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On the Control of Finite-Dimensional Mechanical
Systems with Unilateral Constraints

Bernard Brogliato, Silviu-lulian Niculescu, and Pascal Orhant

Abstract—This paper focuses on the problem of the control of lems [60], [61], there has recently been a growing interest in
a class of mechanical systems with a finite number of degrees-of-the modeling of collisions in kinematic chains [46]-[49] and

freedom, subject to unilateral constraints on the position. Roughly o ol ofcomplete robotic tasks, i.e., tasks involving free-
speaking, those systems are described by a set of ordinary T

differential equations that represent smooth dynamics, together Motion as well as constrained motion phases like deburring and
with an algebraic inequality condition F(¢) > 0 (where ¢ is the grinding operations. Although this is not too common yet, it
vector of generalized coordinates) and an impact rule relating the s quite possible that manipulators may carry out such tasks

interaction impulse and the velocity. Nonsmooth dynamics is at i ; ; ; ;
the core of the study of such systems. This implies one can suitably as driving nails, compacting powders, breaking objects

define solutions and stability concepts that fit with the considered 1N Which case they would be intended to be impacters [8]
model. Then, we discuss the closed-loop control problem, and we (it iS also worth noting that all mechanisms with clearances

analyze various switching control strategies. involve impact dynamics). Many experimental works have
Index Terms— Closed-loop stability, mechanical systems, been devoted to studying theansition phasecontrol, which
switching control, unilateral constraints. occurs when the robot’s tip strikes the environment’s surface;

see, for instance, [19]-[23], [42], [44], [55], [56], and [59].
In particular, the results in [44] (flexible environment) and

i ) ] 21] (rigid environment) show that the environment’s stiffness
HE LAST fifteen years have witnessed a considerabigys 5 significant influence on the transition phase behavior.

interest in the problem of control of mechanical systemg, [42] it is shown that rigid body models can provide
Both motion control and hybrid force/position control case, certain cases, better prediction than flexible ones, using
have received much attention. In the first case, the syst ropriate nonsmooth mathematical tools [14]. Pioneering

is assumed to evolve in a space free of obstacles and ; . .
. . X . . damental work in the field of complete robotic task control
described by a set of ordinary differential equations (ODE&. P

Feedback linearization as well as more specific controller%‘n be found in the work of Mills and Lokhorst [16], who
(adaptive, robust control) have been proposed [29], [3 nsidered the control oh-dof (degree-of-freedom) rigid

X ianipulators evolving either in a free-space or in contact
In the second case, the system is assumed to evolve on.

constraint submanifold of the forn(q) = 0. Interaction with a compliant environment. A simple switching controller

forces between the manipulator's tip and the obstacle h |\§econ5|dered wh|ch.k')a3|cally consists of.a motion control
akadv and a force/position control law applied when contact

to be taken into account in the analysis. Solutions bast blished hi K h :
on a decoupling between free tangential motion along tl established or not. Roughly speaking, the open-loop as

surface F(q) = 0 and the constraint normal direction havd'ell @s the closed-loop systems are composed of two smooth
been proposed [5], [7]. It is worth noting that in this lattey€Ctor-fields. The .s.tablllty analysis C(?n5|sts of the appl|c§\t|on
case, the constraint is assumed to be verified for all tim@kLyapunov stability concepts for simple hybrid dynamical
without any consideration for the possible transition betwe&¥Stems [2], i.e., one requires the existence of a unique positive
configurationsq such thatF(¢) > 0 and such thaf(q) = definite functionV such thatV is negative definite along
0. This has considerable consequences, since the systep#) vector-field trajectories. This is obtaineta suitable
trajectories can still be considered as smooth time functioiéedback-gain choices. Existence of solutions at the switching
Hence all results available on existence, uniqueness, diies is carefully analyzed in [16}ia concepts related to
stability can be applied directly to such systems. differential inclusions (since at that time the control input
In parallel with studies devoted to systems of rigid bodigs not uniquely defined). Other related works can be found
with unilateral constraints and linear complementarity proln [6], [17], [18], [24], [45], [50], [51], [57], [58], [62], and
[63]. In particular, in [63], a complementary slackness model
is formulated for systems with inequality constraints (but
B. B;)rlogl(iato and P. Orhant are \;Vitfhe Laboratoire d’Automatique de simple transition phase), and the existence of solutions results
Grenoble (UMR 5528 CNRS-INPG), ENSIEG, BP 46, 38402 St.-Martin, ;
d’Héres, France. They are also with the GDR CNRS “Automatique.” 1S de_ve|0pe_d' It is nmeworthy’ however, that the SyStemS
S.-I. Niculescu is with the Laboratoire d’Automatique de Grenoble (UMrEONSsidered in [16] do not belong to the class of systems subject
5528 CNRS-INPG), ENSIEG, BP 46, 38402 St-Martin-dids, France. He tg unilateral constraints, due to the environment’s compliance.
is also with the GDR CNRS “Automatique,” on leave from the Departmenf.h f thi It t b id d t .
of Automatic Control, University “Politehnica” Bucharest, Romania. eretore, tis resu C_anno e_ consiaere "_’15 an extension
of the work on constrained manipulators [5], i.e., control of
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systems represented by the following set of equations: simple when the transition from free to constrained motion is
taken into account. Although we do not claim that the case of

M(9)i+C(g, g +9(q) =U (1) several unilateral constraints should be disregarded (it does,
F(q) =0 (2) on the contrary, represent a challenge in impact dynamics to
Law (percussionvelocity) = true (3) define impact rules for such cases [12], [14]), we prefer in

this paper to restrict ourselves to the above cases. The results
where (1) is the dynamical equation of rigid manipulators iyere outlined in [4].
free-spaceg € IR" is a vector of generalized coordinates, The paper is organized as follows: in Section Il we introduce
M(q) € R™ " is the positive-definite inertia matri/(¢, )¢ a possible way of modeling the system in (1)—(3) and the
contains Coriolis and centrifugal acceleration terms;) € corresponding definitions of solutions. In Section Ill, some
R™** is the vector of generalized gravity torques, aiide  stability concepts related to the particular dynamics involved
R™*! is the control input vector. More generally, (1) mayyre presented. We treat in detail a one-dof case, and we
represent the dynamics of any Lagrangian system, providgfalyze some stability properties for various control strategies
one knows stabilizing controllers for free-motion, constraine¢h Section IV. In Section V, the extension te-dof rigid
motion, and transition phases. Mechanisms with C|earanC€SrﬁQnipu|ators is ana|yzed_ Conclusions are gi\/en in Section
not, in general, belong to such a class of systems. Inequakty Some mathematical tools used in the paper are given in
(2) represents the set of unilateral constraints, i.e., the subspgge Appendix.
® ¢ IR"™ within which the system evolves. Equation (3) is a
physical law that relates the interaction between the robot’s Il. DYNAMIC MODEL

tip and the surfacé’(¢) = 0, and the generalized velocity ) ) ] ) ]
when contact is made at= t;, i.e., Flg(t, — 6)] > O for any In this section, we provide some explanations and details
small enough$ > 0 and Flq(#,)] = O. concerning the dynamic model that will be used throughout the

In this paper, we shall consider the control of dynamic&aper for_contrpl des!gn purposes._We glso give the definition
systems as in (1)~(3) witF'(q) € R™, i.e., we model of the trajectories using a result given in [9].
the contact process from a rigid body point of view. We .
restrict ourselves to codimension-one surfaces of constrafht IMmpact Dynamics
(m = 1) or to hypersurface#(q) = 0, ¢ € Z, which are 1) Codimension-One ConstrainBefore writing the whole
mutually orthogonal with respect to the kinetic metric definegkt of equations that model the system, let us recall the

as(zy) = 2" M(q)y, ,y € R". HereZ C {1,---, m} basic facts concerning impact dynamics. Further information
represents the set of constraints which are attained at the saae be found, for instance, in [8] and [14]. As long as the
time. The orthogonality condition is expressed as configurationg € R™ is such thatF(q) > 0, then the

system’s trajectories(t), ¢(¢) are well defined as absolutely

(N A1 . —
VoFilq)” M~ (q)VoFj(q) =0 ) continuous-time functions, solutions of the ODE in (1) (where
i,j € I, i # j. We assume that the hypersurfadégq) = U is assumed to satisfy some classical regularity conditions).
0,i = 1,---,m are frictionless. The reasons for thesdn€ same conclusions hold whef(¢) = 0 on a nonzero

assumptions will appear clearly in the next sections and df&€ interval. Now assume that for some= ¢, Flg(t)] >
related to the wellposedness of the collision model in (3), the for ¢ € [tx — 6, %) and somes > 0 small enough,
existence of solutions, and the stabilization of the system &d Fla(tx)] = 0. Assume also thag(t; )"V Flg(t)] <
(1)—@3). 0 where ¢(t;) = limy_, 1<, ¢(t) and V F[q(tr)] is the

In particular, the existence of solutions for such a dynamicgfadient of F(q) at ¢ = #, (that is supposed to be different
system is a hard problem. It has been proved in some particff@m zero in the region of interest). This condition means
cases, limited to codimension-one frictionless constraints; st the velocity points outwards from the domabnat the
e.g., [9] and [26] or with friction [15]. Uniqueness also ha®oint ¢(tx) € 9®. Then, a collision atg(#;) occurs, and
been proved in [25] and [26] under some restrictions on tige velocity ¢(#) possesses a discontinuity at= #; such
constraint and on the external action as well as for the lossId@at ¢(t)" V Fla(tx)] > 0, i.e., the right-limit 4(t;) =
case only. Other studies on existence and uniqueness froml{Rg—t., t>t, ¢(t) of the velocity points inwardg. Notice that
linear complementarity problem point of view can be founfe jump ing, denoted ag(¢x), has to be specified through
in [60] and [61]. In this paper we shall content ourselved so—_cglledestitution rglewhich relates post- and preimpact
with existence results, disregarding uniqueness problems. THidocities. We denote it for the moment as
choice is done mainly because of the great difficulty in proving 1Y — Pl

. . : q(ty) = Rlq(t)]- (5)

such results for general impacting systems (and such studies
are clearly outside the scope of this work), and also sinceRemark 1: The fact that a jump in the velocity is necessary
there are no uniqueness results available in the mathematiohen the surface’'(¢) = 0 is attained in a nontangential
literature for the dissipative shocks case, which is of mamanner and that the impact rule must be such that the
interest for practical control purposes. postimpact velocity points inward®, renders the domai®

In summary, contrary to the constrained case where one ¢avariant under the dynamics. The nonsmooth impact theory
assume that the system evolves permanently on a submanifigédeloped in [14] and [15] precisely aims at studying a general
F(q) = 0 with F: R* — IR™, m > 1, things are not so model that make® such a domain.
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Now let us note that since (5) implies a discontinuity in th®efine (n. — 2) vectorst, ; € R"™ such that] ;M(q)t, ; =0
velocity at¢ = iy, it follows that att = ¢ there must be for i # j, tI ,M(q)n,, ; = 0, andt] ;M(q)t, s = 1. Then the
a percussionF(t;) acting on the system, i.e., a generalizetlasis(n,, 1, 74,2, tg,1, -+ tq,n—2) iS orthonormal; see (4).
impulsive force of the formP,(t)é:, , whereé,, is theDirac  Define now the generalized velocity transformation

measureat ;.. Also att;, the accelerationis given by . T
Qnorm | _ g M . 11
G = o4(tr )6, (6) |:qtang } |:t(21“ } (D (11)

where oy (t) = §(tf) — 4(t;,). It follows that systems as in where the matrices;, € R andt, € R™~2*" are
(1)—(3) are represented byeasure differential equationse., defined from the above vectors. The coordinajgs., and
differential equations containing singular distributions (like th@mlg in the frame(ng, 1, 1y, 2, £y, 1, -+, tq,n—2) represent the
Dirac measure) in their right-hand side [34]. It is then possibfsrojections ofj on Ny 1, Mg 2y tq,15 =+ tq, n—2, rESPECtively,

to prove (see, e.g., [64]) thatat= ¢, the dynamical equations in the sense of the kinetic metric. Recall that the percussion
become vector P, verifies Py = py, 1V F1(q) +pq,2V (I2(q) for some
Pg.1, Pg.2 € RT. Then it is not difficult to show that the

Mq(tw)log(tr) = Py(th). (7) dynamical equations at the impact time are given by
It is also important to note that(¢) is continuous at impact o I p
times; see [64]. Equations (5) and (7) make the impact norm, 1 a1 4
problemcompletejn the sense that given preimpact conditions Tnorm,2 — ”qT oy (12)
[q(tx), G(t;,)] one is able to calculate botf(t;) [from (5)] Oluany =ta Py =0

and the percussion vector [from (7)]. o _ )

Let us now focus on the restitution rule in (5). In the one¥hich is another way to write (7). (If'(¢) € IR, then there is
dimensional case, the most widely used rule is known 88y one component tg,,....) Now note that if (4) is satisfied
Newton’s rule, which states that if a particle strikes a rigifPr ¢ = 1, j = 2, then (12) becomes

obstacle; then Oinorm. 1 =Pg, 171 Ve Fi1(q)

q(tf) = —ei(ty) (8) e,z = Pa, 27,2V g 2(q) (13)
where ¢ € [0, 1] is the restitution coefficient. In higher- Orang =0
dimensional cases, we shall apply the rule [12], [13] i.e., the percussion componepy ; has no influence on the
q-(tk+)Tv Flg(ty)] = —eq‘(t;)Tv Flq(ti)] (9) veloCity ¢,orm, 2 jump, and vice-versa. It is then possible and
: q /1= : q :

coherent to define a restitution rule [which is a generalization
which can be seen as generalized normal rul§only one of that in (9)] as

coefficient is needed in (9) sineg V,F(q) is scalar). The ) ) _
¢ ( ) {QHorm,l(tz—) = _GIQHorm,l(tk)

(jnorm, Q(t;) = _62(_21101‘111, Q(tk )

remaining part of the velocity can be computed from (7).
Indeed there arén + 1) unknown parameters to the problem
(the n-velocity componentqﬁ(tt) and the uniqgue component
of P, which verifiesP, = p,V,F(q) for somep, € R" [14]),

(14)

Note that from the definition of these quantities, we have

and (7) and (9) provide us wittn + 1) equations. We shall GtV Fi(q) = —erq(t)TV Fi(q) (15)
come back later on the calculations of postimpact velocities AT e

. . . t F =— t Fy(q). 16
using some particular coordinates such as the ones proposed Q)" Val() e2d(t )" Vo l2(q) (16)
in [5]. The incoherence when (4) is not verified comes from several

2) Constraints of Codimension 2: In the casef'(q) € facts. It is shown in [12] via a sequence of approximating
IR™, m > 2, there may be several hypersurfaces attained at i@mpliant problems (the surfaces of constraint are replaced
same time. At such singular poin®@® is not smooth so that by a spring + damper model) that there is no hope of any
it is really given by the intersection of several hypersurfacesort of convergence toward the rigid limit case. Continuity
The question is: can the restitution rules in (8) and (9) hsf the trajectories with respect to the initial conditions is
generalized to such cases? Does this generalization yieldjuaranteed if orthogonality is satisfied [13, Th. 2, pp. 26 and
coherent result? The answer is yes, if the hypersurfaces tha}. This last fact is easily seen on a planar example of a
form the singularity satisfy (4); see [12] and [13, Th. 2, ppearticle striking in an angle. Notice that we do not claim
26 and 27]. This fact is clearly explained as follows. Let ugat the restitution rule as defined in (11)—(16) is the only
endow each surfacg;(q) = 0, i € Z with the kinetic metric possible model of collision one might choose. Moreover, it
defined as above. Then the normal unit vectof{¢g) = 0 is well known that Newton’s conjecture about the restitution
is given by [27] law has to be verified in experiments like any other model.

B M~Y(q)V,Fi(q) Fo.r instance, it is known thact may depend onjnorm_(t,j)
Ng,i = T . (10) [8]; see also [43] for experimental results on a falling rod,
\/V(IFZ‘((-’) M= (q)Vqli(g) which show that micro-collision effects play a crucial role in

Lo (t,) will be used generically to denote the jump in the functiet) the impact phenomenon. This is even more true in the case

at timet,. of n-dimensional articulated systems such as manipulators.
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In view of the studies available in the mechanical literatud# is a set of controllers which stabilizes the system when it
[12]-[14], Newton’s conjecture in its generalized form seenevolves in one of the three phases mentioned abd¥ence,

to be the most reasonable model concerning multiple rigit# contains position as well as force/position controllers. The
body impacts. It has also been confirmed experimentatpnditionC; may be seen as a high-level controller, possibly
for colliding manipulators; see e.g., [21] and [56], althouglvith an associated automaton [3]. They may be event-based
much more experimental validations are needed. It is finally open loop. One must, however, take care of existential
a theoretically sound model, as we discuss in Section II-@roblems to the overall dynamical system. As we shall see
which is a necessary first step in the analysis; the stabiliggter, it is also possible to interprét as a unique controller,
analysis framework developed in this paper can accommoddtscontinuous irt and/or in the system'’s state (depending on

more elaborated impact models. the nature of the condition§;).
We are now able to propose a general model for the systemRemark 2: The equation in (20) represents the smooth dy-
described in (1)—(3). namics between the impact times, i.e., on intervals ¢;.1).
Furthermore, notice that in general the closed-loop state vari-
B. A General Form of the Dynamical System ables contain the position tracking errgr= ¢(t) — ga(t),

F the above di : it bl d nat where ¢q4(t) € C?[R*] represents some desired motion.
rom the above dISCussions, It IS reasonable and naturainlen, the nijlateral constraint’(g) > 0 can be written as

split the dynamical equations into three parts as follows (th{li_s A s > 0. In oth ds the i iant traint
is written for a codimension-one constraint and can be eascg(Q) = F'(¢+qa) 2 0. In other words, the invariant constrain

generalized to the case > 2, provided the above conditions n be written in closed-loop form as a time-varying constraint.
are satisfied) - The restitution rule in (9) then can be rewritten as

Free-Motion Phases: VqFtT(}(tZT) - _quFtTé(t’:) — L+ Vili. (25)

Roughly speaking, since the constraint is time-varying, the

M(q)i+Clq, )q+9(q) =U (17) restitution rule must incorporate its velocity at the impact time.
F(g) >0. (18) This is represented |.n.t.he last term of the_ right-hand side
) ) - of (25). From the definition of the time-varying closed-loop
Constrained-Motion Phases: P unilateral constraint,(§), it is easy to verify thatv,F; =
M(q)j+Clq, )i+ glq) =U + )\%_(q) Vq_F end_thathFth‘d = V£ so (9) and (25) are equivalent.
q This is simply to show that we could have formulated the
F(qg)=0 and A>0. (19) dynamical system in (17)—(22) in terms of closed-loop (or
Transition Phases: tracking errors) variables.
M(q)i+ Clg, g+ 9(q) =U Remark 3: It is clear that the aim of the robotic task is to
F(g) >0 (20) make the manlpul_ator track some desired tra]ecterles. Dur_lng
free- and constrained-motion phases, one classically defines
Mlg(ti)]og(tn) = Py(tr) desired position, velocity, and interaction force trajectories.
Flg(ty)] =0 (21) The controllerUU has to be designed such that the tracking
Q(tz—)Tqu[Q(tk)] _ —eq‘(t,j)TVqF[q(tk)]. (22) errors vanish asymptotically. The system’s behavior during the

transition phase will be, in general, quite different. Indeed, in

Notice that once the transition phase is finishéde., SOMe tasks it may be required that impact times vefify, =

Gt TV Flq(t,)] = 0}, two situations can occur: eithertr+1 for sqmeT>“O with bo'er_wded trajectories dty, tx+1)

the applied forces are such that the system remains in conf@q€ can think of a *hammer-like task). This also implies that
with the boundary of®, or it detaches. This depends on thé&’ in (20) is designed such that the sequence of impact times
Lagrange multiplier\ sign: if A > 0, constrained motion {tx} does exist. Note that in general the controller stabilizing
is insured; ifA < 0, the system detaches from the constraiffe€-motion phases will not be suitable for the transition
surface. In a case as in (28), this can be written as follows [1Pf}@Ses’ objectives. In this paper, we will considety robotic

§ = max|[0, U] if (‘Z(tz—) =0, g(t;) = 0 since the multiplier tasks which involve aIternanyer free- and eonstramed motion
A\ = —U 2 In our case such outcomes are a consequence of phases. Although th_e model in (17)—(2_4) might represent other
controller U/. Since we do not supposepriori that a unique classes of mechanical systems (for_lnstar)ce, blpedal robots
controller U; is applied, the complete dynamical system i@nd control of such systems [41] or simple impacting systems

given by the above three phases plus a control strategy " chaotic dynamics like the bouncing ball or the impact
the following form. oscillator [52]-[54]), we do not consider such extensions for

the moment. Hence, the goal of the controller during the
Control Strategy: transition phases is to guarantee that the manipulator stabilizes
on the constraint surfac&(q) = 0 in finite time. In other
Uield (23) . o
_ - ) words we shall require that the sequenigg} has a finite
U =U; if condition C; is true (24)  accumulation point., < +oo with Flg(t)] = 0. Except in

2Such transitions may be taken care of by so-caltenplementarity 30ne of the main conclusions of the experimental work in [44] is that three
conditions; see, e.g., [60]. distinct controllers have to be used for the control of a complete task.
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the case = 0, {¢;} is an infinite sequence., < +oco implies and with Carathéodory-like conditions [34] since the crucial
thate < 1, i.e., there is a dissipation of energy at collisions.point is to guarantee existence of solutions of a penalizing

Remark 4: Using the generalized coordinates transformgroblem (see [9, Th. 2]). Although some dynamical problems
tion described in [5], the unilateral constraitt(q) > 0, with unilateral constraints may not possess any solution with
F(q) € IR™ can be rewritten in a new set of coordinateg(t) € RCLBV, we conjecture that under the restrictions

x 2 (wl) where z; € IR™ and the constraintF(q) = imposed on the unilateral constraints (i.e., either uniqueness
xr

0 becomes simply;; = 0. This well-known transformation of multiplicity but for orthogonal constraints), the existence
relies on a suitable partition of the coordinateand may be is assured. Hence, in the following, we shall always assume
assumed for convenience to be g|oba| The Constrd]r(t@) thatq € RCLBYV . Furthermore, notice that this has some nice
are also assumed to be independent. Therefore, the constré@sequences for the stability analysis purposes since RCLBV
F(q) > 0 can be rewritten as; > 0 so that the Euclidean functions possess a countable set of discontinuity points on
normal vector to the constraint hypersurfage; = 0 is simply any compact time interval (hence are Riemann integrable). It
the ith unit vectore; € IR". It is noteworthy that although the iS, consequently, natural to associate a discrete-time system
rest of the coordinates, € IR"™™ represent the motion of (Or impact Poinca map) to such impacting systems. This is a
the system along the tangential part of the constrégintioes Natural extension in the set of solutions of bounded variation of
not in general remain continuous at the impact times if o€ results in [1], where only piecewise continuous solutions
adopts the generalized Newton's restitution rule describeddf¢ considered.
(9)-(16). Indeed, one has to compute the jumg-irfrom the Another problem appears at the switching times between
restitution rule and then compute the ]ump dn from (7), the different COﬂtrO”eryi; see (23) Two situations may be
i.e., the algebraic dynamical equation at the shock instant. \W@nsidered: either the switching period has a strictly positive
shall come back to these calculations in Section V-B. In fadh€asure, or it has a zero measure. It seems realistic to assume
the velocity transformation in (11) can be performed startir@yZ€ro measure, since in practice the switching will generally
from any set of generalized coordinates, in particifarOne bPe obtainedvia software and consequently will be almost
concludes that for simplicity (but not without loss of generalitjnstantaneous. Hence, what happens “during” the switch will
since the transformation is assumed to hold globally) tte disregarded in the stability analysis. Finally which sense
unilateral constraints could be written as>0,1<7<m. should we give to the control law at the SWitChing times? The
Also the restitution rule in (21) becomes(t) = —e;g; (t7) point of view of differential inclusions is adopted in [16], i.e.,
whenm > 1. U € [Unin, Umax] at the switching times. Then, the overall
- system solutions have to be consideredesxchable sets, no
longer time functions and existence as well as unigueness.
C. Definition of the Solutions Stability results have to be generalized; see [34]. As noted

The classical bouncing ball example (see, e.g., [35]) su§- [16], no general mathematical tool seems available in the
gests that the 50|utioq(t) of an impact pr0b|em possesse@athematicaj literature to StUdy differential inclusions with
derivatives which are not piecewise continuous but rather righgasures in the right-hand side or with state jump conditions.
continuous of local bounded variation (RCLBV) in time; sedt would be possible to define control strategies such that no

g., [14]. This also allows us to define the acceleration &8llision occurs at the switches. We, however, prefer to assume
a bounded positive measure since it is the derivative of #hthis study that at a switching timé; the controller takes
RCLBV function [36]. Nevertheless, in the general case of@&Vvalue betweed/(7,”) andU(T;"), which can be unknown.
system as in (1)—(3), such assertions are not trivial and méstually we formulate the problem with a time-discontinuous
be proved. Results in this direction can be found in [9]. 16ontroller, presumed to be right continuous. This is not so
particular, [9, Th. 2] requires that a) the system evolves inéegant from a theoretical point of view but allows us to get rid
convex domain of the state space, i.e., the regiafefined by ©Of a problem with few practical consequences on the stability
inequalities (2) must be convex, b) with a regular (i.e., twicanalysis, as long as the switching periods are supposed to be
differentiable) boundary®, and c) the external actiobi(t) instantaneous.
on the system is continuous in time. This may not be satisfied
for systems like in (1)—(3). However, we have seen in Remark
4 that the coordinate change like the one proposed in [5] and
a suitable feedback control law allow us to put the closed- The system in (17)—(24) is a complédwbrid dynamical
loop system in the framework developed in [9]. In particulasystem([3] which involves continuousas well asdiscrete
this allows us to get a convex domain The convexity of¢ time phases. Stability criteria have been proposed for simple
is not a real obstacle, however, as long as locally, existerftgbrid systems; see [2]. However, they do not apply to more
and uniqueness of a projection 6@ is assured. Multiplicity complicated systems as in (17)—(24). In this note we choose
of the constraints (i.e., regularity @#®) is a more serious atime-domain approacklose to Lyapunov’s second method.
problem. Existence has been proved only for zero energy IcHse stability analysis will therefore be based on the choice
at impacts [10]. Notice that this is not sufficient here becausé a suitableuniqueautonomous positive definite functidn
we need finite time stabilization results which cannot bef the system’s state. Although this seems the simplest and
obtained wher = 1. Continuity of the external action fmay the most natural way to proceed, it is in fact not clear which
also be relaxed to measurability in the Lebesgue sense [tbhditions of variation oft’ should be required. In general,

Ill. STABILITY ANALYSIS FRAMEWORK
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the controllers may be dynamic output or state feedbaokcur attimes = ¢;° for motion phases in (17), but the closed-
laws. Hence, (17)-(24) do not represent the whole closddep equations fixed-point belongs to [dt)] and transition
loop system. Note that for the moment the representation pliases, respectively (the goal is to obtain stabilization of the
the transition phase in (20)—(22) is not very tractable. Indeesyjstem on the surface®). From the hybrid dynamical systems
it is amenable for stability analysis via the tools developegubint of view, the€l;’s correspond to thecontinuous-time
in [1] which require that a positive definite functioi of phasesand thel;’s to discrete-time phases. As we shall see,
the state be such that < 0 along the trajectories of (20) I, does not necessarily correspond to the rebounds phase,
and oy (tx) < 0 at the impact times. The basic idea ibut more generally contains it. Even in the case of plastic
roughlyto get simultaneously continuous and discrete stabilifynpact ¢ = 0), in generalA[I;] > 0 (A[-] is the Lebesgue
via the same functio’. However, as the simple bouncingmeasure). Note thdR+ = Ui Q% Uy Ix- The phase$?; and
ball example shows, it may not be obvious to verify such, may be finite or infinite. We denot®; = [T}, TJ’:‘] and
stability criterion in practical cases. Moreover, the theory, = [¢f, t%]. Note that(; corresponds to free- as well as
developed in [1] relies on piecewise continuous solutions, i.eonstrained motion phases. Hence there cannot be more than
the impact times verifyt;.11 > ¢ + & for someé > 0. Still, two sequential interval§, Qx41, Since the transition from
the bouncing ball example with € (0, 1) proves that this free- to constrained motion phases must be an impact phase.
is not sufficient to study impacting systems in general. Mokgence we have for a typical task
precisely, the stability analysis framework proposed in [1] is +
well-suited when one wants to stabilize the manipulatose RT=QUlUQUQ UL
to the obstacle; see [64, ch. 7] for more details. In this case U Qo1 UQop UTg o+ (26)
accidental collisions may occur between the robot’s tip and _
the constraint surface. Such a stability criterion guarantele@! Us defin& as the complement df = Uy, I so thatA[2] =
that these collisions do not destroy the Lyapunov stability ofoc- We now introduce the proposed stability framework. In
the closed-loop system. For a system submitted to unilatef following, z(#) denotes the state of the closed-loop system
constraints, this corresponds 16 € Int(D), whereD = (17)—(24), withz(t) € RCLBV'. V(x) denotes a positive def-
@ x R" > (g, ¢). The dynamical equations are then giveiité function, continuous i, satisfyinga(||x||) < V(z) <
by (17) and (18). The inequality in (18) allows the collisiong(l|z[]), wherea(.) and3(.) are classi’ fur_lct|ons.7 Also ’Y('l)
to occur even during free-motion phases. Notice that due 8971(+), 72(+) are classk’ functions. Notice that () € IR,
the form of the unilateral constraints in (2),is closed. In a ! = 2n may be different from(q, g), mainly because of
robotic task, we may be interested in having stabilization glynamic state feedback controllers. Let us finally define a
the constraint, i.e5* € 9 x IR". Roughly speaking, classicalParticular decomposition of as ot = [¢f 6] & e R™,
stability concepts on metric spaces [33] do no carry out fg € R". Define QF and Q* such thatA[Q'] = +oo,
this situation, where it is not possible to define neighborhood&ﬂQ] = +o0, andQ = Q_l_ U Q2 _
(open domains) of* on 9@ x IR™.4 A way to overcome this Lemma 1—Weak StabilityAssume _that on .|nter.valslk,
problem for the analysis of the transition phase is to study thedt}) < V(t5) along the system’s trajectoriels, is uniformly
impact Poincaré mapassociated with (20)—(22). In generalbounded onl, and A[I;] < +oc for all k& > 0. Then the
such maps are difficult to obtain explicitly. However, ondollowing assertions hold.
may use the control input/ in (20) to simplify the smooth 1) If on Q, V[z(t)] < —v[||lz(?)]]] for t # ¢ along
dynamics (for instance feedback linearization) and make it ~ System’s trajectories, angy (¢;) < 0, thenz(t) — 0
possible to get explicitly the discrete-time system associated ast — +oo, t € L. .
with (20)—(22). This path will be investigated in details in 2) If V[z(t)] < —n[|[&(8)]]] for t # ¢ on QY V{z(t)] <
the sequel, where indeed the goal will be to find a controller ~ —72[||€2(2)[[] for t # ¢, on Q?, oy (t) < 0 for ¢, € Q,
U in (20) such that (20)-(22) define a stable discrete-time  ||&1]] nonincreasing or2?, ||| nonincreasing o2,
operator. Another way to avoid this problem is to define thenxz(t) — 0 ast — 400, t € Q.
nonsmooth changes of coordinates which transform system8) If A[Q!] < 400, A[Q?] = 400, AI] < 400, &1(2)
with unilateral constraints as in (1)—(3) into systems with  is constant onQ?, V (v, &) — V(r, 0) > 0 for any
time-continuous trajectories [38]. v € R™, and Viz(t)] £ —y[|[&@®)]|] for ¢ # #,
To clarify the proposed stability criterion, and to overcome oy (ty) <0, thenéy(t) — 0 ast — +oo.
those difficulties, we introduce the following definitions. Let The proof is given in the Appendix. Note that sinkééz) is
us split the time axis into intervalQ; andI;, corresponding continuous inz, thenV(t) € RCLBYV. It is thus justified to
to smooth phases [during which collisions may neverthelegse the jumps o¥ at the impact times in the stability analysis.
Recall also that at such timeg, the time derivative ol (¢)
is calculatedvia a generalized chain rule [36], i.e(t;,) =

4The authors are in fact aware of only one reference dealing with LyapunovsThroughout the paper, the impact times are generically denoted.as
stability of such critical fixed points when the forces acting on the system 3fis does not mean that a’ timg is related to the domaifd. The subscript
Z€ro ("e't”\t: 0); Tee [37]. Th|sfcase IS r;ﬁt very_|nterest|tng, in general, SINGLis a dummy variable associated to the different quantities that we need to
one wants 1o apply a nonzero lorce on the environment. define, i.e., the different time intervals, their upper and lower bounds, the
5With some abuse of name since Poireceraps are defined (strictly speak-impact times, etc. Moreover to simplify the notations, we empipyfor all
ing) from periodic trajectories [27], whereas here it will concern solution#1€ impact phases.
converging to zero in finite time (but with an infinity of rebounds). "i.e.,a(0) = B(0) = 0; they are strictly increasing and radially unbounded.



ov (tx )6, . Als0, strictly speaking ofiy, ¢,+1), the derivative  The various stability criteria in Lemma 1 are meant to apply
V denotes the upper right Dini derivative &f along closed- to different classes of robotic tasks. It is also possible that
loop trajectories (see, e.g., [1, Definition 13.2]). Let us remarkher criteria can be invented to cope with other situations.
that £, and & may correspond to various decompositiong/e, however, limit ourselves in this study to these three: a) is
of x such as the one obtained via the McClamroch—Wanglse most direct extension of Lyapunov second method. It can
transformation [5] described above. This will be made cleaepresent the case when the task is composed of free-motion

in the following sections. phases, separated by some impact phases; case b) relaxes the
Let us now define the transformatiod® : = — Z+ 2  conditions and is typical for tasks involving an infinity of
[Fi(q), g2y -+ s Gny GE(BF;/q), o, -+ - » n, 2]T. The signal transition phases, and where the controllers are dynamic state

z is due to a possible dynamic state feedback controller. igedback laws; case c) may be suitable when the task ends in
assume that those mappings are global diffeomorphisms ag§mooth phase (free or constraint motion), igJ] < +oc.

that the functionV;(z;) 2 V o G;X(z;) = V(z) is defined

globally® The closed-loop impact Poincaré maps are defined IV. A ONE-DOF EXAMPLE
as In the following, we first illustrate on a one-dof example
how the control strategy (which encompasses the switching
Peit X — 2 times that define the subtasks as well as the desired trajectory
T, ilk) =T (k+1) (27) definition) can influence the type of stability of the closed-loop

scheme. We gradually introduce a weakly stable scheme and
Py ;(0) = 0, whereX; is the impact Poincérsection defined then show how strong stability can be obtained by modifying
asy; = {z : Fi(q) = 0,¢"V,F, > 0}. Therefore Px  both the switching times and the free-motion desired trajectory.
is the discrete-time operator associated with (20)—(22). The goal of this section is mainly to show how the control
other words, the impact Poinéamap is defined from the strategy can be modified in various ways to comply with the
mapping P : z(t) — z(t,,) as Psi[Zs,i(k)] = P o stability requirements of Lemmas 1 and 2.
Gy [z (), taking the restriction t&; of P o G *. Finally,
the functionVy ; is defined as the restriction df;(z;) to A. Weakly Stable Task Example
¥, ie, Ve i[Ts (k)] = Vi[z:(t])]. In the next Lemma we

introduce stronger conditions for the behavior of the systeg&ted upon by a control ford€ € IR and restricted to move

during the transition phasek,. " ) )
Lemma 2—Strong Stabilitytet z(¢) and V() satisfy the %ir\'/etgebsalf lineq € [0, +o0). The dynamical equations are

conditions in a), b), or ¢) in Lemma 1. Assume furthermor
that on [, one hasg; = 0 and: m{ = U, q>0. (28)
i) ov(ty) <0

i) Viti,,) < VED:

Let us consider a simple one-dof example, i.e., a mass

Let us consider the control input

iii) V is uniformly bounded and time continuous dp — Ut, q, @) = a®Unclt, ¢, §) +[1 — a®U,  (29)
Ur{tx}, where the sequenc;} exists and has a finite
accumulation point. where
Then the system is weakly stable, and the closed-loop im'Unc(t, g, ) =mis — Arf — Aag (30)

pact Poinca& mapPx ; is Lyapunov stable with the Lyapunov

function Vs ;. U, =—Fy, Fyg>0 (31)
The proof follows from Lemma 1, [39], and using the ) :{1 for ¢ € Qo 7 k>0 (32)
fact that Vs i(k) = V[z(#])]. Notice that the condition 0 forte fxUQanss =

V(th) < V_(_t’g) can be assured if for instandé(ty) < V(tk)
and condition ii) is satisfied. Althougl’ is designed as a

. ime f . he ab diti th i.e.,0 € Q. Hencef2y;,. denotes free-motion phases dng).
continuous-time function, the above conditions assure that .oy 4ined-motion phases. The free-motion desired trajectory

qualifies as a discrete-time Lyapunov function fprthe mgppmggs(tt) is defined as follows and is depicted in Fig. 1:
Py, ;, after an eventual state-space transformation. The inter

and the system is supposed to be initialized with) > 0,

for the strong stability concept is that if conditions i)—iii) are (qq4(t) twice-differentiable
satisfied, then the whole stability proof is led with a unique q(t)>0 forteQy, k>0
V. Also Lemma 2 conditions reinforce the behavior of the o c o
trajectories during the impact pha¥eNote that if theG,’s qa(t) = qa(17") exp [_E (t =17 )} (33)
are_e_qual to the Eﬂentlty mapping, thén = V, and it is for t € [T2%, 4], k>0
sufficient thatgg ; = O for all 1 < j < m.

L ga(t) = 0 0N Q1.

8Clearly this may imply a reordering of the coordinates before performi . . .
the transformatiorc; . "he signalgy(t) is therefore defined such that when a con-

9The preimpact values can be chosen as well to define this mapping. strained phase is desired, the free-motion phase ends with an

10Notice the fact that., < +co is not a consequence of the stability ofeXponent'_a”y decreasmgd(t): !t is assumed that the time
Pg 4. It has to be proved. T2+ < ¢k is such that no collision has occurred fox 772%,
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Fig. 1. Desired trajectory and switching times (weak stability).
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Fig. 2. Desired trajectory and switching times (strong stability).

t € Qap. The switching timet} has to be choser72*. The with 0 < ¢ < v/mA; andz” = (4, §). Hence the closed-loop
rationale behind the form of,(t) on [T2*, t§] will appear equation onQ2y, k£ > 0 is given by

clearly from the calculation o (¢;) [see (38)] during the

free-motion phase§,;, which has to be negative from the (mg+ A\1§+ A2G =0

conditions in Lemma 1. Let us notice that given this choice . .

()= —(1 t)—(1 ti) (35
of the approach period if2y, it is necessary to apply/; in aq( ) (14 e)qlty) = (14 e)dalte) (35)
(31) to obtain finite-time stabilization o= 0. Furthermore =04(tk)

the transition phasd, is chosen to end at a finite ti

such that the sequence of rebounds of the mass has stoﬁﬁ@t‘}h represents a measure differential equation with fixed
andga(t5) = a(t%) = 0. Notice that the value of; does not point § = ¢ = 0, and impulsive disturbanceso; (¢ )8, =
need to be known explicitly for the stability anaIyS|s only itd % (k). i.e., (35) can be rewritten as

existence is needed, since both controllerdpand 2 are ) )

the same. Finally, it is noteworthy thgi(¢) is not used in the mg+ A g+ Aog = mz 05 (th)01 - (36)
control input on/;, and2zx1. It is therefore to be considered k

as a virtual signal on these intervals, used only for stability

purposes. This means in particular that one does not neediowe discussed in Section Ill, if;(t) < 0, then it makes no
calculate explicitlygy(t) on [t§, 77***]. Only its existence as Sense to speak of Lyapunov stability for (35) or (36) because
a twice-differentiable signal is néeded. This remark is also trike fixed point (if any) belongs 8¢ x R, i.e., hereg = ¢ =

for the signalgy(t) and the switching times used in the nex. Whengy(t) > 0, this may be done following the tools
section; see Fig. 2. Further insight on the choiceygf) is developed in [1].

given in Remark 7. Notice that due to the switching functiam(¢) in (32), the
We shall also consider the positive definite function transition phase dynamics are
G, 4 j= - >0 37
Vi) =V D) =t ez 7
= Lmd + IXi2 + i . i .
Mg T 3729 99 together with the restitution rule in (8). Hence the sequence
=z Pz (34) {tx} of impact times is guaranteed to exist with a finite
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accumulation point., (exactly the dynamics of the bouncingin (34) satisfies the requirements of Lemma 1. One therefore
ball; see, e.g., [35]). Let us analyze the variation§’ah (34). sees that the conditions of Lemma 1 do not necessarily require
1) OnQyy [see (35)]:V < —~(||z||) for suitable choice of that a switching (or discontinuous) controller be applied. This
A1 > 0, Ay > 0. Moreover, on[T2%, T#] = [TZ, ] ~depends on the task.

one obtains
B. Strongly Stable Task
oy (k) = gmle® = DGt + 1+ e)i(ty) In this section, we examine how the transition phase con-
- [mqa(ts) + cqa(ts)] troller U, and the desired trajectory influence the stability of
:%m((ﬁ — 1)[q‘(t,j)]2 the discrete mappind’s during the transition phase. From
<0 (38) (38) it follows that if g4(¢) = 0 then condition i) of Lemma 2

is satisfied. Condition ii) can be calculated as follows:

for all ¢ € [0, 1) and gu(t) as in (33). / Vit dt

2) OnfQop41: V =V =0, sinceq = ¢ = 0 (see Fig. 1). (tertass)

3) On I [See (37)]:V(t’}) =0< V(tlé) = %m[(j(té)]Q + — V(t_ ) _ V(t+)
Dalgth)]? + cq(th)q(th) > 0, and V' is uniformly ki k
bounded onf, k > 0. :/ {&[U—qu] + A2

Remark 5: The usefulness of the exponentially decaying (tistits)

qa(t) in (33) on the interva[T2*, t§] clearly appears in (38).

-2 U
;. U gt
This approach phase guarantees that the MDE in (36) satisfies teq e [m qu} }

the requirements of Lemma 1. This can be useful to define B s S A\ . 2\
grazing trajectorieg,(¢) satisfying mqq(t) + cqq(t) = v > - Gtesn) {(q + m Q)[ — mda] +cg } t

0. Eventual shocks with the surfage= 0 do not destroy the )\’2

Lyapunov stability of the scheme for sugh(t). + ?[q(%(tk-l—l) — g3 ()] (39)

Thus the following is true.
Claim 1: The system in (28) in closed loop with the conlf ga = 0 on (¢, tx41), then we get
troller in (29)—(32) and the switching times ang(¢) as in c
Fig. 1, is weakly stable. . Vit — VD) = / {(q + EQ)UJr Cq2} dt.
Notice that a stronger result is obtained, i@t) = §(t) =0 (tetit) 20
for t € Q, k£ > 1. This is due to the fact that we assume that (40)
the constraint position is knowry (=) 0. When the second one has to find out/(#) such that the sequende;} exists
free-motion phasef), starts, the initial conditions satisfy ith finite accumulation point and such that the right-hand

G(15) = ¢(I3) = 0. Hence, there is a perfect subsequeRide in (40) is negative. Let us considfer
tracking. This is obviously an ideal situation which will not

occur in practice. The assumption that the constrafi{ig) = Ui(@) =-(A+0o)g—Fy,  Fy>0,A>0. (41)
0 are known is nevertheless a current assumption in basjc.. i . . . .
theoretical studies [5], [7] of force/position control. As notegouc.e. first that introducing (41) |_nto_(28), we obtain the
in Remark 3, the inpul/; could be defined such that df, ransition phase closed-loop equation in (20)
trr1 =t +71, k £ N < +o0, before an eventual stabilization mi+ (A4 c)jg=—Fy. (42)
on the constraint or before another free-motion phase. In the
latter case one has to deﬁ,«;@ such thatV(t’;;) < V(t5), but Similarly, as in (37) one sees from (42) that the fixed point of
V (t%) may be strictly positive since the system keeps bounciifé€ closed-loop equation d belongs ta9® x IR = {0} x K.
on the surface durindy. Hence

Remark 6: Assume that/ = U, for all ¢ > 0, with ¢4 < " ke
0 a constant signal. Strictly speaking, there is no free-motion q(t) = L\ te + Q(tO)}
phase since the fixed point of the free-motion closed-loop m Ate §

{exp {— (t— to)} - 1}

equation does not belong to @) = (0, +o0) x IR. Hence

this task (PD control and a constraint) reducesR3 = )‘J}c
1o U, whereA[lp] < 400 andA[2] = +c if the transition + -4 (t —t&) + q(th). (43)
phase is stablef}, is the constrained phase. First note that Ate

since the unconstrained system is globally asymptoticallyfollows that q(t) — —oc ast — +oo, hence there exists
stable with the Lyapunov functiovi in (34), the sequencff,} a shock instant;, such thatg is discontinuous at;. Then
exists, because each time the system verifi¢s > O it tends  afterty, q(t) = [Fy/(A+¢) +q(tz’)][m/()\+c)](exp{_[()\+

to reach the constraint. After each rebound this is true. Frafyym](¢t — #)} — 1) + [Fu/(X + ¢)](t — t;) so that another
the fact that the dynamics are similar to those of a bouncigfiock must occur at; > #,.. We deduce that/, in (41)

ball with dissipation during the flight tlmes’oone SUpposes thatllIt has been experimentally shown in [20] that velocity feedback improves
too < —1—.0.0 SO th'at_ one Ca_n ChOOS[Q'WIth tf < +OO Then the system’s behavior during the transition phase. Hence the interest of
the positive definite functiorl{, obtained by takingyy = 0 consideringl; in (41) instead of; in (31).
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guarantees that the system collides the constraint after dagictionVx(§). We have thus transformed the continuous-time

rebound. Following the terminology in [28], the closed-loojhyapunov function (for free-motion phaseg) in (34) into a

system is a (nonautonomoufipw with collisions, i.e., the reduced-order discrete-time Lyapunov function (for impact or

concatenation of a flow (dynamics during flight-times) and tansition phasesys. However, it remains to determine how

diffeomorphism [restitution law at collisions; see (4)], whichio choosey,(t) to getgy = 0 only. A suitable signa,(¢) and

are both dissipative. The dissipativity of the diffeomorphismawitching times are depicted in Fig. 2. Let us recall thatipn

can guarantee some finite-time convergence properties duana(2; 1, only the existence aof,(¢) as a twice differentiable

the impulsive behavior at collisions. It is noteworthy that thsignal is needed.

Poincaré map associated with (42) and the sectiog O The main discrepancy betweep(t) and the switching

cannot be calculated explicitly. Indeed, this would require thenes in Figs. 1 and 2 is that in the second case, the approach

calculation of the impact times,, which are given byj(¢;,) = phase is entirely included inth.. The controllei; is therefore

o, i.e., switched on earlier. In the first case, the approach phase was
partially included in{2,;, which implies a particular form of

F, . m A+c t) to comply with Lemma 1 requirements.
PETRR b T B PR S WA :

A+ec A+ ¢ We thus have proved the following.
F, Claim 2: The system in (28) in closed-loop form with the
T xo (trpr —tr) = 0. (44)  controller in (29), (30), (32), (41), the switching times, and

q4(t) as in Fig. 2, is strongly stable.
Equation (44) is an implicit equation for the flight-time Remark 7—About the Choice of the Desired Trajecia(y):
N A tii1 — te. In the case of a bouncing ball, thelt follows from the conditions of L_emma 1 that one must
dissipation is generally assumed to be zere-¢ = 0), and the have qa(t) = 0 on Qg (constrame;g phases), and from
flight-times are easily calculable aS;; = (2m/F,)¢(¢+) Lemma 2 this must hgld also gmk- Onkone hand, it
(that can be obtained from (44) by taking the limitesc — 0 IS needed to satisfy/(¢3) < V(t;). If qa(t7) # O, then
and eliminating the solutiom\;4; = 0), which allows us to V(t}) = smlda(t)]* + 3A2laa(t) + cda(t})aa(t}) > O.
obtain the sequencelA;} and {¢(t})} explicitly. Now let Now for all ¢ >0, for all > 0, there existsI' € {2y
us conjecture the continuity of the solutions of (8) and (42uch that for allt > T, t € Quy, and for all||z(7§*)|] < 7,
with respect to the parameters, in particular+ c. Then ©One hasV(¢) < e. In other words the system may remain
the sequencdt;} must have a finite accumulation point forong enough in the free-motion pha&e; so that the required
all e € [0, 1).12 Moreover, the impact of the Poinéamap inequality in Lemma 1 may never be satisfied. On the other
P (th) — q‘(tktl) fixed point stability is provable as hand, application of L)_/apunoy techniques to study the stability
shown next, althougtPs; is not calculable explicitly. of the Poincaré map fixed poi@t; requirests(z) = 0 [39].

Indeed, one gets from (40) and (41) This result may appear as a consequence of the choice of
the positive definite functio” in (34). Notice, nevertheless,

_ + " tep that to guarantee negative definitenesstofon Qay, this
Vit — V() :—/ AG” (t) dt — Falq(t)]s, choice is the only possible one. Moreover, the fact that the
(t;\’tk“) desired trajectory is consistent with the constraints is a logical
_elote [+ feature.
2m ter Finally, we could have definedy(¢) that smoothly con-
- iFd q(t) dt verges to zero in finite time, witlg,(¢) > 0 for all ¢ > O,
m ty applying U,,. as long asg; > O (for instance as in Fig. 2,
<) / P2(6)dt but phoosingt’g such thatgy(t§) = 0). From a practical point
- (tetrsn) of view, this may not be a good choice since it means that
<0 (45) the robot has to slow down and attain the constraint with a

zero velocity onf)s;, £ > 1. Such a strategy is quite time-
consuming. For the sake of the generality of the analysis, we
consider in this paper less smooth strategies which involve

(41). Now sincey, = 0, it follows from (38) that i) in Lemma shocks between the robot’s tip (a simple mass for the moment)
2 is verified also. Moreover, notice thak(¢) = img? so and the obstacle. Note that if the constraint position is not well
. , =3

that Vs;(0) = 0. We conclude that the Poinéamap Px known, then impacts are likely to occur. It is therefore much

associated with the system in (28) in closed-loop form witfore interesting to consider collisions in a first theoretical

(41) has a Lyapunov stable fixed poiftt= 0 with Lyapunov framework. Moreover, impacts may be desired in certain
robotic tasks. Our goal in this study is therefore not to design

12This is the classical bouncing ball case with dissipation during fligha controller such that no collisions occur in the system. If this

times. We conjecture in fact that. is a continuous function of + ¢. Since o : -
o0 (0) < 50, thent.. (A-+¢) must be bounded for+¢ = 0 also. Although 2N be done, the stability framework can still be used. It is

there is no rigorous proof of this to date, it would be quite surprising that the

addition of any small amount of dissipativity during flight times destroys the

finite time convergence property. Anyway, we can always guarantee the finite

time stabilization by switching t@’; in (31) after a timet§ + 6. But then 13But notice that the conditions of Lemma 1 do not imply thatt) = 0
strong stability is lost. on .

sinceq(t) > 0 on (i, tx41) and Fy > 0, ¢ > O, g(#) = 0.
Hence condition ii) in Lemma 2 is verified = U, as in
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clear that a necessary and sufficient condition for no impactRemark 8: The controllers in (29)—(32), Fig. 1, and (29),

to occur is thatjue:m(t; ) = 0 [see (11)].

C. Dynamic State Feedback

(30), (32), (41), and Fig. 2 are discontinuous (measurable)
in ¢ and Lipschitz continuous in the state variables. They
verify Caratteodory-like conditions. Hence the existence of
the closed-loop solution is guaranteed for @alk 0 from [9,

It is interesting to notice that the proposed stability concegf, 2] with the modifications we discussed in SectioHThe
allows for dynamic state feedback controllers to be ConSider‘%ﬂrnamic feedback in (46) yields a closed loop that does not

Let us consider the control input

U(tv q, (jv 21, 22) :al(t)Unc(tv q, (L Zl) + a?(t)Ut(Q)

+ Oég(t)Uc(ZQ) (46)
where ¢4(t) is depicted in Figs. 1 or 2, and
Unc(tv q, (L Zl) :mq'd - )‘l(j - )‘2(1 - )‘321 (47)
g(t) on Qo
21 = h(t) on Ik (48)

0 on Qopy1

with h(¢) such that; (t§ +6) = 0 for somes > 0, t§ +6 < to,
and such that; (¢) is smooth enough

U(q) = =g — Fy (49)
A >0
Uc(z2) = =Fy+ 22 (50)
F—-Fy onQapyy
Zy = { 0 on I, (51)
0 on Q.

F is the force exerted by the constraint on the mass, and

m0={y omemioe
az(t) = { (1) gtrt]eerv&se
w0 ={0 otrorwise” )
Let us consider the positive-definite function
V(z) =V{(z, 22)
=2'Pz 4+ %z%
=27 <€ (1) ) x (53)

with 27" = (21, ¢, §), 27 = (27, z), P > 0 is the solution
of ATP + PA = —Q, Q > 0, wherei = Az is the state-
space representation 0fG = U,..(t, q, ¢, 1), A is @ Hurwitz
matrix for a suitable choice of{, A», A3 > 0. It can be shown
that the conditions of Lemma 1b) are satisfied with= »z and

€9 = 29, QL = UpQar, andQ? = U Q41 Depending on the

exactly fit within that framework. However, since it involves
only integrators, and thus additional continuous signals, the
extension should be possible.

V. n-DOF RGID MANIPULATORS

In this section, we discuss the extension of the one-dof
case ton-dof manipulators. In particular we highlight the
consequences of the generalized restitution rule defined in
Section II-A-2, through the generalized velocity transformation
in (11). It is shown that although weak stability can in general
be obtained, strong stability is more difficult to achieve when
the controller is designed from generalized coordinates whose
derivative does not correspond to the transformed velocity in
(12).

A. Integrable Transformed Velocities

Consider the rigidn-dof manipulator dynamics in (1),
the generalized velocities transformation in (11), and in (2)
orthogonal constraint#}(q) > 0, F»(q) > 0. Then one can
write the dynamical equation as

q'norm - Equ + nz[C(q, q)q =+ g(q)] :n(z;U

Geang — EoMg +tX[C(q, )i+ 9(@)] =tFU.  (54)

Equation (13) is true fot = ¢;, and

M= {4 M(q).

The restitution rules are defined in (14),

By = [I3 : Ogy ()]
By = [0(n—2)x2 D Io).

It clearly appears from (54) and (13) why the orthogonality
of the constraints allows us to treat thedof case as one-
dof cases. Between shocks there is a coupling between the
equations in (54) through the Coriolis and gravity terms, but
it can be compensated feia suitable feedback.

Let us apply a linearizing and decoupling control ingat
such that

Eﬂ U= Eﬂ [C(g: D)+ 9(0)]
- (B “

choseng,(t) and switching times as depicted in Figs. 1 and 2,
and a suitable\, > 0, the closed-loop scheme may be weakly 14Notice, nevertheless, thate (0, 1] in [9, Th. 2], i.e., plastic shocks are

or strongly stable; see [64].

not treated.

11



Hence we obtain the domain® exactly at the singularity 06®. This may be
guaranteed by taking the same initial conditions and switching
times in both equations governing(¢) and g»(¢) evolution,
and with restitution coefficients; = e,. However, the
surfacesY; and X, may in general be attained at different
times, and in any order. If one guarantees thatand V,
Gtang,n—2 = Un. decrease between any impacts, or if both functions satisfy
Let us assume that the system under consideration is writtite+1) < Vi(f), then the system is strongly stable. This is

in generalized coordinates as in Remark 4, i.e., the unilatefificult to obtain, however, because when the surfagey)
> 0 and vice-versa, which hampers to get

constraints are simply; > 0, g» > 0, and the generalized 'S attained.Fs(q) > _ nna _
velocity transformation in (11) is defined using a basig, t,) " inequality like in (45). A simpler solution is to impose
without normalization ofn, ; in (10). Indeed the definition Vid @ suitable choice of the desired trajectory that which
of normalized vectors,,_ ; in (10) is convenient for instance (€ System first stabilizes of;, and then onX, which

to write down the kinetic energy loss at impacts in a quif§%"éSPonds to two simple impacts. Since the dynamics are
simple form; see Section II. But it is not necessarily suitabRE€Ctly decoupled, such a choice is possible. However, the
for control purposes, i.e., folM to be a Jacobian. Most 9eneral problem of assuring strong stability with possible

importantly, let us do the assumption that there exist functioﬁylti?le imgactls remains gpe”r; even Iin the case of integrable
2(#) SUCh thatd, = diang. NOUCE thatduomm,; — g — g, Tansformed velocities and orthogonal constraints.

SO thatQHorm,i = i, Ez = {.’L’ * Qnorm,i = 0}1 1 = 11 2.

More generally, one would obtaifye:m ; = Fi(q). Now let B. Nonintegrable Transformed Velocities

(']'norm, 1=
Gnorm,2 = V2
Gtang,1 = U3 (56)

us define What if M is not a Jacobian, which might be indeed
. . the case in general? Then there exists @) such that
vi = a1 (Une(t, 63, Gis 21,1) + a2(O)Un(d) @#(t) = Grang in (11). It is still possible t0 havej.p,

+ az(t)Uc(22, 1) (57) track some desired signajd,,,(t), which means that the

. _ _ .components ofM(q)¢ alongt, ;, 1 < i < n—2 (orin
for ¢ = 1, 2, where all the terms are defined similarly as iBther words the components gfalong £, ; and calculated
(47) through (52), and with the kinetic metric) trackié, ., (¢). But the rest of the state
(58) Vector (position) evolution is not clearly related 16, (1)

since g(t) = ¢(0) + Jy M~Yg(r)][&]dr. On the other

Gtang

fori=3,..-,n, V;/hETE’h, 72 are suitably chosen such thahand it is difficult to design the overall scheme following the
the polynomialms= + vy1s + 72 is Hurwitz. Let us choose  mixed discrete continuous-time stability analysis of Lemma

Vi = qg,z - ’Y2q~t,i —V1Gt, i

. . 1, 2, using for instance the coordinates introduced in [5] (see
Viz) =2 Pizi + 23 Paza + 3721 Remark 4). Indeed, during the rebounds phase, the velocity
1 n componentsi, will in general possess jumps &f. Suppose
+ 52372 +) 2 Puz (59) thatz; € IR. Following [5] we get in theX-coordinates the
k=3 dynamical equatiort8
wherez? = (Z?, Zg, 22,1, %2,2, Zg, ERIIN 235) The function Mllﬁfl +M12ﬁ52 + Hl(q, q) =TU+ Tlpq
V in (59) can be written a¥ = Vi (z1, 22 1)+ Va(za, 22,2)+ =TU+ Px

Zzzg Vk(zk)r Wherez% = (Qt,m (jt,k)' ZiT = (zl,iv Gis q~z)'

1 = 1, 2. The P,’s are naturally defined from the Lyapunov

equations associated to each sub-closed-loop equation obtainbdre the various terms come from the nonsingular transfor-

by introducing (57) and (58) into (56). Suppose that thmation betweenX andq and are defined in [5]. In particular,

gainsy; and v, in (58) are suitably chosen so thit,|| M = EZHEJT fori = 1,2, j = 1,2, M is the inertia

is always decreasing3 < k£ < n. It is then not difficult matrix in X-coordinates, and

to show that the result of Lemma 1b) applies, wih = ) )

(Z?, 22,1, %3, "1, Zn), 5; = (Zg, 2272), and Q! = Ur Qa2 E = [1 : le(n—l)]v By = [O(n—l)xl :In—l]-

and Q2 = UpQox41. Indeed the last tern}"7_. Vi(z) in _ _ 7 -

(59) evolves indeEendently of the restkifngr%’a its de(\riv;tive Thus one has(;\r/{_lbf(no_% R, Mg = My G‘Rlx( Y, and

is given by—z}F'Qy21., Qi > 0, for all ¢ > 0. Also the terms Moz >0 € RV . The ter'msHl(q, q) andI;Ii(q, q)

Vi(z1, z2.1) andVa(zs, 2, 2) evolve independently, one fromcontain thelcentrlfugal and centripetal terrifg,€ R**" and

each other. The controller guarantees that the system stabili#es< R"=D%" are such that

in finite time on each surfacg, X. [Tl}
Strong stability is assured if the constraint is of codimension L

one. For the codimension-two case, let us note that (56)full rank. The vectorPx in (60) generically represents the

in closed-loop with (57), (58) satisfies the requirements afteraction force, i.e.Px = VxF(X)p, 1, andp, ; € Rt

Lemma 2, provided both surfaces; and X, are attained 15For the sake of briefness of the paper and since the McClamroch-Wang

simultaneously durindy. In other words, the system strikesransformation is now very well known, we do not provide details on it.

Mo + Maoia + Ha(g, ) =ToU (60)
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is the Lagrange multiplier associated with.X) = 0. In a The stability on€2y; and Q22441 can be shown with the
permanently constrained case = 0 and the second equationLyapunov functionV = Vi(Z;1, #1) + Va(Z2, Z2). V1 and
in (60) represents the motion along the constraint, see [$}1 are chosen similarly as in (34). Clearly 6l and for a

During a collision with the constraint, application of Newton'syitable choice of the gaink;, Ay, V < —’V[||(Xv X)H]- On

generalized restitution rule yields, (t{) = —ei1(¢;) since Qog1, if 214 = 0, thenV, = 0 andVy < —[||(F2, 22)||].
VxF(X)T=(1,0,---,0)(inthe case of a codimension-oneraking &, = z1, & = 2, O = UpQak, 02 = UrQaktt,
constraint). From (60) it therefore follows that and choosing feedback gaing, A, such that||(z%, #1)||
_ _ always decreases, the conditions required in b) of Lemma 1
M0z, (tr) + M2203,(tr) =0 (61)  are fulfilled.
whereas e On I;: It remains now to design the controller di
such that the conditio (tk) < V(t§) is satisfied. Let
v 7 _ us chooselU; as in (64), but withvy = —a, a >
Myyi (t) + Mi0s, () = pe. 1 (t)- (62) 0, and vy = ioq — AiZ2 — Aodz. The z;-dynamics

are therefore those of the vertical bouncing ball which
guarantees that; tends to zero in a finite time,,.
Indeed it can be calculated that the first shock occurs at

Thus the jumps ini; can be calculated from the jumps of
using the algebraic dynamics at impacts, as

_ e to = (1/a)i1(t§) +(1/a) /23 (t5) + 2ax1 (t5) +-t§ > tk.

2o (th) = =Moo Moyos, (th 0/} Lo SN/ 0 70

T (tr) M 20 (’f) ~ Then one obtainsi; (tf) = —e**ia(ty) and A, =
=My Mo (1+e)in(ty). (63) tr — te_1 = (2/a)é* @1 (ty ). From (63) one sees that the

o _ jumps in&, also converge exponentially toward zero in
The percussion is then obtgme_d from (_62_). The onl_y case.when finite time (provided of course < 1). They are given by
04, (t) = 0 is when the inertia matrix in{-coordinates is o4, (te) = a(e + 1)/2]M2_21M21Ak.

block diagonal, i.e.p 12 = 0. If such is the case, then the al- The functionV; can be analyzed exactly as we did for

gebraic impact equation in (62) yieldd 110, (t) = pe,1(tx) . . . .
and My05, (t,) = 0. Notice that the decoupling betweenV in (34). But contrarily to the integrable velocity casg,

#1 and i» is independent of the orthogonality condition (4j<S dlscontlfnuou:ls aikballthdougdh% Sb_7[||($2’ )|l on
between the constraints, which concerns herg whenz; € tk; tiro) for all k 2 0. Indeed one obtains
IR™, m > 2. Indeed withA,» = M,; = 0, the orthogonality
condition impliese? M, ¢; = 0,4, 5 € I, i # j, i.e., My v (1) = 0, (1) da () + d(ty)
is diagonal. : 2 2

We now illustrate the difficulty related to stabilization (in (68)
the sense of Lemmas 1 and 2) of a complete task for the
system in (60)' n what follows\ (#) = X(#) — Xa(t). The iy has no reason to be negative [see (63)]. Note that
desired trajectories arey; € CQ[IRJ’] andz14 can be chosen

. — Lo (+H) & Y
for instance as in Figs. 1 or 2. Let us choose the controllef& () = [l#2(ty), Za(ti)]Ak = frly. Recal thatkfrom
as follows. weak stability conditions, one must guarantee thWats:) >

_ . V(t’;;). Due to the jumps inV, during the rebounds phase,
* On {2y The control law is chosen as it is not obvious whether there exists a tirtle < 400 such
T — v, H, that this condition is satisfied. Indeed as we noted in Remark
[TJ Une = ML} } + [HJ (64) 7, if the system remains long enough §v;, then V(¢})
may be arbitrarily small. Butz(t..) can be strictly positive

with v; € R and v, € R"L. The first closed-loop Pecause of some positive jumps. Notice tHa(t, ) —

— cZa(tr) — Taa(tr)

2

equation is simplyi; = v; andis = v5 Va(t) = = Joinin) BN A2, Z2(tn), Z2(tF), a, t]dt for
some function3 > 0. We therefore have at our disposal three
v =Y parametersa, A1, A2. The first one can be used to decrease
R the flight-timesA, whereas the other two control the variation

X, )\1)‘2 k. (65) of V5 during flight-times. Assume that there exiats < +oco

AT < 400 and A3 < 4oo such that\; > Af, A2 > A3, and
a > a* implies ming, <1<¢, , 5(t) > |fx| for all £ > 0. This
insures that despite of possible positive jumps,decreases
nough between the collisions so thai(t, ) < Va(t).
Then existence of’; such thatV'(¢§) > V(t%) is guaranteed,
TLU, = My90s + Hy — P (66) and _its value does_not depend on the _vaIue_V(Qf’g). This
has important practical consequences since it means that the
length of the different phases can be chosen independently,
one from each other. Such conditions are evidently sufficient
only to prove stability of the task. For the sake of briefness of
the paper and since our goal is mainly to show which problems

Hence the closed-loop equationj’er )\1)% + XX =0.
* On Qar41: The open-loop system is obtained from (60
by takingz; = 0. The controller is chosen as

TQUC :MQQUQ + H2 (67)

wherevs = Zog —")\15:2 — A2Z2. Hence the closed-loop is
given bya:l =0,To+ANTa+XZ2=0 andpr = Pxd-
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are posed by the stabilization of a complete task, we do nassuming the initial time is if2):
investigate the calculations more deeply.

In conclusion, unlesg\t is a Jacobian and the closed-loop V() = V(0) =V (¢) = V(t}) + V(t}) — V(t5) + V(t5)
decoupled system (56) is used, there is no proper decoupling - V(t}l—l) + V(t}l—l) - V(tg_l)
at the collision instants; between “normal” and “tangential” n—1 0
components. Then the stability of a complete task is more +V(to )+ VIt — V(0). (69)
difficult to obtain. But the conditions for weak stability in
Lemma 1 are flexible enough to cope with such nondecouplée
cases. This constitutes the main discrepancy between robotic +
tasks involving several regimes of motion and simple tasks V(t) Z / Y|z ()||] dr
and is a consequence of rigid body generalized impacts.

émsequently, smcé’(t’ﬁ < V(&) we obtain

Al ()l dr

VI. CONCLUSIONS

In this paper, we have studied the control of a class of
mechanical systems subject to unilateral constraints on the
position. We have reviewed the basic facts on the dynamics 1
of such systems which are complbeybrid dynamical systems < =087 (O)A[Qp, 4]
merging ordinary and measure differential equations, algebrajc
constraints, and possibly some high-level control strate
In particular, attention has been focused on the definiti
and existence of the solutions of the closed-loop syste
as functions of local bounded variation in time and on trE)

S \:\

()l dr + > ov(t)
k
(70)

ow we can always find (or n) such that for an)V( ) < 400
1d for anyé > 0 the inequalityV/ () + v 371 (6) A[Qo, ] <
0) is not satisfied. Hence by contradiction we deduce that
= 0, and sincg|z(t)|| < a™! o V[z(t)] it follows that
N{—oo,ten} Z(t) = 0. Note thatift ¢ 2, the reasoning fails
ause fot € I the termsV (¢) — V(¢&) may be positive.
IC se b: The case b) can be similarly proved by noting that
B > B7(6) > 0 for all t € © implies that necessarily
| > 6, > 0 andlor||&|| > 8, > O for someé; and é.
en, using that|¢;]| and ||¢|| do not increase o®2? and

definition of the restitution rules. We have proposed a stabili
analysis framework that mixes and adapts some basic stabi
analysis for measure differential equations, hybrid dynamlc?
systems and discrete-time Poingampact maps. This allowed 12 (
us to analyze various discontinuous control strategies an
expected to provide a convenient stability analysis framewo . . . C o
for subsequent extension of the results toward other controlléts’ respectively, and that these time |nt-ervgls have n finite
(such as adaptive controllers) and for robustness analysis (s gResgue measure, one deduces that if eitheor &, is

as bad-timing effects for the switching times between differeﬁF'Ctly positive (i.e.§ > 0), then a contradiction appears and
controllers, or bad knowledge of the constraint pos|t|on51ecess"]‘”ly‘5 = 0.

First we have focused on a one-dof example, and we have Case c: From the assumptions there exists a tifie +oo
introduced various controllers to illustrate the different typeséUCh that for alk > 7', & (¢ ) s a constant veciak’,. Let us

of stability criteria we have proposed. Then we have discusségfine the functiorVx, (¢2) 2 V(Xy, &) — V(Xy, 0). Then

the n-dof case, and we have highlighted some difficultielr any 6 > 0 the setsVi'(6) = {&: Vx, (&) < 6} are
related to the possible nondecoupling between the “norm&aual to the setd ~[§ +- V(Xh 0O)]Nn{& = Xy} C R™

and the “tangential” parts of the velocities during the rebounddence they are bounded and closed, thus compact. Now
We hope that the developed tools provide a first satisfactokr. (0) = 0, Vx, (&) > 0, Vx, (t) = V(£) < —y2(ll&@)])
theoretical answer to Professor Paul’s statement [40] that “tfg ¢ # tx, andoy, (tx) = ov < 0. The conclusion follows
contact problem is unsolved for rigid manipulator, rigid senso¥imilarly as in a). The conditions apply when for instance
rigid environment problems,” that is naturally embedded int8 (€1, §&2) = Vi(&) + V2(&2), Vi(&) = 0, V(&) 2 0.
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