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Voice and speech production greatly relies on the ability of the vocal tract to articulate a wide variety
of sounds. This ability is related to the accurate control of the geometry (and its variations in space and
time) in order to generate vowels (including diphthongs) and consonants. Some well-known vibro-
acoustic models of the vocal tract rely on a discretized geometry, such as concatenated cylinders, the
radius of which varies in time to account for the articulation (see e.g. Maeda, Speech Comm. 1:199-
229, 1982). We here propose a lumped parameter model of waves in the vocal tract considering
the motion of the boundaries. A particular attention is paid to passivity and the well-posedness of the
power balance in the context of time-varying geometrical parameters. To this end, the proposed model
is recast in the theoretical framework of port-Hamiltonian systems that ensure the power balance. The
modularity of this framework is also well-suited to interconnect this model to that of deformable
walls (in a power-balanced way). We show the capacities of the model in two time-domain numerical
experiments: first for a static configuration (time-invariant geometry), then a dynamic one (time-
varying geometries) of a two-cylinder vocal tract.
Keywords: VOCAL TRACT, VOICE MODELING, PORT-HAMILTONIAN SYSTEMS

1. Introduction

The vocal tract has been described by four main different approaches: Reflection Type Line Analog
models (RTLA); Transmission Line Circuit Analog models (TLCA); Hybrid time frequency models and
finite element methods models. Here we are interested in the TLCA approach introduced by Flanagan
[1].

Maeda [2] takes this model further introducing a matrix representation that facilitates the simulation.
In this model it is assumed that the static pressure and the acoustical volume flow are homogeneous inside
every subtract. This approach has been steadily extended: Birkholz et al. [3] added a noise source model
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for the synthesis of fricatives; Mokthari et al. [4] and Élie and Laprie [5] improved the matrix formulation
in order to connect multiple side branches and bilateral channels.

However all these models implicitly assume that the acoustic waves propagate in a static vocal tract
despite the fact that geometry of the vocal tract evolves in order to articulate, e.g., dynamically go from
some formantic configuration to another or to produce consonants. Our goal here is to elaborate a simple
lumped parameter model that correctly accounts for the power balance with the walls of the waveguide.
The port-Hamiltonian systems (pHs) theory provides a valuable framework for this purpose. We hereafter
recall its principal features, please report to [6] for an extensive introduction to this theory.

2. Port Hamiltonian Systems (pHs)

The pHs framework gives the central role to the power balance in interconnected systems. The rate
of the energy Ė stored by some system equals to the dissipated power Pdiss minus the power exchanged
with the outside Pext (positive for power flowing out of the considered system): dE

dt = −Pdiss − Pext The
state of an energy-storing system is described by a set of internal variables X and by the Hamiltonian
H(X), so that Ė = Ẋ · ∇XH. Similarly, the exchanged power is, without loss of generality, written
as the product of the input effort u and its power-dual quantity y, i.e., Pext = u · y. Ignoring here the
dissipation for the sake of conciseness (but with no additional difficulty), the pHs framework considers
that the vector of efforts [∇XH;u] and the vector of flows [Ẋ; y] are related by the interconnection matrix
S: (

Ẋ
y

)
= S ·

(
∇XH
u

)
The power balance is then automatically satisfied provided S is a skew symmetric matrix (Sᵀ = −S). A
numerical scheme developed in Ref. [7] (implemented in the PyPHS Python library [8]) preserves this
property in the discrete time-domain.

3. Power balanced model of the vocal tract

We consider the classical representation of the vocal tract as a piecewise cylindrical acoustic tube,
i.e., approximating the vocal tract as the concatenation of N sub-tracts each of them having a constant
cross section. We first describe the model for a single cylinder as a pHs, before performing the assembly
of the full vocal tract, i.e., the interconnection of the N elements.

3.1 Single sub-tract

We list our hypothesis about the fluid’s behaviour and tract’s geometry. Then we are interested in
finding the energy stored by the system, the relevant state variables and the associated dynamics. At last
we combine these elements to write the full pHs. We treat separately the kinematic and compression
behaviour.

Hypothesis: We consider an irrotational and compressible flow of an inviscid fluid in Ω, a rectangu-
lar block shaped domain with coordinates x ∈ (−`0, `0), y ∈ (0, h(t)) and z ∈ (0, L0) (see Fig. 1).
We assume that the fluid fulfills the perfect gas assumption and undergoes an isotropic and adiabatic
transformation (reversible process, no heat sources). Finally the volumetric mass is assumed to be homo-
geneously distributed in each sub-tract.

The local dynamics of such a fluid is given by the conservation of mass, momentum and energy:
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Figure 1: Geometry of one subtract

∂ρ

∂t
+ div(ρv) = 0,

∂ρv

∂t
+ div(ρv⊗v)+ grad(p) = 0 and ρ

∂

∂t

(
em +

1

2
v · v

)
= − div(pv) (1)

where ρ is the volumetric mass density, v the (Eulerian) velocity, p the pressure and em the specific
internal energy.

The boundary of Ω is denoted by ∂Ω = SL ∪ SR ∪ Sw ∪ Sb where: SL and SR are the left and right
open surfaces respectively located at x = −`0 and x = `0; Sw is an impermeable wall moving with
normal velocity v = vw ey located at y = h(t); Sb is a motionless wall at y = 0. The total volume is
given by V (t) = 2`0L0h(t) = Swh(t) and its dynamics by V̇ (t) = Swḣ(t) = Swvw. The mass of fluid
contained in Ω is denoted by m = ρV .

The energy balance obtained by integration of Eq. (1) over Ω(t) displays the power exchanged through
the open boundaries SL and SR expressed as the product of the mass flow rate (qSL and qSR) and their
power-dual quantities (uL and uR, sometimes called specific enthalpy) :

Pext,SL = yLuL where yL = −qSL =

∫∫
SL

ρv · ex dS and uL =

〈
em +

1

2
v · v +

p

ρ

〉
SL

(2)

Pext,SR = yRuR where yR = +qSR =

∫∫
SR

ρv · ex dS and uR =

〈
em +

1

2
v · v +

p

ρ

〉
SR

. (3)

In order to ease the future interconnection of sub-tracts, we choose to use the upstream incoming qL and
the downstream outgoing qR mass flow rates. The power exchanged with the moving wall is the product
of the wall velocity vw and the net force Fw of the wall on the fluid.

Kinematics: we consider the following velocity field

v =

(
vx(x, t)
vy(y, t)

)
=

(
vmx(t)− α(t)x/`0

vw(t)y/h(t)

)
(4)

generalizing the kinematics proposed in Ref. [9]. It accounts for a uniform axial velocity (vmx(t)), an
axial gradient (α(t)) and the linear gradient of the transverse velocity between the base and the moving
wall (vw(t)). The time evolution of the mass density ρ(t) is then given by ρ̇ = ρ (α/`0 − vw/h).

The inertial (kinetic) energy is:

Ei(t) =
1

2

∫∫∫
Ω

ρv ·v dΩ =
1

2
m

(
v2
mx +

α2

3
+
v2
w

3

)
=

Π2
x

2m
+

3Π2
y

2m
+

3Π2
c

2m
= Hi(Πx,Πy,Πc, V, ρ) (5)

where we introduced the three corresponding momenta Πx = mvmx, Πy = mvw/3 and Πc = mα/3.
Their dynamics are obtained using the principle of virtual power with the virtual velocities ṽ = ex,
ṽ = x ex and ṽ = y ey, respectively. Without calculation details for the sake of brevity, their time
evolution are given by:
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Π̇x =
m

2`0

(2αvmx + uL − uR) , Π̇y = Fw +Sw〈 p 〉Ω +
m

3`0

vwα, Π̇c =
2m

3`0

α2 +FL−FR−Sw〈 p 〉Ω.
(6)

Compressibility: we now express the internal energy stored by the fluid under compression. Under
the hypothesis of isotropic and adiabatic transformation of the fluid from an initial state (atmospheric
pressure P0, mass density ρ0 and temperature T0), the specific internal energy em is given by Joule’s
law, function of the sole mass density ρ: em(ρ) = cvT0 (ργ−1/ργ0) where cv is the specific heat capacity at
constant volume and γ the heat capacity ratio, so that the internal energy stored on Ω is

Ec(t) =

∫∫∫
Ω

ρem dΩ = mem = V cvρ0T0

(
ρ

ρ0

)γ
=

P0V

γ − 1

(
ρ

ρ0

)γ
= Hc(V, ρ) (7)

according to the ideal gas law. Here, we consider a weak form of the definition of the thermodynamic
pressure: 〈 p 〉Ω = ∂ρem(ρ) = (ρ∂ρHc −Hc) /V .

First port Hamiltonian representation of the sub-tract The state of the fluid is finally described by
the state vector X =

(
Πx,Πc,Πy, V, ρ

)T , the Hamiltonian is the sum of the inertial and the internal
energies: H1(X) = Hi(X) +Hc(V, ρ) (8)

with Hi(X) =
Π2
x

2ρV
+

3Π2
y

2ρV
+

3Π2
c

2ρV
and Hc(V, ρ) =

P0V

γ − 1

(
ρ

ρ0

)γ
(9)

with gradient∇XH =

(
Πx

ρV
,

3Πc

ρV
,

3Πy

ρV
,
−Hi +Hc

V
,
−Hi +Hc

ρ
+ ρV ∂ρem

)ᵀ

(10)

The first component of the gradient regenerates vmx, the second regenerates α and the third vw. We
have access to the pressure by combining the last two components: < p >Ω= ρ/V ∂ρH1 − ∂V H1. After
identification of the inputs and of the components of the gradient in the previous equations, we can write
the full port Hamiltonian system:

Π̇x

Π̇c

Π̇y

V̇
ρ̇

yL
yR
−vw


=



0 Πx/`0 0 0 0 m/2`0 −m/2`0

−Πx/`0 0 −Πy/`0 0 −ρ/`0 m/2`0 m/2`0

0 Πy/`0 −Sw ρSw/V 1
0 0 Sw
0 ρ/`0 −ρSw/V

−m/2`0 −m/2`0

m/2`0 −m/2`0

−1





∂ΠxH
∂ΠcH
∂ΠyH
∂V H
∂ρH
uL
uR
Fw


(11)

3.2 Connection of two adjacent sub-tracts

Recast into a symmetric pHs representation The previous model considers specific enthalpies and
mass flow rates as inputs and outputs, respectively, for the two open boundaries of the sub-tract SL and
SR. The adjacent sub-tracts expect exactly the same inputs and outputs which causes a realisability issue.
The general handling of such situation is described in Ref. [10], but it can be tackled more easily if the
outputs (yL and yR) are directly contained in the gradient of the Hamiltonian. This means that we may
introduce equivalent internal variables XL and XR such that yL = ∂XLH and yR = ∂XRH. For the
assumed kinematics, these variables are XL = `0 (vmx + α/3) and XR = `0 (vmx − α/3) .

This particular expressions should be interpreted in the sense of the quadrature rule accounting for
the given degrees of freedom and the respective basis functions. The new vector of internal variables is
X2 = [XL XR Πy V ρ]ᵀ, while the Hamiltonian, its gradient and the interconnection matrix become:
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H2(X2) =
ρV

2`2
0

(
X2
L +X2

R −XLXR

)
+

3Π2
y

2ρV
+ V

P0

γ − 1

(
ρ

ρ0

)γ
(12)

∇X2H2 =
(
qL, qR, vw,

ρ
2

(
v2
mx + α2

3
− v2w

3

)
+ P0

γ−1

(
ρ
ρ0

)γ
, V

2

(
v2
mx + α2

3
− v2w

3

)
+ γP0V

ρ(γ−1)

(
ρ
ρ0

)γ)ᵀ
(13)

ẊL

ẊR

Π̇y

V̇
ρ̇

yL
yR
−vw


=



−Πy/m 0 −1/V 1 0
Πy/m 0 1/V 0 −1

Πy/m −Πy/m −Sw ρSw/V 1
0 0 Sw

1/V −1/V −ρSw/V
−1 0
0 1

−1





∂XLH2

∂XRH2

∂ΠyH2

∂V H2

∂ρH2

uL
uR
Fw


(14)

Connection of two adjacent sub-tracts Let us denote A and B two adjacent sub-tracts (with Hamil-
tonians HA(XA) and HB(XB) respectively) with the right surface SRA of A connected to the left surface
SLB of B. At that interface (denoted SAB hereafter), the mass flowrate is assumed to be conserved:
qRA = qLB. In the classical acoustic waveguide theory, due to the continuity of the mass density, the
continuity of the volume flowrate is generally considered.

The fact that the efforts qRA = ∂XRAHA and qLB = ∂XB
L

HB are equal implies that the corresponding
variables XRA and XLB can be merged into a new junction variable XAB = XRA + XLB using the
procedure detailed in Ref [10]. The state vector, the Hamiltonian and its gradient become

XAB =
(
XLA, XAB, XRB,ΠyA,ΠyB, VA, VB, ρA, ρB

)ᵀ
;

HAB =HcA(ρA, VA) +HcB(ρB, VB) +
3Πy

2
A

2mA

+
3Πy

2
B

2mB

+
3mA

8`2
0A

X2
LA +

3mB

8`2
0B

X2
RB +

1

2

(XAB − (XLA +XRB)/2)2

`20A/mA + `20B/mB

∇XAB
HAB =

(
qLA, qRA = qLB, qRB, vwA, vwB, ∂VAH2A , ∂VBH2B , ∂ρAH2A , ∂ρBH2B

)ᵀ
(15)



ẊLA

ẊAB

ẊRB

Π̇yA

Π̇yB

V̇A

V̇B

ρ̇A

ρ̇B

−qLA
qRB

−vwA
−vwB



=



−ΠyA
mA

0 −1
VA

0 1 0

ΠyA
mA

−ΠyB
mB

1
VA

− 1
VB

0 0

0
ΠyB
mB

0 1
VB

0 −1

ΠyA
mA

−ΠyA
mA

0 −SwA 0 ρASwA
VA

0 1 0

0
ΠyB
mB

−ΠyB
mB

0 −SwB 0 ρBSwB
VB

0 1

SwA 0

0 SwB

1
VA

− 1
VA

0 −ρASwA
VA

0

0 1
VB

− 1
VB

0 −ρBSwB
VB

−1 0 0

0 0 1

−1 0

0 −1





∂XLAHAB

∂XABHAB

∂XRBHAB

∂ΠyA
HAB

∂ΠyB
HAB

∂VAHAB

∂VBHAB

∂ρAHAB

∂ρBHAB

uL

uR

FwA

FwB


This can be generalized to the assembly of several sub-tracts. However the introduction of the junction
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variables and the calculation of the total Hamiltonian is not detailed here for the sake of brevity.

3.3 Full vocal tract

The full vocal tract is finally obtained by adding a lumped parameter model of elastic wall (see Fig. 2).
This also enables the control of the boundaries by means of the velocities of the tissues (vmi) instead of
the net forces of the wall (Fwi in the inputs of the model described in Sec. 3.2). The resulting model
is then implemented using the facilities offered by the PyPHS library [8] to connect pHs models and
simulate using a power-balanced numerical scheme.

qR1
= qL2

qR2
= qL3

qR3
= qL4

qR4
= qL5

X12 X23 X34 X45

T1 T2 T3 T4 T5

{V1, ρ1,Πy1} {V2, ρ2,Πy2} {V3, ρ3,Πy3} {V4, ρ4,Πy4} {V5, ρ5,Πy5}

k1

k2

k3

k4

k5
F1v1

F2v2

F3v3

F4v4

F5v5

uL

−qL

uR

qR

Figure 2: Full system: ports are denoted with red font and arrows

4. Conclusion

This paper introduces a new model of the vocal tract accounting for the controlled motion of the sur-
rounding tissues. It classically considers the concatenation of several cylindrical sub-tracts, but carefully
models the energy transfers both between sub-tracts and with the deformable tissues. In fact, the usual
acoustical approximation deriving from the linearization of the fluid motion equations fails to correctly
account for non-infinitesimal motion of walls and for long-term power transfers. In this short-length pa-
per, the model is derived in terms of the thermodynamical and fluid dynamics framework, and a further
work will consist in the reformulation in order to introduce variables that are closer to the classical acous-
tical ones, i.e., deviations from the rest state with or without the linearization that is usually performed in
the linear acoustics theory.

This model is also a first step towards more realistic models of the vocal tract that could incorporate
more physical phenomena such as visco-thermal effects and turbulence. We will aim at simplifying its
use in simulation by adapting existing articulatory models.
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