

Maturation-related changes in the development and etiology of neuromuscular fatigue

Enzo Piponnier, Vincent Martin, Pierre Bourdier, Brice Biancarelli, Virginie Kluka, Sebastian Garcia-Vicencio, Anne-Gaelle Jegu, Charlotte Cardenoux, Cedric Morio, Emmanuel Coudeyre, et al.

▶ To cite this version:

Enzo Piponnier, Vincent Martin, Pierre Bourdier, Brice Biancarelli, Virginie Kluka, et al.. Maturation-related changes in the development and etiology of neuromuscular fatigue. European Journal of Applied Physiology, In press, 119 (11-12), pp.2545-2555. 10.1007/s00421-019-04233-3. hal-02301647

HAL Id: hal-02301647

https://hal.science/hal-02301647

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Original article

2 Maturation-related changes in the development and etiology of

3 **neuromuscular fatigue**

- 4 Enzo Piponnieri, Vincent Martini, Pierre Bourdieri, Brice Biancarellii, Virginie Klukai,2,
- 5 Sebastian Garcia Vicencio₁, Anne-Gaëlle Jegu₃, Charlotte Cardenoux₃, Cédric Morio₂,
- 6 Emmanuel Coudeyre3,4,5, & Sébastien Ratel1
- 7 1: Université Clermont Auvergne, AME2P, F-63000 Clermont-Ferrand, France.
- 8 2: Decathlon SportsLab, Villeneuve d'Asq, France.
- 9 3: Clermont University Hospital, Clermont-Ferrand, France.
- 4: Université Clermont Auvergne, UNH, INRA, CRNH Auvergne, F-63000 Clermont-Ferrand,
- 11 France.
- 12 Corresponding author:
- 13 PIPONNIER Enzo
- 14 Laboratoire AME2P (EA 3533)
- 15 Campus des Cézeaux
- 16 3 rue de la Chébarde
- 17 63178 AUBIERE Cedex
- 18 Tel: + 33 (0)4 73 40 54 86
- 19 Fax: +33 (0)4 73 40 74 46
- 20 Email: e.piponnier@yahoo.com

- 21 **ABSTRACT**
- 22 **Purpose:** The aim of the present study was to investigate the role of maturation on the etiology
- 23 of neuromuscular fatigue induced by repeated maximal voluntary isometric contractions
- 24 (MVIC).
- Methods: Nine prepubertal boys (9.9 \pm 1.3 yr.), eight male adolescents (13.6 \pm 1.3 yr.) and
- 26 eleven men (23.4 \pm 3.0 yr.) performed a series of repeated isometric MVICs of the knee
- extensors until the MVIC torque reached 60% of its initial value. Magnetic stimulations were
- delivered to the femoral nerve every five MVICs to follow the course of voluntary activation
- 29 level (VA) and the potentiated twitch torque (Qtwpot).
- 30 **Results:** Task failure was reached after 52.9 \pm 12.7, 42.6 \pm 12.5 and 26.6 \pm 6.3 repetitions in
- 31 boys, adolescents and men, respectively. VA remained unchanged in men whereas it decreased
- 32 significantly and similarly in boys and adolescents (p<0.001). In contrast, Qtwpot remained
- unchanged in boys and decreased significantly less in adolescents than adults (p<0.05).
- 34 **Conclusions:** Children and adolescents experience less peripheral and more central fatigue than
- 35 adults. However, adolescents experience more peripheral fatigue than children for a comparable
- amount of central fatigue. This finding supports the idea that the tolerance of the central nervous
- 37 system to peripheral fatigue could increase during maturation.
- 38 **Keywords:** Adolescent, central fatigue, peripheral fatigue, electromyography, peripheral
- 39 magnetic stimulation
- 40 **Abbreviations:**
- 41 %CoAct: Level of antagonist co-activation
- 42 % REP: Percentage of the number of repetitions
- 43 η₂: Partial eta-squared
- 44 ANOVA: Analysis of variance
- 45 APHV: Age from peak height velocity
- 46 BF: Biceps femoris
- 47 CI: Confidence interval
- 48 EMG: Electromyography
- 49 KE: Knee extensors
- 50 M_{max}: Maximal M-wave amplitude
- 51 MVIC: Maximal voluntary isometric contractions
- 52 M-wave: Compound action potential
- 53 Qtwpot: Potentiated twitch torque
- 54 Qtws: Superimposed twitch torque
- 55 Qtwunpot: Unpotentiated twitch torque
- 56 RF: Rectus femoris
- 57 RMS: Root Mean Square
- 58 VA: Voluntary activation level
- 59 VL: Vastus lateralis

Introduction

Neuromuscular fatigue is commonly defined as "any exercise-induced reduction in the ability of skeletal muscle to produce force or power irrespective of task completion" (Bigland-Ritchie and Woods 1984). Historically, potential factors involved in neuromuscular fatigue were classified into two categories, (i) central factors involving the central nervous system and neural pathways, and (ii) peripheral factors occurring within the muscle, beyond the neuromuscular junction (Gandevia 2001). As a result, it is possible to distinguish both central, *i.e.* neural, and peripheral, *i.e.* muscular fatigue. As the neuromuscular system is highly adaptable (Enoka and Stuart 1992), neuromuscular fatigue varies in response to different conditions. For instance, numerous studies examined the differential effect of age (Streckis et al. 2007), ageing (Kent-Braun et al. 2002), sex (Hunter et al. 2004), training status (Mira et al. 2018) and the mode of contraction (Souron et al. 2018) on neuromuscular fatigue. However, less attention has been paid to the impact of maturation on the development and etiology of neuromuscular fatigue.

Current knowledge suggests that fatigue increases progressively from childhood to adulthood during intermittent whole-body dynamic activities or repeated maximal voluntary contractions. For instance, during repeated cycling sprints, the decline of peak power output is higher in adolescents than children and lower than adults (Ratel et al. 2002). This finding has been confirmed during a series of isokinetic maximal voluntary contractions of the knee extensors (KE) and knee flexors (Zafeiridis et al. 2005; Dipla et al. 2009). Similarly, when muscle contractions include an eccentric phase (*i.e.* a stretch of the active muscle), the decline of peak torque during exercise is higher in adolescents than children and lower than adults (Chen et al. 2014). Moreover, the magnitude of symptoms appearing during the days following a series of eccentric contractions (*i.e.* stiffness, oedema, decreased range of motion) is higher in adults than adolescents, and higher in adolescents than children (Chen et al. 2014).

However, it is still unclear whether the contribution of central and peripheral factors to neuromuscular fatigue may differ throughout maturation since no objective comparison of central vs. peripheral fatigue has been performed between prepubertal children, pubertal children (i.e. adolescents) and adults. To date, only Streckis et al. (2007) reported a lower peripheral fatigue and a higher central fatigue during a sustained 2-min maximal voluntary isometric contraction (MVIC) of the KE muscles in 12-14-year old boys and girls than men and women. However, in that study, no objective measurement of maturity status (i.e. biological age) was done, hence limiting our knowledge regarding the role of maturation on the etiology of neuromuscular fatigue. Despite this lack of information, peripheral fatigue could be higher in adolescent individuals than children, but lower in adolescents than adults because of (i) the progressive increase in the strength/power-generating capacity (Tonson et al. 2008) and (ii) potential changes in the metabolic profile throughout maturation, e.g. transformation of slowtwitch fibers into fast-twitch fibers (Lexell et al. 1992) and progressive increase in the capacity of the anaerobic energy turnover over maturation (Ratel and Blazevich 2017). Indeed, it has been shown that the higher neuromuscular fatigue of healthy men vs. women was no longer observed when subjects were matched for absolute MVIC force (Hunter et al. 2004) suggesting that the higher the MVIC force, the higher the muscle fatigue. In addition, the amount of peripheral fatigue was found to be greater in individuals with predominantly fast-twitch fibers (Hamada et al. 2003) and relying more on anaerobic than aerobic energy turnover as in explosive power-trained athletes (Garrandes et al. 2007). Taken together, these factors could promote a faster and/or greater development of peripheral fatigue during repeated maximal contractions in adolescents than children but a lower peripheral fatigue in adolescents than adults. Consequently, the development of strength/power and the transformation of slow-twitch into fast-twitch fibers over maturation could be associated with a progressive reduction of time to task failure from childhood to adulthood. As central fatigue is mainly promoted by prolonged

- exercise duration (Thomas et al. 2015), this could translate into a lower central fatigue in
- adolescents than children as well as in adults than adolescents.
- Therefore, the purpose of the present study was to verify these assumptions by examining the
- consequences of maturation on the development and etiology of neuromuscular fatigue induced
- by repeated voluntary maximal contractions.

MATERIAL AND METHODS

115 Participants

114

143

150

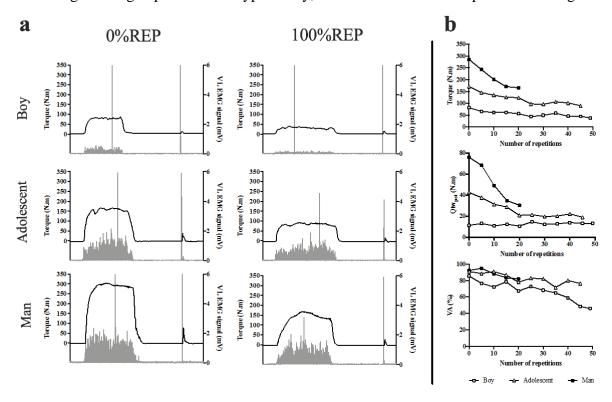
- 116 A total of nine 8-11 years old boys (Tanner stage 1-2), eight 13-16 years old male adolescents
- 117 (Tanner stage 3-4) and eleven 18-25 years old healthy men were recruited. All the participants
- were involved in different physical activities such as rugby, basketball, swimming, etc. To be
- included, participants had to exercise less than 4 hours per week and to be free of any medical
- 120 contra-indication to physical activity. The present study was approved by the local Ethics
- 121 Committee (Protection Committee of People for Biomedical Research South East VI;
- Authorization Number AU929). All the participants were fully informed of the experimental
- procedures and gave their written consent before any testing was conducted. In addition, the
- written consent of the parents/guardians was also obtained for the children and adolescents.

125 Experimental procedure (design)

- All participants were tested on three experimental sessions separated by at least 1 week. The
- 127 first session was dedicated to collecting participants' physical characteristics, familiarization
- 128 with the experimental procedures and clinical examination by a medical practitioner or a
- pediatrician. During the second session, the participants were asked to perform MVIC of the
- 130 KE muscles at different knee angles (30, 40, 50, 60, 70, 75, 80, 85, 90, 100, 110° ; 0° = full
- extension) in a randomized order to determine the optimal angle for maximal torque production.
- Participants performed two MVICs at each knee angle. Finally, during the third session, all the
- participants performed the intermittent voluntary fatigue protocol at the optimal knee angle. All
- sessions were done in a temperate room (18-22°C).

135 Anthropometric measurements

- Body mass was measured to the nearest 0.1 kg using a calibrated scale and height was
- determined to the nearest 0.01 m using a standing stadiometer. Height and body mass were
- measured without shoes and while wearing underwear only. Sitting height was also measured
- while the participants sat on the floor against a wall, using the same stadiometer. Body mass
- index was calculated using a standard formula, mass divided by height squared (kg·m-2). Body
- 141 fat and fat-free mass were determined using dual-energy X-ray absorptiometry (HOLOGIC,
- 142 QDR-4500, Hologic Inc, Bedford, Massachusetts, USA).


Maturity status assessment

- 144 Two methods were used to assess children and adolescents' maturity status: 1) Tanner stages
- were determined from self-reported assessment based on pubic hair and testicular/penis
- development (Tanner and Whitehouse 1976), the children and adolescents being assisted by
- their parents while completing the questionnaire; 2) Age from peak height velocity (APHV)
- was used to assess somatic maturity and determined by using height, sitting height and body
- 149 mass (Mirwald et al. 2002).

Intermittent voluntary fatigue protocol

- Participants performed an intermittent voluntary fatigue protocol consisting of a repetition of
- isometric 5-s MVICs of the KE muscles interspersed with 5-s passive recovery periods until
- the voluntary torque failed to reach a target value of 60% of its initial value over three
- 154 consecutive MVICs. The participants had no visual feedback of torque output during the

exercise. However, they were strongly encouraged by the investigators during the entire fatiguing task. During the fatigue protocol, all participants were allowed to drink water ad libitum. The knee joint was fixed at the optimal angle for maximal torque production (75.6 \pm 5.3° , $90.0 \pm 0.0^{\circ}$ and $81.8 \pm 7.5^{\circ}$ in boys, adolescents and men, respectively; p<0.001), which was determined from the torque-angle relationship during the second visit. The number of repetitions was considered as the performance criteria to quantify neuromuscular fatigue. Single magnetic stimulations were delivered to the femoral nerve every five MVICs to determine the maximal level of voluntary activation (VA) by using the twitch interpolation technique (see below for further details). The electromyographic (EMG) activity of the vastus lateralis (VL) and rectus femoris (RF) muscles was recorded during the entire fatigue protocol. The amplitude of the potentiated twitch torque (Otwpot; see below) and VL and RF concomitant compound action potential amplitudes (maximal M-wave; Mmax) were considered as indicators of peripheral fatigue. The time-course of VA and normalized EMG (see below) of the VL and RF muscles throughout the protocol were considered as indexes of central fatigue. Examples of raw data (MVIC torque and VL EMG; panel A) and time-courses of MVIC torque, Qtwpot and VA during the fatigue protocol in a typical boy, adolescent and man are presented in Figure 1.

Fig. 1: (a) Example of raw data for MVIC torque and VL EMG obtained at 0%REP and 100%REP in a typical boy (top), adolescent (middle), and man (bottom). (b) Example of time-courses of MVIC torque (top), Qtw_{pot} (middle), and VA (bottom) during the intermittent fatigue protocol in a typical boy, adolescent and man.

Torque measurements

155

156157

158159

160

161

162

163

164

165

166167

168 169

170

171

172

173

174

175

176

177

178

179

180

181

Voluntary and evoked contractions were assessed in isometric condition with an isokinetic dynamometer (Cybex Norm, Lumex, Ronkonkoma, NY, USA). Participants were comfortably positioned on an adjustable chair with the hip joint flexed at 30° (0° = neutral position). The dynamometer lever arm was attached 1-2 cm above the lateral malleolus with a Velcro strap. The axis of rotation of the dynamometer was aligned with the lateral femoral condyle of the right femur. Torque data were corrected for gravity using the Cybex software and were digitized

to an external A/D converter (Powerlab 8/35, ADInstruments, New South Wales, Australia)

driven by the Labchart 7.3 Pro software (ADInstruments, Australia).

Femoral nerve stimulation

184

202

209

210

211

212

213214

215

216

217218

219

220221

222

223

224

185 Evoked contractions of the KE muscles were triggered by a single magnetic stimulus, delivered to the femoral nerve using a 45-mm figure-of-eight coil connected to a magnetic stimulator 186 187 (Magstim 2002, peak magnetic field strength 2.34 T, stimulation duration 0.1 ms; MagstimCo, 188 Whiteland, Dyfed, UK). The coil was placed high in the femoral triangle in regard of the 189 femoral nerve. Small spatial adjustments were initially performed to determine the optimal 190 position where the greatest unpotentiated KE twitch amplitude (Qtwunpot) and the greatest VL 191 and RF M_{max} were evoked. The optimal stimulation intensity, i.e. the intensity where maximal 192 twitch and concomitant M-waves amplitudes started to plateau, was determined from a 193 recruitment curve. Otwunpot and M_{max} plateaued at $85.0 \pm 4.3\%$, $84.4 \pm 7.8\%$ and $85.0 \pm 6.7\%$ 194 of the stimulator power output for prepubertal boys, adolescents and men, respectively. In order 195 to overcome the potential confounding effect of axonal hyperpolarization (Burke 2002), the 196 stimulation intensity was set to 100% of the stimulator output during the subsequent testing 197 procedures (i.e. voluntary intermittent fatigue protocol). This intensity corresponded to $117.9 \pm$ 198 6.0%, 119.5 \pm 11.7% and 118.4 \pm 10.1% of the optimal intensity in the boys, adolescents and 199 men, respectively, and was not significantly different between groups. This supramaximal 200 intensity of stimulation (≈ 120%) has been demonstrated as being optimal for an adequate 201 assessment of central and peripheral fatigue of the KE muscles (Neyroud et al. 2014).

Voluntary activation level

To determine VA, the twitch interpolation was used. Briefly, a superimposed (Qtws) and a potentiated (Qtwpot) single twitch were delivered during MVIC after the torque had reached a plateau, and 3-s after the cessation of the contraction, respectively. These superimposed and potentiated mechanical amplitudes allowed the quantification of VA (%VA) as proposed by Merton (Merton 1954) (Equation 1):

$$VA = \left(1 - \frac{Qtw_s}{Qtw_{pot}}\right) \cdot 100 \qquad (Equation 1)$$

EMG recordings

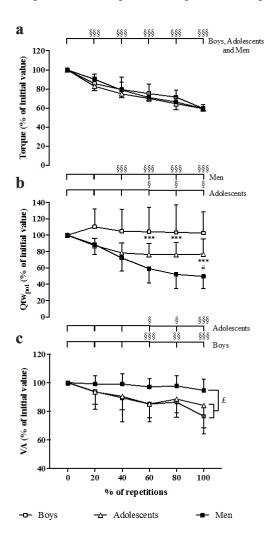
The EMG signals of the VL, RF and *biceps femoris* (BF) muscles were recorded using bipolar silver chloride surface electrodes (Blue Sensor N-00-S, 30 x 22 mm, Ambu, Denmark) during voluntary and evoked contractions. The recording electrodes were taped lengthwise on the skin over the muscle belly, as recommended by SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles) (Hermens et al. 2000) with an inter-electrode distance of 20 mm. The reference electrode was attached to the patella. Low impedance ($Z < 5 \text{ k}\Omega$) at the skin-electrode surface was obtained by shaving, gently abrading the skin with thin sand paper and cleaning with alcohol. EMG signals were amplified (Dual Bio Amp ML 135, ADInstruments, Australia) with a bandwidth frequency ranging from 10 Hz to 500 Hz (common mode rejection ratio > 85 dB, gain = 1,000) and simultaneously digitized together with the torque signals (2 kHz). During the course of the fatigue protocol, Root Mean Square (RMS) values of the VL and RF EMG activity were calculated during the MVIC trials over a 0.5-s period before the superimposed stimulation. This RMS value was then normalized to the maximal peak-to-peak amplitude of the potentiated VL and RF M-waves (RMS.Mmax-1).

Antagonist co-activation

The level of antagonist co-activation (%CoActbf) of the BF muscle was computed as the BF EMG activity during knee extensions, normalized to the maximal BF EMG activity recorded during a maximal knee flexion at the optimal angle for maximal KE torque production (Equation 2). To record this maximal BF RMS value, the participants were asked to perform 3-

- s MVICs of the knee flexors before the fatigue protocol. This measurement was repeated twice,
- and the best trial was used for subsequent analysis.

$$\%CoAct = \frac{RMS_{anta}}{RMS_{ago}} \cdot 100 \qquad (Equation 2)$$


- Where RMS_{anta} is the RMS value of BF during intermittent contractions, and RMS_{ago} is the RMS
- value of BF during maximal voluntary knee flexion, recorded before the fatigue protocol.
- 234 Statistical analysis
- 235 The participants were categorized according to their age and maturity level. There were three
- groups (prepubertal boys, adolescents and men). Therefore, we considered the group as an
- independent categorical variable while the other variables (i.e. neuromuscular parameters) were
- dependent variables.
- 239 All variables measured during the intermittent fatigue protocols were linearly interpolated
- between the nearest values at 20%, 40%, 60%, and 80% of number of repetitions (%REP) to
- 241 fairly compare the different groups. Values at 0%REP and 100%REP corresponded to pre- and
- 242 post-fatigue values, respectively.
- 243 Data were screened for normality of distribution and homogeneity of variances using a Shapiro-
- Wilk normality test and the Barlett's test, respectively. All the data were normally distributed,
- and variances were homogeneous. One-way analysis of variance (ANOVA) were used to
- 246 compare age and anthropometric characteristics between groups. When ANOVA revealed
- significant effects, Tukey HSD *post hoc* tests were applied to test the discrimination between
- 248 groups. Differences in absolute values were analyzed using a two-way (group × %REP)
- 249 ANOVA with repeated measures. When significant differences in initial values were identified
- between groups, two-way (group × % REP) ANOVA were applied to test differences in percent
- 251 changes relative to the pre-fatigue values. The effect size and statistical power were reported
- 252 when significant main or interaction effects were detected. When the ANOVA revealed
- significant effects or interactions between factors, a Tukey HSD post hoc test was applied to
- 254 test the discrimination between means. The effect size was assessed using the partial eta-
- squared (n₂) and ranked as follows: $\sim 0.01 = \text{small effect}$, $\sim 0.06 = \text{moderate effect}$, and ≥ 0.14
- = large effect (Cohen 1969).
- 257 Moreover, to discriminate the effect of MVIC torque on the etiology of neuromuscular fatigue,
- we used a mixed general linear model: the initial MVIC torque was used as a continuous
- 259 predictor variable (= co-variable), the group as a categorical independent variable and the
- 260 Qtwpot or VA as dependent variables. Pearson's correlation coefficients were used to determine
- linear correlations between the initial MVIC torque, the total number of repetitions and Qtwpot
- and VA variations over the fatigue protocol. The limit for statistical significance was set at
- p<0.05. Statistical procedures were performed using the Statistica 12.0 software (Statsoft, Inc,
- 264 USA).
- 265 **RESULTS**
- 266 Participants' characteristics
- 267 Participants' characteristics are described in Table 1. The boys were prepubertal (Tanner stages
- I and II and far from their peak height velocity: -3.8 ± 0.7 yr.) while the adolescents were circa-
- pubertal (Tanner stages III and IV and around their peak height velocity: -1.1 ± 1.3 yr.).
- 270 Number of repetitions
- Task failure, corresponding to the predetermined 60% decrement of MVIC, was reached after
- 272 52.9 ± 12.7 [CI 95% = 43.1-62.6], 42.6 ± 12.5 [CI 95% = 32.2-53.0] and 26.6 ± 6.3 [CI 95% =

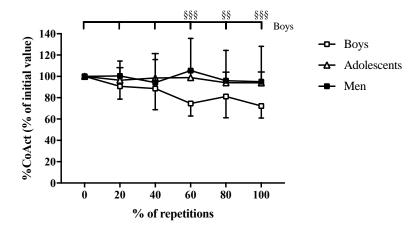
22.4-30.9] repetitions in boys, adolescents and men, respectively. ANOVA revealed a significant group effect for the total number of repetitions $[F(2;25) = 15.80, p<0.001, \eta_2 = 0.56,$ power = 1.0]. The total number of repetitions was significantly higher in boys and adolescents than in men (p<0.001). The number of repetitions tended to be higher in boys than adolescents (p = 0.056, $\eta_2 = 0.81$, power = 0.39).

MVIC torque

Significant interactions (group × %REP) were found for the absolute MVIC torque [F(10;125) = 14.78, p<0.001, η_2 = 0.55, power = 1.0]. As expected, initial MVIC torque values were significantly lower in boys than adolescents and men, and in adolescents than men (87.4 ± 31.2 [CI 95% = 63.4-111.3], 184.2 ± 47.9 [CI 95% = 144.2-224.3] and 298.4 ± 50.5 [CI 95% = 264.4-332.3] N.m in boys, adolescents and men, respectively; p<0.001).

A %REP effect was found for MVIC torque changes, i.e. in percentage of initial values $[F(4;100) = 89.96, p<0.001,\eta_2 = 0.78, power = 1.0]$. MVIC torque significantly and progressively decreased throughout the fatigue test regardless of group (Fig. 2a).

Fig 2: Time-courses of (a) MVIC torque of the knee extensor muscles, (b) potentiated twitch torque (Qtw_{pot}) and (c) voluntary activation level (VA), expressed as a percentage of the initial values, during the fatigue protocol in prepubertal boys, male adolescents and men. ***: Significantly different between boys and men at p<0.001 (identified from statistical analysis on the relative values); #: Significantly different between adolescents and men at p<0.05 (identified from statistical analysis on the relative values); £: Significantly different over the


- 293 fatigue protocol at p<0.05 (identified from statistical analysis on the absolute values);" §, §§
- and §§§ significantly different from the initial value at p<0.05, p<0.01 and p<0.001,
- respectively (identified from statistical analysis on the absolute values).

296 **Potentiated twitch torque**

- 297 During the fatigue protocol, ANOVA revealed a significant interaction of group × %REP for
- absolute Qtw_{pot} values [F(10;125) = 16.72, p<0.001, η_2 = 0.57, power = 1.0]. Initial absolute
- 299 Qtwpot values tended to be lower in boys than in adolescents (p=0.07) and were lower in boys
- 300 than in men (23.2 \pm 9.3 [CI 95% = 16.0-30.3], 56.8 \pm 18.9 [CI 95% = 38.8-71.3] and 79.3 \pm
- 301 28.0 [CI 95% = 60.5-98.0] N.m in boys, adolescents and men, respectively; p<0.001). No
- 302 significant difference was found between adolescents and men for initial Qtwpot values.
- 303 Adolescents and men showed a significant decrement of Qtwpot during the fatigue exercise,
- while it remained unchanged in boys (Fig. 2b).
- Furthermore, a significant interaction of group × %REP was observed for relative Qtwpot, i.e.
- 306 in percentage of initial values $[F(8;100) = 8.19, p < 0.001, \eta_2 = 0.40, power = 0.99]$. The Otwpot
- decreased respectively up to 20% and 60% REP and then remained unchanged until the end of
- 308 the fatigue protocol in adolescents and men. At the end of the fatigue protocol, men showed a
- greater relative decrement of Otwpot than adolescents (-50.5 \pm 14.5% and -23.2 \pm 18.9%,
- respectively; Fig. 2b).
- When the initial MVIC torque value was used as co-variable, a significant interaction of group
- $312 \times \%$ REP on the course of Qtw_{pot} was observed (p<0.05). Post-hoc analyses revealed that the
- decrement of Qtwpot was higher in men than adolescents (p<0.01) and higher in adolescents
- 314 than boys (p<0.05).

315 Voluntary activation level

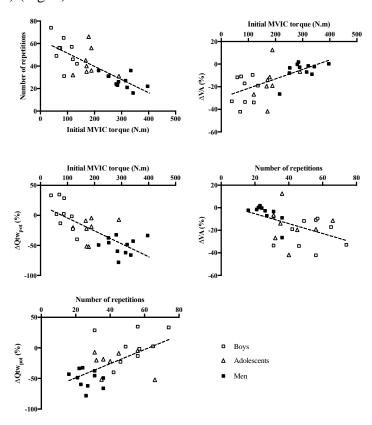

- 316 ANOVA revealed a significant interaction of group \times %REP for absolute VA values [F(10;125)]
- = 2.20, p<0.05, $\eta_2 = 0.15$, power = 0.90]. Before the fatigue test, the VA values were not
- 318 significantly different between groups (87.1 \pm 7.6% [CI 95% = 81.2-92.9], 84.4 \pm 5.5% [CI
- 319 95% = 75.5-91.8], 92.2 \pm 3.2% [CI 95% = 90.0-94.3] in boys, adolescents and men,
- 320 respectively). Boys and adolescents showed a significant decrement in VA during the fatigue
- 321 protocol, whereas it remained unchanged in men (Fig. 2c). At the end of the fatigue test, VA
- decrements were -23.4 \pm 12.2% and -15.8 \pm 15.7% in boys and adolescents, respectively.
- However, when the MVIC torque was used as co-variable, no significant interaction or main
- 324 effect on the time-course of VA was observed.
- 325 EMG activity
- 326 No significant main or interaction effect was found for the VL and RF M_{max} values.
- However, there were significant interaction (group × %REP) effects for VL and RF absolute
- 328 RMS.M_{max-1} [F(10;125) = 2.01, p<0.05, η_2 = 0.14, power = 0.86 and F(10;125) = 2.56,
- $p<0.01, \eta_2=0.18$, power = 0.94, respectively]. No difference was found for the initial values of
- VL and RF RMS.M_{max-1} between age groups. *Post hoc* tests only revealed a decrement of VL
- and RF RMS.M_{max-1} in boys (at least p<0.01).
- 332 Antagonist co-activation
- 333 ANOVA revealed a significant interaction (group × %REP) regarding absolute %CoAct
- F(10;125) = 2.72, p<0.01, $\eta_2 = 0.18$, power = 0.96. No difference was found for the initial
- value of %CoAct between age groups. %CoAct values remained unchanged in adolescents and
- men during the entire fatigue protocol whereas in boys, it decreased significantly at 60% REP,
- 80% REP and 100% REP compared to 0% REP (Fig. 3).

Fig. 3: Time-course of the coactivation level of the *biceps femoris* (%CoAct) during the fatigue protocol in boys, adolescents and men. §§ and §§§: significantly different from the initial value at p<0.01 and p<0.001, respectively (identified from statistical analysis on the absolute values).

Correlations

When the three groups were pooled in the analysis, the first MVIC torque of the fatigue protocol was correlated to the number of repetitions (r_2 =0.59, p<0.001) and relative Qtw_{pot} changes (r_2 =0.52, p<0.001) (Fig. 4); the higher the MVIC torque, the lower the number of repetitions and the greater the decrement of Qtw_{pot}. In contrast, a significant positive relationship was found between the first MVIC torque and the relative VA decrement (r_2 =0.41, p<0.001); the higher the MVIC torque, the lesser the decrement of VA. Furthermore, the number of repetitions was correlated to the relative VA decrement (r_2 =0.23, p<0.05) and to the relative Qtw_{pot} decrement (r_2 =0.33, p<0.01) (Fig. 4).

- 350 **Fig. 4:** Correlations between initial maximal voluntary isometric contraction (MVIC) torque,
- number of repetitions, change in potentiated twitch torque (Qtwpot) and change in voluntary
- activation level (VA). Boys, adolescents and men were pooled in the analysis.

DISCUSSION

353

379

- 354 The purpose of the present study was to investigate the effect of maturation on the development
- and etiology of neuromuscular fatigue induced by repeated MVIC of the KE muscles. The main
- results showed that adolescents tended to fatigue faster than prepubertal boys but slower than
- 357 men during repeated maximal voluntary contractions. The greater fatigability in adolescents
- 358 than prepubertal boys was associated with a greater peripheral fatigue and a similar central
- fatigue. In addition, the lower fatigability in adolescents than adults was associated with a lesser
- peripheral fatigue and a greater central fatigue. Finally, when MVIC was used as co-variable in
- peripheral rangue and a greater central rangue. Finally, when we was used as co-variable in
- 361 the statistical analysis, differences of peripheral fatigue between groups persisted, suggesting
- that factors other than initial MVIC torque may account for the differences of peripheral fatigue
- 363 during maturation.
- 364 The results of the present study confirm that adolescents fatigue faster than prepubertal children
- and slower than adults during repeated isometric maximal voluntary contractions of the knee
- 366 extensors. The number of repetitions to task failure tended to be lower in adolescents than
- prepubertal boys and significantly higher in adolescents than men. Our results agree with the
- data published by Ratel et al. (2002) showing a higher decline of peak power output in
- adolescents than children or in adults than adolescents during ten repeated 10-s cycling sprints
- separated by 30 s of passive recovery. Similarly, it has been reported that during 4 series of 18
- 371 concentric knee flexions and extensions, the decline of peak torque is lower in prepubertal boys
- than male adolescents and higher in men than adolescents (Zafeiridis et al. 2005; Dipla et al.
- 373 2009). Finally, during 5 series of 6 maximal eccentric contractions of the elbow flexors, the
- decline of concentric maximal torque was found to be higher in adolescents than children and
- 375 higher in adults than adolescents (Chen et al. 2014).
- 376 Although scientific evidence supports a higher fatigability in adolescents than children and a
- 377 lower fatigability in adolescents than adults during high-intensity intermittent exercise, the
- 378 mechanisms explaining this phenomenon still remain unclear.

Peripheral mechanisms

- 380 In prepubertal boys, no significant alteration of Qtwpot was observed during the fatigue protocol.
- 381 In contrast, in adolescents and men, Otwpot decreased significantly throughout the fatigue
- protocol and the decrement was significantly higher in men than adolescents. This suggests that
- 383 contractile properties and/or excitation-contraction coupling were preserved in prepubertal boys
- and more strongly altered in men than adolescents. In contrast, the time-course of M-wave did
- not differ between groups, suggesting that no maturation-related change in the excitability of
- the sarcolemma was associated with fatigue. These results agree with previous studies, showing
- a lower alteration of the potentiated twitch torque during fatigue in prepubertal children than
- adults (Gorianovas et al. 2013; Murphy et al. 2014; Hatzikotoulas et al. 2014; Ratel et al. 2015;
- Piponnier et al. 2018). Furthermore, they concur with those published by Streckis et al. (2007)
- 390 showing a lower alteration of twitch torque during a sustained 2-min maximal voluntary
- contraction of the knee extensors in 13.6-year-old girls and 13.9-year-old boys than adults.
- However, the results of the present study reveal for the first time an effect of maturation.

393 Central mechanisms

- Regarding neural factors, prepubertal boys and male adolescents showed a significant VA and
- 395 RMS.M_{max-1} (only in boys) decrement during the fatigue test, whereas no change of VA and
- 396 RMS.M_{max-1} was observed in men. Moreover, the decrement of VA was similar in prepubertal

boys and male adolescents. The interplay of central and peripheral mechanisms of fatigue through maturation remains to be elucidated; however, on the basis of these results, it could be suggested that the greater central fatigue in children and adolescents accounted for their lower peripheral fatigue than adults. Indeed, according to the central governor theory, the central nervous system could limit the recruitment of motor units to prevent any extensive homeostasis disturbance, muscle damage, and biological harm (Noakes et al. 2005). As such, some studies proposed that the central nervous system may "tolerate" a given peripheral fatigue level (Amann and Dempsey 2008; Millet 2011; Zghal et al. 2015). It is currently unknown if this tolerance is different in children, adolescents and adults, but the lower peripheral and the higher central fatigue reported here in children and adolescents suggest that this tolerance could be centrally set at a lower level than adults. Furthermore, the greater peripheral fatigue found for a comparable amount of central fatigue in adolescents than children suggests that the tolerance could be set at higher level in adolescents. This finding could support the idea that (i) the central nervous system could not tolerate the development of an extensive peripheral fatigue in children (Piponnier et al. 2018), contrary to adults, and (ii) the tolerance of the central nervous system to peripheral fatigue could increase during puberty.

Regarding to the central regulation of the antagonist coactivation, the results of the present study showed different patterns between groups, since it decreased in prepubertal boys whereas it remained unchanged in male adolescents and men. The progressive decrease of the coactivation level in prepubertal boys may have contributed to limit the loss of torque, and therefore to delay the level of fatigue, as previously reported (Piponnier et al. 2018). This potential mechanism could withdraw through maturation since no significant change of the antagonist coactivation during the fatigue protocol was observed in adolescents. However, these results should be confirmed since, to our knowledge, no other studies have investigated the effect of maturation on the antagonist coactivation associated with fatigue. Furthermore, other studies have reported opposite results when comparing prepubertal children and adults (Paraschos et al. 2007; Armatas et al. 2010; Murphy et al. 2014). Therefore, further studies are required to clarify this issue.

Factors underpinning differences in neuromuscular fatigue

397

398 399

400

401

402

403

404 405

406

407

408

409

410

411

412

413

414

415

416 417

418

419

420

421

422

423

424

425

426

427

428

429

430

431 432

433

434

435

436

437

438

439

440

441

442

443

444

445

Among the factors that may account for the differences of peripheral fatigue between prepubertal boys, male adolescents and men, is the absolute torque level. Indeed, when the three groups were pooled in the analysis, the first MVIC torque of the fatigue test was correlated to the twitch torque decrement. This suggestion is consistent with other studies that showed that the greater fatigue observed in men vs. women was eliminated if subjects were matched for absolute strength (Hunter et al. 2004). However, other factors may account for the differences of peripheral fatigue between prepubertal children, adolescents and adults. Indeed, the differential time-course of the potentiated twitch torque over repeated maximal voluntary contractions persisted between groups when the initial MVIC torque was used as co-variable. This result is consistent with recent reports (Piponnier et al. in press), showing that difference in torque level could not fully account for difference in neuromuscular fatigue at different muscle-tendon lengths between prepubertal children and adults. Thus, other factors could be involved in the development and etiology of neuromuscular fatigue during growth and maturation, such as the metabolic profile (Bontemps et al. 2019). Specifically, the greater proportion of slow-twitch fibers (Lexell et al. 1992) and the greater reliance on oxidative metabolism (Tonson et al. 2010) in prepubertal children may also could account for their reduced peripheral fatigue.

The higher implication of central factors in the development of fatigue in children and adolescents could also be ascribed to their lower absolute MVIC torque and as a result, to the concurrent longer exercise duration than adults. Indeed, in the present study, the number of

- repetitions and the associated exercise duration were clearly higher in prepubertal boys and
- male adolescents than adults. Furthermore, the relative VA loss was correlated to the first MVIC
- of the fatigue test and to the number of repetitions. These findings are consistent with another
- study (Thomas et al. 2015), reporting that central fatigue increases with exercise duration. Also,
- 450 the results of the present study reveal no significant difference in the time-course of VA between
- 451 groups when the MVIC torque was used as co-variable. These results agree with those
- 452 published by Russ (2009), which reported similar changes in MVIC decrements and central
- activation in strength-matched men and women.

454 **CONCLUSIONS**

- The results of the present study show that male adolescents fatigue faster than prepubertal
- 456 children but slower than men during repeated maximal voluntary isometric contractions of the
- knee extensors. Furthermore, the contribution of central and peripheral mechanisms to
- 458 neuromuscular fatigue differs between groups. Children and adolescents experience less
- 459 peripheral and more central fatigue than adults. Moreover, adolescents experience more
- peripheral fatigue than children for a comparable amount of central fatigue. This could support
- 461 the idea that (i) the central nervous system could not tolerate the development of an extensive
- peripheral fatigue in children, contrary to adults, and (ii) the tolerance of the central nervous
- system to peripheral fatigue could increase throughout maturation. However, further studies are
- required to better understand the origin of these central regulations and the interplay between
- peripheral and central mechanisms of fatigue throughout maturation.

466 **ACKNOWLEDGEMENTS**

- Virginie Kluka was supported by a grant of the French National Agency of Technological
- 468 Research (ANRT), n°2012/0284.

469 **CONFLICT OF INTEREST**

- 470 The authors report no conflict of interest. A funding from the French National Agency of
- 471 Technological Research (ANRT: n°2012/0284; Virginie Kluka) was received for this project.
- This work is known to and agreed by the co-authors identified on the manuscript's title page.
- 473 This work required more than six people, because of clinical examination (physician or
- 474 pediatrician), recruitment of volunteers, experimental procedures, statistical analysis and data
- analysis.

476 **REFERENCES**

- 477 Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in
- healthy humans and imposes a limitation to exercise performance. J Physiol 586:161–173. doi:
- 479 10.1113/jphysiol.2007.141838
- 480 Armatas V, Bassa E, Patikas D, et al (2010) Neuromuscular differences between men and
- 481 prepubescent boys during a peak isometric knee extension intermittent fatigue test. Pediatr
- 482 Exerc Sci 22:205–217
- 483 Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural
- 484 control during human muscular fatigue. Muscle Nerve 7:691–699. doi:
- 485 10.1002/mus.880070902
- 486 Bontemps B, Piponnier E, Chalchat E, et al (2019) Children Exhibit a More Comparable
- 487 Neuromuscular Fatigue Profile to Endurance Athletes Than Untrained Adults. Front Physiol
- 488 10:119. doi: 10.3389/fphys.2019.00119

- Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies.
- 490 Adv Exp Med Biol 508:33–37
- 491 Chen TC, Chen H-L, Liu Y-C, Nosaka K (2014) Eccentric exercise-induced muscle damage of
- 492 pre-adolescent and adolescent boys in comparison to young men. Eur J Appl Physiol 114:1183–
- 493 1195. doi: 10.1007/s00421-014-2848-3
- Cohen J (1969) Statistical power analysis for Behavioral sciences. Academic Press.
- 495 Dipla K, Tsirini T, Zafeiridis A, et al (2009) Fatigue resistance during high-intensity
- intermittent exercise from childhood to adulthood in males and females. Eur J Appl Physiol
- 497 106:645–653. doi: 10.1007/s00421-009-1058-x
- 498 Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648.
- 499 doi: 10.1152/jappl.1992.72.5.1631
- 500 Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev
- 501 81:1725–1789. doi: 10.1152/physrev.2001.81.4.1725
- Garrandes F, Colson SS, Pensini M, et al (2007) Neuromuscular fatigue profile in endurance-
- 503 trained and power-trained athletes. Med Sci Sports Exerc 39:149-158. doi:
- 504 10.1249/01.mss.0000240322.00782.c9
- Gorianovas G, Skurvydas A, Streckis V, et al (2013) Repeated bout effect was more expressed
- in young adult males than in elderly males and boys. BioMed Res Int 2013:218970. doi:
- 507 10.1155/2013/218970
- Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type,
- 509 potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178:165–173.
- 510 doi: 10.1046/j.1365-201X.2003.01121.x
- Hatzikotoulas K, Patikas D, Ratel S, et al (2014) Central and peripheral fatigability in boys and
- 512 men during maximal contraction. Med Sci Sports Exerc 46:1326-1333. doi:
- 513 10.1249/MSS.00000000000000239
- Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations
- for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374
- Hunter SK, Critchlow A, Shin I-S, Enoka RM (2004) Fatigability of the elbow flexor muscles
- for a sustained submaximal contraction is similar in men and women matched for strength. J
- 518 Appl Physiol 96:195–202. doi: 10.1152/japplphysiol.00893.2003
- Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary
- 520 with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol
- 521 93:1813–1823. doi: 10.1152/japplphysiol.00091.2002
- 522 Lexell J, Sjöström M, Nordlund AS, Taylor CC (1992) Growth and development of human
- muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult
- 524 age. Muscle Nerve 15:404–409. doi: 10.1002/mus.880150323
- Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564
- 526 Millet GY (2011) Can neuromuscular fatigue explain running strategies and performance in
- 527 ultra-marathons?: the flush model. Sports Med Auckl NZ 41:489–506. doi: 10.2165/11588760-
- 528 000000000-00000
- Mira J, Aboodarda SJ, Floreani M, et al (2018) Effects of endurance training on neuromuscular
- fatigue in healthy active men. Part I: Strength loss and muscle fatigue. Eur J Appl Physiol. doi:
- 531 10.1007/s00421-018-3950-8

- Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP (2002) An assessment of maturity
- from anthropometric measurements. Med Sci Sports Exerc 34:689–694
- Murphy JR, Button DC, Chaouachi A, Behm DG (2014) Prepubescent males are less
- 535 susceptible to neuromuscular fatigue following resistance exercise. Eur J Appl Physiol
- 536 114:825–835. doi: 10.1007/s00421-013-2809-2
- Neyroud D, Vallotton A, Millet GY, et al (2014) The effect of muscle fatigue on stimulus
- 538 intensity requirements for central and peripheral fatigue quantification. Eur J Appl Physiol
- 539 114:205–215. doi: 10.1007/s00421-013-2760-2
- Noakes TD, St Clair Gibson A, Lambert EV (2005) From catastrophe to complexity: a novel
- model of integrative central neural regulation of effort and fatigue during exercise in humans:
- summary and conclusions. Br J Sports Med 39:120–124. doi: 10.1136/bjsm.2003.010330
- Paraschos I, Hassani A, Bassa E, et al (2007) Fatigue differences between adults and
- 544 prepubertal males. Int J Sports Med 28:958–963. doi: 10.1055/s-2007-964984
- Piponnier E, Martin V, Bontemps B, et al (2018) Child-adult differences in neuromuscular
- 546 fatigue are muscle-dependent. J Appl Physiol 1246–1256. doi:
- 547 10.1152/japplphysiol.00244.2018
- 548 Piponnier E, Martin V, Chalchat E, et al (in press) Effect of MTU length on child-adult
- 549 difference in neuromuscular fatigue. Med Sci Sports Exerc
- Ratel S, Bedu M, Hennegrave A, et al (2002) Effects of age and recovery duration on peak
- power output during repeated cycling sprints. Int J Sports Med 23:397-402. doi: 10.1055/s-
- 552 2002-33737
- Ratel S, Blazevich AJ (2017) Are Prepubertal Children Metabolically Comparable to Well-
- 554 Trained Adult Endurance Athletes? Sports Med Auckl NZ 47:1477–1485. doi:
- 555 10.1007/s40279-016-0671-1
- Ratel S, Kluka V, Vicencio SG, et al (2015) Insights into the Mechanisms of Neuromuscular
- 557 Fatigue in Boys and Men. Med Sci Sports Exerc 47:2319-2328. doi:
- 558 10.1249/MSS.00000000000000697
- Russ D (2009) Sex differences in muscle fatigue. In: Williams C, Ratel S (eds) Human muscle
- fatigue. London and New-York
- Souron R, Nosaka K, Jubeau M (2018) Changes in central and peripheral neuromuscular fatigue
- indices after concentric versus eccentric contractions of the knee extensors. Eur J Appl Physiol
- 563 118:805–816. doi: 10.1007/s00421-018-3816-0
- 564 Streckis V, Skurvydas A, Ratkevicius A (2007) Children are more susceptible to central fatigue
- than adults. Muscle Nerve 36:357–363. doi: 10.1002/mus.20816
- Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height
- velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179
- Thomas K, Goodall S, Stone M, et al (2015) Central and peripheral fatigue in male cyclists after
- 569 4-, 20-, and 40-km time trials. Med Sci Sports Exerc 47:537-546. doi:
- 570 10.1249/MSS.00000000000000448
- Tonson A, Ratel S, Le Fur Y, et al (2008) Effect of maturation on the relationship between
- 572 muscle size and force production. Med Sci Sports Exerc 40:918–925. doi:
- 573 10.1249/MSS.0b013e3181641bed
- Tonson A, Ratel S, Le Fur Y, et al (2010) Muscle energetics changes throughout maturation: a

- 575 quantitative 31P-MRS analysis. J Appl Physiol 109:1769–1778. doi:
- 576 10.1152/japplphysiol.01423.2009
- Zafeiridis A, Dalamitros A, Dipla K, et al (2005) Recovery during high-intensity intermittent
- anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc 37:505–512
- Zghal F, Cottin F, Kenoun I, et al (2015) Improved tolerance of peripheral fatigue by the central
- 580 nervous system after endurance training. Eur J Appl Physiol 115:1401–1415. doi:
- 581 10.1007/s00421-015-3123-y