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Boundary singularities of semilinear elliptic
equations with Leray-Hardy potential

Huyuan Chen*

Laurent Véron T

Abstract

We study existence and uniqueness of solutions of (Eq) —Au + ﬁu +g(u) =vin Q,

u = X on 0f2, where Q C Rf is a bounded smooth domain such that 0 € 9Q, u > —NTQ is
a constant, g a continuous nondecreasing function satisfying some integral growth condition
and v and A two Radon measures respectively in Q and on 9. We show that the situation
differs considerably according the measure is concentrated at 0 or not. When g is a power
we introduce a capacity framework which provides necessary and sufficient conditions for the
solvability of problem (Fj).

Key Words: Hardy Potential, Radon Measure.
MSC2010: 35B44, 35J75.

Contents

1 Introduction 2

2 The subcritical case 10
2.1 Katoinequality . . . . . . . . .. L 10
2.2 Proof of Theorem A . . . . . . . . . e 11
2.3 Proof of Theorem B . . . . . . . . . . . 13
2.4 Proof of Theorem C . . . . . . . . . . . . e 16

3 The supercritical case 19
3.1 Reduced measures . . . . . . . . e e 19
3.2 Capacitary framework, good measures and removable sets . . . . . . .. ... .. 23

*Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China. E-mail: chen-
huyuan@yeah.net

fLaboratoire de Mathématiques et Physique Théorique, Université de Tours, 37200 Tours, France. E-mail:
veronl@univ-tours.fr



Leray-Hardy equations with absorption 2

4 Isolated boundary singularities 26
4.1 Proof of Theorems G, H,TandJ . .. ... ... ... ... ... ......... 30

1 Introduction

If 11 is a real number and N > 2, the Schrédinger operator £,,, defined in a domain © C RY by

N

Lyu:=—Au+ P

u’
plays a fundamental role in analysis, because of Hardy’s inequality, and in theoretical physics
in connexion with uncertainty principle. When the singular point 0 belongs to €2, there exists a

critical value
N —2\?
po=—{—5—) -

If o > po the operator £, is bounded from below because of Hardy inequality

2
/|V¢!2 + uo/ %da: >0 forall ¢ € C(Q). (1.1)
Q alzl

Sharp properties of this inequality has been studied by Brezis and Vazquez [8]. When u > uo,
we studied in [14] the Hardy equation with absorption semi-linearity

(1.2)
u=20 on Of)

{ Lyiu+gu)=v in Q
for a Radon measure v being able to be supported at origin in a bounded smooth domain
), where g is a continuous nondecreasing function, by using systematically a notion of weak
solutions introduced in [13] associated to a dual formulation with a specific weight function
because of the Leray-Hardy potential. In this framework, weak solutions to (1.2) in a class of
weighted measures are obtained provided that g satisfies some integrability condition. When
this integrability condition is not satisfied by g, not all measures in the above class are suitable
for solving (1.2). This is called the supercritical case. In the supercritical case and when
g(r) = |r|P~r with p > 1, we showed that the set of suitable measures is associated to a
property of absolute continuity with respect to some Bessel capacity.

In this article we are interested in the configuration where the singular point of the Leray-
Hardy potential lies on the boundary of the domain 2 and we study the following equation

Lyiu+gu)=v  in Q
U= A on 0f2,

where v and A are bounded Radon measures respectively on €2 and 902. When p = 0 the first
study is due to Gmira and Véron [17] who proved the existence and uniqueness of a very weak
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solution. Such a solution u is a function belonging to L!(Q) such that pg(u) € L'(Q), where
p(x) = dist (z, 09), satisfying

x4,

o0 6n

/ (—uAA¢ + g(u)¢) dz = —
Q

for all ¢ € CL(Q) such that A¢ € L*(€). The condition for the existence and uniqueness of a

solution is
2N

/100 (g(s) —g(—s)) s N-1ds < 0. (1.3)

When p # 0, a typical domain is @ = RY := {z = (2/,2n) = (z1,...,2n) = x5 > 0}. There
exists a critical value

N2

4

which is a fundamental value for the operator £,,, being the best constant of the Hardy inequality

= = —

2
/ |V¢’2—|—M1/ ’é‘de>O for alquGC(‘)’o(Rf).
RY

If Rf is replaced by a bounded domain §2 satisfying the condition
(C1) 0€0Q, QcRY and (z,n) = O(|z|?) for all z € 9,

where n = n, is the outward normal vector at x, this inequality is never achieved and there
exists a remainder [9]: if we set Rg = max |z|, there holds
zE

2 ¢2 1 ¢2 o)
/Q\V¢| + p1 Tz ‘Qda: /\x|21n 2 (2l R )dx for all ¢ € C5°(Q). (1.4)

Note that the last condition in (C;) holds if 2 is a C? domain. Put

N N2 N N2
a+::a+(u):1—5—|— /L—FT and a,::a,(u)zl—g— /L—f—T.

If Q satisfies (Cy) there exists 58 > 0 defined by

~ K : _
o) = mm{/Q <|Vv\2+|’2”u )daf.v € Ccl(Q),/Qv2dx 1}.

If o > g this first eigenvalue is achieved in the space H, () which is the closure of C}() for

the norm
v ol \/ / |w|2+v2)
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Note that H,(Q) = Hg(Q) if > p1, Hj(Q) & H,, () and the imbedding of Hy, () in L*(Q)
is compact. We proved in [15] the positive eigenfunction ’yf} € H,(Q) of L, associated to the
first eigenvalue 62 satisfies

L’#’yf} = Ef}’yf} in Q
'yff =0 on 002\ {0}

and there exist ¢; > co > 0 and ¢ > 0 such that for all z € Q\ {0}

(4) cola|*p(a) < yil(x) < ez p(x),
i 2y 573(37) (15)
@ Vi) < et

This function will play the role as a weight function. Inequality (1.4) implies the existence of
the Green kernel Gf} with corresponding Green operator Gf}. The Poisson kernel Kf} of £, in
Q2 x 90 is constructed in [15], by a simple truncation as in [31] if x > 0, and by a more elaborate
approximation in the general case. When p > 0 the kernel has the property that

Q B _
K, (z,0)=0 forall z €\ {0},

by [31, Theorem A.1]. The singular kernel cbf} is the analogue in a bounded domain of the explicit
singular solution z — ¢, () =| z |*~~! 2y defined in RY, and it satisfies for all z € Q \ {0},

eslalo="1p(x) < 62(x) < ealal*=p(a) it p > pu, (L6)

and
N
2

eslal =3 (|| + V() < 62 (2) < colal~> (| In fo]| + Dp(a). (L.7)

We assume that € is a bounded smooth domain such that 0 € 9 and its normal vector
ey = (0,---,0,1) € RY at origin in the sequel. We define the wg—dual operator Ly, of L, by

2

Li¢=—-AC— V—QW%?, V¢) + 53¢ for all ¢ € CHH(Q).
17

It satisfies the following commutating property
Lu(7,2¢) = LG
Denote by (€ 7/52) the set of Radon measures v in €2 such that

sup{/ﬂ(d\)\\ 1 (eC(),0<(¢< ’yf}} = /Q’ygdlyl < 0.

Thus, if v € M (Y ’yf}) the measure 7,521/ is a bounded measure in 2. We also set

o Q
B () = —%Lm. (1.8)



Leray-Hardy equations with absorption b)
The space of Radon measures A on 992 \ {0} such that

d| M| : C.(00\{0}),0< (< QL. QdI\ ,
sup{/m\{o}cu ¢ € C00)\ {0}) <g<ﬁ#} /m\{o}&llw

is denoted by 9(0€2; ﬁf}) The extension of A € M (9€; Bf}) as a measure ﬂf})\ in 0f) is given
by

Qy) Q .
89Cd(/8u)‘) = Sup{/fmvﬁud)\ cv € C(002\{0}),0<v < C} for all ( € C(092), (>0
and Bf})\ = 53)\+ — Bf})\_ if A is a signed measure in Dﬁ(aQ;Bﬁ), and this defines the set
M(0Q; ﬁf}) of all such extensions. The Dirac mass at 0 does not belong to 9t(0€; Bf}), but it

is the limit of sequences of measures in this space. We proved in [15] that if v € 93?+(Q;7§),
A € M09, Bf}) and k € R, the function

u=G[v] + KJ[N + ke, == H[(v, A+ kdo)]
is the unique function belonging to L'(, p‘ldfyi}) satisfying
Juticar = [ )+ [ casEn) + k(o)
uSE 0 i H
Q Q o9

for all ¢ € X,,(Q2) = {¢ € C(Q) s.t. 5¢ € Hy() and pLi¢ € L®(Q)}, where

2/ — m/SNlczS%dS if p> p,
+

(% - 1) SN71¢%dS if n = p,
+

Cyp =

and ¢ is the positive eigenfunction of Agv-1 in S 7! := {(2/,zx) € RN : |z| = 1, zy > 0}
with zero Dirichlet boundary condition with respect to the first eigenvalue.

Let g : R — R be a continuous nondecreasing function satisfying rg(r) > 0. Thanks to this
result we can construct of weak solutions of the problem

Lyu+g(u)=v in Q (L9)
u= A+ kdp on 0f). )

Definition 1.1 Let (v, ) € IM(Q; ’yi}) X 93?(89;53) and k € R. A function u € L*(£, p_ld’yf})
is a weak solution of (1.9) if g(u) € Ll(Q,d'yg) and

[ (wtic+ gt) dv = [ ctna) + [ Gd(BIN) + ke, ¢(©) for any ¢ € %,,().
Q Q o2
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We set
. 2 N +2+2pu— Mo dpr=1- 2 N+2-2u—m (1.10)

—1- = = — = .
I P R VT ar  N-2-2/u—m
Note that pj = Nﬂ,pm N+§,pﬂ is defined only if N > 3 and —NTQ <u<l-—N.

Our first result deals with the existence of a solution with an isolated singularity on boundary:

Theorem A Assume N > 3 and p > puy, or N = 2 and p > p1, and let g : R — R be a
continuous nondecreasing function such that rg(r) > 0. If there holds

/ (g(s) — g(—s)) s~ 1 Pids < 0o if pu > py, (1.11)
1
or -

/ (g(slns) — g(—sIn|s|)) s Prids < oo if =, (1.12)

1
then for any k € R there exists a unique weak solution uys, to
Lu+g(u) =0 in
u = kg on 0f).

Furthermore,

lim ngo (z) = E
z—0 qb“ (IL‘) Cu

When the measures do not charge the point 0, we have a result which is similar as the one
proved in [17].

Theorem B Assume N > 3 and p > p1, or N =2 and pp > p1, and let g : R — R be a
continuous nondecreasing function such that rg(r) > 0 satisfying

/ (g(s) — g(—s)) s~ 7Pods < oo. (1.13)
1
Then for any (v, \) € Sm(Q;’y/?) X m(aﬁ;ﬁ}}) there exists a unique weak solution u to

Lou+gu)=v inQ
u=MX on 0f.

Finally we construct a solution to (1.9) without restriction on the measures by gluing so-
lutions corresponding to Theorems A and B provided g satisfies the weak As-condition already
introduced in [14]:

There exists a continuous nondecreasing positive function K : Ry — Ry such that

lg(s+ )| < K(r]) (lg(s)|+ |g(r)]) for all (s,r) ERXR s.t. sr>0. (1.14)
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Theorem C Assume N > 3 and pu > p1, or N = 2 and p > uy1, and let g : R — R be a
continuous nondecreasing function such that rg(r) > 0 satisfying the weak Ag-condition and

/ (g(s) — g(—s)) s~ PPl ds < 400, (1.15)
1

Then for any (v,\) € W(Q;y{}) X M (I8 5{}) and k € R there exists a solution u to the problem
(1.9).

A nonlinearity g for which problem (1.9) admits a solution is called subcritical. A couple of
measures (v, \) for which problem (1.9) admits a solution is called g-good. In the supercritical
case all the measures are not g-good. Besides the problem at 0 where (1.11)-(1.12) may or may
not be satisfied, the admissibility of a measure depends on its concentration expressed in terms
of Bessel capacities. We denote these capacities by cp. g Where d = N or N —1. In this framework
we consider only the case where g(r) = g,(r) := |r|p Iy with p > 1. The following theorem is
proved.

Theorem D Assume 1 > py and p > 1.

1- A measure v € Em(Q;’yf}) is gp-good if and only if it is absolutely continuous with respect to
the cﬂsg,-capacity.

2- A measure A € M(OQ; Bf}) is gp-good if and only if it is absolutely continuous with respect to

the cﬂile -capacity.
57p
Similarly we have a characterization of removable singularities.
Theorem E Assume > pu1, p> 1 and K C Q is compact. Then any weak solution of

{ L+ gp(u) =0 in QN K°

1.16
u=20 on 00N K¢ ( )

can be extended as a solution of the same equation in  vanishing on 02 if and only if
(i) ¢y (K) =0 if K C Q.
(ii) cRN,l( K)=0if K o\ {0}.

(iii) 02 Y (K)=0 andc2p, (KNaQ) if K c Q\ {0}.
(w)CRN,l( K)=0andp>pj if 0 € K C0Q and K\ {0} # {0}.

RN—-1

(v)czp(KﬂQ)—O 02 . (KNoQ)=0andp>p} if 0 K CQ and K NQ# {0}.

At end we characterlze the behaviour of solutions of

Lyu+ gp(u) =0 in
{ u=h on 00\ {0}, (1.17)

where h € C3(99). When p > p,, we prove that u is indeed the very weak solution of

{ L~ gp(u in Q

0
(1.18)
h on Of).

u) =
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The techniques we use are extensions of charaterization of singularities developed studies in [17]
and [18]. We associate a problem on S} ~':

{ ~Aw+ (Apy +p)w+gplw)=0 in S 119)

w=0 on 88171,

2 2
Apy=——(N- P
’ p—1 p—1

where

Let S,.p (resp. S;f) denote the set of solutions (resp. positive solutions) of (1.19). We set

2 N+2+2/p— 2 N+2-2/p—
Brml4 = TETEAVHTHE g e gy 22T E_B (120)
a_ N —=242/u— ps ar N —2-—-2\/u— ps
where py = — (%)2 Note that p;* is defined only if N > 9 and —NTQ < pu < —2N. The

introduction of the numbers a4 and a_, will be explained in the proof of the theorem. Then we
have

Theorem F Assume pu > puy and p > 1.

1- S, is not reduced to {0} if and only if Ay Ny +p+ N —1 <0, that is
(i) either 1 < p < py,

(i) or N >3, 1 <pu<1—N andp > p;’.

2- If 8, is non-empty, it is reduced to one element wy,.

3- All the elements of S,,, have constant sign if Ay y +p+N —1 < Ap vy +p+2N <0, that is:
(i) when p > 1~ N and p;, < p < pj,

(i4) when N >3, —2N < < 1— N and either p,, < p < pj, or p;* <p,

(iii) when N > 9 and py < pp < —2N and either p;, < p < pj, or p;* <p < p,".

Since any solution of (1.17) satisfies

u(z)| < erp(z)|z| 71 for all = € QN By, (1.21)

for some 9 > 0 and ¢; > 0 depending on N, p and €, we flatten the boundary as in [17], define
2

the new function @(y) by this change of variable, set v(¢t,0) = rr=1a(r,o) with ¢t = Inr and

study the limit set &, of the new equation satisfied by v(¢,.) when ¢ — —oo. This limit set is a

connected compact subset of £,. If u >0, &, C SJ . Thus we prove the following.

Theorem G Assume ji > i, h € C3(9Q) and u € C*(Q)NC(Q\{0}) is a nonnegative solution
of (1.17). If 1 <p < pj, then
(i) either

lim  |o|7Tu(e) = wa(o), (1.22)

Q35z—0
i%oésfil

[ ]

(ii) or there exists £ > 0 such that

u(zx) = le?(l‘,O)(l +o0(1)) asz e, x—0, (1.23)
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and u is the weak solution of

{ Lyu+ gp(u) =0 in Q (1.24)

u=h+ cldy on 0N.

When u is a signed solution, the situation is more delicate and we obtain only partial results.

Theorem H Assume 1 > py, h € C3(99Q) and u € C*() N C(\ {0}) is a solution of (1.17).
If p, < p <pj,, then
(a) either
2
lim |z|rTu(z) = fw,(0), (1.25)

Q35z—0

= <N —1
T‘~>O'ESJr

(b) or

lim  |z|7Tu(z) = 0. (1.26)
Q3z—0
I so€ Sf7

[Edl

1

If we assume furthermore that p;, < p and (1.26) is verified, then there exists £ € R such that
(1.23) and (1.24) hold.

In two cases the limit set is reduced to a single element of £,, whatever is the structure of
this set.

Theorem I Assume p > py, h € C3(0Q) and u € C%(Q) N C(Q\ {0}) is a solution of (1.17)).
1- If N + 2/ — p1 <4 and p = 3, then there exists w € S, , such that

2
i -1 =
leﬂo |z|P~Tu(x) = w(o).

x N-—1
m*}065+

2—[fN=2and1<p<1+\/%, then

2
lim |z|r—Tu(z) = w(o),
Q35z—0
Z =0 ES#

]

where w s a solution of

R = TR am

Furthermore, if 02 is locally a straigh tline near 0 and the limit in (1.27) is zero, there exists
¢ € R such that (1.23) holds.

We end this article with a removability result.
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Theorem J Assume p > p1, p > pj,, h € C3(09Q) and u € C*(Q) N C(Q\ {0}) is a solution of
(1.17). Then w is actually the weak solution of (1.18).

The rest of this paper is organized as follows. In section 2, we recall Kato’s inequality
and prove the existence and uniqueness of semilinear elliptic equation with measures sources
when the nonlinearity is subcritical. Section 3 is devoted to deal with the supcritical case by
connecting the measures with Bessel capacities. Finally, we analyze the behaviors of solutions
provided regular boundary conditions by considering associated problem on semi-sphere.

2 The subcritical case

2.1 Kato inequality

Proposition 2.1 Let N > 2, p > pp and g : 2 X R+— R be a continuous function satisfying
g(s1,2) > g(s9,x) if x € }Rf and s1 > s9.
If u and v belong to CH1(Q) N C(Q\ {0}) satisfy

Lyu+ g(x,u) > Lo+ gz, v) in Q
u>w on 00\ {0}

an (&) - u(a)
60w

liminf sup
r—0 z3Q
lz| =7

then v < wu in Q.

Proof. Set w = v — u, then £,w + h(x)w = 0 where

g(az,v)—g(a:,u) .
h(z) = w Tf w70
0 if w=0.

Hence h > 0. For € > 0, we set W, = v — u — eqbf}. Then W, € CZH(Q )\ {0}). There exists a
sequence {ry} tending to 0 such that

We(z) <0 for [z] =1y,
and there holds
AW, + ﬁwe +hW, < 0.

Multiplying by (We)+ := max{0, W.} and integrating yields, since (W,), € Co* (2 \ {0})

/ <\ V(W4 |2 +H12(W6)2+> dz < 0.
O\B,,, ||
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Hence (W¢); =0in Q\ B,,,, we get the result by letting r, — 0 first and then € — 0. O

The following form of Kato’s inequality for Schrédinger operators with Hardy-Leray potential
with boundary singularity singularity is important in our approach of the concept of weak
solutions to (1.9).

Proposition 2.2 [15, Lemma 3.1] Assume N > 3 and p > p1, or N =2 and p > py. Then
for any (f,h) € Ll(Q,d'nyz) X Ll(aﬂ,dﬁﬁ) there exists a unique function u € L*(Q, |x\_1d’yf})
satisfying

/Qu[,;g“dfyf} = /ngdyff + /mhdﬁf} for all ¢ € X,(Q).

Furthermore, for any ¢ € X}H(Q) = {¢ € X,,(Q) : ¢ > 0}, there holds

Luicicaro < [ crsetarie) + [ picasia’

and

uy Lyl / (fsgn (w)dy(z) + / hy Bt ().
/Q + m +\u ) N ) 6Rf + I
Let Uf} € H,(€) be the unique variational solution of

o

Q _
Luow = min{l$, p}

in Q and O'{LZZO on 0f),

then Jf} belongs to C?(Q\ {0}) and satisfies (see [15, Appendix]
(7) <ol < el in €,
(17) Vaf}(a:) ~ V’yf}(m) as v — 0.
Q

0o o'
Furthermore a—“ < 0 on 90\ {0}. The function = —& which verifies
n o7

1

Ln = mln{l p}

in Q, (2.1)

plays an important role as a test function because of the following estimates that it satisfies

1<n<ec; and |Vy|<erpt in Q. (2.2)

2.2 Proof of Theorem A
Assume Q C By and let & > 0. If y > py, we have by (1.5) and (1.6)

R
/g(lﬂb“)d’y“ < 09/ g(cglx|*)|z|*dx < 010/ g(csra—)ra++N*1dr
@ Br 0 (2.3)

o0 71+a++N o0 N
<cu g(s)s “- ds=cn g(s)s™ 7P < oo,
Rl/a, Rl/a,
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where ¢, (z) = |z|*-lzy > qﬁf}(x) in Q, and pj, is defined in (1.10). If g = p; we obtain
similarly

/g(kcbm)d’yf}l < 011/ g(sln s)s_%ds < 00.
Q

Rl/a

For r > 0 small enough set Q. = Q\ B,, dQ, = T'1, UTly, where I'1, = BN 9N and
'y, = 0B, N Q). We consider the problem

{ L,v+gw)=0 in Q, (2.4)

v = k:qbf} on 0€),.

The associated functional where G(r) = / g(s)ds is expressed by
0

r 1 Iz
J(v) = /Q <2|VU\2 + 2|x’2v2 + G(v)) dx

and defined over H, = {v € HY(Q) : v = kgbf} on 092,}. Any v € H, can be written as
v= k:gi)ﬂ + w where w € Hg(£2,), then J)(v) = J;(k:qbﬂ +w) = jﬁ(w), where

. 1 k2
Jr(w) = /Q <2wa|2 + 2\Zl2w2 +Glw+ k¢3)> dz + 2/% (|v¢{}|2 + M‘]Q(qsg)?) do
+ /Q T ((sz,vw + m’jzaﬁw) dz

= L 2 B Q kz/ Q2 K 02
_/QT <2|Vw\ +2|x‘2w +G(w +k¢y;) | dz + 2 Jo Vo, +|x|2(¢“) dx

+/ L,08%dx + %wdS
an s s, On

1 w2 k2 "
>~ —s——d —l—/ V92+7 QQ)d,
> 4/5% 22 102 (j2)) T+ 5 0. <‘ o MQ(%) T

since w € H(€,), (1.4) holds and G > 0. Hence j;: and therefore J), is coercive and since it
is convex, it admits a unique minimum w,, which is the unique classical solution of (2.4) by
standard regularity and by Proposition 2.1 such that 0 < u, < gzbf} in Q.

By monotonicity 0 < u, < uy in Q. if 7 € (0, r'). Let ux = lim,_u,. Because of (2.3),
g(ur) — g(ug) in L' (€ dwf}). Let ~, := 'yf}f be the first eigenfuntion of the operator

wr— —Aw + %w in H}(Q,)
x
with corresponding eigenvalue ¢, := Kﬁr. We normalize v, by ~,(z¢) = 1 for some fixed z( in
Q 1. Then ¢, > 62 and ¢, — Ef} when r — 0. Furthermore v, — fyf} uniformly on €2, for any
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0 > 0, where yff(mo) =1. If ¢ € X,(2), we have

0= / Cyr (‘Cuur + g(ur)) dx
Q

2.5)
O (
= [ (A= 293V + 660w+ rglun) ) o~k [ ¢S gfas
Qr FQ,T an
Since 5
_ oo Q _ Qg _ _ Q
T 0haS /Q oiaayds /Q AGRS =~ /Q o,

then, letting r — 0,

: 9 Ir .Q Q/ QQ
hm/ ¢, dS =¥ v, @, dx.
To, on H # Q B

r—0

Noting from (2.5) that

r—0

tim [ (3 AC— 2V, VO) + £ e+ Cregur) ) de = / (€ + Colur))
Q. Q

we infer

/Q (G + Colur)) drv® = ex ik (0), (2.6)

with
CNuQ = Kff/g'yf}¢#dx.

Since x kgf)ﬁ(m) satisfies (2.4) with g = 0, it satisfies also (2.6), always with ¢ = 0. Combining
this result with the uniqueness and the estimates given in [15, Proposition 2.1], we can compute
the explicit value of ey 0 = cyu. O

2.3 Proof of Theorem B

We first assume that (v, \) € DZTZJF(Q;%?) X E)JIJF(@Q;BI?). Since g satisfies (1.3) and £, is
uniformly elliptic in ,, it follows from [30, Section 3| that the problem

Lyu+ g(u) = ve in Q,
= A\ on I'y, :=00N B¢ (2.7)
0 on I'y, :=QNoBG,,

admits a unique weak solution u.,, where ve = vexpe, Ae = Acxpe and 0 <71 < €/2.
By the comparison principle, for 0 < ¢ < € and 0 < 7/ < r there holds

(1) 0<ueyr <ug, and (i1) ue, < Gf}" [Ve] + KST Ae] < Gﬁ [v] + Kf}[/\] in Q,,
where G/S}T and Kf}r denote respectively the Green and the Poisson potentials of the operator

L,, in Q.. The mappings r — uc,, 7 +— GST and r — KST are decreasing. We set u, = }1_1% Ue,rs

then
Q 0 Q Q
0 <ue <G, v] + K[ [A] <G, V] + K[ (2.8)
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If ¢ € X,,(€2) vanishes in some neighbourhood of 0, there holds for r > 0 small enough,

/QT (ue,rﬁzg +g(u€,1")C) d%? = /Qrcd(%?’je) + Cd(ﬁ;?AE)

P15

Letting » — 0, we obtain the identity

* Q QI/ Q . .
/Q (uellC + g(ue)C) dn? = /Q Cd(x2ve) + /8 RLERY (2.9)

Because u, is £,-harmonic in 2 N B, and vanishes on 0Q N Be, it satisfies u(x) < clgfyf}(:n) if

x € 2N B for some ¢z > 0 depending also on €, and (’yf}(a:))_lue(x) — c13 > 0 when x — 0
by [15, Section 3]. Let ¢ € X,(€2) and

0 if |z < -
U(z) = 3 — 3cos (nm(|z] — 1)) if 1<|z|<2 (2.10)
1 if 2| > 2.
We set ¢, = £,(. Then
| weticn w6 i = [ Gt + [ Guatofno. (211)

Firstly we observe that

/and(ﬁyew/mgnd(ﬁﬁ&) H/di(ﬁyew/mgd(ﬁﬁ&) as n — oo.

Then, for n large enough,

/Q 96 = [ g6+ [ gudeudrf = At B

Qr QNBr
2 2

Because Gf} and K f} are respectively equivalent to G} and K{! in Q%, the condition (1.13), jointly

with (2.8), implies that A, is bounded independently of n and converges to / g(uE)Cd’yf}. If

Qr
2
1> 1— N, ay is nonnegative thus g(ue)Cn'yf} is bounded in Bz. If 1 < pp <1—-N, then ay <0
and we have

T 1 0 N
|B,| < / g(clg)Cndyff < / g(crorot)ro+tN=1gr < — | | g(c198)s°+ds < 0o
QﬁBg 0 Oé_l,_ r Yt

since - < —1 — &2 < —1 — 2 and (1.13) holds. Therefore

ay

. Q Q
lim Qg(ue)Cnd'm = /Q g(ue)Cd,, -

n—oo
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Finally, we perform the estimates
Q

with
o * Q _ * Q _ Q
C, = /Q byuc LGy, D, = /Q CucLilndy, Ey = —2 /Q ue(V¢, Ve, )y

Since u, satisfies (2.8) it follows from [15, Theorem D] that it is bounded in L!(, pfldfyf})
independently of €. Hence

. _ * Q
11151010 C, = /Queﬁug‘dfyu.

Using the fact that ue(z) ~ clgfyf}(:v) and ((x) = ¢(0)(1 4+ o(1)) when x — 0 we obtain

/Q Cue L lndyf} = c13¢(0) / (—(YD*Al, — 2951V, VD)) dx + o(1) = o(1),

QH(B%\B%)

since £,(1) = ¢/,(2) = 0 and 7{} vanishes on Jf). Similarly

lim FE, =0.

n—0o0

These facts imply that

/Q (ueliC + g(ue)) dy) = /di(’yf}l/e) + /mgd(ﬂff)\e) for any ¢ € X,,(Q). (2.12)

Notice that from the above derivation, (2.12) holds true for ( = 1, where 7 is defined in (2.12).
Hence u, is the weak solution of

Lyu+g(u) = ve in (2.13)
U= A¢ on 0f).

Because of uniqueness, € — u, is increasing and v := lim u, satisfies
e—0

0<u< Gl +K!A in Q.

If we take ¢ = n defined by (2.1) we deduce from (2.12)

/Q(I:; +9(u6)77> dvy. = /Qﬂd(’n?ve) +/agnd(ﬁ’?)\5)'

The right-hand side of the above identity converges to / nd(’yf}u) + / nd(ﬁf})\). Then by
Q o0

monotone convergence

/Q (Z +g(U)77) v} = /Qnd(vf}y) +/agnd(ﬁ‘?)\)'
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This implies that u. — win L(£, p‘ldyf}) and g(uc) — g(u) in LY(, d'yf}) as € — 0. Therefore,
since any ¢ € X,(12), satisfies || < en for some ¢ > 0, we infer

/Q (ulyC + g(u)C) dvj = /Q Cd(vv) + /{9 di(ﬁf})\),

which completes the proof when the two measures are nonnegative.

In the general case we use the Jordan decomposition v = v —v~, A = AT — A~ where
vt v, AT and A~ are nonnegative. Let v and \F be l/ixQe and /\jEXanBg respectively. We
denote by u/, the solution of (2.7) corresponding to the couple (v}, \[) and by u,,. the solution

€,r
of

Lu—g(u) =v_ in Q,
U= A_ in I'y,
u=20 in FQ,T.
Then —u_, < min{0,uc,} < max{0,uc,} < uf,. The mapping r — u}, (resp. r — u_,) is

+

monotone increasing and we set ul = hH(l) u_, (resp. u, = liH(l) u, ). The mapping r — uc, has
r— ’ r— ’ ’

no reason to be monotone, but by standard regularity theory there exists {r;} converging to 0

and ue € L?OC (1<g< %) such that we,; — ue in L?OC(Q) and a.e. in . Hence u, satisfies

(2.9). Since (2.11) holds we derive that u, satisfies (2.13). We end the proof as in the first case,
using dominated convergence theorem. ([l

2.4 Proof of Theorem C

We first assume that v, A and k are nonnegative. For 0 < r < ¢/4 we consider the problem

Lyu+ g(u) = ve in Q,
U= A¢ on I'y, (2.14)
U= k:gbif on I'g,.

The solution is denoted by ue ., and we recall that u., is the solution of (2.7). There holds
max{Ue , Uksy } < Uefr < U+ k:Kf}[ég] in Q,. (2.15)

Furthermore ucj, < g, if 0 < 7' < r. Since ue and ka}[éo] belong to LI(Q,p_ldfyff) it
implies that u j , converges in Ll(Q, p‘ldfyf}) and almost everywhere to uc, when r — 0. Since
’yf} is a supersolution for the equation £,u + g(u) = 0 in Q,, for any 0 < €y < €/4 there exists

c14 > 0 depending on €y such that for 0 < r < ¢y/4,
Uer(x) < 614’}’8(1‘) for all = € Be, N,

For any o > 0 there exists 7, > 0 such that for any r < 74, uc, < aKﬁ [00] in By, N€Q,.. Therefore
ue + kKS2[6o] < (k + 0)KP[do] in B, N Q. This implies

9(uerr) < g((k+ J)Kf}[éo]) in Q. NB,,. (2.16)
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Then we obtain, with R =diam {2 and some ¢ > 0,

R
/Q o((k + O K2[5o))dr® < /0 g(cla] )|+ da

o0 N+o¢+—o¢ o0
= o] L oglet)t o= dt< Tl n glet)t™17Pi < oo.
_ R%— RO—
This implies in particular that
/ 9((k + 0)K[%])dry,; < @ |/ 1 g(et)t~iPa, (2.17)
QrNBr, =

In the set §2,_, we have ka} [60] < crg™ for some ¢ > 0. By the local As-condition, we deduce

9(uerr) < glue + KK [80]) < K(erg™) (9(ue) + glerg™)) - (2.18)

Because g(u.) is bounded in L!(Q,, d'yf} ) independently of r by Theorem B, we infer from (2.16),
(2.17) and (2.18) that g(ue,) is bounded in Ll(Qr,dyff) independently of r. Let ¢ € X,(Q)
vanishing near 0, then for r small enough,

| i+ twesn)O) i = [ Gt + /8 GBI,

Using the mononoticity of 7 + u ;. and the dominated convergence theorem we get

* Q Q Q
/Q (e L€ + gluer)C) dr? = /Q Cd(Pw) + /8 ().

As we notice it, the singular measure kdy cannot appear in this formulation. If ¢ € X,(Q2) we
set ¢, = £, where £, is defined in (2.10). Then

/Q (Ue,k£ZC + Q(Ue,k)C) End’y‘f} - /

on (BQ\B

)Anue,mfz - /Q Clad(v20e) + /8 (BN,

1
n

where

Ap = CALy + 2(Vly, VE) + 204 C(Vh, #).

Clearly we have that

n—o0

. Q Q _ Q Q
tin ([ ctudofvd+ [ @) = [canu+ [ cae.

A= [”22”2 cos <n7r <\az| - i)) G ;éﬁ 204) gin <n7r <|x| _ i))} (C(0) + o(1)) + O(n).

and
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Using (2.15) with § = 0 and the fact that u, = O(Kf} [00]) near 0, we obtain after a technical but
straightforward computation

lim Apue pdyt = ke, C(0). 2.19
n—o0 QQ(BQ\BL) K a ( ) ( )

By the normalization chosen it follows that u. j satisfies

| ertic + sty ot = [ caofvy + [ ca@ia) +keco). 220
Hence wu, j, is the weak solution of

Lyu+ g(u) = ve in Q
u = A + kdg on Of).

The end of the proof in the nonnegative case is standard: we observe that the mapping € — uc j
is nondecreasing. We denote by uy, its limit when e — 0. If ¢ € X,(£2), the right-hand side of
(2.20) converges to

/QCd(fyI?l/) + /((mCd(ﬁf})\) + kc,((0) ase—0.

If we take ¢ =1, by property (2.2), (2.19) becomes

lim sup/ Anue’kd’yf} < ke, sup, (2.21)
n—o0 QN (BQ\BL) Q
and when ¢ — 0,
u
(% gtwn) st < [ o+ [ nd52a0 + heusupn (222
Q\p Q o0 Q

Thus, by the monotone convergence theorem we have that w.p — uy in L9, p_l)d'yf}) and

g(ucr) — glug) in L1, dvf}) as € — 0. Therefore, by the dominated convergence theorem we
conclude that for any ¢ € X,(£2) there holds

/Q (ur L3¢ + g(u)C) dy = /Q Cd(xv) + /@ (B + ke, (0).

Hence uy, is the weak solution of (1.9). When v and A are signed measures and k is a real
number, we use the Jordan decomposition of v = v — v~ and A = AT — A~ and assume for

example that k is nonnegative and we construct the solutions ujk . of

Lo+ g(u) =v in Q,
uw=\" on I'y,

U = Ugs, on 'y,
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and u_; of
Lyu—g(u) =v. in Q,
U=\ on I'y,
u=0 on I'y,.

Then the function uc,, of (2.14) satisfies —u., < min{0, uek,} < max{0, vy} < u:rkr Since
ujk , 1s monotone with respect to r with limit u:k, we obtain, as in the proof of Theorem B,
the existence of a limit uc . of a sequence ue g, a.e. and in L (), and ., satisfies (2.17) for
any ¢ € X,(2) which vanishes near 0.

Since u,, is £, Harmonic in QN B, u_, = 0 on (02N B,) \ {0} and charges no Dirac mass
at origin in the weak sense, then

—U . > —01573 on Qﬂ@B%

€,r

for some c15 > 0 dependent of €. Thus, there exists c16 > 0 such that
Ue for = Uksy — clﬁfyf} = w forall z € Qn B;.

Combining these estimates with (2.15) (applied to ujm) we obtain

Uksy — 01678 < Uy < uir + k:Kff [60] < uf + ka} [0p] in QN Bg, (2.23)

where uzfr and u are the solutions of (2.13) with 7 > 0 and r = 0 respectively with v, and A
replaced by v" and A}. Thanks to estimate (2.23) we infer as in the case where v, and )\ are
nonnegative that u j satisfies (2.20). We also have

—u, < min{O,ue,k} < maX{OWe,k} < ujk

and
g(—u.) < minf0, g(uc k) } < max{0, g(ucr)} < g(ujk)

q
loc

Then there exist a function ugy € L (Q) (1 < ¢ < ~) and a sequence {¢;} converging to 0

q
such that Ue,; kb — Uk L,

(Q) and a.e. in Q. Since g(u,) and g(—u_) converge in Ll(Q,d’yf})
and v, and u_ in LI(Q,p_ldq/f}), it follows that g(u.) and u.j endow the same properties.

This is sufficient to see that (2.20) implies (2.22), which ends the proof. O

3 The supercritical case

3.1 Reduced measures

We present here the notion of reduced measure which has been introduced by Brezis, Marcus and
Ponce [7]. This notion turned out to be a very useful tool for analyzing supercritical problems.
Since many results are simple adaptations of similar ones used in [14], we will state most of them
without detailled proofs. We assume that g is a continuous nondecreasing function vanishing at
0 and for £ > 0, we set

) min{g(r), g(€)} it r>0
ge(r) = {

max{g(—¥), g(r)} if »<0.
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If ke Ry, and (1, A) € S)JT+(Q;7/?) X M (08 5{}) we denote by u, the solution of

{ Lyu+ ge(u) =v in Q

3.1
u= A+ kdy on Of). (3:-1)

Existence of uy comes from Theorem C.

Proposition 3.1 Letk € Ry, and (v, \) € M (Q; ’yf}) X M4 (09 Bf}), then £ — wuy is monotone
decreasing and converges to some function u* when £ — oo and there exists a real number
k* € [0,k] and two measures (v*,\*) € Dﬁ+(§2;7{f) X 9ﬁ+(8ﬂ;ﬁ§) satisfying 0 < v* < v and
0 < \* < X such that u* is a weak solution of

Lyu+ ge(u) =v* in (3.2)
u = A"+ k*d on 0f). )

Furthermore the correspondence (v, A\, k) — (v*, \*, k*) is nondecreasing.

Proof. The monotonicity is clear. By Fatou’s lemma u* hm uy satisfies
{—00

/Q( wLhiC+ g(u)C) dygt < /QCd(’yf}V) + /BQCd(ﬂf})\) + ke, ((0) for all ¢ € X,(2), ¢ > 0.

The function u* is the largest subsolution of problem (1.9). Since the mapping

Ci—>/ (u*LiC + g(u)¢) dvy} for all ¢ € C2(Q)

is a positive distribution, it is a positive measure denoted by v*. It is smaller than v, hence it
belongs to M, (£2; ’yf}) Similarly the function v* admits a boundary trace A* on 9\ {0} which
is a positive Radon measure smaller than A\. Hence \* € Mty (0Q*; ﬁf}) By using (1.1), it is
extended as a measure on 02, still denoted by A*. If ¢ € X,(€2) vanishes near 0, there holds

/Q( "L+ g(u)C) doy = /Cd / Cd(BIN).

Let v be the solution of

L+ gv) =v* in Q
v=\* on 0f).

Existence is standard since u* exists. Furthermore v is a subsolution of problem (1.9) hence it
is smaller than u*. Therefore w = u* — v is nonnegative and it satisfies

Lyow+g(u*)—gv)=0 in Q
w=0 on 0N\ {0}

Let ¢ € H,, be the solution of

Ly =gu*)—gv) in Q
=0 on 0,
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then w + 1) is a nonnegative £,-harmonic function vanishing on 992\ {0}. By [15, Theorem A]
there exists k* > 0 such that

g @)

z—0 ’)/'u (CL‘)
and

/ (w+ ) L¢dvys = ke, ((0)  for all ¢ € X,(9).
Q

It follows from (3.3) that this implies

w(z)

im = k¥,

and

/Q (wL'ZC +¢(g(u*) = g(v))) d’yf} = k*c,((0) for all ¢ € X,(9).

Since v* = w + v and
/Q(v,a;wqg(v)) dvs} = /di(yf}y*) + /mg“d(ﬁff)\*) for all ¢ € X,(Q)
we infer
/Q (u* L3¢ + g(u*)C) dyil = /Q Cd(viiv*) + /8 QCd(ﬁf})\*) + k*e,((0) for all ¢ € X,(Q).

The last assertion is obvious. O

Definition 3.1 The triplet of measures (v*, \*,k*dy) is called the reduced triplet associated to
(v, N\, kdo). If (v, X", k*00) = (v, A\, kdg) the triplet is called g-good.

Lemma 3.2 Let (v,\, k) and (V', N, k') in 93?+(Q;’yf}) X SITIJF(@Q;@?) XRy. If v/ <A\, N <A
and k' <k and (v, \, k) = (v*, \*, k*), then (V' N, k') = (U™, N*, k™).

Proof. For ¢ > 0, let up = ug,, »; be the solution of (3.1). We define similarly u) = u} , \/ /-
Then u, < wu for any £ > 0. Then u; | v* and uj | v as { — oo where u* u"* are the
solution of (1.9) with sources (v*, \*, k*), (v"*, \"*, k’*) respectively, and these convergences hold
in Ll(Q,pfld'yf}) by the previous proposition. Since (v, A\, k) = (v*, \*, k*), then

L (ue —u*) + ge(ug) — ge(u™) = g(u*) — ge(u®)

and we deduce from Proposition 2.2 that
[ w2+ [ Joutun) = e < | (ata) = gutuma
Because [go(ur) — ge(u”)| < |ge(ur) — g(u)| + g(u*) — ge(u™) we get

/Q (ge(ue) — go(u®) iy < 2 /Q (9(u”) — ge(u )y =0 as € — oo.
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Since go(u}) < ge(ug), it follows by Vitali’s theorem that g¢(u)) converges to g(u’*) in L1(£, dvg).
Letting £ — oo in the weak formulation of the equation satisfied by u} we conclude that u’*
verifies

/Q (W L5¢ + g(u*)C) dn? = /Q Cd(y ) + /a CA(BEN) + He,C(0)for all € € %,(9),

This implies the claim. O

As a consequence we have
Proposition 3.3 The triplet (v*, \*, k*dg) is the largest g-good triplet smaller than (v, A, kdp).

Lemma 3.4 Let (v, \, k) in ETJ@(Q;'yf}) X 93@(09;53) x Ry. The two next statements are
equivalent:

(i) The triplet (v, \, k) is g-good.

(ii) For any e >0, 0 < k' <k, (Ve, \e, k) is g-good.

Proof. We recall that v, = Xa V and A, A

(i) implies (ii) by Lemma 3.2.

Conversely, if (ve, A, k') is g-good for any € > 0 and k" € [0, k], let u, j be the solution of

= Xsanpe

{ Lyu+g(u) = ve in Q (3.4)

u=A+k0d on O0N.

Then map (€, k') — uc s is nonincreasing in € and nondecreasing in &’. There holds

/Q (tew L3¢ + gluew)C) dy? = /Q Cd(r2ve) + /6 GA(BEA) + e, C(0) for all € €%, (9).

From (2.22) we have that

/ (e p™ " + gluep)n) dyst < / nd(vive) + / nd(BA) + Ky sup.
Q Q o0 Q

Put u = lim  wu. . By the monotone convergence theorem,
(ek)=(0.k)

/Q (upf1 + g(u)n) dvfz = /Qnd(’ylef) + /mnd(ﬁff/\) + keun(0).

Therefore u, — u in Ll(Q,p_ldvfz) and g(uer) — g(u) in Ll(Q,d'ny) as € — 0%. Going to
the limit in (3.4) yields the claim. O

Remark. The previous result is a particular case of the following result: If {(vy, An, kn)} C
M, (2 7{}) x4 (09 Bf}) xR, is an increasing sequence of g-good triplet converging to (v, A\, k) €
ier(Q;fyf}) X 9ﬁ+(8(2;6f}) x Ry, then (v, \, k) is g-good.
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3.2 Capacitary framework, good measures and removable sets

In the sequel, we set g(r) = g,(r) := |r|P~!r with p > 1. The following a priori estimate of
Keller-Osserman type is standard and easy to prove (see e.g. [18], [23]).

Lemma 3.5 Letp > 1, p € R, G C RN be a domain such that 0 ¢ G. There exist constants
A >0, B> 0 depending on N, p, i such that any compact subset F' of 0G, possibly empty, and
any solution v of

L+ gp(v) =0 in G
v=20 on 0G\ ({0} UF),

there holds
_2 _ 2
lv(z)] < Amax{\:n\ p=1 (dist (z, F) P*1>} + B forall z €G.

Proof of Theorem D. Since g, satisfies the uniform As-condition, i.e. K(|r|) is constant in
inequality (1.14), if (»,0,0), (0,,0) and (0,0, kdp) are g,-good, then (v, A, kdp) is also g,-good,
and conversely. Assume now that (v, A,0) is g,-good, or, equivalently, for any € > 0, (v, A, 0),
is gp-good. Let u, be the solution of (3.4) with ¥’ = 0. Let Q. be a smooth domain such that
Q. CcQ.C Q;. Then i, := u, LQE satisfies

Lt + gp(tie) = ve in Q.
Ge =X on QNN
Ue = Ue on 8(26 N Q.

Furthermore ﬁ is bounded in Q.. Hence the Green operator G—2TH ™ relative to Q. is
equivalent of the one relative to —A and v, € DJT+(Q;~/)). Let Qe,t ={z € Q, : p(x) > t} and
Vet = Xg_, Ve The bounded measure v, is gp-good in €. From [2], this holds if and only if for

any Borel set K C €, N

c]%p,(K) =0= v (K)=0.
Assume now E C 2 is a compact set such that cggz,(E) = 0. Then cggz,(E N Q) = 0 and thus
ver(EN Qe,t) = 0. By the monotone convergence theorem, it implies

lim lim ve (BN Q) = liH(l) v(ENQ) =v(E)=0.
€E—>

e—0t—0

Similarly, using Marcus-Véron results on the boundary trace (see e.g. [23]) A is gp-good if and
only if A vanishes on compact sets E C 9€, such that CHSI\;)TI(E) = 0. Clearly A shares this
property. g

Conversely, if v (resp. A) vanishes on compact sets E C Q (resp. E C 0f2) such that
clgig,(E) = 0 (resp. c%j\;,(E) = 0), then vy (resp. Ay) has the same property. Hence we can
assume that v (resp.p A) is nonnegative. Clearly v, (resp. A¢) shares also this property. If
0 < t < € we denote by Qf a smooth domain such that . C Qf C Q and Qf N B% =0
there exists an increasing sequence {v,} (resp. {A¢n}) of positive bounded measures belong
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to W=2P(Q) (resp. W‘%’P((?Q)) converging to v, (resp. A¢). The measures v, (resp. Acp)
are gp-good relatively to the open set Qf. Therefore there exists a sequence of solutions {@c ¢}
satisfying weakly
‘C,uae,tn + gp(ae,tn) = Ven n Q;
71671,‘71 = )\e,n on 9NN 89?
ﬂs,tn =0 on 892‘( N Q.

Letting n — oo, we infer that . s, increases and converges to the solution s of
ﬁ‘u’LNLE’t + gp(ﬂat) = U in Qz(
Uet = Ae on 0N oY
Uet =0 on 0§y NS

For 0 <t <t @ey > Uey, hence U, := lim ., satisfies
t—0t
| Getic + an@a0) i = [ o+ [ caiagn (3.5)

for all ¢ € Xf} which vanishes in a neigborhood of 0. We end the proof as in Theorem B. We first

obtain that . satisfies (3.5) for all ¢ € Xf}, and then we let € — 0 and conclude that u := liII[l) Ue
€E—

satisfies

Lo+ gp(u)=v in Q
U= A on 012,

hence (v, ) is g, good. O

Proof of Theorem E. A particular case of Theorem E that we will prove in Theorem J is
that 0 is a non-removable singularity if and only if 1 < p < pj, for any p > py and N > 2, or
p>p; with N >3and p<1-N.

(i) Assume K C Q is compact. It follows from [2, Theorem 3.1] that 01515, (K) =0 is a necessary

and sufficient condition for K to be removable for the operator £, (and p > " otherwise K

N—2
is empty).
(ii) Let K C 9\ {0} be compact and, for € > 0, K. = {z € Q : dist (z, K) < €}. Assume u is a
function belonging to L'(Q\ K, p_ldyf}) NLP(Q\ K, dvf}) for any € > 0 satisfying

[ ez + gy 0¢) ) =0, 36)

for any ¢ € X,(Q) vanishing in a neighborhood of K. Taking a test function ¢ € C?*(Q)
vanishing on 02 and in a neighborhood of K we infer by standard regularity theory that u €
C%(Q\ (K U{0}) is a strong solution of £,u+ g,(u) = 0 in Q which vanishes on 9Q \ (K U{0}).
Let G C Q be a smooth domain such that K is interior to 0G N 9N relatively to the induced
topology on 92 and such that 0 ¢ G. Then p|z|~2 is bounded in G. Then there exists a > 0
and b € R such that

gp(u) + plz|2u > aul —b.
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1
Set m = max{ui(z) : * € OGN N}. Then implies that v = <u—m— (bj)p> satisfies

—Av+avP <0 in G and vanishes on 0G \ K. Since cﬂg\;l([() =0 (and p > J+L otherwise K is
p7

3=

empty), v = 0 by [21, Theorem 3.3], which implies u < m + (%) in G. Similarly u is bounded
from below in G and it follows that (3.6) holds for all ¢ € X,(€2). Hence u = 0 by uniqueness.

Conversely, if cﬂg\;,_l(K ) > 0, then there exists a capacitary measure Ag belonging to
p7

2 —
W »P(0Q) with support in K. Since Ax vanishes on Borel set with cﬂgz, 1—capacity 0, it is
p7

gp-good and there exists a solution u to

{ L~ gp(u) =0 in

3.7
U= Ak on Of). (37)

Hence u satisfies (3.6) for all ( € X,(€) vanishing in a neighborhood of K. Hence K is not
removable.

(iii) If K € Q\ {0} is such that 02 2 (K NOQY) > 0 then K MO is not removable by (ii). If

c2 D (K N Q) > 0, then there ex1sts an increasing sequence of compact sets K, C K N €} such

that c§p,( K,) > 0. Hence K, is not removable, and clearly K inherits the same property as it
contains K.

(iv) If 0 € K C 99 and K \ {0} # () and assume that any solution of (1.16) is identically 0,
in particular any solution which vanishes on 09 \ {0} is zero. By Theorem J this is ensured
only if p > py. If CH§N71(K) > 0, then either p < N‘H , thus K\ {0} contains at least one point

which is not removable or p > FELand since 02 . (KEN\{0}) = CI§N7 (K) > 0> 0, there exists
a compact subset K/ C K \ {0} such that cgp, "(K') > 0. Hence K', and therefore K, is not

removable. This implies that if K is removable one must have p > p;, and cﬂii) /*1 (K) = 0.
p?

Conversely, if p > pj,, we will see at Theorem J that there exists no nonzero solution u €
C(Q\ {0}) of L,u+ gp(u) = 0 vanishing on 92\ {0}. For 0 < ¢t < e we set K; = {z € Q :
dist (z, K) < t}, Ks. = K; N BS, and Q; = Q\ K. We denote by v the maximal solution of
L,u+ gp(u) =0 in Q. which vanishes on 092\ K ; hence it blows-up on 0K, and it can be
easily constructed by Lemma 3.5 by approximation with solutions with finite boundary value
on 0K;.. We also denote by we the maximal solution of the same equation in 2, := QN Ei
which vanishes on 0\ B.. It blows up on 9B, N Q. If u is a solution of (1.16), it is dominated
in Q\ (Ft,6 U Eﬁ) by the supersolution v . +w.. When t — 0, v converges to the function vg
which satisfies the equation in € and vanishes on 02 \ K. Since cgzil(K ) = 0, there holds

cﬂfN 1(K N BS,.) = 0. Therefore vg = 0. When € — 0, w, decreases and converges to a solution

P ’.
of the equation in  which vanishes on 92\ {0}, hence this limit is zero and consequently u = 0.

(v) If0 e K € Qand K \ {0} # 0 and any solution of (1.16) is identically 0. Then p > p}, as

in (iv). Since K N Q # () then any point in K N Q is a removable singularity, hence p > %
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N-1
that C]S;\:/(K 'Y > 0. Then K’ is not removable by Theorem D, hence K is not removable too. If
RNfl

€2 (K NoR) > 0, then K is not removable as in (iv).
p7

(which implies p > N+ If C]SZ,(K N Q) > 0, there exists a compact set K/ C K N such

Conversely assume that p > p},, C§Z/(K nQY) =0, c%i),_l(K N o) = 0 and u satisfies (1.16).

For 0 < t < ¢, we define K; = {x € Q : dist (z, K N 862) <t}, Ky = K5 N BS, as in (iv) and

Kie={zxcQ:dist(z, KNQ) <t}n{x € Q: dist(z,00) > 2¢}. The functions v, and w,

are defined as in (iv). We also denote by @ the maximal solution of £,, + g,(u) = 0 in Q\ K;

which vanishes on 9Q. Then u < vge + O + we in )\ (K U IN(t’e UBe. When t — 0, v — 0

since CHSI\;)TI(K NBENON) = 0 and 9 — 0 since C]EJZ\;(K N{z € Q : dist (z,00) > 2¢}) = 0.
=

Hence u < w, and we conclude as in (iv) by letting e — 0. O

4 Isolated boundary singularities

The study of boundary isolated singularities is based upon a technical framework which has
been introduced by [17] in the case u = 0. For the sake of completeness we recall this formalism.
Up to a rotation we assume that the inward normal direction to 9Q at 0 is ey = (0',1) €
RN=1 x R and that the tangent hyperplane to 99 at 0 is 8RJ+V = RV-L For R > 0 set
Bl = {2’ € RN7!: |2/| < R} and D = Bj x (—R,R). Then there exist R > 0 and a C?
function 6 : B, — R such that 90 N Dr = {z = (2/,zn) : oy = (') for 2’ € Bj} and
QNDr ={x=(2,2n) : (') < zy < R}. Furthermore VA(0) = 0. Define the function
©=(01,...0y)on Drpby y; =0j(z) =2;if 1 <j < N—1and yy = On(z) = zny — 0(2').
Since DO(0) = Id we can assume that © is a diffeomorphism from Dg onto ©(Dg). Let z be
the harmonic extension of h in Br N €2 vanishing on 2 N 0Br and set

u(z) — z(z) = u(y), z(x) = Z(y) for all z € D} = Bj x [0, R).
Denote by (r,0) € (0,7) x S¥=1 the spherical coordinates in RY and set
_ _ Y ) i . P
u(y) = u(r,o) =r *(t,o), 2(y) = 2(r,o) =r *Z(t,0), t =Inr, a = —7
p —
Then v is bounded and satisfies the following asymptotically autonomous equation in (—oo, 9] X
st
(1+e1(t, v+ (N —2—=2a+ea(t,)ve + (ala+2— N) — p+es(t, ) v+ Alv

+ (V' eq(t,-)) + (V' e5(t, ) + (V' ((V'v,en)), e6(t, ) + uZ — |v+ Z|P~ v+ Z) =0,
(4.1)
where A’ is the Laplace-Beltrami operator on SV ~! and the €; satisfy the estimates

‘Ej(t, )‘ + latEj(t, )‘ + ’V’Ej(lf, )‘ < 017€t.

As for Z it verifies
|Z(t, )|+ [0 Z(t, )| + IV 2(t, )] < erre™.
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This is due to the fact that |#(z")| = O(|2|?) near 0. Furthermore, standard elliptic equations
theory implies that there holds, if k + ¢ < 3,

V'
W(t’ )

’ <ecig in (—oo,ro) x SYL. (4.2)

Proof of Theorem F. We denote by S, , the set of functions satisfying

{ ~ANw+ (N -2-a)+p)w+gw)=0 in S (43)

N-1
w=20 on OS, ",

where a = %1
(i) If w is a solution it satisfies

o:/N (VP + (a(N =2 — ) 4 p)? + wlP) dS
.

+

>/N (V=14 (a(N 2 a) + p)w? + [w]P*) dS.
sN-

If N—1+a(N —2—a)+ p >0, then necessarily w = 0. Next

N—-14+a(N-2—-a)+p>0<— —ay <a<-—a_
<~

(i) either le—O%:p;;,
(ii) or 1<p§1—l:p;';* provided N >3 and pu; <pu<1—N.

at
(ii) By minimization S, is not empty if the conditions (i) or (ii) of Theorem F are fulfilled,
in which case S, ;, has a unique positive element (see [17] for a similar situation). This unique
positive element is denoted w,,.
(iii) The last statement follows an idea introduced in [28]. The hupper hemisphere admits the
following representation

s

Sf_l = {x = ((sin@)o’,cos¢) : o' € SN2 p € <0, 5)} .

The surface measure d.S on SV~ can be decomposed as
dS(c) = (sin )V =2dS" (o")do
where dS’ is the surface measure on SV =2. If h(c) = h(o’, ¢) is defined on SV, we put

7(9) = ,SNl‘ ho', $)dS' ("),

SN*Z
Let w be an element of S, ,, then, by averaging (4.3),

—

Lo (-8 =@+ = 2 @) 1) 0 = @)+ (90(0) — 367 ) ) (0 = @)dS =0,
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By monotonicity

+

> ol-p /S lw—a|ptias,

+

28

éw1@MW‘%@WNW—MMS=45g%wwﬂmw»@—wms

The function w—w’ is orthogonal to the first eigenspace of —A’ in HS ’Q(Sf ~1). Since the second

eigenvalue of —A’ in Hé’2(8f71) in 2N, we have

+

Hence

+

— / — —/\2
_/SN_l(w—w)A (w—w)dSZQN/Sﬁ_I(w—w) ds.

Hence, if a(N —2 —a) + g+ 2N > 0 it follows that w — @’ = 0. The polynomial

Py(X):=X% 4+ (2—N)X —pu—2N

admits two real roots provided p > —(¥+2)2

:= po, which are expressed by

<a- = p,

<a- = p,

/SN_1 ((a(N— 2—a)+pu+2N) (w —w’)2 +21*P|w _wl|p+1) dS < 0.

<P

<p;, <D,

N N
=Nl VETE a=y 1 Vim
and
2 2
P () <0< ar <——<a_.
p—1 p—1

Note that ara_ > 0 if and only if —2N > u. Furthermore Py(—a_) < 0 and Pa(—ay) < 0.
Then
(1)) ifu>1-N then a4 < —a4 <0< —a_
(i) if N>3& —2N<pu<1—N then a; <0< —a; < —a_
(i) f N >9 & g <p<—2N then 0 <ay < —ay < —a_

where, we recall it,

*

Therefore w — @’ = 0 if the following conditions are satisfied

(/) when p>1—N and Py <p<pp

(4) when N >3, —2N < pu <1— N and eitherp;, <p < pj, or p;* <p,

. 2 2
pM: - T puzl_'_ai: pp,:l—i_a? pM: -

<a- = p,

<p, <P <Py

(44i) when N >9 and py < p < —2N and eitherp;, < p < pj, or p;* <p < p,".
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If one of the above conditions is fulfilled, w depends only on the variable ¢ € [0, §]. It satisfies

_sian_Qqﬁ (we sin™¥ 2 ¢5)¢ +(@N—-2—a)+p)w+gy(w)=0 in (0,7)
wp(0) =0, w(F) = 0.

Define the operator
1 . N_
Bl) =~ v, (sin™"% guy) ,

S

among functions 1 in the space Hz C C?([0, Z]) satisfying ¥4(0) = 0 and (%) = 0. The first
eigenvalue of B in Hp is N — 1 and the second in 2N. Since g, is nonnecreasing, it is known
(see e.g. [4]) that the constant sign solutions w, and —wj, lie on a branch of bifurcation issued
from N — 1 and there exists no other bifurcation when the parameter a(N — 2 — a) + p belongs
to (N —1,2N]. This implies S, ; = {wp, —wp, 0} and ends the proof. O

For proving Theorems G, H, I, J we recall here the following technical results [17, Theorem
5.1] related to the solutions of (1.17) satisfying

lim |z|7 Tu(z) = 0. (4.4)

z—0

The statement is easily adapted from the one of the above mentioned theorem. We denote by
Ao = {k(k+ N —2: k € N*} the set of eigenvalues of —A’ in Hl’O(SJX_I). Any separable
L,-harmonic function in RY vanishing on 9RY \ {0} endows the form

x = u(x) =u(r,o) =r**¢i(o) (r,o) € Ry x Sijil,
where ¢ € ker(A’ + A1) and ap= ap_ or ag, the smallest and the largest root of
o4+ (N =2)a— N, —pu=0,

which exist for some k£ > 1 if and only if p > pg := u1 + N — 1 — Ax. Note that o < 0 for all
k € N* and g4 <0 if and only if g > —A; (which imposes N > 8k(k + /2k(k — 1))).

Theorem 4.1 Assume p > p1, 1 <p <pj, and h € C3(09Q). Ifuc C(Q\{0})NC%Q) is a
solution of (1.17) satisfying (4.4) and

(A) either u_(x) = O(|x|_%+§) near x =0, for some § > 0,

(B) or N =2 and § is locally a straight line near x = 0,

(B) or —1% is not equal to some ag_ for some k € N*.

Then

(i) either u is the weak solution of (1.18),
(ii) or there exist an integer k € N* such that —ap_ < p%l and a nonzero spherical harmonic
Y of degree k such that

lim r**=a(r, o) = Yi(o). (4.5)

x—0
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4.1 Proof of Theorems G, H, I and J

Because of (4.2) the negative trajectory of v in C} (Sﬁ ~1) which is defined by

()= |J {vt )},

t<rg—1
is relatively compact in the C? (Sf ~H-topology. The limit set &, of 7-(v) at —oco defined by

G (s
&= ] vt} ,
T<rog—1t<t

is non-empty. Since 1 < p < pj, and p > pq, there holds

N+2

— e 4,
P< N5 (4.6)

Thus the coefficient of v; in (4.1) is not zero (asymptotically, when ¢ — —o0). Then energy
damping holds and, in the same way as in [17] up to a shift of p in the coefficient of v in (4.1),

we obtain
ro—1
/ / vidodt < oco.
—00 §$71

Combining this estimate with (4.2) and some standard manipulations (see [17]) implies that
||’Ut(t, )Hc’l(Si\:j—l) + H’Utt(t, )HC(SJJ\rji_l) —0 ast— —oo.

Hence &, is a compact connected component of S,, .

Proof of Theorem G. If w is nonnegative, either £, = {w,} and (1.22) holds or

tl}l_noo llv(t, .)||02(S]+\,—_1) —0 ast— —oo.

If this holds, it follows by Theorem 4.1-A that either u = 0 or (4.5) is verified for some k > 1.
Since any spherical harmonics of degree at least two changes sign k£ must be equal to 1. Then

w(x) =Lou(x)(1+0(1)) asx—0,
which is (1.23). O

Corollary 4.2 Let py < p and 1 < p < pj,. Then for any h € C3()), h > 0 there exists only
one solution of (1.17) with a strong singularity at x = 0, that is satisfying (1.22).

Proof. It is a consequence of Theorem G that the limit of ugs, », of the solution of (1.24) when
¢ — oo is a solution which satisfies (1.22). The method of proof of uniqueness is due to Marcus
and Véron [20]. The minimal solution of (1.24) with a strong singularity at x = 0 is defined by

too, 1= i .
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For constructing the maximal solution we define the sequence %, j, of solutions of

L, 1 + gp(Tnp) =0 in QNBL
Upp = h in 90N BS

2
Uy, p, = cnP—1 in Q\ 0B,
where ¢ > 0 is some constant large enough. Then ws, ;, < Up . By convexity there holds

Unh — Usg,h < Un,0 — Ugso,0-

By monotonicity {u, 5} decreases and converges to the maximum solution U j, of (1.22) and
there holds

ﬂoo,h - QOO,]’L S HOO,O - Ho(xﬂ'

Furthermore, by (1.22), there exists K = K(p, i, ) > 1 such that
Uoo,0 < Kﬂoqo-

If we assume that U0 > u, then, again by convexity, the function

00,07
U=1 ! 7
- uoo70 - E (QOO,O - uoo70)

is a supersolution for problem (1.17) smaller than u, . The function

is a supersolution of the same problem (1.17) smaller than U. By a standard result there exists
V' solution of the problem such that U* < V < U. In particular V has a strong blow-up at
x = 0 and it is smaller than the minimal solution u,, contradiction. O

Proof of Theorem H. Since &, is a connected subset of the discrete set S, ;,, which has three
connected components ({wp},{—wp}, {0}) by Theorem F-(1) either (1.25) or (4.4) holds. Since

p > D, —p%l which necessarily larger aq_ satisfies either [% < ag_ or, if p%l > a4 in the
case N > 9 and p < —2N and p%l is not equal to any aj_ or a4 for k£ > 2 by the equation.
Hence, by Theorem 4.1, (1.23) holds. O

Remark. If p = pj, or p = p;;* the method shows that either (1.25) or (4.4) holds. Since it is the
spectral case always difficult to handle we cannot prove that (1.23) also holds, a fact that we
conjecture.

Proof of Theorem I. The two statements obey a totaly different approach.

Statement 1- is a consequence of the theory of analytic functionals developped by in [26], [27]

and applied to Emden-Fowler equations in [5]. The key point is to consider the equation (4.1)
2

satisfied by v(t,.) = r 7 14(r,0) in (—00,79) x S¥ and to verify that, as a function of v, it is

real analytic. Hence p must be an odd integer. If 1 < p < pj, the only possibility is p = 3 which
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is in the range if N +4/u —p1. If p <1 — N and p > p,,;” there are infinitely many possibilities
for p.

Statement 2- The convergence to one element of S, , follows from the fact that this set of
solutions of (1.27) is discrete. If 9 is locally a close graph near 0 the paper [12] which use
Sturmian arguments and the Jordan closed curve theorem. If w = 0, as quoted in [17, Theorem
5.1-C2] we perform a reflexion through 0 near 0 and apply the result of [12, Lemma 2.1], the
shift of the coefficient by u playing no role. O

Proof of Theorem J. Since p > 1, any solution u of (1.17) satisfies the estimate of Lemma 3.5
under the following form

lu(z)| < Aje| 71 forall z € 2\ {0}.

If p > pj,, then —p%l > a_, therefore u(z) = o(¢,(x)) near x = 0. Let uy be the solution of
Lu+ =0 in Q
pt+ gp(u) n (4.7)

u=hy on Of).

For any € > 0, uy + €¢, is a supersolution of £,u + g,(u) = 0, larger than u near x = 0. Then
that v < uy + €¢, and, letting € — 0 then u < wy. Similarly u is larger than —u_ — e¢,,, where
u_ is the solution of (4.7) with h4 replaced by h_. Letting € — 0 yields —u_ < u < ug. It
follows by the method of Theorem B that u is the weak solution of (1.18).

If p = p;, and p = py, then similarly u(x) = o(¢,(z)) near x = 0 and the result follows by the

same method.
2

Finally, if p = pj, and 1 > p1, then (4.6) holds. Using the variable t = Inr and v(t,.) = r*=14(r, .)
we obtain from the previous energy method that

&y C Sup = {0}

Hence u satisfies (4.4). Since p = pj,, p%l = —a_. Hence u = o(¢,) near 0 and the conclusion
follows as in the previous cases. O
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