
HAL Id: hal-02301698
https://hal.science/hal-02301698v1

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pooled Steganalysis in JPEG: how to deal with the
spreading strategy?

Ahmad Zakaria, Marc Chaumont, Gérard Subsol

To cite this version:
Ahmad Zakaria, Marc Chaumont, Gérard Subsol. Pooled Steganalysis in JPEG: how to deal with the
spreading strategy?. WIFS 2019 - 11th IEEE International Workshop on Information Forensics and
Security, Dec 2019, Delft, Netherlands. �10.1109/WIFS47025.2019.9035096�. �hal-02301698�

https://hal.science/hal-02301698v1
https://hal.archives-ouvertes.fr

IEEE International Workshop on Information Forensics and Security, December 9-12, 2019, Delft, The Netherlands

Pooled Steganalysis in JPEG:
how to deal with the spreading strategy?

Ahmad ZAKARIA
LIRMM, Univ Montpellier,

CNRS,
France.

Email: ahmad.zakaria@lirmm.fr

Marc CHAUMONT
LIRMM, Univ Montpellier,

CNRS, Univ Nı̂mes,
France.

Email: marc.chaumont@lirmm.fr

Gérard SUBSOL
LIRMM, Univ Montpellier,

CNRS,
France.

Email: gerard.subsol@lirmm.fr

Abstract—In image pooled steganalysis, a steganalyst, Eve,
aims to detect if a set of images sent by a steganographer, Alice,
to a receiver, Bob, contains a hidden message. We can reasonably
assess that the steganalyst does not know the strategy used to
spread the payload across images. To the best of our knowledge,
in this case, the most appropriate solution for pooled steganalysis
is to use a Single-Image Detector (SID) to estimate/quantify if
an image is cover or stego, and to average the scores obtained
on the set of images.

In such a scenario, where Eve does not know the spreading
strategies, we experimentally show that if Eve can discriminate
among few well-known spreading strategies, she can improve her
steganalysis performances compared to a simple averaging or
maximum pooled approach. Our discriminative approach allows
obtaining steganalysis efficiencies comparable to those obtained
by a clairvoyant, Eve, who knows the Alice spreading strategy.
Another interesting observation is that DeLS spreading strategy
behaves really better than all the other spreading strategies.

Those observations results in the experimentation with six
different spreading strategies made on Jpeg images with J-
UNIWARD, a state-of-the-art Single-Image-Detector, and a dis-
criminative architecture that is invariant to the individual payload
in each image, invariant to the size of the analyzed set of images,
and build on a binary detector (for the pooling) that is able to
deal with various spreading strategies.

I. INTRODUCTION

Steganography consists in altering a digital object (called
cover), in an innocuously looking way, to hide (or embed)
a message which allows secret message communication. The
resulting altered object is named stego. The science of detec-
tion of the presence of this hidden data, given an innocuous
object, is called steganalysis. In this paper, we focus on the
steganalysis of digital images, which are the most studied
cover objects. More precisely, we use images coded in JPEG
format which is the most common one nowadays.

Steganography traditionally focused on embedding a mes-
sage in one image at a time, but it is much more realistic for
the steganographer to hide the message by spreading it over
multiple images. This spreading is called batch steganography
and is to be opposed to the pooled steganalysis where a set of
images are analyzed in order to gather a set of clues, and thus
to conclude to the presence/absence of a hidden message in the
set of images. Batch steganography and pooled steganalysis
topics were introduced in [1] and became one of the most
challenging open problems in the field these last years [2].

Alice

Embedding

Bob

Bag of cover
images

Bag of
cover/stego

images

Spreading
Strategy

S

Message
m

Fig. 1. A scheme that illustrates how the steganographer, Alice, spreads a
message m in multiple covers using a strategy s ∈ S.

Cover

bag

Stego

bagPooling
function

g

Classification
x1

x2

xb-1

xb

SID

f(x
1
)

f(x
2
)

f(x
b-1
)

f(x
b
)

Bag of
cover/stego

images

.
.

.
.

.

.
.

.
.

.

Bag of scores

.
.

.
.

.

Fig. 2. A scheme that illustrates how the steganalyst, Eve, uses a pooling
function g to aggregate evidence from multiple images in order to make a
final decision about the presence/asbcence of a hidden message.

As presented in Figure 1, batch steganography consists in
embedding a message m ∈ {0, 1}|m|, of length |m|, in a bag
of cover images by using a spreading strategy, s ∈ S, from a
set of possible spreading strategies S.

As presented in Figure 2, modern pooled steganalysis con-
sists to take a bag B of b images {x1, ..., xb}, which may
be cover or stego, applies a Single Image Detector (SID),
denoted by the function f , which can be based either on a
binary or a quantitative algorithm, in order to get the set of
SID scores {f(x1), ..., f(xb)}. Then the steganalyst aggregate
these scores by using a pooling function g : Rb 7→ R in order
to get a single output which allows to classify the bag as cover
or stego.

The first attempts in order to experimentally evaluate batch
steganography / pooled steganalysis has started in 2011 and
2012 [3], [4], with the paradigm of multiple users (multiple
actors), and the research of outliers. Instead of making an
individual and independent binary decision on which actor is
guilty, the proposed algorithms rank the actors according to
their guiltiness. Nevertheless, those algorithms does not work
in a single actor case, which is a more general, and thus more

interesting working case.
Since 2015, three papers address the problem of only one

actor and a pooling defined by the aggregation of clues (SID
scores) computed on each image individually [5], [6], and [7].

In the article [5], Cogranne deals with the case where Eve
does not know the spreading strategy used by Alice. In that
case, Cogranne shows that the best pooling strategy consists of
averaging the individual scores. In the article [6], Pevny and
Nikolaev deal with the case where Eve does know the spread-
ing strategy used by Alice. In that case, Pevny and Nikolaev
observe that the knowledge of the strategy allows improving
the steganalysis results. In the article [7], Cogranne also shows
that if Eve does know the spreading strategy used by Alice, it
allows to better aggregate the individual SID scores, and thus
to obtain better steganalysis results. The tendency shared by
those papers is that the optimal pooling function g applied on
the SID scores depends on the steganographer’s strategy used
to spread the messages among multiple objects (this was also
expressed in the seminal paper [1] in the case of non-adaptive
embedding).

In our paper, we study the scenario where Eve
does not know the spreading strategy used by Alice, and we
propose to evaluate Eve’s capability to obtain better results
than those she would obtain by averaging the SID scores.
To reach that goal, first, Eve learns well-known spreading
strategies, and secondly, during the test time, we test Eve’s
ability to discriminate between a cover bag and a stego bag.
During the test, Eve applies a weighted sum during pooling
instead of an average. Our approach does not guess the
spreading strategy used by Alice even if, thanks to the learning
process, Eve is able to better discriminate between cover bag
and stego bag, by distinguishing better the various statistics
associated to each strategy. The reader must understand that
compared to the previous papers and especially to [6], the
question which is raised in our paper is first, about the ability
for Eve to use some knowledge about the spreading strategies
(without knowing exactly which one is used by Alice), and
second, to do it in a more realist scenario (no knowledge
about the individual payload sizes, no knowledge about the
spreading strategy, and eventually no knowledge of the bag
size).

In Section II we briefly describe a state-of-the-art list
of spreading strategies and a we present a general pooled
steganalysis architecture. In Section III we discuss more in
detail the question raised in our paper. Finally, we present in
Section V the results and discuss them. We conclude and give
some perspectives in Section VI.

II. BATCH SPREADING STRATEGIES AND A GENERAL
POOLED STEGANALYSIS ARCHITECTURE

A. Batch spreading strategies (S)

Note that the spreading in a bag is done at a given payload
size which is expressed in bit per total coefficients (bptc). The
bptc is thus the size of the message in bits divided per the total
number of pixels (i.e. the ACs and DCs coefficients) of all

the images in the bag. We have compiled the batch spreading
strategies proposed in [6], [7], [8] in the following list:

1) Greedy strategy: the steganographer embeds the mes-
sage into as few covers as possible. The steganographer
randomly chooses a cover and embeds part of his
message up to 1 bit per coefficients (bpc)1, because the
intrinsic security of the image is not taken into account
in the greedy strategy. Eve repeats the embedding pro-
cess with another randomly chosen cover until the whole
message bits are embedded.

2) Linear strategy: the steganographer distributes the mes-
sage evenly across all available covers, so the payload
size, in bits, for each image is equal to the message
length divided by b.

3) Uses-β strategy: the steganographer distributes the
message evenly across a fraction β of available cover
images. This strategy is equivalent to the greedy one for
β = α, and to the linear one for β = 1.

4) Image Merging Sender (IMS) strategy: the steganog-
rapher generates a unique image from all the b images
from a bag B, and lets the embedding algorithm spread
the payload all over this “big” image. More precisely
a cost value is computed for each DCT coefficient of
the image (the adaptive embedding algorithm define the
way the cost map is computed), and then the embedding
is obtained with STC [9] or the simulator [10].

5) Detectability Limited Sender (DeLS) strategy: the
steganographer adopts a cover model and spreads pay-
load over b images that communicates the required
payload, so that each image from the bag contributes
with the same value as the Kullback-Leibler (KL) di-
vergence (deflection coefficient) based on MiPOD [11]
cover model2.

6) Distortion Limited Sender (DiLS) strategy: The
steganographer spreads payload over images so that each
image from the bag contributes with the same value of
distortion.

B. General pooled steganalysis architecture

In this section we recall the general pooled steganalysis
architecture that were proposed in [6] for evaluating a given
pooled steganalysis facing a given spreading strategy. Figure 3
resumes the different steps applied by Eve when she analyzes
a bag of images.

In the operational phase (i.e. when the general architecture
is deployed), the pooled steganalysis algorithm takes as input
a bag made of b images {x1, ..., xb} which may be cover or
stego, and computes for each image the SID score, which is
a real positive number, through the f function (see Section I
and III). It thus gives a bag of real numbers {f(x1), ..., f(xb)}.
From this bag made of b values, a Parzen window (detailed
below) is computed and lead to a histogram, noted h, and
made of p bins. Finally, the pooling function aggregates the p

1The choice of 1 bpc for the maximum payload makes the construction of
the bag practically easier.

2The deflection coefficient is computed on dequantized rounded images.

x
1

x
2

x
b-1

x
b

SID

f(x
1
)

f(x
2
)

f(x
b-1
)

f(x
b
)

IM
A

G
E

S

Bag of

scores

P
A

R
Z

E
N

w
in

d
o
w

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

SVM

.
.
.
.
.

Cover

Stego

Fig. 3. The general pooled steganalysis architecture from [6]. φ is the re-
description transformation function. δ is a threshold.

values of the histogram. The resulting weighted sum is then
compared to a threshold, noted δ in order to decide if the bag
is cover or stego.

Let us comment the Parzen window which is the most
important ingredient of the architecture proposed in [6]. The
bag of SID scores, i.e. the vector z = {f(x1), ..., f(xb)},
is transferred into a histogram representation thanks to the
estimation by Parzen window. Given the Gaussian kernel
function k : R × R 7→ R with k(x, y) = exp(−γ||x − y||2)),
the Parzen window computation is such that for a bag z, the
resulting histogram is:

h =

[
1

b

∑
f(xi)∈z

k(f(xi), c1), ... ,
1

b

∑
f(xi)∈z

k(f(xi), cp)

]
(1)

with {ci}pi=1 a set of equally spaced real positive values
belonging to the range minx∈X f(x) and maxx∈X f(x), with
X the images learning set. Each bin of the histogram h, from
Equation 1, is the result of the cumulative Gaussian distance
between each component of z and a scalar from the set of
predefined centers {ci}pi=1.

Note that the histogram representation, h, is of finite di-
mension p, whatever the dimension b of the bag, and that this
representation is invariant to the sequential order in the bag.

Once the Parzen window is applied, the vector h of fixed
dimension p is given to an SVM which pools the vector
component in the re-description space for classification:

p∑
i=1

ωi φ(h[i]), (2)

with φ the function redefining the feature space. Note that φ is,
in practice, never computed because of the ”kernel trick”. We
can see when looking to Equation 2, that the pooling function
is a weighted sum where the weights ωi are learnt during
the SVM training. It is clearly more subtle to pool the set of
features {φ(h[i])}pi=1 of the bag than using the straightforward
average or maximum.

III. TECHNICAL DETAILS

A. Assumptions and limits of the general pooled steganalysis
architecture

In order to construct a general pooled steganalysis archi-
tecture, we should first choose a generic SID. It could be a
quantitative detector such as [12], [6], [13], [14], or a detector
outputting a score such as [15]. In this paper, we will use the
quantitative detector described in [12].

To be the more realist possible, this SID should be invariant
to image size (see some preliminary work in [16]) for a given
detectability and should be robust to cover-source-mismatch
(CSM) and to the stego-mismatch. The CSM problem is
described in [17]; a holistic solution is proposed in [18], and
an atomistic solution proposed in [19]. An example of work
related to the stego-mismatch can be found in [20]. In this
paper, we will assume that the size of the images is fixed
and that there is no cover-source mismatch, neither stego-
mismatch.

A general pooled steganalysis architecture must also be able
to process a bag of any number of images. This is the case of
the algorithms proposed in [5] or [6] even if in those papers,
experiments are performed by using bags of only one size. On
the contrary, this is not possible in the algorithm described in
[7] where the hypothesis is that the steganalyst knows the
number of images in the bag to analyze. In this paper, we
propose an architecture dealing with any number of images in
the bag, but in the experiments, we have trained our model on
bags of fixed sizes. We postpone the experiment with bags of
various size for future work.

Lastly, such architecture must be able to process a bag of
any payload size, which is not done in any of the papers [5],
[6], [7]. In our paper, we make the same assumption as [7]
where the steganalyst learns at a fixed mean payload for each
bag, and we postpone the experiments with any payload size
in the bag for future work.

B. Single Image Detector (SID)

We choose as Single Image Detector (SID), which is re-
ferred in this paper as the function f , the feature-based Quan-
titative steganalysis algorithm proposed in [12], applied on the
17,000-dimensional JPEG domain Rich Model — the Gabor
features residuals (GFR) [21]. The Quantitative steganalysis
algorithm is a machine learning regression framework that
assembles, via the process of gradient boosting, a large number
of simpler base learners built on random subspaces of the
original high-dimensional feature space.

C. Pooling functions

As explained in Section 3, the general pooled steganalysis
architecture provided in [6] produces a feature space which is
represented by a Parzen histogram, and proposes to pool the
values of this histogram thanks to a linear SVM classifier.
In the paper [6], only one pooling function (the SVM) is
learnt for one spreading strategy since the study was on the
comparison with the historical average and maximum pooling
functions, depending on the embedded payload size in a

bag. Additionally, the experiment done in [6] only uses old
spreading strategies (greedy and linear; see Section II-A).

In our study, we look at the behaviour of the architecture
when it has learned to recognize various spreading strategy.
Our approach is thus a pooling function which is able to
face multiple spreading strategies. The experiment objective
is to show that even if Eve does not have any information on
the spreading strategy used by Alice, she can obtain better
steganalysis results than when using a simple average or
maximum, and she can be close to the results that she would
obtain if she was clairvoyant i.e. if she knows the spreading
strategy. The difference compared with the paper [6] is in
the addressed question, and our paper is thus in the natural
continuity of the three state-of-the-art papers [6], [7], [8]. The
experiments are in agreement with various spreading strategies
(the modern and recent ones) and with state-of-the-art two-
step machine learning in order to build the Rich Model and
the SID.

In order to study the efficiency of our discriminative pooling
function in order to discriminate s among a set of strategies
S, we defined various pooling functions:

1) gdisc: This function is our discriminative pooling func-
tion and we train it on the Parzen histograms of all the
strategies from S. During the test, only one spreading
strategy s will be tested at a time. gdisc is obtained
through the learning of the various patterns from all
the strategies, and the minimization of the classification
error between a cover bag and a stego bag (whatever the
spreading strategy) during the SVM learning. Thanks
to the Parzen representation, the SVM re-description
space, and the weighted sum, the general architecture
learns with different spreading strategies, and it should
be able to classify better than applying an average or a
maximum.

2) gclair: This function is the clairvoyant one. The training
and the test are done with the knowledge of the used
spreading strategy. The pooling function is obtained
thanks to the use of an SVM, similarly as the gdisc
function.

3) gmax: This function is only a maximum applied on a
Parzen histogram. The threshold τmax is obtained by
minimizing, on all the strategies, the total classification
error probability under equal priors Pe = 1

2 (Pfa+Pmd),
where Pfa and Pmd are the false-alarm and missed-
detection probabilities.

4) gmean: This function is only an average applied on a
Parzen histogram. The threshold τmean is obtained by
minimizing, on all the strategies, the total classification
error probability under equal priors Pe = 1

2 (Pfa+Pmd),
where Pfa and Pmd are the false-alarm and missed-
detection probabilities.

IV. EXPERIMENTAL EVALUATION

In this section, we compare gdisc to gmean, gmax and gclair.

10000 cover
images,

BOSSbase

SID Training

5000 cover images

Trained model

5000 cover
images

2500 cover
images

2500 cover
images

Training

generate 5000 pairs
of cover/stego bags

of scores

Bag preparation for
a strategy

Parzen histogram preparation
for a strategy

Calculate min and max

Calculate Parzen histograms

Train on Parzen histograms

Training bags :

generate 5000 pairs
of cover/stego bags

of scores

Bag preparation for
a strategy

Parzen histogram preparation
for a strategy

 min and max

Calculate Parzen histograms

Test on Parzen histograms

Testing bags :

Embed 5000 stegos

Fig. 4. Protocol for the data-sets creation, the learning and the test.

A. Data preparation

Our image database is built from the BOSSbase 1.01 [22].
We convert those 10 000 512 × 512 grey-scale spatial images
into JPEG images, using the MATLAB’s command imwrite,
with quality factors 75.

The 10 000 cover JPEG images are split in two equal sizes
sets as shown in Figure 4. The first set (5 000 cover images) is
used for the learning of the quantitative SID. The second set
(5 000 cover images) is used to create bags, learn the pooling
functions, and test the various pooling.

Note that each time an embedding in an image is done, it
is done with the J-UNIWARD scheme.

Also note that each time a SID is used (in the first or second
test, during the learning and also during the test, on a cover
or on a stego whatever the payload size), for a given input
image, a feature vector Gabor Features Residuals (GFR) [21]
of dimension 17 000 is first extracted. This feature vector is
then cleaned from NaN values (it occurs when the feature
values are constant over images) and from constant values,
to obtain a 16 750-dimensional feature vectors. Finally, we
normalize this vector using the algorithm proposed in [23].

B. SID learning

In order to train the quantitative Single Image Detector, we
generate stegos such that there are 5 000 feature vectors for
cover images and 5 000 feature vectors for each payload size
whose range is fixed to {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1} bpc3 which gives a total of 55 000 features vectors.
Indeed, while training the quantitative SID, to avoid any bias
in the results, we use 5 000 covers and 50 000 stegos such
that the cover and each one of the ten different payload sizes
are equally distributed. This way the resulted SID model will
guarantee a fair scoring between each payload (payload 0 for
covers).

C. Bags preparation

The remaining 5 000 cover images are used for batch
steganography i.e. bags preparation. More precisely 2 500
cover images are used for the learning, and the remaining
2 500 cover images will be used for the test.

3We adapted the J-UNIWARD algorithm to insert an amount of data
measured in bpc instead of bpnzAC.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 4 6 1 0 2 0 5 0 1 0 0 2 0 0

DeLS

DiLS

IMS

Linear

Greedy

Uses Beta0.5

gclair (Clairvoyant)

Fig. 5. Spreading strategies comparison in the clairvoyant case. Average
probability of error under equal prior, Pe, as a function of pooling bag size
b ∈ B for an average payload 0.1 bptc for gclair pooling function.

Given a bag size b ∈ B = {2, 4, 6, 10, 20, 50, 100,
200}, and the set of spreading strategies IMS, DeLS, DiLS,
Greedy, Linear and Uses-β (β is fixed to 0.5), we generate a
total of 30 000 stego bags plus 5 000 cover bags, with inside
each bag a bit-rate of R̄ = 0.1 bptc. Whatever the pooling
function, a set of 5 000 pairs of cover/stego bags (5 000 cover
bags and 5 000 stego bags) is used. For each bag, the Rich
Model, and the SID score is computed leading to a vector of
SID scores. All the process is illustrated in Figure 4.

D. gdisc learning

Given the 35 000 bags obtained for a bag size b ∈
B and all the spreading strategies (IMS, DeLS, DiLS,
Greedy, Linear and Uses-β), the minimum and the max-
imum of the SID scores are computed, which allows to
define p = 100 centers, equally spaced in the range
[minx∈X f(x),maxx∈X f(x)], as in [6]. A Parzen histogram
h can then be computed for each of the 35 000 bags. The
pooling function gdisc, uses for the learning, 5 000 cover bags
(i.e 5 000 Parzen vectors h) and their corresponding 5 000
stego bags (i.e 5 000 Parzen vectors h) equally distributed on
the six spreading strategies. Note that gclair uses 5 000 cover
bags and their corresponding 5 000 stego bags for one strategy.

The classifier, used for learning gdisc, is a SVM with
a linear kernel. We use the SVM package from the free
software machine learning library for the Python programming
language Scikit-Learn [24]. The parameters are set to default,
but the value of the kernel is set to ’linear’.

V. RESULTS

As shown in Figure 4, tests are done by using 2 500 cover
image never seen, which allow to form a set of 5 000 pairs
cover/stego bags for a fixed size b for an spreading strategy
(IMS, DeLS, DiLS, Greedy, Linear and Uses-β). In order
to generate a stego bag, a set of b covers is randomly picked
among the 2500 images, and the spreading strategy is then
executed. The average probability of error, obtained by each
pooling function, over 10 runs done each time with a different
learning set (and testing set) of 5000 pairs of cover/stego bags,
is then reported.

Figure 5 reports the results obtained with the clairvoyant
steganalysis scenario i.e. with gclair. One can notice that the
DeLS is the best and it outperforms the IMS, which was more

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 4 6 1 0 2 0 5 0 1 0 0 2 0 0

DeLS

DiLS

IMS

Linear

Greedy

Uses Beta0.5

gdisc (Discriminative)

Fig. 6. Spreading strategies comparison in the discriminative case. Average
probability of error under equal prior, Pe, as a function of pooling bag size
b ∈ B for an average payload 0.1 bptc for gdisc pooling function learnt over
all the strategies.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

2 4 6 1 0 2 0 5 0 1 0 0 2 0 0

g clair

g disc

g mean

g max

 Pooling functions

Fig. 7. Pooling steganalaysis comparison. Average probability of error under
equal prior, Pe, as a function of pooling bag size b ∈ B for an average
payload 0.1 bptc. The average Pe is computed by testing each spreading
strategy.

competitive to DeLS in [7], while the Greedy strategy is the
worst. One can cluster the strategies into 3 groups: the Greedy
and Uses-β which are highly detectable with a detectability
which starts to coincide for bag sizes ≥ 10 with Pe ≈ 0, the
strategies DeLS, IMS and DiLS which are the more secure
ones, and the Linear strategy which falls between the two
other groups. The strategies DeLS and IMS becomes totally
detectable at b = 100 with Pe ≈ 0.

In Figure 6, we report the detection of each spreading
strategy with the discriminative gdisc pooling function. The
best strategies are in the descending order, in the sense of its
ability to resist the pooling function that tries to discriminate
it, DeLS, IMS, DiLS, Linear, Uses-β, Greedy. DeLS
is again performing well in this non-clairvoyant approach,
and it remains resistant until b = 100 where its average
probability of error Pe start to coincide with those of the
other strategies and becomes ≈ 0. DeLS and IMS are more
detected by the discriminative gdisc than the clairvoyant gclair.
Looking at the histograms of the SVM scores, and to the
ROC curves (not shown in this paper), we observe indeed
a higher separation with gdisc. Looking to Figure 6, we also
observe a smaller gap between all the Pe of each strategy,
compared to Figure 5. Those behaviour are probably because
the optimization (learning of the SVM) try to minimize the
prediction error fairly for each of the strategies.

Finally, Figure 7 provides a useful insight regarding the ac-
curacy of the pooling methods. This figure shows the average
probability of error under equal prior, Pe, as a function of
pooling bag size b ∈ B, with an average payload size R̄ = 0.1

bptc for each pooling function over all the strategies. We note
that the gdisc pooling function outperforms gmean and gmax

functions with average difference of Pe ≈ 2% and is closer to
gclair with an average difference of Pe ≈ 0.8%4. From figure
7, we could observe that gdisc and gclair are more stable than
gmean and gmax. This is in agreement with the hypothesis
of our paper which is that a discriminative pooling function
allows obtaining better detection results compared to the mean
and max pooling function.

VI. CONCLUSION

In this paper, we studied the problem of content-adaptive
batch steganography and pooled steganalysis for a steganalyst
unaware of the payload-spreading strategy and equipped with
a single-image detector trained as a quantitative classifier.

We studied the ability of the steganalyst to discriminate the
spreading strategy, thanks to a pooling function that is able
to recognize various stego patterns, and then able to pool the
SID scores much cleverly than applying a simple average or
maximum. Empirical results made with six different spreading
strategies and a state-of-the-art Single Image Detector confirms
that our discriminative pooling function can improve the
accuracy of the pooled steganalysis. Our pooling function gets
results close to a clairvoyant steganalyst which is assumed
to know the spreading strategy.

This conclusion opens the door to future studies related
to performance of a steganalyst that would not be aware of
the bag’s payload, to the performance of the steganalyst in
the case of a spreading strategy never seen before, to the
performance of an all integrated solution using Deep Learning,
to the extension to a game-theory or practical GAN simulation,
etc.

ACKNOWLEDGMENT

We would like to thank Dr Rémi Cogranne for discussions and for
providing the MATLAB code of the DiLS, DeLS and IMS. We would like to
thank the MESO@LR computing center, Montpellier, France, for providing
a huge amount of calculation resources. We would like to thank the French
Direction Générale de l’Armement (DGA) for its support through the Alaska
project ANR (ANR-18-ASTR-0009). We would like to thank the Union
of Municipalities of Jered Al-Kaytee, Akkar, Lebanon, for its scholarship
support.

REFERENCES

[1] A. D. Ker, “Batch steganography and pooled steganalysis,” in Informa-
tion Hiding, 8th International Workshop, IH’06, Alexandria, VA, USA,
July 10-12, 2006, 2006, pp. 265–281.

[2] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T. Filler, J. J.
Fridrich, and T. Pevný, “Moving steganography and steganalysis from
the laboratory into the real world,” in ACM Information Hiding and
Multimedia Security Workshop, IH&MMSec ’13, Montpellier, France,
June 17-19, 2013, 2013, pp. 45–58.

[3] A. D. Ker and T. Pevný, “A new paradigm for steganalysis via cluster-
ing,” in Media Forensics and Security III, San Francisco Airport, CA,
USA, January 24-26, 2011, Proceedings, 2011, p. 78800U.

[4] ——, “Batch steganography in the real world,” in Multimedia and Secu-
rity Workshop, MM&Sec 2012, Coventry, United Kingdom, September
6-7, 2012, 2012, pp. 1–10.

[5] R. Cogranne, “A sequential method for online steganalysis,” in 2015
IEEE International Workshop on Information Forensics and Security,
WIFS 2015, Roma, Italy, November 16-19, 2015, 2015, pp. 1–6.

4The variance on Pe for each pooling is around ×10−6.

[6] T. Pevný and I. Nikolaev, “Optimizing pooling function for pooled
steganalysis,” in 2015 IEEE International Workshop on Information
Forensics and Security, WIFS 2015, Roma, Italy, November 16-19, 2015,
2015, pp. 1–6.

[7] R. Cogranne, V. Sedighi, and J. J. Fridrich, “Practical strategies for
content-adaptive batch steganography and pooled steganalysis,” in 2017
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017, 2017,
pp. 2122–2126.

[8] A. D. Ker and T. Pevný, “The steganographer is the outlier: Realistic
large-scale steganalysis,” IEEE Trans. Information Forensics and Secu-
rity, vol. 9, no. 9, pp. 1424–1435, 2014.

[9] T. Filler, J. Judas, and J. Fridrich, “Minimizing additive distortion in
steganography using syndrome-trellis codes,” IEEE Transactions on
Information Forensics and Security, vol. 6, no. 3, pp. 920–935, Sep.
2011.

[10] J. J. Fridrich, “Minimizing the embedding impact in steganography,” in
Proceedings of the 8th workshop on Multimedia & Security, MM&Sec
2006, Geneva, Switzerland, September 26-27, 2006, pp. 2–10.

[11] V. Sedighi, R. Cogranne, and J. J. Fridrich, “Content-adaptive steganog-
raphy by minimizing statistical detectability,” IEEE Trans. Information
Forensics and Security, vol. 11, no. 2, pp. 221–234, 2016.

[12] J. Kodovský and J. J. Fridrich, “Quantitative steganalysis using rich mod-
els,” in Media Watermarking, Security, and Forensics 2013, Burlingame,
CA, USA, February 5-7, 2013, Proceedings, 2013, p. 86650O.

[13] A. Zakaria, M. Chaumont, and G. Subsol, “Quantitative and binary
steganalysis in JPEG: A comparative study,” in 26th European Signal
Processing Conference, EUSIPCO 2018, Roma, Italy, September 3-7,
2018, 2018, pp. 1422–1426.

[14] M. Chen, M. Boroumand, and J. J. Fridrich, “Deep learning regressors
for quantitative steganalysis,” in Media Watermarking, Security, and
Forensics 2018, Burlingame, CA, USA, 28 January 2018 - 1 February
2018, 2018.

[15] R. Cogranne and J. J. Fridrich, “Modeling and extending the ensemble
classifier for steganalysis of digital images using hypothesis testing
theory,” IEEE Trans. Information Forensics and Security, vol. 10, no. 12,
pp. 2627–2642, 2015.

[16] C. F. Tsang and J. J. Fridrich, “Steganalyzing images of arbitrary
size with cnns,” in Media Watermarking, Security, and Forensics 2018,
Burlingame, CA, USA, 28 January 2018 - 1 February 2018, 2018.

[17] G. Cancelli, G. Doërr, M. Barni, and I. J. Cox, “A comparative study
of±steganalyzers,” in Multimedia Signal Processing, 2008 IEEE 10th
Workshop on. IEEE, 2008, pp. 791–796.

[18] I. Lubenko and A. D. Ker, “Going from small to large data in steganaly-
sis,” in Media Watermarking, Security, and Forensics 2012, Burlingame,
CA, USA, January 22, 2012, Proceedings, 2012, p. 83030M.

[19] J. Pasquet, S. Bringay, and M. Chaumont, “Steganalysis with cover-
source mismatch and a small learning database,” in 22nd European Sig-
nal Processing Conference, EUSIPCO 2014, Lisbon, Portugal, Septem-
ber 1-5, 2014, 2014, pp. 2425–2429.

[20] Y. Yousfi, J. Fridrich, J. Butora, and Q. Giboulot, “Breaking ALASKA:
Color Separation for Steganalysis in JPEG Domain,” in Proceedings of
the 7th ACM Workshop on Information Hiding and Multimedia Security,
ser. IH&MMSec’19, Paris, France, Jul. 2019.

[21] X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang, “Steganalysis of
adaptive JPEG steganography using 2d gabor filters,” in Proceedings of
the 3rd ACM Workshop on Information Hiding and Multimedia Security,
IH&MMSec 2015, Portland, OR, USA, June 17 - 19, 2015, 2015, pp.
15–23.

[22] P. Bas, T. Filler, and T. Pevný, “”break our steganographic system”:
The ins and outs of organizing BOSS,” in Information Hiding - 13th
International Conference, IH 2011, Prague, Czech Republic, May 18-
20, 2011, Revised Selected Papers, 2011, pp. 59–70.

[23] M. Boroumand and J. J. Fridrich, “Nonlinear feature normalization in
steganalysis,” in Proceedings of the 5th ACM Workshop on Information
Hiding and Multimedia Security, IH&MMSec 2017, Philadelphia, PA,
USA, June 20-22, 2017, 2017, pp. 45–54.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

