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Abstract—Network-traffic data commonly arrives in the form
of fast data streams; online network-monitoring systems con-
tinuously analyze these kinds of streams, sequentially collecting
measurements over time. Continuous and dynamic learning is
an effective learning strategy when operating in these fast and
dynamic environments, where concept drifts constantly occur. In
this paper, we propose different approaches for stream-based
machine learning, able to analyze network-traffic streams on
the fly, using supervised learning techniques. We address two
major challenges associated to stream-based machine learning
and online network monitoring: (i) how to dynamically learn
from and adapt to non-stationary data and patterns changing
over time, and (ii) how to deal with the limited availability of
ground truth or labeled data to continuously tune a supervised
learning model. We introduce ADAM & RAL, two stream-based
machine-learning approaches to tackle these challenges. ADAM
implements multiple stream-based machine-learning models and
relies on an adaptive memory strategy to dynamically adapt the
size of the system’s learning memory to the most recent data
distribution, triggering new learning steps when concept drifts
are detected. RAL implements a stream-based active-learning
strategy to reduce the amount of labeled data needed for stream-
based learning, dynamically deciding on the most informative
samples to integrate into the continuous learning scheme. Us-
ing a reinforcement learning loop, RAL improves prediction
performance by additionally learning from the goodness of its
previous sample-selection decisions. We focus on a particularly
challenging problem in network monitoring: continuously tuning
detection models able to recognize network attacks over time.
By continuously learning from and detecting concept drifts
within real network measurements, we show that ADAM & RAL
can continuously achieve high detection accuracy and limit the
amount of training data needed to detect attacks over dynamic
network data streams.

Index Terms—Stream-based Machine Learning; Active Learn-
ing; Reinforcement Learning; ADWIN; Network Attacks; MAW-
ILab.

I. INTRODUCTION

Network-traffic monitoring and analysis is paramount to
understand the functioning of complex large-scale networks,
especially to get a broader and clearer visibility of unexpected
events. One of the major challenges faced by online network-
monitoring applications is the processing and analysis of
large amounts of heterogeneous and fast incoming network-
monitoring data. This sort of data usually comes in the
form of high-speed streams, which need to be rapidly and
continuously processed. In this context, detecting and adapting
to strong variations in the underlying statistical properties of

the modeled data makes data-stream analysis a very difficult
task.

The application of machine-learning models to network-
security and anomaly-detection problems has largely increased
in the last decade; however, the general approach in the
literature still considers the analysis as an offline learning
problem, where models are trained once and then applied to
the incoming measurements. This approach is very restrictive
when dealing with highly dynamic environments, where con-
cept drifts – i.e. changes in the underlying properties of the
prediction target – occur often and previous knowledge rapidly
becomes obsolete. An additional challenge of learning in in-
the-wild networking scenarios is the lack or limited availability
of ground truth or labeled data for training purposes. Labeling
new incoming data is often an expensive and cumbersome
process – especially when done manually and in an online
fashion –, and not all data samples are equally valuable.

In this paper, we investigate stream-based approaches to
machine-learning-based network security, using different algo-
rithms for the analysis of continuously evolving data. Stream
machine-learning analysis consists of processing one data
instance at a time, inspecting it only once, and as such, using
a limited amount of memory; stream approaches work in a
limited amount of time, and have the advantage of being able
to perform a prediction at any point in time during the stream.

We introduce novel stream-based, continuous learning
strategies to deal with the aforementioned challenges; we
conceive, describe, and evaluate ADAM & RAL, two stream-
based machine-learning approaches to deal with (i) concept
drifts in the stream of network measurements and (ii) limited
availability of labeled, ground-truth measurements. ADAM
relies on simple data-distribution change-detection algorithms
to dynamically adapt the learning memory of different stream-
based machine-learning models to the most recent data dis-
tribution, triggering new learning steps when concept drifts
are detected. RAL consists of a stream-based active-learning
strategy to reduce the amount of labeled data needed for
learning, dynamically deciding on the most informative mea-
surements to integrate into the continuous learning scheme.
Active learning aims at labeling only the most informative
samples to reduce the overall training cost. There is an assorted
list of data-querying strategies and algorithms to decide which
data samples should be labeled [28]; among them, the most
popular strategy is based on uncertainty sampling, which



uses the model-prediction uncertainty for the corresponding
sample to decide whether to query its label or not. The higher
the uncertainty of the model for a given sample, the more
interesting the label of this sample becomes for adapting
the model. RAL improves model training and prediction
performance by additionally learning from the goodness of
its previous sample-selection decisions, using a reinforcement-
learning scheme. We make RAL freely available on GitHub
as a Python package1.

We evaluate the performance of the proposed approaches
on the detection of different types of network attacks and
anomalies, using real network measurements collected at the
WIDE backbone network, relying on the well-known MAW-
ILab dataset for attack labeling [2]. Results not only show
that particular stream-based machine-learning models are able
to keep up with important concept drifts in the underlying
network data streams while keeping high detection accuracy,
but also that it is possible to drastically reduce the amount of
labeled data with stream-based active-learning approaches by
relying on reinforcement-learning principles.

The remainder of this paper is structured as follows. Sec-
tion II presents an overview on the related work. Sections III
and IV introduce the proposed ADAM and RAL approaches.
Section V presents evaluation results on the continuous de-
tection of network attacks and anomalies on real network
measurements, using both ADAM and RAL with different
machine-learning models. Finally, Section VI concludes the
paper.

II. STATE OF THE ART

The application of machine learning to networking problems
has been largely explored in the literature [1]. There are a
couple of extensive surveys on any-domain anomaly-detection
techniques [4] as well as network-oriented anomaly detec-
tion [5], [6], including machine-learning-based approaches.
We refer the interested reader to [1] for a detailed survey on
the different machine-learning techniques commonly applied
to network-traffic analysis. There are multiple recent papers
on the application of machine-learning models to network-
security and anomaly-detection problems [3], [7]–[9]. In [3],
we analyze and benchmark big-data-analytics frameworks for
large-scale network-traffic monitoring and analysis. In [7],
we compare the performance of standard, offline machine-
learning models for network security in fixed-line networks,
further studying more complex and robust models based
on ensemble-machine-learning techniques. Wireless-network
monitoring using similar techniques is studied in [9]. In [8], we
introduce GML learning, a generic machine-learning model for
network-measurements analysis, which achieves high accuracy
for many different network-analysis problems. However, all
these approaches consider the offline analysis of network
measurements, in batch mode.

The specific application of stream-based machine-learning
approaches to network security and anomaly detection is by

1https://github.com/SAWassermann/RAL

far more limited; a relevant and representative example linked
to current research is presented in [10], where the authors
evaluate stream-based traffic-classification approaches based
on Hoeffding adaptive trees [20], using MAWILab data and
the MOA machine-learning toolkit, as we do in this work.

Naturally, the data-stream machine-learning domain has a
long-standing tradition and many interesting references are
worth mentioning when considering the application and eval-
uation of stream-based machine-learning models; these cover
general problems related to the learning properties for stream-
based algorithms [11], [12], the mining and evaluation pro-
cesses when dealing with massive datasets [13], the identifi-
cation of model-evaluation issues [14], as well as propositions
of general frameworks for data streaming [15]. Of particular
relevance for stream-based machine-learning-model evaluation
are the problems of class imbalance and concept drift, which
are extensively addressed in [16].

When it comes to active learning, there is a vast literature
in the field. For example, [33], [34] present three simple
approaches for active learning. Their proposed Randomized
Variable Uncertainty approach tackles the problem of stream-
based active learning, using the model’s prediction uncertainty
to decide whether to query and trying to detect concept
drifts by randomizing the certainty threshold used for labeling
decisions. [32] develops an active-learning algorithm with two
different classifiers: one “reactive” and one “stable”. The stable
classifier is trained on all available labeled instances, while the
reactive one is trained based on a window of recent instances.
[26] presents an active-learning technique based on cluster-
ing and prediction uncertainty. [27] conceives an approach
relying on a modification of the Naı̈ve Bayes classifier to
update the different learners through the queried samples.
In particular, they use one-versus-one classifiers to tackle
multi-class problems and update the weights of the different
classifiers by comparing their predictions to the ground truth.
Their technique behaves similarly to RAL. However, the major
difference is that [27] uses information about the classifiers’
prediction certainty (without considering the corresponding
weights) to adapt the minimum threshold for querying the
oracle, while we rely on the usefulness of the decisions taken
by RAL to tune the system according to the data stream.

Finally, ideas from reinforcement learning have already
infused into the active-learning domain, but mostly into pool-
based approaches. In [24], [25], authors rely on the multi-
armed bandit paradigm. [25] develops ALBL, which uses a
modified version of EXP4 [23], a weight-updating rule, in
order to attribute adaptive weights to different learners based
on rewards; the learner to use is then determined through these
weights and uses its uncertainty measure to select the samples
in the pool to hand to the oracle. The approach described
in [24] is similar to the one in [25], except for the reward-
computation scheme. The algorithm presented in [29], [30]
relies on the same principles as the approach we are proposing,
but tackles a different problem: Song’s goal is to introduce an
active-learning component into a contextual-bandit problem,
while we are aiming at solving an active-learning problem by



using contextual bandits.

III. ADAM – STREAM LEARNING WITH ADAPTIVE
MEMORY

We start by introducing ADAM, relying on an ADAptive
Memory strategy. Given that we are dealing with continuous
data analysis, the approach must be able to identify and adjust
to the variation of the statistical properties of the analyzed
data, detecting sudden statistical changes or concept drifts.
To do so, ADAM relies on ADWIN, a dynamically adjusting
window-based approach introduced in [18], which maintains
a window of variable size containing training samples. The
algorithm automatically grows the window when no change
is apparent, and shrinks it when the statistical properties of
the stream changes. ADWIN automatically adjusts its window
size to the optimum balance point between reaction time and
small variance; using the ADWIN adaptation strategy, ADAM
implements four stream-based machine-learning algorithms
popular in the literature, including incremental k-NN, Hoeffd-
ing adaptive trees (HAT), adaptive random forests (ARF) [21],
and SVM through stochastic gradient descent (SGD).

A. Adaptation Strategy

One of the key features of a stream-based machine-learning
model is that of continuously adapting to the changes of
the underlying statistics describing the current data under
analysis, by periodically re-training or re-calibrating. To deal
with evolving data, one needs to define strategies for: firstly,
detecting when changes occur; secondly, deciding which data
to use for a subsequent model re-calibration (or, more gen-
erally, keeping updated sufficient statistics); and finally, re-
training or re-calibrating the model when a significant change
has been detected. Most strategies use variations of a simple
sliding window approach, where a window containing the most
recent measurements is kept and constantly updated, removing
older measurements based on some specific criteria.

The ADWIN algorithm keeps a sliding window W with
the most recently observed measurements xn. At each time
n, instance xn is generated according to an unknown prob-
ability distribution Dn. Let m be the length of W , µ̂W the
(computed) average of the measurements in W . The idea of
ADWIN is straightforward: whenever two large enough sub-
windows of W exhibit distinct enough averages, we conclude
that the corresponding expected values are different, and the
older portion of the window is dropped. Algorithm 1 briefly
describes the algorithm, where µ̂W0

and µ̂W1
are the averages

of the instances in W0 and W1, respectively. Note that it is not
needed to define W0 and W1 sizes, as the values of those are
decided by the algorithm itself. ADWIN is therefore a simple
statistical test for different distributions in W0 and W1, which
checks whether the observed average in both sub-windows
differs by more than the threshold ε. This threshold is defined
based on the global error of the statistical test and the lengths
m0 and m1 of the corresponding sub-windows.

Algorithm 1 ADWIN algorithm.
1: procedure ADWIN(ε)
2: initialize window W
3: for each n > 0 do
4: W ←W ∪ {xn} . add xn to the head of W
5: if ‖µ̂W0

−µ̂W1
‖ ≥ ε for some split of W =W0·W1

then
6: drop instances from the tail of W

B. Concept Drift Detection

Concept drift happens when the statistical properties of
the analyzed dataset abruptly shift in time [22]. Different
change-detection algorithms can be applied to identify the
times when the probability distribution of a stochastic process
or time series changes. In our problem, such a detection has
to be performed in an online manner, i.e. without assuming
that the statistics of the complete time series are known
in advance. The ADWIN algorithm is by design an online
change-detection algorithm. In this paper, we consider an ad-
ditional change-detection algorithm to analyze the considered
dataset: the Page-Hinkley test (PHT) [35]. PHT is a standard
statistical test for change detection, commonly used in time-
series analysis. In a nutshell, this test is a sequential adaptation
of a test for an abrupt change of the average of a Gaussian
stochastic process, and it allows efficient detection of changes
in the usual behavior of a process.

IV. RAL – STREAM LEARNING WITH ACTIVE
REINFORCEMENT

RAL relies on reinforcement-learning principles, using re-
wards and contextual-bandit algorithms [23], as well as predic-
tion uncertainty. The overall idea is summarized in Figure 1.
The intuition behind the different reward values is that we
attribute a high (positive) reward in case the system behaves
as expected, and a low (negative) one otherwise, to penalize
it. RAL obtains rewards/penalties as soon as it is asking for
ground truth. In a nutshell, it earns a positive reward ρ+ in
case it queries the oracle and would have predicted the wrong
label otherwise (i.e. the system made the right decision to ask
for the ground truth: the sample is deemed informative) and
a penalty ρ− (i.e. a negative reward) when it asks the oracle
even though the underlying classification model would have
predicted the correct label (i.e. querying was unnecessary). The
rationale for using reinforcement learning is that RAL learns
not only based on the queried samples themselves, but also
from the usefulness of its decisions. The objective function to
maximize is the total reward:

∑n
i=1 rn, where rn is the nth

reward (ρ+ or ρ−) obtained by RAL.
The conceived system additionally makes use of the pre-

diction certainty of the underlying classification model(s).
The prediction certainty is defined as the highest posterior
classification probability among all possible labels for sample
x. More formally, the prediction certainty of a model is equal
to maxŷ P (ŷ|x), with ŷ being one of all the possible labels for
x. The rationale behind this design choice is that the model’s



Algorithm 2 RAL algorithm.
1: procedure RAL(x, E, α, θ, ε, η)
2: x: sample to treat
3: E: set of learners, members of the committee
4: α: vector of decision powers of learners in E
5: θ: certainty/querying threshold
6: ε: threshold for ε-greedy
7: η: learning rate
8: decisions← {} . will contain decisions of learners
9: for e ∈ E do

10: decisions[e] ← e.askCertainty(x) < θ

11: committeeDecision ←
round

(∑
e∈E α[e] · decisions[e]

)
12: p← U[0,1] . random number drawn from a uniform

distribution
13: if p < ε or committeeDecision = 1 then . ε-scenario

or not?
14: y ← acquireLabel(x)
15: if committeeDecision = 1 then
16: r ← getReward(x, y)
17: α ← updateDecisionPowers(r, E, decisions, com-

mitteeDecision, α, η)
18: θ ← min

{
θ
(
1 + η ×

(
1− 2

r

ρ−
))

, 1
}

19: function UPDATEDECISIONPOWERS(r, E, decisions,
committeeDecision, α, η)

20: for e ∈ E do
21: if decisions[e] = committeeDecision then
22: α[e] ← α[e]× exp(η × r) . EXP4
23: return α/

∑
e∈E α[e] . normalize each value of α

24: function GETREWARD(x, y)
25: return (ρ− if ŷ(x) = y else ρ+)

prediction uncertainty is an appropriate proxy for assessing the
usefulness of a data point. Combining the reward mechanism
with the model’s uncertainty allows us to tune the sample-
informativeness heuristic to better guide the query decisions.

Also inspired by the bandit literature [31] and to better deal
with concept drifts in the data, we implement an ε-greedy
policy, which improves the data-space exploration; we sample
a uniform-probability distribution, and if this value is below
a certain threshold ε, the system queries the oracle, ignoring
the decision of RAL’s classification models. We refer to this
as the ε-scenario. This ensures that we have a good chance
of detecting potential concept drifts: without this policy, the
system could end up being too confident about its predictions,
and thus never ask the oracle again, even though its estimations
are wrong.

Next, we present the details of a committee or multi-
classifier version of RAL, relying on multiple models. Nev-
ertheless, it is very easy to use RAL with a single machine-
learning model, even if we do not use it in the evaluations of
this paper. We provide some comments on this by the end of
the section.

The algorithm behind RAL is summarized in Algorithm 2.

Our approach is inspired by contextual bandits [23]. We rely
on a set of experts (i.e. different machine-learning models),
referred to as a committee. Each expert gives its opinion for
the sample to consider: should the system ask the oracle
for feedback or is the expert confident enough about its
prediction? To assess a model’s prediction certainty, we rely
on a certainty threshold θ: if the model’s certainty is below
θ, the expert is too uncertain about the prediction to make
and thus it advises that RAL asks the ground truth. The query
decision of the committee takes into account the opinions of
the experts, but also their decision power: if the weighted
majority of the experts votes against querying, RAL will rely
on the label prediction provided by the committee, used in the
form of a voting classifier. The decision power of each expert
gets updated such that the experts which agree with the entire
committee are obtaining more power in case that particular
decision is rewarding, i.e. informative (otherwise, these experts
get penalized). These weights are updated through the EXP4
rule [23], with a learning rate η. RAL does not update the
decision powers of the different learners in the ε-scenario:
the committee did not take the querying decision and thus the
weights of the models should not be impacted by this querying
action.

The computation of the reward is carried out every time the
committee decided to query (i.e. not in the ε-scenario). RAL
therefore gets rewarded with ρ+ > 0 when it queried the
oracle and asking was informative (i.e. the voting classifier
would have predicted the wrong label). Conversely, RAL is
penalized with ρ− < 0 if the system used the oracle because
the committee decided to do so, even though the underlying
classifier would have predicted the correct class.

As an additional step, to ensure that RAL adapts as best
as possible to the data stream, we do not only tune the
weights of the committee members based on rewards, but
also the uncertainty threshold θ, denoted in the remainder of
this section as θn to stress that it is influenced by the n − 1
samples observed so far. Again, as for the decision powers,
θn is not updated in the ε-scenario. The update rule of θn we
implemented for our tool is written as follows:

θn ← min
{
θn−1 ×

(
1 + η ×

(
1− 2

rn
ρ−
))

, 1
}

We now detail the reasoning behind the selection of the
update policy used by RAL. We are looking for an update
rule of the form

θn ← min {θn−1 × (1 + f(rn)) , 1}
where f(rn) = 1 − exp (a× rn). The threshold should
increase slightly when the reward is positive, conversely when
the reward is negative. More formally, the update policy should
satisfy the following properties:
1 – θn should decrease fast in case rn is negative, as
this indicates the system queries too often, thus is doing
poorly. Therefore, θn should be adapted fast to improve RAL’s
performance.
2 – θn should slightly increase when rn is positive, so that
the system does not always keep decreasing the threshold and



Figure 1: Overall idea of the system.

avoids that θn drops to 0. The model was right to ask for
more samples, and thus the threshold should be increased.
Nevertheless, as the system is currently doing well, we do not
want the threshold to be too reactive to the queries.
3 – f must have two extrema: a minimum at ρ− < 0 and a
maximum at ρ+ > 0.
4 – θn represents a probability. θn = 0 is not acceptable
due to the product form of the update policy, thus the values
of θn must be in the interval (0, 1].
5 – f(rn) must be in the interval (−1, 1] to ensure that θn
takes values corresponding to a probability. We exclude −1
from the allowed range of values to avoid that θn drops to 0.

Properties 1 and 2 lead us to choose the family of functions
f : x 7→ 1 − exp (a× x) parameterized by a. Property 5 can
be translated into an equation to determine this parameter:
limr→ρ− f(r) = 1 − exp (a× ρ−) = −1. After solving this
equation, we get a = ln 2

ρ− . As f is strictly increasing, and
because a is nonpositive, f will have a maximum when rn =
ρ+ (thus satisfying property 3). Note that, in order to satisfy
property 5, ρ+ must be chosen such that f(ρ+) ≤ 1.

As a final step, we introduce an additional hyper parameter
to the update rule, namely the learning rate η. This rate aims
at smoothing the evolution of the threshold θn, i.e. avoiding
that θn changes too dramatically with a single query. We thus
have the following update rule:

θn ← min
{
θn−1 ×

(
1 + η ×

(
1− 2

rn
ρ−
))

, 1
}

We restrict the values of η to the range (0, 1). Indeed, we
still must satisfy property 5 (a value of 1 would violate this
one) and η = 0 would lead to an nonreactive system, as the
threshold would never adapt.

We acknowledge that RAL includes a non-negligible num-
ber of hyperparameters which should be well chosen in order
to obtain the best results. While we do not have any rule of
thumb on how to define exact values, the following guidelines
help RAL learn from the streaming data:
1 – The initial value of θ should be set to a high one (i.e. close
to 1) when the number of possible labels is low, to avoid that
the model is always too certain about its prediction for the
encountered samples.
2 – ε should be higher when dealing with more dynamic
datasets, to increase the probability of accurately grasping
concept drifts; in general, we would advise using values in
the range of 1 to 5%.

3 – η should be small to avoid changing the decision powers
of the different learners, i.e. α, and θn too abruptly; we would
advise values below 0.1.
4 – There is no specific range of values for ρ± which
works better than others and these values should be picked
considering the situation in which RAL is used: if unnecessary
queries are a major issue, one should set ρ− such that its
absolute value is much higher than the one of ρ+.

To conclude, and as we said before, RAL can also easily be
used with a single classifier instead of a committee of learners.
Transforming the committee version into a single-classifier one
is straightforward. In that case, RAL becomes very lightweight
and the only element of the system that allows it to efficiently
adapt to and learn from the data stream is the variation of the
uncertainty threshold θ, by relying on the rewards.

V. CONTINUOUS DETECTION OF NETWORK ATTACKS

To evaluate the performance of the proposed algorithms
and adaptation strategies, we consider the detection of diverse
types of network attacks in real network-traffic measurements
collected at the WIDE backbone network, using the well-
known MAWILab dataset for attack labeling. MAWILab is a
public collection of 15-minute network-traffic traces [2] cap-
tured every day on a backbone link between Japan and the US
since 2001. Building on this repository, the MAWILab project
uses a combination of four traditional anomaly detectors (PCA,
KL, Hough, and Gamma) to partially label the collected traffic.

Given the different nature and goals of ADAM and RAL,
we rely on two different evaluation strategies, each of them
adapted to the specific challenges tackled. Next, we describe
the dataset used in the evaluations, as well as the employed
evaluation strategies, along with the obtained results.

A. Data Description

The traffic studied in this paper spans two weeks of packet
traces collected in late 2015. From the labeled anomalies
and attacks, we specifically focus on those which are de-
tected simultaneously by all four MAWILab detectors. We
consider in particular two types of attacks: flooding attacks,
and distributed network scans. We train different models to
detect each of these attack types separately, thus each detection
approach consists of two different binary detectors.

To detect these attacks, we consider a slotted, time-based
evaluation. To do so, we split the traffic traces in consecutive
time slots of five seconds each, and compute a set of features
describing the traffic in each of these slots. In addition, each
slot i is assigned a label li, consisting of a binary vector
li ∈ {0, 1}2 which indicates at each position if anomaly of
type j = 1, 2 is present (li,j = 1) or not (li,j = 0) in the
current time slot. We compute a large number n of features
describing a time slot, using traditional packet measurements
including traffic throughput, packet sizes, IP addresses and
ports, transport protocols, flags, etc. The total set accounts
for n = 245 features, which are computed for every time
slot i. Besides using traditional features such as min/avg/max
values of some of the input measurements, we also consider
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Figure 2: Page-Hinkley concept-drift detection. Changes are
marked with dashed lines.

the empirical distribution of some of them, sampling it at many
different percentiles. This provides much richer information,
as the complete distribution is taken into account. We also
compute the empirical entropy H(·) of these distributions,
reflecting the feature dispersion.

B. ADAM Evaluation Strategy and Performance

A commonly used evaluation scheme within the data-
stream-mining domain is the well-known prequential ap-
proach. Each instance is first used to test a model, and then
to train or update it. Prequential evaluation can be used
to measure the accuracy of a model since the start of the
evaluation, by keeping in memory the complete history of
instances and evaluating the model on each new instance, but it
is generally applied using sliding windows or decaying factors
– as we do it in ADAM –, which forgets previously seen
instances in the model-update process and focuses on those
instances in the current sliding window or learning memory.
As opposed to more traditional k-fold cross-validation, which
is generally used in the evaluation of offline machine-learning
models based on k shuffles of the complete dataset, prequential
cross-validation works on a single stream of data using only
one model: its assessment of the stream-based model tends to
be weaker due to this.

To avoid this weakness, we evaluate ADAM following a
new strategy to evaluate stream-based algorithms [19], using
prequential k-fold cross-validation; this strategy is basically an
adaptation of k-fold cross-validation to the streaming setting,
and assumes we have k different models derived from the
algorithm we want to evaluate, running in parallel. Each time
a new sample arrives, it is used for testing one of the k models
selected randomly, and is then used for training by all the other
models. As evaluation metric, we take the attack-detection
accuracy (ACC).

A commonly applied approach to evaluate the performance
of stream-based algorithms is to benchmark them against their
corresponding offline, batch implementations. Therefore, we
use as baseline the results obtained for the corresponding
batch-based algorithms, including k-NN, Hoeffding tree (HT-
batch), random forest (RF-batch), and SVM. We compute the
difference between the batch accuracy and the prequential one

to compare the performance of stream algorithms with respect
to their batch variants.

We use the MOA machine-learning library [17] to perform
the analysis, including both the hyperparameter calibration
(using a grid-search procedure) and the model training and
evaluation. MOA is specifically designed for stream-based
machine-learning approaches.

First of all, we study the variation of the statistical properties
of the considered dataset, in particular detecting concept drifts
with the Page-Hinkley test. Figure 2 depicts the cumulative
number of changes observed in the dataset, as well as the
times when those changes are detected. The test detects 14
abrupt changes during the total measurement time span. The
frequency of changes significantly increases in the last third
of the dataset, with more than 10 changes detected in the
last 4 days. Concept drifts occur from modifications of the
underlying characteristics of the prediction target.

Concept drifts can be used to explain sudden shifts in
the performance of algorithms as depicted in Figure 2. For
example, the window size of the algorithm changes when
concept drifts are detected, and thus could have an important
impact on performance.

We evaluate the performance of the learning algorithms
using ADAM in two binary-classification scenarios – one for
each attack type, resulting in two sets of results for each
tested algorithm. Figure 3 reports the performance results
for each attack type, considering detection accuracy as the
performance metric, and using the batch-algorithm accuracy
as baseline. More precisely, we report the difference between
the 10-fold prequential and batch accuracy. The prequential
CV-performance evaluation shows that both ARF and SGD
models rapidly converge to the batch-based accuracy results,
with minimum accuracy variations when concept drifts occur.
The SGD model performs slightly better, even outperforming
the batch-based performance. On the other hand, both the k-
NN and HAT models do not exhibit any convergence and
results tend to oscillate around the batch-algorithm baseline. In
the case of HAT, we can highlight the correlation between the
detected concept drifts and the performance variations of the
model. Interestingly, the HAT model is the one achieving the
highest accuracy of the four models (up to 30% improvement
with respect to the baseline), but cannot maintain such a
performance constantly in time.

C. RAL Evaluation Strategy and Performance

To showcase the performance of RAL, we evaluate and
compare it to a state-of-the-art algorithm for stream-based
active learning, as well as against a very basic random sam-
pling approach (RS). In particular, we compare RAL to the
Randomized Variable Uncertainty (RVU) technique proposed
in [33], [34], as this approach also heavily relies on the
uncertainty of the underlying machine-learning models to take
the querying decisions.

For each benchmarked algorithm, we proceed as follows:
first, we subdivide the considered datasets into three consec-
utive, disjoint parts, i.e. the initial training set, the streaming



Ping flood

1 675 1350 2025 2700100

50

0

40

P
re

q
A

C
C

-B
a
tc

h
A

C
C

 [
%

]

1 675 1350 2025 2700100

50

0

40

1 675 1350 2025 2700100

50

0

40

1 675 1350 2025 2700100

50

0

40

Netscan

1 675 1350 2025 2700
sample #

100

50

0

40

P
re

q
A

C
C

-B
a
tc

h
A

C
C

 [
%

]

(a) k-NN

1 675 1350 2025 2700
sample #

100

50

0

40

(b) HAT

1 675 1350 2025 2700
sample #

100

50

0

40

(c) ARF

1 675 1350 2025 2700
sample #

100

50

0

40

(d) SGD

Figure 3: Prequential 10-fold cross-validation accuracy evaluation. Diagrams show prequential 10-fold CV results for each
algorithm for each attack type. Concept drifts detected by the Page-Hinkley test are marked with dashed lines.
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Figure 4: Prediction accuracy for RAL, RVU, and RS. For each of the tested datasets, RAL outperforms both techniques.

data, and the validation set. The validation set consists of the
last 30% of the dataset, the initial training set is a variable
fraction of the first samples (varying between the first 0.5%,
1%, 2%, 5%, 10%, and 15%), and the streaming part includes
all the remaining samples not belonging to the other two
subsets. We then train a model on the initial training set and
check its accuracy on the validation part – we refer to this as
the initial accuracy. Next, we run the specific active-learning
algorithm on the streaming part and let it pick the samples it
decides to learn from. We retrain the model after each new
queried label. Finally, we evaluate the final model – trained
on the initial training set plus the selected samples –, again
on the validation set, and analyze this prediction accuracy –
referred to as the final accuracy.

In the context of this evaluation, we implement for both
RAL and RVU the budget mechanism presented in [33], based
on the ratio between the number of queries and the total
number of samples observed so far; the system is allowed

to issue queries to the oracle as long as this ratio is below
a certain threshold, i.e. the budget. For RS, we use a budget
indicating the exact number of samples to ask feedback for.
For each attack type, we set it to the highest average number
of queried samples by either RAL or RVU among all the tests
with all the considered initial-training-set sizes.

Similarly to the evaluation of ADAM, all tests are repeated
10 times, and we report both average accuracy and standard
errors. For RAL, we indicate the average number of queries
performed due to the uncertainty of the underlying model,
as well as those issued through the ε-greedy mechanism. For
comparison purposes, we also report the average number of
queries issued by RVU. We set the values of ρ+ and ρ− to
1 and -1, respectively. Based on grid search with the training
data in the ranges presented in Section IV, we set θ to 0.9,
ε to 2.5%, and η to 0.01. In the case of RVU, we set its
parameters based on those recommended in [34]. Finally, we
set the budget to 0.05 for both approaches.
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Figure 5: Number of queries issued by RAL and RVU. RAL
asks for much fewer samples, yet can achieve a better accuracy
than RVU.

Results obtained for the Ping-flood and the Netscan attacks
are presented in Figures 4 and 5. The reported all-streaming
accuracy refers to the accuracy obtained by the model in case
it queries all the samples seen in the stream. In the context of
this evaluation, we use the committee version of RAL. More
precisely, the committee is a voting classifier composed of a
k-NN model with k = 5, a decision tree, and a random forest
with 10 trees. We use the same voting model for RVU and
RS. Figures 4(a) and 4(b) clearly show that RAL outperforms
both RVU and RS on average. A striking example is the result
for the Netscan detection, where RAL obtains final accuracies
which are up to 10 percentage points higher than the ones of
RVU and RS for the two smallest initial-training-set sizes. To
our surprise, RVU is often outperformed by RS. Finally, the
Ping-flood-detection analysis shows that the three approaches
often yield a final accuracy higher than the all-streaming one,
underlining that learning from the entire data stream does not
necessary output the best possible accuracies. This could be
explained by the high number of concept drifts in the data.

Last, when it comes to the number of queried samples,
we see that RAL queries on average significantly less often
than RVU – between 20% and 25% fewer queries –, and a
non-negligible part of these queries are due to the model’s
uncertainty, suggesting that the samples picked by RAL for
its learning purposes are wisely chosen. Also note how useful
turns out to be the ε-greedy policy, as the additional explo-
ration capability helps better deal with the concept drifts in
the data, contributing to the better results showed in Figure 4.

The initial accuracy is constant for the two different MAW-
ILab attack subsets. This is due to the fact that the first 15%
of these datasets consist of points with the same label (more
precisely, they represent an attack).

One could wonder whether the performance gain by RAL is
worth the complexity of the system. Even though the accuracy
gain might not be very significant, RAL’s querying strategy
has additional advantages over the two other techniques. For
instance, RS does not take into account the uncertainty of the
model nor query usefulness, meaning that there is a risk to
miss interesting samples. Indeed, querying the ground truth
when the model is uncertain helps discover underexplored
regions the model can learn from and RAL is additionally
guided by its reward mechanism. In the specific case of the
MAWILab dataset, RS would probably miss interesting attack
samples, while RAL has a better chance of querying ground
truth for these data points and better learn how to detect
attacks. Another advantage of RAL over RVU, besides its
better results shown above, is that the querying decisions are
influenced by the informativeness of all past queries, not only
their sheer execution; RVU does not take that information
into account at all, and thus there is a risk that RVU queries
unnecessary samples too often. This is especially problematic
if querying is very expensive or the oracle has only limited
availability.

VI. CONCLUDING REMARKS

Dynamic and adaptive-memory-based learning seems to
be a promising learning strategy to adapt to very dynamic
environments, where concept drifts occur often. This is a
common scenario when dealing with online network-traffic-
monitoring applications. We have introduced and evaluated
ADAM and RAL, two stream-based machine-learning ap-
proaches to tackle important challenges when dealing with
data streams. We have shown that ADAM permits to track
transient changes and concept drifts along time. Indeed, using
ADAM, adaptive learning algorithms can continuously achieve
high detection accuracy over dynamic network data streams,
when dynamically adapting their learning pace and memory
to changes in the underlying statistics of the samples. We
have confirmed that both adaptive random forests and SVM
through stochastic gradient descent are better for the studied
problem, especially in terms of robustness to concept drifts and
convergence of results. We have also introduced RAL, a novel
Reinforced stream-based Active-Learning approach to tackle
the challenges of stream-based active learning, i.e. selecting
the most valuable sequentially incoming samples to reduce the
amount of learning data to label, using reinforcement-learning
principles. RAL does not only learn from the data stream, but
also from the relevance of its own querying decisions. RAL
provides a completely different exploration-exploitation trade-
off than existing algorithms. Evaluations have shown that RAL
provides very promising results, outperforming state-of-the-art
techniques, providing higher accuracies with less ground truth.
As an additional contribution, we make RAL freely available
on GitHub. As a next step, we are currently working on the
integration of ADAM and RAL approaches, using the ADWIN
adaptation and concept-drift-detection strategy to improve the
performance of RAL under dynamic scenarios, as well as by
using a dynamic memory-length approach.
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