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Abstract
We consider a fragment of a cyclic sequent proof system for Kleene algebra, and we see it as a
computational device for recognising languages of words. The starting proof system is linear and we
show that it captures precisely the regular languages. When adding the standard contraction rule,
the expressivity raises significantly: the system captures exactly the class of deterministic logspace
languages. We prove this result by introducing as an intermediary model a new notion of multihead
finite automata where heads can jump.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Cyclic proofs, regular languages, multihead automata, transducers

Related Version An earlier version of this paper appears in Proc. FSTTCS 2019; we include more
proofs here, and we prove that cyclic proofs actually capture all DLogSpace languages—something
we had conjectured not to be true in the FSTTCS paper.

Funding This work has been funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157), and was supported by the
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements
d’Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

1 Introduction

Cyclic proof systems have received much attention in the recent years. Proofs in such systems
are graphs rather than trees, and they must satisfy a certain validity criterion.

Such systems have been proposed for instance by Brotherston and Simpson in the context
of first order logic with inductive predicates [4], as an alternative to the standard induction
schemes. The infinite descent principles associated to cyclic proofs are in general at least as
powerful as the standard induction schemes, but the converse is a delicate problem. It was
proven only recently that it holds in certain cases [3, 17], and that there are also cases where
cyclic proofs are strictly more expressive [2].

Cyclic proof systems have also been used in the context of the µ-calculus [8], where we
have inductive predicates (least fixpoints), but also coinductive predicates (greatest fixpoints),
and alternation of those. Proof theoretical aspects such as cut-elimination were studied
from the linear logic point of view [11, 10], and these systems were recently used to obtain
constructive proofs of completeness for Kozen’s axiomatisation [9, 1].

Building on these works, Das and Pous considered the simpler setting of Kleene algebra,
and proposed a cyclic proof system for regular expression containments [6]. The key observa-
tion is that regular expressions can be seen as µ-calculus formulas using only a single form of
fixpoint: the definition of Kleene star as a least fixpoint (e∗ = µx.1 + e · x). Their system is
based on a non-commutative version of µMALL [10], and it is such that a sequent e ` f is
derivable if and only if the language of e is contained in that of f . This work eventually led
to an alternative proof of left-handed completeness for Kleene algebra [5].
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2 Cyclic Proofs and Jumping Automata

In the latter works, it is natural to consider regular expressions as datatypes [12], and
proofs of language containments as total functions between those datatypes [13]. Such a
computational interpretation of cyclic proofs was exploited to prove cut-elimination in [7].

We follow the same approach here, focusing on an even simpler setting: our sequents
essentially have the shape A∗ ` 2, where A is a finite alphabet and 2 is a type (or formula)
for Boolean values. Cyclic proofs no longer correspond to language containments: they give
rise to functions from words to Booleans, i.e. , formal languages. We characterise the class
of languages that arise from such proofs.

If we keep a purely linear proof system, as in [6, 7], we show that we obtain exactly the
regular languages. In contrast, if we allow the contraction rule, we can express non-regular
languages. We show that in this case, we obtain exactly the deterministic logarithmic space
languages (DLogSpace). This is done by introducing a new class of automata, which we
call jumping multihead automata1. Intuitively, when reading a word, a multihead automaton
may only move its heads forward, letter by letter, while a jumping multihead automaton also
has the possibility to let a given head jump to the position of another head. This gives the
opportunity to record positions in the word, and to repeatedly analyse the suffixes starting
from those positions. Cyclic proofs translate naturally into this new model that is in fact
equivalent to the two-way multihead automata that were studied in the literature [14] and
characterise DLogSpace.

Outline.

We define our cyclic proof system and its computational interpretation in Sect. 2. Then we
define jumping multihead automata and show they define the same languages as two-way
multihead automata in Sect. 3. We prove the equivalence between the two models in Sect. 4
(Thm. 22), from which the characterisations of DLogSpace and regular languages follow.
We discuss directions for future work in Sect. 5.

Notation.

Given sets X,Y , we write X × Y for their Cartesian product, X ] Y for their disjoint union,
and X∗ for the set of finite sequences (lists) over X. Given such a sequence l, we write |l| for
its length and li or l(i) for its ith element. We write B for the set {ff , tt} of Booleans, and
〈x, y, z〉 for tuples. We use commas to denote concatenation of both sequences and tuples,
and ε to denote the empty sequence. We write Im(f) for the image of a function f .

2 Infinite proofs and their semantics

We let a, b range over the letters of a fixed and finite alphabet A. We work with only two
types (or formulas): the type A of letters, and the type A∗ of words. We let e, f range over
types, and E,F range over finite sequences of types. Given such a sequence E = e1, . . . , en,
we write [E] for the set e1 × · · · × en.

We define a sequent proof system, where sequents have the shape E ` 2, and where proofs
of such sequents denote functions from [E] to B, i.e. subsets of [E].

1 This new class should not be confused with the jumping finite automata introduced by Meduna and
Zemek [15], which are not multihead.
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E,F ` 2
w
E, e, F ` 2

E, e, e, F ` 2
c

E, e, F ` 2
(E,F ` 2)a∈A

A
E,A, F ` 2

E,F ` 2 E,A,A∗, F ` 2
∗

E,A∗, F ` 2
t
` 2

f
` 2

Figure 1 The rules of C.

f
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f
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t
` 2w

A∗ ` 2
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A∗ ` 2
A

A,A∗ ` 2
∗

A∗ ` 2

...

A∗ ` 2
A

A,A∗ ` 2
∗

A∗ ` 2
•

• •

•
...

A∗ ` 2

...

A∗ ` 2w
A∗, A∗ ` 2

w
A,A∗, A∗ ` 2

∗
A∗, A∗ ` 2

c
A∗ ` 2

•

Figure 2 Two regular preproofs; only the one on the left is valid.

2.1 Infinite proofs
We now define the cyclic proof system whose six inference rules are given in Fig. 1. In
addition to two structural rules (weakening and contraction), we have a left introduction
rule for each type, and two right introduction rules for Boolean constants. Note that there
is no exchange rule, which explains why the structural and left introduction rules use two
sequences E and F rather than a single one.

The left introduction rule for type A∗ corresponds to an unfolding rule, looking at A∗
as the least fixpoint expression µX.(1 ] A × X) (e.g., from µ-calculus). The left premiss
intuitively corresponds to the case of an empty list, while the right premiss covers the case
of a non-empty list. Except from weakening and contraction, those rules form a very small
fragment of those used for Kleene algebra in [7] (interpreting A as a sum 1 + · · ·+ 1 with |A|
elements and 2 as the binary sum 1 + 1).

Note that we are not interested in provability in the present paper: every sequent can be
derived trivially, using weakenings and one of the two right introduction rules. The objects
of interest are the proofs themselves; this explains why we have two axioms for proving the
sequent ` 2: they correspond to two different proofs.

We set B = A ] {0, 1}. A (possibly infinite) tree is a non-empty and prefix-closed subset
of B∗, which we view with the root, ε, at the bottom; elements of B∗ are called addresses.

I Definition 1. A preproof is a labelling π of a tree by sequents such that, for every node v

with children v1, . . . vn, the expression
π(v1) · · · π(vn)

π(v)
is an instance of a rule from Fig. 1.

A preproof is regular if it has finitely many distinct subtrees, i.e. it can be viewed as the
unfolding of a finite graph. A preproof is affine if it does not use the c-rule.

If π is a preproof, we note Addr(π) its set of addresses, i.e. its underlying tree. The
formulas appearing in lists E,F of any rule instance are called auxiliary formulas. The non
auxiliary formula appearing in the conclusion of a rule is called the principal formula.

A ∗ address in a preproof π is an address v which is the conclusion of a ∗ rule in π.
Two examples of regular preproofs are depicted in Fig. 2. The alphabet A is assumed to

have exactly two elements, so that the A rule is binary. Backpointers are used to denote
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circularity: the actual preproofs are obtained by unfolding the graphs. The preproof on the
right might look suspicious: it never uses the axioms t or f . In fact, only the one on the
left satisfies the validity criterion which we define below. Before doing so, we need to define
a notion of thread, which are the branches of the shaded trees depicted on the preproofs.
Intuitively a thread follows a star formula occurrence along a branch of the proof. First we
need to define parentship and ancestor relations.

I Definition 2. A [star] position in a preproof π is a pair 〈v, i〉 consisting of an address v
and an index i ∈ [0; |E| − 1], where π(v) = E ` 2 [and Ei is a star formula]. A position
〈w, j〉 is the parent of a position 〈v, i〉 if |v| = |w| + 1 and, looking at the rule applied at
address w the two positions point at the same place in the lists E,F of auxiliary formulas, or
at the formula e when this is the contraction rule, or at the principal formula A∗ when this
is the ∗ rule and v = w1. We write 〈v, i〉C 〈w, j〉 in the former cases, and 〈v, i〉 C· 〈w, j〉 in
the latter case. Position 〈w, j〉 is an ancestor of 〈v, i〉 when those positions are related by the
transitive closure of the parentship relation.

The graph of the parentship relation is depicted in Fig. 2 using shaded thick lines and an
additional bullet to indicate when we pass principal star steps (C·). Note that in the ∗ rule,
the principal formula occurrence A∗ is not considered as a parent of the occurrence of A in
the right premiss.

We can finally define threads and the validity criterion.

I Definition 3. A thread is a possibly infinite branch of the ancestry graph. A thread is
principal when it visits a ∗ rule through its principal formula. A thread is valid if it is
principal infinitely often.

In the first preproof of Fig. 2, the infinite green thread 〈ε, 0〉 B· 〈1, 1〉B 〈11, 0〉 B· 〈111, 1〉B
〈1111, 0〉 . . . is valid, as well as every other infinite thread. There is no valid thread in the
second preproof: taking a principal step forces the thread to terminate.

I Definition 4. A preproof is valid if every infinite branch contains a valid thread. A proof
is a valid preproof. We write π : E ` 2 when π is a proof whose root is labelled by E ` 2.

In the examples from Fig. 2, only the preproof on the left is valid, thanks to the infinite
green thread. The second preproof is invalid: infinite threads along the (infinitely many)
infinite branches are never principal.

This validity criterion is essentially the same as for the system LKA [7], which in turn is
an instance of the one used for µMALL [10]: we just had to extend the notion of ancestry
to cover the contraction rule. Note however that the presence of this rule induces some
subtleties. For instance, while in the cut-free fragment of LKA, a preproof is valid if and
only if it is fair (i.e. every infinite branch contains infinitely many ∗ steps [7, Prop. 8]), this
is no longer true with contraction: the second preproof from Fig. 2 is fair and invalid.

In the affine case, due to the fragment we consider here, and since we do not include cut,
the situation is actually trivial:

I Proposition 5. Every affine preproof is valid.

2.2 Computational interpretation of infinite proofs
We now show how to interpret a proof π : E ` 2 as a function [π] : [E]→ B. Since proofs
are not well-founded, we cannot reason directly by induction on proofs. We use instead the
following relation on partial computations, which we prove to be well-founded thanks to the
validity criterion.
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I Definition 6. A partial computation in a fixed proof π is a pair 〈v, s〉 consisting of an
address v of π with π(v) = E ` 2, and a value s ∈ [E]

Given two partial computations, we write 〈v, s〉 ≺ 〈w, t〉 when
1. |v| = |w|+ 1,
2. for every i, j such that 〈v, i〉C 〈w, j〉, we have si = tj, and
3. for every i, j such that 〈v, i〉 C· 〈w, j〉, we have |si| < |tj |.
The first condition states that the subproof at address v should be one of the premisses of
the subproof at w; the second condition states that the values assigned to star formulas
should remain the same along auxiliary steps; the third condition ensures that they actually
decrease in length along principal steps.

I Lemma 7. The relation ≺ on partial computations is well-founded.

Proof. Suppose by contradiction that there exists an infinite descending sequence. By
condition 1/, this sequence corresponds to an infinite branch of π. By validity, this branch
must contain a thread which is principal infinitely many times. This thread contradicts
conditions 2/ and 3/ since we would obtain an infinite sequence of lists of decreasing
length. J

I Definition 8. The return value [v](s) of a partial computation 〈v, s〉 with π(v) = E ` 2
is a Boolean defined by well-founded induction on ≺ and case analysis on the rule used at
address v.
w : [v](s, x, t) , [v0](s, t)
c : [v](s, x, t) , [v0](s, x, x, t)
t : [v]() , tt
f : [v]() , ff

A : [v](s, a, t) , [va](s, t)
∗ : [v](s, l, t) is defined by case analysis on the list l:

[v](s, ε, t) , [v0](s, t)
[v](s, x :: q, t) , [v1](s, x, q, t)

In each case, the recursive calls are made on strictly smaller partial computations: they occur
on direct subproofs, the values associated to auxiliary formulas are left unchanged, and in
the second subcase of the ∗ case, the length of the list associated to the principal formula
decreases by one.

I Definition 9. The semantics of a proof π : E ` 2 is the function [π] : s 7→ [ε](s).

(Note that we could give a simpler definition of the semantics for affine proofs by reasoning on
the total size of the arguments; such an approach however breaks in presence of contraction.)

Let us compute the semantics of the first (and only) proof in Fig. 2. Recall that A has
two elements in this example, so set A = {a, b} (and thus B = {0, 1, a, b}), and let us use a
(resp. b) to navigate to the left (resp. right) premiss of the A rule. Starting from words aba
and aab, we get the two computations on the left below:

[ε](ab)
= [1](a, b)
= [1a](b)
= [1a1](b, ε)
= [1a1b](ε)
= [1a1b0]()
= ff

[ε](aab)
= [1](a, ab)
= [1a](ab)
= [1a1](a, b)
= [1a1a](b)
= [1a1a0]()
= tt

[ε](ε) = ff
[ε](au) = [ε](u)
[ε](bu) = [1a](u)

[1a](ε) = ff
[1a](au) = tt
[1a](bu) = [ε](u)

Using the fact that the subproofs at addresses ε, 1a and 1a1b are identical, we can also
deduce the equations displayed on the right, which almost correspond to the transition
table of a deterministic automaton with two states ε and 1a. This is not strictly speaking a
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π

E,F ` 2

...

E,A∗, F ` 2
wA

E,A,A∗, F ` 2
∗

E,A∗, F ` 2
•

Figure 3 Weakening stars (Prop. 10).

ff

tt

...

A∗ ` 2
ff

×

...

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
∗

A∗, A∗ ` 2
c

A∗ ` 2 ∗
A∗ ` 2
•

•
•

•
•
•

•

Figure 4 A regular proof for {a2n

| n ∈ N}.

deterministic automaton because of the fifth line: when reading an a, the state 1a decides to
accept immediately, whatever the remainder of the word. We can nevertheless deduce from
those equations that ε recognises the language A∗aaA∗.

Trying to perform such computations on the invalid preproof on the right in Fig. 2 gives
rise to non-terminating behaviours, e.g., [ε](ε) [0](ε, ε) [00](ε) . . . and [ε](x :: q) 
[0](x :: q, x :: q) [01](x, q, x :: q) [010](q, x :: q) [0100](x :: q) . . . .

Before studying a more involved example, we prove the following property:

I Proposition 10. The weakening rule (w) is derivable in a way that respects regularity,
affinity, existing threads, and the semantics.

Proof. When the weakened formula is A, it suffices to apply the A rule and to use the
starting proof |A| times. When the weakened formula is A∗, assuming a proof π : E,F ` 2, we
construct the proof in Fig. 3. The step marked with wA is the previously derived weakening
on A. The preproof is valid because this step does preserve the blue thread. J

As a consequence, the full proof system is equivalent to the one without weakening. We shall
see that the system would remain equally expressive with the addition of an exchange rule
(see Rem. 26 below), but that the contraction rule instead plays a crucial role and changes
the expressive power, going from regular languages to DLogSpace languages.

Let us conclude this section with an example beyond regular languages: we give in Fig. 4
a proof whose semantics is the language of words over a single letter alphabet, whose length
is a power of two (a language which is not even context-free). Since the alphabet has a single
letter, the A rule becomes a form of weakening, and we apply it implicitly after each ∗ step.
We also abbreviate subproofs consisting of a sequence of weakenings followed by one of the
two axioms by tt, ff , or just × when it does not matter whether we return true or false.

Writing n for the word of length n and executing the proof on small numbers, we observe

[ε](0) = [0]() = ff
[ε](1) = [1](0) = [10](0, 0) = [100](0) = tt
[ε](2) = [1](1) = [10](1, 1) = [101](1, 0) = [1010](1) = [ε](1) = tt
[ε](3) = [1](2) = [10](2, 2) = [101](2, 1) = [1011](2, 0) = ff
[ε](4) = [1](3) = [10](3, 3) = [101](3, 2) = [1011](3, 1) = [10111](3, 0) = [101111](2, 0)

= [101](2, 0) = [1010](2) = [ε](2) = tt

More generally, the idea consists in checking that the given number can be divided by two
repeatedly, until we get 1. To divide a number represented in unary notation by two, we copy
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that number using the contraction rule, and we consume one of the copies twice as fast as the
other one (through the three instances of the ∗ rule used at addresses 101, 1011, and 10111);
if we reach the end of one copy, then the number was even, the other copy precisely contains
its half, and we can proceed recursively (through the backpointer on the left), otherwise the
number was odd and we can reject. The subproof at address 101110 is never explored: we
would be in a situation where the slowly consumed copy gets empty before the other one.

Finally note that every (even undecidable) language can be represented using an infinite
(in general non regular) proof: apply the left introduction rules eagerly, and fill in the left
premisses of the ∗ rules using the appropriate axiom.

3 Jumping multihead automata

Now we introduce the model of Jumping Multihead Automata (JMA) and establish its
equivalence with the usual two-way multihead model investigated in the literature. We will
give direct translations between JMA and cyclic proofs in Sect. 4.

3.1 Definition and semantics of JMAs
Let A be a finite alphabet and / /∈ A be a fresh symbol. We note A/ = A ∪ {/}.

IDefinition 11. A jumping multihead automaton (JMA) is a tupleM = 〈S, k, s0, sacc, srej , δ〉
where:

S is a finite set of states;
k ∈ N is the number of heads;
s0 ∈ S is the initial state;
sacc ∈ S and srej ∈ S are final states, respectively accepting and rejecting;
δ : Strans × (A/)k −→ S × Actk is the deterministic transition function, where Strans ,
S \ {sacc, srej} is the set of non-final states, and Act , {�, �} ∪ {J1, J2, . . . , Jk}.

In the transition function, symbols � and � stand for “stay in place” and “move forward”
respectively, and action Ji stands for “jump to the position of head number i”. Intuitively,
if the machine is in state s, each head j reads letter ~a(j), and δ(s,~a) = (s′, α), then the
machine goes to state s′ and each head j performs the action α(j). Accordingly, to guarantee
that the automaton does not try to go beyond the end marker of the word, we require that if
δ(s,~a) = (s′, α), then for all j ∈ J1, kK with ~a(j) = / we have α(j) 6= �.

A configuration of a JMAM = 〈S, k, s0, sacc, srej , δ〉 is a triple c = (w, s, p) where w is
the input word, s ∈ S is the current state, and p = (p1, . . . , pk) ∈ J0, |w|Kk gives the current
head positions. If the position pi is |w| then the head i is scanning the symbol /.

The initial configuration on an input word w is (w, s0, (0, . . . , 0)). Let w = a0a1 . . . an−1
be the input and an = /. Let (w, s, (p1, . . . , pk)) be a configuration with s ∈ Strans, and
(s′, (x1, . . . , xk)) = δ(s, (ap0 , . . . apk

)) be given by the transition function. Then the successor
configuration is defined by (w, s′, (p′1, . . . , p′k)), where for all i ∈ J1, kK p′i depends on xi in
the following way:

(1) p′i = pi if xi = � (2) p′i = pi + 1 if xi = � (3) p′i = pj if xi = Jj

A configuration (w, s, p) is final if s ∈ {sacc, srej}. It is accepting (resp. rejecting) if
s = sacc (resp. s = srej). A run of a JMAM on w is a sequence of configurations c0, c1, . . . , cr

on w where c0 is the initial configuration, and ci+1 is the successor configuration of ci for all
i. If cr is rejecting (resp. accepting), we say that the word w is rejected (resp. accepted) by
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M. We say thatM terminates on w if there is a maximal finite run ofM on w, ending in a
final configuration. The language ofM, noted L(M), is the set of finite words accepted by
M, i.e. the set of words w ∈ A∗ such thatM has an accepting run on w.

I Example 12. The language L = {a2n | n ∈ N} can be recognised by the following JMA
with two heads. (Missing transitions all go to the rejecting final state.)

s0 s1 s2

srej

sacc

(a, /),�, J1
(a, a),�, �

(a, a), �, �

(a, /), �,�
(/, /),�,�

(a, /),�,�

The idea behind the automaton is similar as the proof given in Fig. 4: one head advances
at twice the speed of the other. When the fast head reaches the end of the word, it either
rejects if the length is odd and at least 2, or jumps to the position of the slow head located
in the middle of the word. From there, the automaton proceeds recursively.

Notice that on an input word u, three scenarios are possible: the automaton accepts by
reaching sacc, rejects by reaching srej , or rejects by looping forever. In order to translate
JMAs into cyclic proofs, whose validity criterion ensures termination, it is convenient to
forbid the last scenario. We ensure such a property by a syntactic restriction on the transition
structure of JMAs.

The transition graph of a JMAM = 〈S, k, s0, sacc, srej , δ〉 is the labelled graph GM =
(S,E), where the vertices are states S, and the set of edges is E ⊆ S × S ×Actk, defined by
E = {(s, s′, α) | ∃~a ∈ (A/)k, δ(s,~a) = (s′, α)}.

A JMA M is progressing if for every cycle e1e2 . . . el in its transition graph, where
ei = (si, si+1, αi) for each i ∈ J1, lK and sl+1 = s1, there exists a head j ∈ J1, kK with
α1(j)α2(j) . . . αl(j) ∈ (�∗ · � ·�∗)+. (Intuitively we require that for every loop, one of the
head does not jump during this loop and moves forward at least once).

The JMA from Ex. 12 always terminates, but it is not progressing due to the loop
on the initial state. It could easily be modified into a progressing JMA by introducing a
new intermediary state instead of looping on s0. In fact, even in cases where a JMA can
indefinitely loop on some inputs, one can always turn it into a progressing one recognising
the same language. Hence all JMAs are assumed to be progressing from now on.

I Lemma 13. Every JMA can be converted into a progressing JMA with the same language.

Proof. We use the fact that the number of possible configurations on a given word w is
bounded polynomially in the length of w. We add heads to the JMA that just advance
counting up until this bound, making the JMA progressing. Details are given in the
Appendix. J

I Lemma 14. Given a JMA M, we can check in NL whether M is progressing. If M is
progressing, then it terminates on all words.

3.2 Expressive power of JMAs
Write JMA(k) for the set of languages expressible by a progressing JMA with k heads. JMAs
encode precisely the DLogSpace languages; one-head JMAs capture exactly the regular
languages.
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I Theorem 15.
⋃

k≥1 JMA(k) = DLogSpace

I Lemma 16. JMA(1) = Reg.

The lemma is trivial, and the forward direction of Thm. 15 is relatively easy:

I Lemma 17.
⋃

k≥1 JMA(k) ⊆ DLogSpace.

Proof. It is straightforward to translate a JMA with k heads into a Turing machine using
space O(logk(n)), by remembering the position of the heads. J

To obtain the other direction of Thm. 15, we go through a notion of (non-jumping)
multihead automata that has already been investigated in the literature [14]. They consist
of automata with a fixed number of heads (k) that can either only go from left to right,
(one-way automata, 1DFA(k)), or in both directions (two-way automata, 2DFA(k)). We
briefly compare JMAs to those automata, starting with the one-way case.

First of all, it is clear that for all k ≥ 1, 1DFA(k) ⊆ JMA(k) (in particular, because
1DFAs can be assumed to be progressing without increasing the number of heads).
I Remark 18. Since emptiness, universality, regularity, inclusion and equivalence are unde-
cidable for 1DFAs with 2 heads [14], these problems are also undecidable for JMAs with 2
heads.

Concerning two-way automata (2DFA) it is known that
⋃

k≥1 2DFA(k) = DLogSpace [14],
so that by Lem. 17 every JMA can be translated into a deterministic multihead two-way
automaton, not necessarily preserving the number of heads. We prove the converse direction
with a direct transformation of a two-way multihead automaton into a jumping multihead
one. We start by giving an example of a seemingly 2-way behaviour that can be simulated
by JMAs.

I Example 19. The palindrom language L = {w | w ∈ A∗ ∧ w = wR} where wR denotes
the reverse of w is recognizable by a JMA with 4 heads. Let us call these 4 heads h0, hlin,
hlin and htemp in the following. The head h0, will always stay at the beginning of the word
to allow other heads to jump back to this position. The head hlin will linearly read the word
from left to right. The head hlin will simulate the linear reading of the word from right to
left by doing multiple jumps. The head htemp will help hlin to find the position of its next
move.

In the initial configuration of the automaton, all the reading heads are locating on the
first letter of the input word. Then, each time hlin is reading the i-th letter we do as follow:
– hlin and htemp jump respectively on h0 and hlin and then htemp moves one step right.

They are exactly i letters apart.
– hlin and htemp move right synchronously until htemp is reading the end symbol of the

word / (i.e. the (n+ 1)-th letter). Then hlin is reading the (n+ 1− i)-th letter.
The automaton compares the letters read by hlin and hlin. If they are different it halts and
rejects the word. Otherwise hlin moves right. If it reaches the end symbol of the word / then
the automaton halts and accepts, otherwise we do the same process again.

The automaton recognizing the palindrom language works by simulating a head that
reads the word from the right to the left thanks to an auxiliary head and multiple jumps.
We can generalize this process to simulate any two-way multihead automaton.

I Lemma 20. LetM be a two-way (deterministic) multihead automaton with k heads. Then
there existsM′ a JMA with 2k + 2 heads such that L(M) = L(M′).
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Proof. We constructM′ as follows.
For each head h ofM we add another reading head h′ that will be always kept at the

symmetric postion of h (i.e. when h will be reading the i-th letter, h′ would be reading the
n− i+ 1-th letter). Moreover we add a head h0 that will always stay at the begining of the
word and a head htemp that we will use to make a given head move one letter left.

Each time a head h moves (left or right) inM, inM′ the corresponding head h will do
the same move and its symmetric head h′ the inverse move. We always begin by doing the
right move and then use the fact that we have a head at the symmetric position to find the
position where the second head should move with htemp. For simplicity let’s assume that h
moves right so that h′ should move left. If h is reading the i-th letter then we have to find
the n− i+ 1-th letter. We proceed as follow:
– h′ and htemp jump respectively on h0 and h and then htemp moves one step right. They

are exactly i letters apart.
– h′ and htemp move right synchronously until htemp is reading the end symbol of the word

/ (i.e. the n+ 1-th letter). Then h′ is reading the n+ 1− i-th letter.
J

Since it was shown in [18] that 2DFAs are strictly more expressive than 1DFAs, it is also
the case that JMAs are stictly more expressive than 1DFAs. We refine this result here, and
show that JMAs with 2 heads can already compute langages that are not computable by
1DFAs with any number of heads.

I Proposition 21. For all k ≥ 1, JMA(2) * 1DFA(k).

Proof. It is proven in [18] that (1DFA(k))k∈N forms a strict hierarchy, by defining a language
Lb that is recognisable by a 1DFA with k heads if and only if b <

(
k
2
)
. We slightly modify

these languages so that they become expressible with a two-head JMA while keeping the
previous characterisation for 1DFA. Details are given in the Appendix. J

4 Equivalence between JMAs and cyclic proofs

We now turn to proving the following equivalence.

I Theorem 22. The languages recognised by JMAs are those recognised by regular proofs.

Together with Thm. 15 we deduce that regular proofs recognise exactly the DLogSpace
languages. We prove the theorem in the next two subsections, by providing effective
translations between the two models. Notice that by Rem. 18, the theorem implies that for
regular proofs π, emptiness and other basic properties of [π] are undecidable.

4.1 From JMAs to cyclic proofs
LetM = 〈S, k, s0, sacc, srej , δ〉 be a jumping multihead automaton. We want to build a regular
proof πM of A∗ ` 2 such that [πM] = L(M). A difficulty is that heads in the automaton
may stay in place, thus reading the same letter during several steps. In contrast the letters
are read only once by cyclic proofs, so that we have to remember this information. We do
so by labelling the sequents of the produced proof πM with extra information describing
the current state of the automaton. If k′ ∈ N, let Fk′ be the set of injective functions
J1, k′K→ J1, kK. A labelled sequent is a sequent of the form (A∗)k′ ` 2 together with an extra
label in S ×Fk′ × (A ∪ {�, /})k.
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The intuitive meaning of a label (s, f, ~y) is the following: s is the current state of the
automaton, f maps each formula A∗ of the sequent to a head of the automaton, and ~y stores
the letter that is currently processed by each head. Symbol � is used if this letter is unknown,
and the head is scheduled to process this letter and move to the right. The values intuitively
provided to each A∗ formula of the sequent are the suffixes to the right of the corresponding
heads of the automaton. On the examples, labels will be written in grey below the sequents.

It will always be the case that if the label of (A∗)k′ is (s, f, ~y), then Im(f) ⊆ {i | yi 6= /},
i.e. all heads reading symbols from A ∪ {�} correspond to a formula A∗ in the sequent. We
say that a sequent is fully labelled if its label does not contain �.

The construction of πM will proceed by building gadgets in the form of proof trees, each
one (apart from the initial gadget) connecting a labelled sequent in the conclusion to a finite
set of labelled sequents in the hypotheses. If some labelled sequents in the hypotheses have
already been encountered, we simply put back pointers to their previous occurrence. Since
the number of labelled sequents is finite, this process eventually terminates and yields a
description of πM.

When describing those gadgets we abbreviate sequences of inference steps or standalone
proofs using double bars labelled with the involved rule names.

Initial gadget. The role of the initial gadget is to reach the first labelled sequent from the
conclusion A∗ ` 2. It simply creates k identical copies of A∗. This expresses the fact that the
initial configuration is 〈w, s0, (0, 0, ...0)〉. We note idk the identity function on J1, kK. The
initial labelled sequent is (A∗)k ` 2 together with label (s0, idk, (�, . . . ,�)).

The initial gadget is as follows:
(A∗)k ` 2

s0,idk,(�,...,�)
c, . . . , c

A∗ ` 2
Reading gadget. Every time the label (s, f, ~y) of the current address is not fully labelled,
we use the gadget readi, where i = min{j | ~y(j) = �} to process the first unknown letter.

We note i′ = f−1(i) the position of the A∗ formula corresponding to head i and define
the gadget readi as follows:

(A∗)k′−1 ` 2
s,f ′,(y1,...,yi−1,/,...,yk)

( (A∗)k′ ` 2
s,f,(y1,...,yi−1,a,...,yk)

)
a∈A

A
(A∗)i′−1, A,A∗, (A∗)k′−i′ ` 2

∗
(A∗)k′ ` 2

s,f,(y1,...,yi−1,�,...,yk)

where f ′(x) ={
f(x) if 1 ≤ x < i′

f(x+ 1) if i′ ≤ x ≤ k′ − 1

Transition gadget. Thanks to the readi gadgets, we can now assume we reach a fully labelled
sequent, with label of the form (s, f, (y1, . . . , yk)). If s /∈ {sacc, srej}, we use a transition
gadget, whose general shape is as on the right below, with (s′, α) = δ(s, (y1, . . . , yk)):

This gadget is designed such that for all i ∈ J1, kK:
if α(i) = � then zi = yi

if α(i) = � then zi = �,
if α(i) = Jj then zi = yj .

(A∗)k′′ ` 2
s′,f ′,(z1,...,zk)

δ

(A∗)k′ ` 2
s,f,(y1,...,yk)

In the last case, a contraction is used to duplicate the A∗ formula corresponding to head j,
and the function f ′ maps this new formula to head i. The occurrence of A∗ corresponding
to yi is weakened (possibly after having been duplicated if another head jumped to i).

We describe this gadget on two examples below. An element f : J1, k′K→ J1, kK is simply
represented by f(1)f(2) . . . f(k′).
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δ(s, (a, b, /)) = (s′, (�,�, J1)) δ(s, (c, d, e)) = (s′, (J3, �, J2))

A∗, A∗, A∗ ` 2
s′,132,(�,b,a)

c
A∗, A∗ ` 2
s,12,(a,b,/)

A∗, A∗, A∗ ` 2
s′,231,(e,�,d)

w,w
A∗, A∗, A∗, A∗, A∗ ` 2

c, c
A∗, A∗, A∗ ` 2

s,123,(c,d,e)

Notice that it is also possible to avoid unnecessary contractions, in order to bound the number
of A∗ formulas in a sequent by k. The symbol � means that the formula A∗ is scheduled for
a ∗ rule, and will be immediately processed thanks to the gadget readi as described above.

Final gadget. It remains to describe what happens if the current sequent is fully labelled
with s ∈ {sacc, srej}. In this case, we simply conclude with a (tt) axiom if s = sacc or with a
(ff) axiom if s = srej .

This achieves the description of the preproof πM. The following lemma expresses its
correctness; we prove it in the Appendix.

I Lemma 23. IfM is a progressing JMA, the preproof πM is valid, and [πM] = L(M).

4.2 From cyclic proofs to JMAs
Let π be a regular proof with conclusion A∗ ` 2. Let k be the maximal number of star
formulas in the sequents of π. We build a JMAM with k heads such that L(M) = [π].

The idea of the construction is to store all necessary information on the current state
of the computation in π into the state space of M, besides the content of star formulas.
This includes the current address in π, and the actual letters corresponding to the alphabet
formulas, together with some information linking star formulas to heads of the automaton.

This allowsM to mimic the computation of [π] on an input u, in a similar way as the
converse translation from Sect. 4.1. In particular, we keep the invariant that the value
associated to each star formula is the suffix of u to the right of the corresponding head ofM.

State space of M. Let m be the maximal number of alphabet formulas in the sequents of
π. We use a register with m slots, each one possibly storing a letter from A. Let R =

⋃m
i=0 A

i

be the set of possible register values. An element b1 . . . bi of R describes the content of the i
alphabet formulas of the current sequent. We denote the empty register by ♦. Intuitively,
the register needs to store the values that have been processed by the automaton, but are
still unknown in the proof π as they are represented by alphabet formulas.

Let F be the set
⋃k

i=0J1, kKi. An element f ∈ F associates to each A∗ formula of a
sequent the index of a head ofM. This allows us to keep track of the correspondence between
heads ofM and suffixes of the input word being processed by π.

We define the state space ofM as S = (Addr(π)×R×F) ∪ {sacc, srej}.
Notice that Addr(π) is infinite, soM is an infinite-state JMA. However, if π has finitely

many subtrees, we will be able to quotient Addr(π) by v ∼ w if v and w correspond to the
same subtree, and obtain a finite-state JMA.

If (v, r, f) is a state ofM, we will always have |r| = m′ and |f | = k′, where m′ (resp. k′)
is the number of alphabet (resp. star) formulas in π(v). Moreover, for all i ∈ J1,m′K, the ith

alphabet formula contains the letter r(i) stored in the ith slot of the register r.
The initial state is s0 = (ε,♦, 1). It points to the root of π, with empty register, and

maps the only star formula to head 1.
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Transition function of M. If s = (v, r, f) is a state ofM, and ~a = (a1, . . . , ak) is the tuple
of letters read by each head with ai ∈ A/, we want to define δ(s,~a) = (s′, α) ∈ S ×Actk.

We write αid for the action tuple (�, . . . ,�) leaving each head at the same position. We
write movei (resp. jumpi,j) for the element of Actk which associates to heads i′ 6= i the
action � and to head i the action � (resp. jump to head j).

First of all, if the rule applied to v in π is an axiom (tt) (resp. (ff)), we set s′ = sacc
(resp. srej) and α = αid . This allowsM to stop the computation and return the same value
as [π]. Otherwise, we define s′ = (v′, r′, f ′) and α depending on the rule applied to v in π.
By Prop. 10, we can assume that the proof π does not use the weakening rule. Let m′ (resp.
k′) be the number of alphabet (resp. star) formulas in π(v).

Contraction rule:
We set v′ = v0, and do a case analysis on the principal formula:

ith alphabet formula: we set f ′ = f , r′ = r(1) · · · r(i− 1) · r(i) · r(i) · r(i+ 1) · · · r(m′) and
α = αid .

ith star formula: let j ∈ J1, kK be the smallest integer not appearing in f , corresponding to
the index of the first available head. We want to allocate it to this new copy, by making it
jump to the position of the head f(i). We take r′ = r, f ′ = f(1) · · · f(i)·j ·f(i+1) · · · f(k′),
and α = jumpj,f(i).

Star rule:
Let i be the index of the principal star formula. We now want the head j , f(i) pointing

on this formula to move right. The letter processed by this head will be added to the register.

if ~a(j) = /, the head reached the end of the input. This corresponds to the left premiss
of the ∗ rule. We set v = v0, f ′ = f(1) · · · f(i− 1)f(i+ 1) · · · f(k′), r′ = r and α = αid .

if ~a(j) ∈ A, we set v′ = v1, f ′ = f , α = movei, and r′ = r(1) · · · r(i′)~a(i)r(i′+1) · · · r(m′),
where i′ is the number of A formulas before the principal star formula.

Alphabet rule:
Let i be the index of the principal A formula, and a = r(i) be the letter associated to it.

We define v′ = va, f ′ = f , α = αid , and r′ = r(1) . . . r(i− 1)r(i+ 1) . . . r(m′), i.e. we erase
the ith slot.

This completes the description of the JMAM = 〈S, k, s0, sacc, srej , δ〉.

I Lemma 24. The JMAM is progressing, and L(M) = [π].

I Example 25. We can obtain a progressing JMA for the language L = {a2n | n ∈ N} by
translating the proof from Fig. 4 using the above procedure. As there are at most two star
formulas in the sequents of the proof, the produced JMA has two heads. As there is only
one letter in the alphabet, we can just forget the register. Similarly we consider that any
ff part (resp. tt part) of the proof corresponds to the state srej (resp. sacc). Using _ for
reading any symbol (a letter a or /), we can represent the obtained automaton as follows:
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ε; (1) 1; (1) 11; (1, 2) sacc

111; (1, 2)

srej 1111; (1, 2) 11111; (1, 2)

(a,_), �,�

(/,_),�,�

(_,_),�, J1 (_, /),�,�

(_, a),�, �(_, /),�,�

(_, a),�, �

(_, /),�,� (_, a),�, �

(a,_), �,�

I Remark 26. Our encoding from regular proofs to JMAs would still work if we had included
an exchange rule in the system, and the encoding from JMAs to regular proofs does not
require the exchange rule. Therefore, such a rule would not increase the expressive power.

4.3 The affine case: regular languages
Looking at the encodings in the two previous sections, we can observe that:

the encoding of an affine regular proof is a JMA with a single head: in absence of
contraction, all sequents in proof ending with A∗ ` 2 have at most one star formula;
the encoding of a JMA with a single head does not require contraction: this rule is used
only for the initial gadget and when the action of a head is to jump on another one.

As a consequence, we have a correspondence between affine regular proofs and JMAs with a
single head, whence, by Lemma 16:

I Theorem 27. The regular languages are those recognisable by affine regular proofs.

5 Conclusion

We have defined a cyclic proof system where proofs denote formal languages, as well as a
new automata model: jumping multihead automata. We have shown that regular proofs
correspond precisely to the languages recognisable by jumping multihead automata, which
turn out to be the DLogSpace languages. Moreover we have shown that the restriction to
affine regular proofs corresponds to the regular languages. We see two directions for future
work.

First, we restricted to sequents of the shape E ` 2 in order to focus on languages. The
proof system we started from (LKA [7]) however makes it possible to deal with sequents of
the shape E ` e: it suffices to include right introduction rules for the alphabet (A) and star
formulas (A∗). By doing so, we obtain a system where proofs of A∗ ` A∗ denote transductions:
functions from words to words. We conjecture that in the affine case, we obtain exactly
the subsequential transductions [16], i.e. transductions definable by deterministic 1-way
transducers. In the general case (with contraction), we would need a notion of jumping
multihead transducers.

Second, we used a cut-free proof system. While adding the cut rule for the presented
system (restricted to sequents E ` 2) seems peculiar since the input and output are not of
the same shape, it becomes reasonable when moving to general sequents for transductions.
We have observed that we can go beyond MSO-definable transductions when doing so, even
in the affine case. We would like to investigate and hopefully characterise the corresponding
class of transductions.
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A Appendix

I Proposition 28 (Proposition 5 in the main text). Every affine preproof is valid.

Proof. Except for the contraction rule and the right premiss of the ∗ rule, the length of a
sequent strictly decreases when moving from the conclusion of a rule to one of its premisses.
Therefore, every infinite branch of an affine preproof must pass through the right of a ∗ rule
infinitely often. By the subformula property, the principal (star) formulas of these steps must
be the descendants of star formulas in the conclusion of the preproof. Since they are finitely
many, at least one of the star formulas from the conclusion gives rise to a valid thread. J

I Lemma 29 (Lemma 13 in the main text). Every JMA can be converted into a progressing
JMA with the same language.

Proof. LetM = 〈S, k, s0, sacc, srej , δ〉 be a JMA. We want to construct a progressing JMA
M′ such that L(M) = L(M′).

For all w such thatM halts on w, the run c0, c1, . . . , cr ofM on w is such that r < |S||w|k.
Indeed, for a given word w, there are only |S||w|k distinct configurations. So if there is
an accepting run c0, c1, . . . , cr on w of length greater than |S||w|k then necessarily there
exists i 6= j such that ci = cj , meaning the automatonM has entered a loop. SinceM is
deterministic, it will stay in this loop forever, which contradicts the fact thatM halts on w.

We constructM′ by adding k + 1 heads tM. The (k + 1)th head stays at the beginning
of the word to allow the other heads to jump back to it. The first head reads the word
letter by letter; when it reaches the final marker /, it jumps back to the beginning and starts
again. Then for all i, the (i+ 1)th head advances each time the ith reads the end symbol
/ and jumps back to the beginning every time it reaches the end. Note that the ith head
takes exactly |w|i steps to read the whole word. The state space S′ of M′ is defined as
S × J1, |S|K, with initial state s′0 = (s0, 1). The second component of S′ will be called the
counter. Each time the kth head reads the end symbol, we increment the counter in addition
to jumping back to the beginning. If the counter reaches |S| and needs to be incremented,
the automatonM′ enters state srej and rejects the input.
M′ is progressing. Indeed if there is a loop e1e2 . . . el with ei = (si, si+1, αi) in GM′

then it corresponds to a loop ofM with a fixed counter value, so the kth head never jumps
back. Let i = max{j ∈ J1, kK | ∃t αt(j) = �}. Then the ith head never jumps back. In fact if
i < k and the ith head had jumped back then the (i+ 1)th head would have advanced, which
contradicts the maximality of i.
M′ recognises exactly L(M). Indeed if w ∈ L(M) then there exists an accepting run of

M of length less than |S||w|k, this run also exists inM′ and so w ∈ L(M′). If w 6∈ L(M)
then eitherM rejects it in less than |S||w|k steps, in which caseM′ also rejects it, orM′
will reject the word after |S||w|k + 1 steps. J

I Lemma 30 (Lemma 14 in the main text). Given a JMAM, we can check in NL whether
M is progressing. IfM is progressing, then it terminates on all words.

Proof. To witness that an input JMAM is not progressing, it suffices to guess on-the-fly a
loop in the transition graph violating the condition defining progressing automata. Notice
that the memory needed to verify that the loop violates the condition is Θ(k), since for
each head, one needs to remember whether it has already violated the condition, and if not
whether it has already moved to the right. The transition table ofM is of size exponential
in k, so this memory of Θ(k) is indeed logarithmic in the input size. Since NL = coNL, this
yields a NL algorithm to verify that a JMA is progressing.
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We now show that ifM is a progressing JMA, it terminates on all words. Assume by
contradiction that there is a word w of length n such thatM does not terminate on w. Since
its transition function is total, it means thatM has an infinite run ρ on w. Let I ⊆ J1, kK be
the set of heads that advance infinitely many times in ρ. We can choose a factor τ of ρ such
that each head from I advances at least n+ 2 times in τ , heads not in I do not advance in
τ , and additionally the first and last state of τ are identical. Since τ corresponds to a loop
in the transition graph ofM, andM is progressing, there must be a head j ∈ I that does
not jump during τ . This means this head j advances n+ 2 times without jumping, which is
impossible on the word w of length n. We reached a contradiction, thereby proving that a
progressing JMA must terminate on all words. J

I Lemma 31 (Lemma 16 in the main text). JMA(1) = Reg.

Proof. Every deterministic automaton translates directly into a JMA with a single head.
Conversely, a progressing JMA with a single head cannot jump or stay in place, so that it
suffices to extend the transition table to make the two final states sink states. (Moreover note
that a JMA with a single head can be transformed into a progressing one without adding
new heads: it suffices to add a sink state.) J

I Proposition 32 (Proposition 21 in the main text). For all k ≥ 1, JMA(2) * 1DFA(k).

Proof. We define a language Lb+ that is recognisable by a JMA with only 2 heads while it
can be recognised by a 1DFA with k heads if and only if b <

(
k
2
)
. To do so, we start from

the language defined in [18] to prove the hierarchy theorem for 1DFAs. We slightly modify
this language in order to add some information that helps an automaton with jumping heads
but not one with only multiple heads.

In [18], it is proven that the language Lb = {w1$ . . . $w2b | ∀i, wi = w2b+1−i ∈ A∗} is
recognisable by a 1FA with k heads if and only if b <

(
k
2
)
(with $ a fresh letter not in A).

Let us define the language Lb+ in the following way:

Lb+ = {(+)bw1$(+)b−1$ . . . $ + wb$wb+1$ . . . $w2b$ | ∀i, wi ∈ A∗ ∧ wi = w2b+1−i}

(Again, with + another fresh letter not in A.) The proof from [18] can easily be adapted to
prove that the language Lb+ is recognisable by a 1DFA with k heads if and only if b <

(
k
2
)
:

it suffices to define type2 of a configuration according to the number of + that have been
added to the words.

On the other hand we can recognise Lb+ with a JMA with only 2 heads. This auto-
maton works in two steps. The first one serves to verify that the word is of the shape
(+)bw1$(+)b−1$ . . . $ + wb$wb+1$ . . . $w2b$ with wi ∈ A∗ for all i. The second step serves
to verify that wi = w2b+1−i for all i. For the first step, one of the heads makes sure the
word consists of b sequences of + of length b, b − 1, . . . , 1, each followed by a word of A∗
and a $ separator and then b words of A∗ followed by a $ separator. Since b is a constant
of the language this is feasible even if it requires many states. Then the head jumps to
the beginning of the word (using the second head). For the second step, one head linearly
reads the word. During this process the second head does the following. Each time the
first head reads a $ separator, the second head jumps to the same position if it is also on
a $ separator and rejects otherwise. Then, for each + read by the first head, the second
head goes through the word until it has skipped one $ separator if it is the first + of a

2 see [18].
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sequence and two separators otherwise. Thereby when the first head begins to read the
word wi, it has just read $(+)b+1−i (or (+)b for w1) and thus the second head has skipped
2(b+ 1− i)− 1 separators and is reading the word w2b+1−i. When the first head begins to
read one of the wi, the second head begins to read at the same place as the first head until
the first head reaches a separator. If at some point the two letters being read differ then
the automaton rejects the word. When a separator is reached (simultaneously by the two
heads), the second head jumps back to the first one and the process continues. If at some
point, after reading a separator, the first head does not read a + then the process stops and
the word is accepted. J

I Lemma 33 (Lemma 23 in the main text). If M is a progressing JMA, the preproof πM
defined in Section 4.1 is valid, and [πM] = L(M).

Proof. Assume πM is not valid, i.e. there exists an infinite branch ρ without validating
thread. By considering a sufficiently long prefix of ρ, we can find addresses v, w in ρ such
that

v and w correspond to the same subtree, and contain a fully labelled sequent.
there is no thread visiting a ∗ position from v to w.

The path from v to w witnesses a loop in the transition graph of M. Moreover, since ∗
positions in πM are only encountered when a head advances, and a thread is cut only when
the corresponding head jumps, this loop does not verify the progressing condition, i.e. there
is no head that advances without jumping, otherwise it would yield a thread from v to w
visiting a ∗ position. We obtain a contradiction, thereby proving that πM is valid.

To show that [πM] = L(M), we can analyse the computation of the proof πM on a word
u ∈ A∗. We proceed by induction, and show the computation of πM closely follows the
computation ofM in the following way:

each sequence of steps of the evaluation of [πM](u) between two fully labelled sequents
corresponds to a transition ofM
when reaching address v with sequent (A∗)k′ fully labelled by (s, f, ~y), the computation
of [πM](u) evaluates [v](u1, . . . , uk′) where s is the current state ofM, f maps each ui

to a head f(i), ~y describes the letters currently read by each head, and u1, . . . , uk′ is the
list of suffixes remaining to be read by heads that did not reach the end of the input.

The initial gadget and read1, . . . , readk gadgets ensure that the first fully labelled sequent
describes the initial configuration according to the above correspondence. The transition
gadget and readi gadgets preserve the above invariant, and accurately simulate a transition
ofM. The final gadget allows one to stop the computation of [πM](u) wheneverM stops
on input u, and returns the same value. J

I Lemma 34 (Lemma 24 in the main text). The JMA M from Section 4.2 is progressing,
and L(M) = [π].

Proof. A loop (v, r, f) → (v, r, f) in the transition graph of M corresponds to a path in
π from v to some vu, two addresses corresponding to the same subtree. By validity of π,
the branch vuω contains a validating thread. So there is a thread t from 〈v, i〉 to 〈vu, j〉 for
some i, j, containing a ∗ position. Let h = f(i) be the index of the head pointing to the A∗
formula in position 〈v, i〉. By construction of δ, this head did not jump during the loop (or
the thread t would be cut), and performs at least one action � (where the thread t visits a ∗
position). We proved that the JMAM is progressing, since any loop verifies the progressing
condition.
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The fact that L(M) = [π] is proved by induction on the computation of [π] on any
input u. At any point, the construction ofM preserved the announced invariants: registers
store the contents of alphabet formulas, for each i the content of the ith star formula is the
suffix to the right of the head number f(i). The transition function δ is built to follow the
computation of [π](u) on any u, and return the same result when a (tt) or (ff) axiom is
reached. J
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