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In supervised learning, the data set is said imbalanced if the class prior probabilities are
highly unequal [5]. In the case of two-class problems, the larger class is called the majority class
and the smaller the minority class. Real-life two-class problems -especially bank, insurance and
finance data- have often minority class prior under 0.10 (e.g. fraud detection, credit scoring,
extreme events which are events that have a high impact and a low frequency, etc.). In such
a case the performances of data mining algorithms are lowered, especially the error rate cor-
responding to the minority class, even though this class corresponds to positive cases and the
cost of misclassifying the positive examples is higher than the cost of misclassifying the negative
examples. This problem gave rise to many papers (e.g. [6, 3, 15]) and dealing with imbalanced
and cost-sensitive data has been recognized as one of the 10 most challenging problems in data
mining [18]. Solutions to this problems are proposed both at the data and algorithmic level (e.g.
[4, 2, 17, 16]).

Our presentation will focus on decision trees that are one of the most used data mining
models ([1, 13]). One of the advantage of decision trees is that they produce intelligible results.
This point could become more and more important due to Basel II and Solvency II accords.

At the data level, the proposed solutions change the class distribution. They include different
forms of re-sampling, such that over-sampling or under-sampling on a random or a directed way.
At the algorithmic level, a first solution is to re-balance the error rate by weighting each type of
error with the corresponding cost. In decision trees learning, other algorithmic solutions consist
for example in adjusting the probabilistic estimates at the tree leaf or adjusting the decision
thresholds, the use of a criterion of minimal cost, or pre-pruning strategies for the cost-sensitive
decision tree algorithm to avoid overfitting. At both levels, some researchers studied three issues
(quality of probabilistic estimates, pruning, and effect of preprocessing the imbalanced data set),
usually considered separately, concerning C4.5 decision trees and imbalanced data sets.

Our presentation will focus on algorithmic solutions for decision trees. To deal with the class
imbalance problem, two non-centered entropies (off-centered entropy [8, 7, 10, 9] and asymmetric
entropy [12, ?, 19, 14]) have been proposed. Non-centered entropies have the particularity of
taking their maximum value for a distribution fixed by the user. This distribution can be the a
priori distribution of the class variable modalities or a distribution taking into account the costs
of misclassification. In this presentation we will present the concepts of the different entropies
and compare their effectiveness on imbalanced data sets. This presentation will show the interest
of off-centered entropies to deal with the problem of class imbalance [11]. We will also present
in a more general way decision trees features, like pruning and decision rules, for imbalanced
data sets.
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