũε,δ n increases and converges to the solution ũε,δ of
Lµũε,t + gp(ũε,t) = νε in Ω∗t

ũε,t = λε on ∂Ω ∩ ∂Ω∗t

ũε,t = 0 on ∂Ω∗t ∩ Ω.

For 0 < t < t′, ũε,t ≥ ũε,t′ , hence ũε := lim
t→0+

ũε,t satisfies

∫
Ω

(
ũεL∗µζ + gp(ũε)ζ

)
dγΩ

µ =

∫
Ω
ζd(γΩ

µ νε) +

∫
∂Ω
ζd(βΩ

µ λε), (3.5)

for all ζ ∈ XΩ
µ which vanishes in a neigborhood of 0. We end the proof as in Theorem B. We first

obtain that ũε satisfies (3.5) for all ζ ∈ XΩ
µ , and then we let ε→ 0 and conclude that u := lim

ε→0
ũε

satisfies {
Lµu+ gp(u) = ν in Ω

u = λ on ∂Ω,

hence (ν, λ) is gp good. �

Proof of Theorem E. A particular case of Theorem E that we will prove in Theorem J is
that 0 is a non-removable singularity if and only if 1 < p < p∗µ for any µ ≥ µ1 and N > 2, or
p > p∗∗µ with N ≥ 3 and µ < 1−N .

(i) Assume K ⊂ Ω is compact. It follows from [2, Theorem 3.1] that cR
N

2,p′(K) = 0 is a necessary

and sufficient condition for K to be removable for the operator Lµ (and p ≥ N
N−2 otherwise K

is empty).

(ii) Let K ⊂ ∂Ω \ {0} be compact and, for ε > 0, Kε = {x ∈ Ω : dist (x,K) < ε}. Assume u is a
function belonging to L1(Ω \Kε, ρ

−1dγΩ
µ ) ∩ Lp(Ω \Kε, dγ

Ω
µ ) for any ε > 0 satisfying∫

Ω

(
uL∗µζ + gp(u)ζ

)
dγµ(x) = 0, (3.6)

for any ζ ∈ Xµ(Ω) vanishing in a neighborhood of K. Taking a test function ζ ∈ C2(Ω)
vanishing on ∂Ω and in a neighborhood of K we infer by standard regularity theory that u ∈
C2(Ω \ (K ∪{0}) is a strong solution of Lµu+ gp(u) = 0 in Ω which vanishes on ∂Ω \ (K ∪{0}).
Let G ⊂ Ω be a smooth domain such that K is interior to ∂G ∩ ∂Ω relatively to the induced
topology on ∂Ω and such that 0 /∈ G. Then µ|x|−2 is bounded in G. Then there exists a > 0
and b ∈ R such that

gp(u) + µ|x|−2u ≥ aup+ − b.
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Set m = max{u+(x) : x ∈ ∂G ∩ Ω}. Then implies that v =

(
u−m−

(
b+
a

) 1
p

)
satisfies

−∆v+avp ≤ 0 in G and vanishes on ∂G \K. Since cR
N−1

2
p
,p′

(K) = 0 (and p ≥ N+1
N−1 otherwise K is

empty), v = 0 by [21, Theorem 3.3], which implies u ≤ m+
(
b+
a

) 1
p

in G. Similarly u is bounded

from below in G and it follows that (3.6) holds for all ζ ∈ Xµ(Ω). Hence u = 0 by uniqueness.

Conversely, if cR
N−1

2
p
,p′

(K) > 0, then there exists a capacitary measure λK belonging to

W
− 2
p
,p

(∂Ω) with support in K. Since λK vanishes on Borel set with cR
N−1

2
p
,p′

-capacity 0, it is

gp-good and there exists a solution u to{
Lµu+ gp(u) = 0 in Ω

u = λK on ∂Ω.
(3.7)

Hence u satisfies (3.6) for all ζ ∈ Xµ(Ω) vanishing in a neighborhood of K. Hence K is not
removable.

(iii) If K ⊂ Ω \ {0} is such that cR
N−1

2
p
,p′

(K ∩ ∂Ω) > 0 then K ∩ ∂Ω is not removable by (ii). If

cR
N

2,p′(K ∩ Ω) > 0, then there exists an increasing sequence of compact sets Kn ⊂ K ∩ Ω such

that cR
N

2,p′(Kn) > 0. Hence Kn is not removable, and clearly K inherits the same property as it
contains Kn.

(iv) If 0 ∈ K ⊂ ∂Ω and K \ {0} 6= ∅ and assume that any solution of (1.16) is identically 0,
in particular any solution which vanishes on ∂Ω \ {0} is zero. By Theorem J this is ensured

only if p ≥ p∗µ. If cR
N−1

2
p
,p′

(K) > 0, then either p < N+1
N−1 , thus K \ {0} contains at least one point

which is not removable, or p ≥ N+1
N−1 , and since cR

N−1

2
p
,p′

(K \{0}) = cR
N−1

2
p
,p′

(K) > 0 > 0, there exists

a compact subset K ′ ⊂ K \ {0} such that cR
N−1

2
,
p′

(K ′) > 0. Hence K ′, and therefore K, is not

removable. This implies that if K is removable one must have p ≥ p∗µ and cR
N−1

2
p
,p′

(K) = 0.

Conversely, if p ≥ p∗µ, we will see at Theorem J that there exists no nonzero solution u ∈
C(Ω \ {0}) of Lµu + gp(u) = 0 vanishing on ∂Ω \ {0}. For 0 < t < ε we set Kt = {x ∈ Ω :
dist (x,K) < t}, Kδ,ε = Kt ∩Bc

2ε and Ωt,ε = Ω \Kt,ε. We denote by vt,ε the maximal solution of
Lµu + gp(u) = 0 in Ωt,ε which vanishes on ∂Ω \Kt,ε; hence it blows-up on ∂Kt,ε and it can be
easily constructed by Lemma 3.5 by approximation with solutions with finite boundary value
on ∂Kt,ε. We also denote by wε the maximal solution of the same equation in Ωε := Ω ∩ Bc

ε

which vanishes on ∂Ω \Bε. It blows up on ∂Bε ∩Ω. If u is a solution of (1.16), it is dominated
in Ω \ (Kt,ε ∪Bε) by the supersolution vt,ε +wε. When t→ 0, vt,ε converges to the function v0,ε

which satisfies the equation in Ωε and vanishes on ∂Ωε \ K. Since cR
N−1

2
p
,p

(K) = 0, there holds

cR
N−1

2
p
,p

(K ∩Bc
2ε) = 0. Therefore v0,ε = 0. When ε→ 0, wε decreases and converges to a solution

of the equation in Ω which vanishes on ∂Ω\{0}, hence this limit is zero and consequently u = 0.

(v) If 0 ∈ K ⊂ Ω and K \ {0} 6= ∅ and any solution of (1.16) is identically 0. Then p ≥ p∗µ as

in (iv). Since K ∩ Ω 6= ∅ then any point in K ∩ Ω is a removable singularity, hence p ≥ N
N−2
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(which implies p > N+1
N−1). If cR

N

2,p′(K ∩ Ω) > 0, there exists a compact set K ′ ⊂ K ∩ Ω such

that cR
N

2,p′(K
′) > 0. Then K ′ is not removable by Theorem D, hence K is not removable too. If

cR
N−1

2
p
,p′

(K ∩ ∂Ω) > 0, then K is not removable as in (iv).

Conversely assume that p ≥ p∗µ, cR
N

2,p′(K ∩ Ω) = 0, cR
N−1

2
p
,p′

(K ∩ ∂Ω) = 0 and u satisfies (1.16).

For 0 < t < ε, we define Kt = {x ∈ Ω : dist (x,K ∩ ∂Ω) < t}, Kt,ε = Kδ ∩ Bc
2ε as in (iv) and

K̃t,ε = {x ∈ Ω : dist (x,K ∩ Ω) < t} ∩ {x ∈ Ω : dist (x, ∂Ω) > 2ε}. The functions vt,ε and wε
are defined as in (iv). We also denote by ṽt,ε the maximal solution of Lµ + gp(u) = 0 in Ω \ K̃t,ε

which vanishes on ∂Ω. Then u ≤ vt,ε + ṽt,ε + wε in Ω \ (Kt,ε ∪ K̃t,ε ∪Bε. When t→ 0, vt,ε → 0

since cR
N−1

2
p
,p′

(K ∩ Bc
ε ∩ ∂Ω) = 0 and ṽt,ε → 0 since cR

N

2,p′(K ∩ {x ∈ Ω : dist (x, ∂Ω) > 2ε}) = 0.

Hence u ≤ wε and we conclude as in (iv) by letting ε→ 0. �

4 Isolated boundary singularities

The study of boundary isolated singularities is based upon a technical framework which has
been introduced by [17] in the case µ = 0. For the sake of completeness we recall this formalism.
Up to a rotation we assume that the inward normal direction to ∂Ω at 0 is eN = (0′, 1) ∈
RN−1 × R and that the tangent hyperplane to ∂Ω at 0 is ∂RN+ = RN−1. For R > 0 set
B′R = {x′ ∈ RN−1 : |x′| < R} and DR = B′R × (−R,R). Then there exist R > 0 and a C2

function θ : B′R 7→ R such that ∂Ω ∩ DR = {x = (x′, xN ) : xN = θ(x′) for x′ ∈ B′R} and
Ω ∩ DR = {x = (x′, xN ) : θ(x′) < xN < R}. Furthermore ∇θ(0) = 0. Define the function
Θ = (Θ1, ...,ΘN ) on DR by yj = Θj(x) = xj if 1 ≤ j ≤ N − 1 and yN = ΘN (x) = xN − θ(x′).
Since DΘ(0) = Id we can assume that Θ is a diffeomorphism from DR onto Θ(DR). Let z be
the harmonic extension of h in BR ∩ Ω vanishing on Ω ∩ ∂BR and set

u(x)− z(x) = ũ(y), z(x) = z̃(y) for all x ∈ D+
R = B′R × [0, R).

Denote by (r, σ) ∈ (0, r̃)× SN−1 the spherical coordinates in RN and set

ũ(y) = ũ(r, σ) = r−av(t, σ) , z̃(y) = z̃(r, σ) = r−aZ(t, σ) , t = ln r , a =
2

p− 1
.

Then v is bounded and satisfies the following asymptotically autonomous equation in (−∞, r0]×
SN−1

+

(1 + ε1(t, ·))vtt + (N − 2− 2a+ ε2(t, ·)) vt + (a(a+ 2−N)− µ+ ε3(t, ·)) v + ∆′v

+ 〈∇′v, ε4(t, ·)〉+ 〈∇′vt, ε5(t, ·)〉+ 〈∇′(〈∇′v, eN 〉), ε6(t, ·)〉+ µZ − |v + Z|p−1(v + Z) = 0,
(4.1)

where ∆′ is the Laplace-Beltrami operator on SN−1 and the εj satisfy the estimates

|εj(t, ·)|+ |∂tεj(t, ·)|+ |∇′εj(t, ·)| ≤ c17e
t.

As for Z it verifies
|Z(t, ·)|+ |∂tZ(t, ·)|+ |∇′Z(t, ·)| ≤ c17e

at.
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This is due to the fact that |θ(x′)| = O(|x′|2) near 0. Furthermore, standard elliptic equations
theory implies that there holds, if k + ` ≤ 3,∣∣∣∣∂k∇′`v∂tk

(t, ·)
∣∣∣∣ ≤ c18 in (−∞, r0]× SN−1

+ . (4.2)

Proof of Theorem F. We denote by Sµ,p the set of functions satisfying{
−∆′ω + (a(N − 2− a) + µ)ω + gp(ω) = 0 in SN−1

+

ω = 0 on ∂SN−1
+ ,

(4.3)

where a = 2
p−1 .

(i) If ω is a solution it satisfies

0 =

∫
SN−1

+

(
|∇′ω|2 + (a(N − 2− a) + µ)ω2 + |ω|p+1

)
dS

≥
∫
SN−1

+

(
N − 1 + (a(N − 2− a) + µ)ω2 + |ω|p+1

)
dS.

If N − 1 + a(N − 2− a) + µ ≥ 0, then necessarily ω = 0. Next

N − 1 + a(N − 2− a) + µ ≥ 0⇐⇒ −α+ ≤ a ≤ −α−
⇐⇒{

(i) either p ≥ 1− 2
α−

= p∗µ,

(ii) or 1 < p ≤ 1− 2
α+

= p∗∗µ provided N ≥ 3 and µ1 ≤ µ < 1−N.

(ii) By minimization Sµ,p is not empty if the conditions (i) or (ii) of Theorem F are fulfilled,
in which case Sµ,p has a unique positive element (see [17] for a similar situation). This unique
positive element is denoted ωµ.
(iii) The last statement follows an idea introduced in [28]. The hupper hemisphere admits the
following representation

SN−1
+ =

{
x = ((sinφ)σ′, cosφ) : σ′ ∈ SN−2, φ ∈

(
0,
π

2

)}
.

The surface measure dS on SN−1 can be decomposed as

dS(σ) = (sinφ)N−2dS′(σ′)dφ

where dS′ is the surface measure on SN−2. If h(σ) = h(σ′, φ) is defined on SN−1, we put

h
′
(φ) =

1

|SN−2|

∫
SN−2

h(σ′, φ)dS′(σ′).

Let ω be an element of Sµ,p, then, by averaging (4.3),∫
SN−1

+

(
−∆′(ω − ω′) + (a(N − 2− a) + µ) (ω − ω′) +

(
gp(ω)− gp(ω)

′))
(ω − ω′)dS = 0.
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By monotonicity∫
SN−1

+

(
gp(ω)− gp(ω)

′)
(ω − ω′)dS =

∫
SN−1

+

(gp(ω)− gp(ω′)) (ω − ω′)dS

≥ 21−p
∫
SN−1

+

|ω − ω′|p+1dS.

The function ω−ω′ is orthogonal to the first eigenspace of −∆′ in H1,2
0 (SN−1

+ ). Since the second

eigenvalue of −∆′ in H1,2
0 (SN−1

+ ) in 2N , we have

−
∫
SN−1

+

(ω − ω′)∆′(ω − ω′)dS ≥ 2N

∫
SN−1

+

(ω − ω′)2dS.

Hence ∫
SN−1

+

(
(a(N − 2− a) + µ+ 2N) (ω − ω′)2 + 21−p |ω − ω′|p+1

)
dS ≤ 0.

Hence, if a(N − 2− a) + µ+ 2N ≥ 0 it follows that ω − ω′ = 0. The polynomial

P2(X) := X2 + (2−N)X − µ− 2N

admits two real roots provided µ ≥ −(N+2
2 )2 := µ2, which are expressed by

a− =
N

2
− 1 +

√
µ− µ2, a+ =

N

2
− 1−

√
µ− µ2,

and

P2

(
2

p− 1

)
≤ 0⇐⇒ a+ ≤

2

p− 1
≤ a−.

Note that a+a− > 0 if and only if −2N > µ. Furthermore P2(−α−) < 0 and P2(−α+) < 0.
Then

(i) if µ ≥ 1−N then a+ < −α+ < 0 < −α− < a− =⇒ p̃∗µ < p∗µ,

(ii) if N ≥ 3 & − 2N ≤ µ < 1−N then a+ < 0 < −α+ ≤ −α− < a− =⇒ p̃∗µ < p∗µ < p∗∗µ ,

(iii) if N ≥ 9 & µ1 ≤ µ < −2N then 0 < a+ < −α+ ≤ −α− < a− =⇒ p̃∗µ < p∗µ < p∗∗µ < p̃∗∗µ ,

where, we recall it,

p∗µ = 1− 2

α−
, p̃∗µ = 1 +

2

a−
, p̃∗∗µ = 1 +

2

a+
, p∗∗µ = 1− 2

α+
.

Therefore ω − ω′ = 0 if the following conditions are satisfied

(i) when µ ≥ 1−N and p̃∗µ ≤ p < p∗µ,

(ii) when N ≥ 3 , −2N ≤ µ < 1−N and either p̃∗µ ≤ p < p∗µ or p∗∗µ < p,

(iii) when N ≥ 9 and µ1 ≤ µ < −2N and either p̃∗µ ≤ p < p∗µ or p∗∗µ < p ≤ p̃∗∗µ .
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If one of the above conditions is fulfilled, ω depends only on the variable φ ∈ [0, π2 ]. It satisfies −
1

sinN−2 φ

(
ωφ sinN−2 φ

)
φ

+ (a(N − 2− a) + µ)ω + gp(ω) = 0 in (0, π2 )

ωφ(0) = 0 , ω(π2 ) = 0.

Define the operator

B(ψ) = − 1

sinN−2 φ

(
sinN−2 φψφ

)
φ

among functions ψ in the space HB ⊂ C2([0, π2 ]) satisfying ψφ(0) = 0 and ψ(π2 ) = 0. The first
eigenvalue of B in HB is N − 1 and the second in 2N . Since gp is nonnecreasing, it is known
(see e.g. [4]) that the constant sign solutions ωp and −ωp lie on a branch of bifurcation issued
from N − 1 and there exists no other bifurcation when the parameter a(N − 2− a) + µ belongs
to (N − 1, 2N ]. This implies Sµ,p = {ωp,−ωp, 0} and ends the proof. �

For proving Theorems G, H, I, J we recall here the following technical results [17, Theorem
5.1] related to the solutions of (1.17) satisfying

lim
x→0
|x|

2
p−1u(x) = 0. (4.4)

The statement is easily adapted from the one of the above mentioned theorem. We denote by
λk = {k(k + N − 2 : k ∈ N∗} the set of eigenvalues of −∆′ in H1,0(SN−1

+ ). Any separable
Lµ-harmonic function in RN+ vanishing on ∂RN+ \ {0} endows the form

x 7→ u(x) = u(r, σ) = rαkφk(σ) (r, σ) ∈ R+ × SN−1
+ ,

where φk ∈ ker(∆′ + λkI) and αk= αk− or αk+ the smallest and the largest root of

α2 + (N − 2)α− λk − µ = 0,

which exist for some k ≥ 1 if and only if µ ≥ µk := µ1 +N − 1− λk. Note that αk− ≤ 0 for all
k ∈ N∗ and αk+ ≤ 0 if and only if µ ≥ −λk (which imposes N ≥ 8k(k +

√
2k(k − 1))).

Theorem 4.1 Assume µ ≥ µ1, 1 < p < p∗µ and h ∈ C3(∂Ω). If u ∈ C(Ω \ {0}) ∩ C2(Ω) is a
solution of (1.17) satisfying (4.4) and

(A) either u−(x) = O(|x|−
2
p−1

+δ
) near x = 0, for some δ > 0,

(B) or N = 2 and Ω is locally a straight line near x = 0,

(B) or − 2
p−1 is not equal to some αk− for some k ∈ N∗.

Then

(i) either u is the weak solution of (1.18),
(ii) or there exist an integer k ∈ N∗ such that −αk− < 2

p−1 and a nonzero spherical harmonic
ψk of degree k such that

lim
x→0

rαk− ũ(r, σ) = ψk(σ). (4.5)
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4.1 Proof of Theorems G, H, I and J

Because of (4.2) the negative trajectory of v in C1
0 (SN−1

+ ) which is defined by

T−(v) =
⋃

t≤r0−1

{v(t, .)},

is relatively compact in the C2(SN−1
+ )-topology. The limit set Ev of T−(v) at −∞ defined by

Ev =
⋂

τ≤r0−1

⋃
t≤τ
{v(t, .)}

C1
0 (SN−1

+ )

,

is non-empty. Since 1 < p < p∗µ and µ ≥ µ1, there holds

p <
N + 2

N − 2
. (4.6)

Thus the coefficient of vt in (4.1) is not zero (asymptotically, when t → −∞). Then energy
damping holds and, in the same way as in [17] up to a shift of µ in the coefficient of v in (4.1),
we obtain ∫ r0−1

−∞

∫
SN−1

+

v2
t dσdt <∞.

Combining this estimate with (4.2) and some standard manipulations (see [17]) implies that

‖vt(t, .)‖
C1(SN−1

+ )
+ ‖vtt(t, .)‖

C(SN−1
+ )

→ 0 as t→ −∞.

Hence Ev is a compact connected component of Sµ,p.

Proof of Theorem G. If ω is nonnegative, either Ev = {ωp} and (1.22) holds or

lim
t→−∞

‖v(t, .)‖
C2(SN−1

+ )
→ 0 as t→ −∞.

If this holds, it follows by Theorem 4.1-A that either u = 0 or (4.5) is verified for some k ≥ 1.
Since any spherical harmonics of degree at least two changes sign k must be equal to 1. Then

ũ(x) = `φµ(x)(1 + o(1)) as x→ 0,

which is (1.23). �

Corollary 4.2 Let µ1 ≤ µ and 1 < p < p∗µ. Then for any h ∈ C3(Ω), h ≥ 0 there exists only
one solution of (1.17) with a strong singularity at x = 0, that is satisfying (1.22).

Proof. It is a consequence of Theorem G that the limit of u`δ0,h of the solution of (1.24) when
`→∞ is a solution which satisfies (1.22). The method of proof of uniqueness is due to Marcus
and Véron [20]. The minimal solution of (1.24) with a strong singularity at x = 0 is defined by

u∞,h := lim
`→∞

u`δ0,h.
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For constructing the maximal solution we define the sequence un,h of solutions of
Lµun,h + gp(un,h) = 0 in Ω ∩Bc

1
n

un,h = h in ∂Ω ∩Bc
1
n

un,h = cn
2
p−1 in Ω \ ∂B 1

n
,

where c > 0 is some constant large enough. Then u`δ0,h ≤ un,h. By convexity there holds

un,h − u`δ0,h ≤ un,0 − u`δ0,0.

By monotonicity {un,h} decreases and converges to the maximum solution u∞,h of (1.22) and
there holds

u∞,h − u∞,h ≤ u∞,0 − u∞,0.

Furthermore, by (1.22), there exists K = K(p, µ,Ω) > 1 such that

u∞,0 ≤ Ku∞,0.

If we assume that u∞,0 > u∞,0, then, again by convexity, the function

U = u∞,0 −
1

K

(
u∞,0 − u∞,0

)
is a supersolution for problem (1.17) smaller than u∞,0. The function

U∗ =

(
1

2K
+

1

2

)
u∞

is a supersolution of the same problem (1.17) smaller than U . By a standard result there exists
V solution of the problem such that U∗ ≤ V ≤ U . In particular V has a strong blow-up at
x = 0 and it is smaller than the minimal solution u∞, contradiction. �

Proof of Theorem H. Since Ev is a connected subset of the discrete set Sµ,p which has three
connected components ({ωp}, {−ωp}, {0}) by Theorem F-(1) either (1.25) or (4.4) holds. Since
p > p̃∗µ, − 2

p−1 which necessarily larger α1− satisfies either 2
p−1 < α2− or, if 2

p−1 > α2+ in the

case N ≥ 9 and µ < −2N and 2
p−1 is not equal to any αk− or αk+ for k > 2 by the equation.

Hence, by Theorem 4.1, (1.23) holds. �

Remark. If p = p̃∗µ or p = p̃∗∗µ the method shows that either (1.25) or (4.4) holds. Since it is the
spectral case always difficult to handle we cannot prove that (1.23) also holds, a fact that we
conjecture.

Proof of Theorem I. The two statements obey a totaly different approach.

Statement 1- is a consequence of the theory of analytic functionals developped by in [26], [27]
and applied to Emden-Fowler equations in [5]. The key point is to consider the equation (4.1)

satisfied by v(t, .) = r
− 2
p−1 ũ(r, σ) in (−∞, r0)× SN−1

+ and to verify that, as a function of v, it is
real analytic. Hence p must be an odd integer. If 1 < p < p∗µ the only possibility is p = 3 which
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is in the range if N + 4
√
µ− µ1. If µ < 1−N and p > p∗∗µ there are infinitely many possibilities

for p.

Statement 2- The convergence to one element of Sµ,p follows from the fact that this set of
solutions of (1.27) is discrete. If ∂Ω is locally a close graph near 0 the paper [12] which use
Sturmian arguments and the Jordan closed curve theorem. If ω = 0, as quoted in [17, Theorem
5.1-C2] we perform a reflexion through ∂Ω near 0 and apply the result of [12, Lemma 2.1], the
shift of the coefficient by µ playing no role. �

Proof of Theorem J. Since p > 1, any solution u of (1.17) satisfies the estimate of Lemma 3.5
under the following form

|u(x)| ≤ A|x|−
2
p−1 for all x ∈ Ω \ {0}.

If p > p∗µ, then − 2
p−1 > α−, therefore u(x) = o(φµ(x)) near x = 0. Let u+ be the solution of{

Lµu+ gp(u) = 0 in Ω

u = h+ on ∂Ω.
(4.7)

For any ε > 0, u+ + εφµ is a supersolution of Lµu+ gp(u) = 0, larger than u near x = 0. Then
that u ≤ u+ + εφµ and, letting ε→ 0 then u ≤ u+. Similarly u is larger than −u− − εφµ, where
u− is the solution of (4.7) with h+ replaced by h−. Letting ε → 0 yields −u− ≤ u ≤ u+. It
follows by the method of Theorem B that u is the weak solution of (1.18).

If p = p∗µ and µ = µ1, then similarly u(x) = o(φµ(x)) near x = 0 and the result follows by the
same method.

Finally, if p = p∗µ and µ > µ1, then (4.6) holds. Using the variable t = ln r and v(t, .) = r
2
p−1 ũ(r, .)

we obtain from the previous energy method that

Ev ⊂ Sµ,p = {0}.

Hence u satisfies (4.4). Since p = p∗µ, 2
p−1 = −α−. Hence u = o(φµ) near 0 and the conclusion

follows as in the previous cases. �
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[25] M. Marcus, L. Véron, Boundary trace of positive solutions of supercritical elliptic equations
in dihedral domains, Ann. Scu. Norm. Sup. Pisa Ser. V, vol. XV (2016), 501-542.

[26] L. Simon, Asymptotics for a class of nonlinear evolution equations with applications to
geometric problems. Ann. Math. 118 (1983), 525-571.

[27] L. Simon, Isolated singularities of extrema of geometric variational problems. In: Giusti,
E. (ed.) Harmonic Mappings and Minimal Immersions. Lect. Notes Math., vol. 1161, pp.
206-277. Berlin, Heidelberg, New York: Springer (1985).
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