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Abstract

This article is concerned with a porous medium equation whose pressure law is both nonlinear and
nonlocal, namely

∂tu = ∇·
(
u∇(−∆)

α
2
−1um−1

)
where u : R+×RN → R+, for 0 < α < 2 and m ≥ 2. We prove that the L1∩L∞ weak solutions constructed
by Biler, Imbert and Karch (2015) are locally Hölder-continuous in time and space. In this article, the
classical parabolic De Giorgi techniques for the regularity of PDEs are tailored to fit this particular variant
of the PME equation. In the spirit of the work of Caffarelli, Chan and Vasseur (2011), the two main
ingredients are the derivation of local energy estimates and a so-called “intermediate value lemma”. For
α ≤ 1, we adapt the proof of Caffarelli, Soria and Vázquez (2013), who treated the case of a linear pressure
law. We then use a non-linear drift to cancel out the singular terms that would otherwise appear in the
energy estimates.

Keywords: Parabolic regularity, De Giorgi method, porous medium equation (PME), Hölder regularity,
non local operators, fractional derivatives.
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1 Introduction

In this work, we study the regularity of non-negative weak solutions of the following degenerate nonlinear
nonlocal evolution equation

∂tu = ∇·
(
u∇α−1G(u)

)
, t > 0, x ∈ RN , (1)

where G(u) = um−1 with m ≥ 2. The equation is supplemented with initial data

u(0, x) = u0(x), (2)

which we will assume to be both non-negative and integrable on RN .

For α ∈ (0, 2), the symbol ∇α−1 denotes the integro-differential operator ∇(−∆)
α
2−1. It is a nonlocal oper-

ator of order α−1. For a smooth and bounded function v, it has the following singular integral representation

∇α−1v(x) = cα,N

∫
RN

(v(y)− v(x))
y − x

|y − x|N+α
dy (3)

with a suitable constant cα,N . Moreover, we have ∇·∇α−1 = −(−∆)
α
2 .

Our main result is the Hölder regularity of weak solutions of (1). For short, let us write QT = (0, T )×RN .
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Definition 1.1 (Weak solutions). A function u : QT → R is a weak solution of (1)-(2) if u ∈ L1(QT ),
∇α−1(|u|m−2u) ∈ L1

loc(QT ), |u|∇α−1(|u|m−2u) ∈ L1
loc(QT ) and∫∫

u∂tϕdtdx−
∫∫
|u|∇α−1(|u|m−2u).∇ϕdtdx = −

∫
u0(x)ϕ(0, x)dx (4)

for all test functions ϕ ∈ C∞(QT ) ∩ C1(Q̄T ) with compact support in the space variable x and that vanish
near t = T .

Theorem 1.1 (Hölder regularity). Let us assume that α ∈ (0, 2) and m ≥ 2. For any initial data

u0 ∈ L1 ∩ L∞(RN ;R+),

weak solutions u of (1)-(2) are Hölder continuous at strictly positive times. More precisely, there is β ∈ (0, 1)
depending only on N , m and α such that for all T0, T1 > 0 with T0 < T1,

[u]Cβ([T0,T1]×RN ) ≤ C‖u‖L∞([T0/2,T1]×RN ) (5)

where C only depends on N , m and α and T0.

Remark 1. Weak solutions have been constructed in [5] under the assumptions of theorem 1.1 and even for a
range of values of m < 2 as well. For a precise statement, see theorem 2.1 below. Our proof might be adapted
to those small values of m, but it will require some modifications and additional work. The key change would
be the loss of convexity of G, which would immediately void (27), (28) and (29).

Remark 2. The (linear) case m = 2 was treated in [8, 11] for any α ∈ (0, 2).

Remark 3. One could also study the regularity of unsigned weak solutions of the equation (9) below, which is
the unsigned version of the equation (1). Since the subsequent proof is local, it is probably possible to extend
our result in this direction.

Review of the literature. Let us briefly recall how the porous medium equation is derived from the law
of conservation of mass, for a gas propagating in a homogeneous porous medium [2, 17]:

∂tu+∇·(uv) = 0.

In this equation, u ≥ 0 denotes the density of the gas and v ∈ RN is the locally averaged velocity. Darcy’s law
states that v = −∇p, where p denotes the pressure. Finally, the pressure law implies that p is a monotone
operator of u i.e. p = f(u). This leads us to the following equation

∂tu = ∇·(u∇f(u)). (6)

The case p = u is the simplest pressure law and leads to the Boussinesq’s equation [3, 6]:

∂tu = c∆(u2). (7)

L. Caffarelli and J. L. Vázquez [10] studied the following equation:

∂tu = ∇·
(
u∇(−∆)−su

)
, t > 0, x ∈ RN . (8)

This equation was proposed by [10] to add long-distance effects in the physical model (for further details, see
the motivations therein). They study this problem with non-negative initial data that are integrable and decay
at infinity. For s = 2−α

2 ∈ (0, 1) and m = 2, our equation (1) coincides with (8).
The existence of mass-preserving non-negative weak solutions satisfying energy estimates has been proved

in [10]. Such solutions have a finite propagation speed. Their asymptotic behavior as t→∞ has been studied
in [12]. Moreover, in [8] and [11], the boundedness and the Hölder regularity of non-negative solutions have
been obtained for s ∈ (0, 1).
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The proof of the Hölder regularity in the range s ∈ (0, 1/2) is based on De Giorgi-type oscillation lemmas
and on the scaling property (see (16) below) of the equation. For a general review of the De Giorgi method for
classical elliptic and parabolic equations, we refer for instance to [13], [15], [16] and [9]. The regularity result
in the case s ∈ (1/2, 1), which corresponds to α ∈ (0, 1) for us, is more difficult due to convection effects that
appear and make some integrals diverge. The method proposed in [8] consists in a geometrical transformation
that absorbs the uncontrolled growth of one of the integrals that appear in the iterated energy estimates.

The most delicate situation, which is the case s = 1/2, has been treated in [11]. The authors performed
an iteration analysis that combines consecutive applications of scaling and geometrical transformations.

A similar De Giorgi method is also used in [7] to prove the Hölder regularity for nonlinear nonlocal time-
dependent variational equations. In this case however, −u satisfies the same equation as u, which slightly
simplifies the proof.

In [4] and [5], P. Biler, C. Imbert and G. Karch consider a problem similar to (1)-(2), but with u unsigned.
They prove, under some conditions on m (see (13) below), the existence of bounded and mass-preserving weak
solutions for the Cauchy problem

∂tu = ∇·
(
|u|∇α−1(|u|m−2u)

)
, t > 0, x ∈ RN , (9)

with initial condition
u(0, x) = u0(x) (10)

where u0 is an integrable but not necessarily positive function on RN . Moreover, they show that the solution u
is non-negative if the initial condition u0 is too, in which case the solution is a solution of our problem (1)-(2).
In the sequel of this paper, this existence result is our starting point. The finite speed of propagation for these
non-negative weak solutions has been proved in [14] and holds under the same conditions on m.

A variant of the porous medium equation with both a fractional potential pressure and a fractional time
derivative has been studied in [1]:

Dα
t u−∇·(u∇(−∆)−σu) = f,

where Dα
t is a Caputo-type time derivative. The authors study both the existence and the Hölder regularity

of the solutions, using the De Giorgi method as in [8].

Organization of the paper and general ideas. This paper is organized as follows:

• In Section 2 we recall briefly how the existence theorem 2.1 was established.

• Section 3 is devoted to the local energy estimates satisfied by a bounded weak solution. We first derive
general energy estimates (theorem 3.1) and then we localize them and we improve them by estimating in
a more precise way the “dissipation” terms (proposition 3.1). In this section, we separated the arguments
for α ∈ (1, 2) from the ones for α ∈ (0, 1].

• In Section 4 we prove the first lemmas of De Giorgi. The idea is that a direct application of the energy
estimate along a sequence of macroscopic space-time balls leads to a point-wise upper-bound, provided
that the measure of the set where u is small is sufficiently large. Similarly, one can get a point-wise
lower-bound from knowing that u is large enough on a large set.

In Section 5, we move on to the lemma on intermediate values. It roughly claims that if both the sets
where u is small and where u is large are substantial measure-wise, then, thanks to the “good extra
term” of the local energy balance, u also has to spend a substantial space-time in between. In naive
words, we quantify the cost of oscillations.

In Section 6, this idea allows us to subtly improve the first lemma of De Giorgi: the point-wise upper
bound can be ascertained provided only that the measure of the set where u is small is not too small. The
proof comes naturally by contradiction: if the upper bound could not be improved, then too much energy
would be lost in the oscillations induced between the maximal point and the low values set. Section 6
seems to be a subtle refinement of Section 4, but it suffices to prove theorem 1.1.
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• In Section 7, one follows a “zoom-in and enlarge” sequence of solutions, along which the oscillation is
controlled either from above by the refined first De Giorgi lemma of Section 6 or from below by the crude
one of Section 4. The improvement of Section 6 was needed to have a clean alternative at this point.
This scheme leads directly to the Hölder regularity of the solution u.

2 Preliminaries

Notations. In this work, we denote by Br the ball of RN of radius r > 0 and of center 0. For any measurable
function v we define its positive and negative part by:

v+ = max(0, v) and v− = max(0,−v). (11)

We will often use the following notation and identities:

a ∨ b = max{a, b} = a+ (b− a)+ and a ∧ b = min{a, b} = a− (b− a)−.

The fractional Laplacian has the following singular integral expression:

(−∆)α/2v(x) = −
∫
RN

(v(y)− v(x))
c0α,N

|x− y|N+α
dy, (12)

where c0α,N is a constant only depending on α and N .
Finally, let us point out that we will usually specify the domain of each integral, except for double space

integrals, where
∫∫

f(x, y)dxdy will denote an integral over RN × RN , unless stated otherwise.

Weak solutions. The existence of positive weak solutions for our Cauchy problem at hand (1)-(2) was
proved in [5].

Theorem 2.1 (Existence of weak solutions, from [5, theorem 2.6]). Let α ∈ (0, 2) and

m > max

{
1 +

1− α
N

; 3− 2

α

}
. (13)

For any u0 ∈ L1(RN ;R+), the Cauchy problem (1)-(2) admits a weak solution u on (0,+∞)×RN . Moreover,∫
RN

u(t, x)dx =

∫
RN

u0(x)dx (14)

and for each p ∈ [1,∞] and t > 0

‖u(t)‖p ≤ min

{
CN,α,m‖u0‖

N(m−1)/p+α
N(m−1)+α

1 t−
N

N(m−1)+α (1− 1
p ); ‖u0‖p

}
. (15)

The constant CN,α,m is independent of p, t and u0.

The admissible pairs of (α,m) in theorem 2.1 are illustrated on the following drawing.

However, in the rest of this paper, we restrict ourselves to the case m ≥ 2, even though α spans the whole
range (0, 2).
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Scaling invariance of the equation. The solutions of (1) have the following scaling property.

Lemma 2.1. If u satisfies (1) then
uA,B,C(t, x) = Au(Bt,Cx) (16)

also satisfies (1), provided that B = Am−1Cα.

Remark 4. In (16), both parameters A and C can take arbitrary values. It is therefore possible to rescale the
physical space independently from a change of amplitude of the solution. This double-scaling property plays
a key role in the final argument of the proof of theorem 1.1 (see §7).

A characterization of the Hölder continuity. To prove the Hölder regularity we will use the following
lemma, which is part of the folklore:

Lemma 2.2. Let u be a function defined in (−1, 0) × B1 such that for any (t0, x0) ∈ (−1/2, 0) × B1/2 and
any r ∈ (0, 1/2) we have

oscu
(t0−r,t0)×Br(x0)

≤ Crβ .

Then u is β-Hölder continuous in (−1/2, 0)×B1/2.

Sobolev embedding. The following local Sobolev embedding theorem will be useful:

H
α
2 (Br) ⊂ Lp(Br)

for p = 2N
N−α > 2 and any r > 0. More precisely, there is a constant C, independent of r, such that:(∫

Br

updx

) 2
p

≤ C
∫∫

Br×Br
(u(y)− u(x))

2 dxdy

|y − x|N+α
. (17)

3 Energy estimates

In this section, we derive the necessary energy estimates to follow De Giorgi’s original path towards the Hölder
continuity of the solutions. As we will ultimately use lemma 2.2 on a dyadic rescaled sequence of solutions, we
cannot take for granted the value of the L∞ bound of the weak solution. Instead, we have to prove the energy
estimates for weak solutions that are potentially allowed to grow as a mild power-law at infinity.

Definition 3.1. For any ε > 0, let us define

Ψε(x) = (|x|ε − 2)+. (18)

Theorem 3.1 (Energy estimates). Let us assume that α ∈ (0, 2) and that m ≥ 2. Then there are absolute
constants ε0 > and C > 0 (depending only on N,α,m) such that, for any weak solution u of (1) in (−2, 0]×RN
satisfying for some ε ∈ (0, ε0):

∀t ∈ (−2, 0], ∀x ∈ RN , 0 ≤ u(t, x) ≤ 1 + Ψε(x) (19)

and for any smooth truncation functions ϕ± : RN → [0,+∞) such that:

• 1/4 < ϕ+ ≤ 1 + Ψε on RN with ϕ+ = 1 + Ψε outside B21/ε and

|∇ϕ+/ϕ+|+ |∇ϕ+|+ |∇ϕ+/ϕ+|2 + |∇ϕ+|2 ≤ Cϕ+
,

• 0 < ϕ− ≤ 1 on B2 but ϕ− ≡ 0 outside B2 with

|∇ϕ−/ϕ−| ≤ Cϕ−ϕ
−1/m0

−

on B̄2 for some m0 ≥ 2,
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the two following energy estimates hold true for any −2 < t1 < t2 < 0:

1

2

∫
RN

(u(t2, x)− ϕ±(x))
2
± ϕ

−1
± (x)dx

+
1

4

∫ t2

t1

∫∫ (
(u(t, y)− ϕ±(y))± − (u(t, x)− ϕ±(x))±

)2

DG(u(t, x), u(t, y))
dxdy

|y − x|N+α
dt

+
1

4

∫ t2

t1

∫∫
(u(t, x)− ϕ±(x))+(u(t, y)− ϕ±(y))−DG(u(t, x), u(t, y))

dxdy

|y − x|N+α
dt (20)

≤
∫
RN

(u(t1, x)− ϕ±(x))
2
± ϕ
−1
± (x)dx+ CCϕ±

∣∣{(u− ϕ±)± > 0} ∩ (t1, t2)× RN
∣∣ ,

where DG is defined for a, b ∈ R by DG(a, b) = G(a)−G(b)
a−b . When α ∈ (0, 1], the estimates (20) hold for a

drifted solution ū defined by (31)-(35).

Remark 5. The ± notation means that the inequality (20) stands true if all the symbols ± are either simul-
taneously replaced by + or by −. Hybrid choices are not allowed.

Remark 6. The functions ϕ± serve a truncation purpose, which should become clear as the proof unfolds. For
example, (u− ϕ+)+ ≡ 0 outside B21/ε and similarly (u− ϕ−)− ≡ 0 outside B2, which in particular takes the
ambiguity out of the first integral as ϕ−1

− does not have to be computed ouside B2.

Remark 7. Obviously, each term of (20) is non-negative. The third term in (20) that mixes a positive and a
negative part is called the “good extra term” in [7]. It will play a crucial role in the proof of the lemma on
intermediate values (see Section 5). By themselves, the other non-negative terms of (20) would be sufficient
to prove the first lemmas of De Giorgi (see Section 4).

Remark 8. In order to prove the energy estimates we will introduce an alternate energy functional:

E±(t) =

∫
RN

H

(
1± (u− ϕ±)±(x)

ϕ(x)±

)
ϕ±(x)dx (21)

where H is an appropriate convex function. The functional E+ is well-defined since ϕ+ does not vanish. Note

also that (u−ϕ+)+
ϕ+

∈ [0, (infB
21/ε

ϕ+)−1] ⊂ [0, 4]. As far as E− is concerned, we remark that 1 − (u−ϕ−)−
ϕ−

=

1 ∧ u
ϕ−
∈ [0, 1]. In particular, the spurious fraction simply boils down to H(1) when x 6∈ B2. Moreover, only

the values of H(1 + r) for r ∈ [−1, 4] are relevant for (21).

The proof of theorem 3.1 is structured as follows. First we explain why it is enough to consider the alternate
energy functional (21). Then we estimate the error terms for the energy

∫
(u− ϕ+)2

+ϕ
−1
+ . Next, we deal with

the case of
∫

(u − ϕ−)2
−ϕ
−1
− . Finally, we explain the modifications that are necessary to deal with the case

α ∈ (0, 1].

3.1 An alternate energy functional

We consider the convex function H : [0,+∞)→ [0,+∞) such that

H ′′(r) = r−1 and H(1) = H ′(1) = 0.

The function H is given by the formula H(r) = r ln r − r + 1. Following [8], we consider the energy func-
tional (21). As 1

4r
2 ≤ H(1 + r) ≤ r2 for r ∈ [−1, 4], the proof of theorem 3.1 is reduced to proving that

E±(t2) +

∫ t2

t1

(BG((u(t)− ϕ±)±, (u(t)− ϕ±)±)− BG((u(t)− ϕ±)+, (u(t)− ϕ±)−)) dt

≤ E±(t1) + C
∣∣{(u− ϕ±)± > 0} ∩ (t1, t2)× RN

∣∣ (22)
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where the bilinear form BG is defined as follows:

BG(v, w) =

∫∫
(v(y)− v(x))(w(y)− w(x))DG(u(x), u(y))

c0α,Ndxdy

|y − x|N+α
· (23)

Let us recall that DG(a, b) = G(a)−G(b)
a−b .

Le us compute first the time derivative of the alternate energy functional:

d

dt
E±(t) =

∫
(u−ϕ±)±>0

H ′
(

1± (u− ϕ±)±
ϕ±

)
∂tudx

=

∫
H ′
(

1± (u− ϕ±)±
ϕ±

)
∂tudx

= −
∫
H ′′

(
1± (u− ϕ±)±

ϕ±

)
u∇α−1G(u) · ∇

(
±(u− ϕ±)±

ϕ±

)
.

This formal computation can be made rigorous thanks to the regularity of some approximate solutions as it
was done in [5]. We now remark that, on the set {±(u−ϕ±) > 0}, we have the following remarkable identity:

H ′′
(

1± (u− ϕ±)±
ϕ±

)
u = ϕ±.

This implies that

d

dt
E±(t) =−

∫
∇α−1G(u) · ∇(±(u− ϕ±)±)dx+

∫
(±(u− ϕ±)±)∇α−1G(u) · ∇ϕ±

ϕ±
dx

=− BG(±(u− ϕ±)±, u) +QG(±(u− ϕ±)±, u) (24)

with

QG(v, w) =

∫∫
v(x)(w(y)− w(x))DG(u(x), u(y))

∇ϕ±(x)

ϕ±(x)
· (y − x)

cα,Ndxdy

|y − x|N+α
· (25)

Up to now, the second variable w = u of BG(·, u) or QG(·, u) could have been simplified with the denomi-
nator of the kernel DG(u(x), u(y)). We are now going to split that second variable. More precisely, using the
fact that u = ±(u− ϕ±)± ∓ (u− ϕ±)∓ + ϕ±, we get:

BG(±(u− ϕ±)±, u) = BG((u− ϕ±)±, (u− ϕ±)±)− BG((u− ϕ±)+, (u− ϕ±)−) + BG(±(u− ϕ±)±, ϕ±).

Combining this with (24) yields

d

dt
E±(t) + BG((u− ϕ±)±, (u− ϕ±)±)− BG((u− ϕ±)+, (u− ϕ±)−) (26)

= −BG(±(u− ϕ±)±, ϕ±) +QG(±(u− ϕ±)±, u).

We remark that the two terms BG((u− ϕ±)±, (u− ϕ±)±) and −BG((u− ϕ±)+, (u− ϕ±)−) are non-negative.
Following [7, 8], the first one is referred to as the “coercive term” while the second one is referred to as the
“good extra term”. The rest of the proof of theorem 3.1 consists in controlling the terms in the right hand
side of (26) by those two non-negative terms plus C|{(u− ϕ±)± > 0} ∩ (t1, t2)× RN |.

Proof of theorem 3.1. First, let us consider the case α ∈ (1, 2). As far as E+ is concerned, one has to com-
bine (26) with the subsequent lemmas 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8. As far as E− is concerned, one has to
combine (26) with the subsequent lemmas 3.2, 3.9 and 3.10. Given the range of admissible parameters (α,m)
in theorem 3.1, the critical value for ε0 when α ∈ (1, 2) is

ε0 = (α− 1)/(m− 1).
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When α ∈ (0, 1], the energy estimate (26) is replaced by (34). For the energy estimate on E+, lemmas 3.6, 3.7,
3.8 are replaced by lemma 3.11. For the energy estimate on E−, lemmas 3.9, 3.10 are updated by lemma 3.12.
In that case, the critical value for ε0 is

ε0 = α/m.

The proof will be complete once the lemmas are established.

In what follows it will be convenient to write

u±ϕ = (u− ϕ±)±.

An inequality A ≤ cB that involves a universal constant c depending on N,α,m and Cϕ± will be denoted
by A . B.

We will repeatedly use the fact that (19) implies

DG(u(x), u(y)) ≤ sup
z∈[u(x),u(y)]

|G′(z)| . (1 ∨ |x| ∨ |y|)ε(m−2). (27)

Here in (27) we critically used the fact that m ≥ 2 and 1 + Ψε(x) ≤ (1 ∨ |x|)ε. Another crucial observation
that follows from m ≥ 2 is that G is convex; one has therefore

DG(a, b) ≥ DG(a′, b) ≥ DG(a′, b′) (28)

as soon as 0 ≤ a′ ≤ a and 0 < b′ ≤ b.

Lemma 3.1. For m ≥ 2, if at least one of the values u(x) or u(y) is larger than c > 0 then

DG(u(t, x), u(t, y)) ≥ cm−2. (29)

Proof. If u(x) ≥ c and u(y) ≥ c then DG(u(x), u(y)) = G′(z) for some z ∈ [u(x), u(y)] with an increasing
function G′(z) = (m− 1)zm−2. One has therefore

DG(u(x), u(y)) ≥ (m− 1)cm−2 ≥ cm−2

in this case. On the other hand, if u(x) ≥ c ≥ u(y) ≥ 0 then by the convexity of G, the inequality (28) implies

DG(u(x), u(y)) ≥ DG(0, c) = cm−2.

The case u(y) ≥ c ≥ u(x) ≥ 0 is similar and the lemma follows.

3.2 Common estimate for E+ and E− and any α ∈ (0, 2)

Controlling QG will require a different approach for E+ and for E−. Dealing with the first term on the
right-hand side of (26) is much easier.

Lemma 3.2. For ε < α
m , we have:

−BG(±(u− ϕ±)±, ϕ±) ≤ 1

2
BG(u±ϕ , u

±
ϕ ) + Cϕ± |{(u− ϕ±)± > 0}|

where Cϕ± & 1 + ‖∇ϕ±‖2∞.

Proof. Keeping track of the support of u±ϕ we write

−BG(±(u− ϕ±)±, ϕ±) =∓
∫∫

(u±ϕ (y)− u±ϕ (x))(ϕ±(y)− ϕ±(x))DG(u(x), u(y))
c0α,Ndxdy

|y − x|N+α

≤1

2
BG(u±ϕ , u

±
ϕ )

+
1

2

∫∫
(ϕ±(y)− ϕ±(x))2(Iu±ϕ (x)>0 + Iu±ϕ (y)>0)DG(u(x), u(y))

c0α,Ndxdy

|y − x|N+α
·
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Thanks to (27) we estimate the second term of the right hand side as follows:∫∫
(ϕ±(y)− ϕ±(x))2(Iu±ϕ (x)>0 + Iu±ϕ (y)>0)DG(u(x), u(y))

c0α,Ndxdy

|y − x|N+α

.
∫
u±ϕ>0

{∫
(ϕ±(y)− ϕ±(x))2(1 ∨ |x| ∨ |y|)ε(m−2) dy

|y − x|N+α

}
dx.

Since {u±ϕ > 0} is contained in B
2

1
ε
, we have∫

(ϕ±(y)− ϕ±(x))2(1 ∨ |x| ∨ |y|)ε(m−2) dy

|y − x|N+α

. ‖∇ϕ±‖2L∞
∫
|y−x|≤1

dy

|y − x|N+α−2
+ ‖ϕ±‖2L∞(B

21/ε
)

∫
|y−x|≥1

|y − x|εm dy

|y − x|N+α

. 1,

provided ε < α/m. This yields the desired estimate.

3.3 Estimates for E+ for α > 1

We first estimate QG((u− ϕ+)+, u). In order to do so, we split it as follows (see [8]):

QG((u− ϕ+)+, u) = Q+,+
int +Q+,−

int +Q+,0
int +Q+,+

out +Q+,−
out +Q+,0

out

with 

Q+,+
int = Qint

G ((u− ϕ+)+, (u− ϕ+)+)

Q+,−
int = Qint

G ((u− ϕ+)+,−(u− ϕ+)−)

Q+,0
int = Qint

G ((u− ϕ+)+, ϕ+)

Q+,+
out = Qout

G ((u− ϕ+)+, (u− ϕ+)+)

Q+,−
out = Qout

G ((u− ϕ+)+,−(u− ϕ+)−)

Q+,0
out = Qout

G ((u− ϕ+)+, ϕ+).

where Qint
G and Qout

G are defined by

Qint
G (v, w) =

∫∫
|x−y|≤η

v(x)(w(y)− w(x))DG(u(x), u(y))
∇ϕ+(x)

ϕ+(x)
· (y − x)

cα,Ndxdy

|y − x|N+α
,

Qout
G (v, w) =

∫∫
|x−y|≥η

v(x)(w(y)− w(x))DG(u(x), u(y))
∇ϕ+(x)

ϕ+(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

for some small parameter η ∈ (0, 1) to be fixed later (see lemma 3.4 below). We estimate successively the
six terms appearing in this decomposition. Note that we only need upper estimates as negative terms can be
discarded from the right-hand side of (26).

Lemma 3.3. For α < 2 ≤ m, one has

Q+,+
int ≤

1

4
BG(u+

ϕ , u
+
ϕ ) + Cϕ+

|{(u− ϕ+) > 0}|

where Cϕ+
& ‖∇ϕ+/ϕ+‖2∞.

Proof. We first write a Cauchy-Schwarz type inequality and (27):

Q+,+
int = Qint

G (u+
ϕ , u

+
ϕ )

=

∫∫
|x−y|≤η

u+
ϕ (x)(u+

ϕ (y)− u+
ϕ (x))DG(u(x), u(y))

∇ϕ+(x)

ϕ+(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

≤ 1

4
BG(u+

ϕ , u
+
ϕ ) +

∫∫
|x−y|≤η

(u+
ϕ )2(x)(1 ∨ |x| ∨ |y|)ε(m−2) |∇ϕ+(x)|2

ϕ2
+(x)

cα,Ndxdy

|y − x|N+α−2
·

9



Since ϕ+ is Lipschitz continuous and u+
ϕ (x) ≤ u(x) ≤ (1 ∨ |x|)ε, we have for m ≥ 2:∫∫

|x−y|≤η
(u+
ϕ )2(x)(1 ∨ |x| ∨ |y|)ε(m−2) |∇ϕ+(x)|2

ϕ2
+(x)

cα,Ndxdy

|y − x|N+α−2
. η2−α|{(u− ϕ+) > 0}|.

In this integral, the variable x is confined into B21/ε and the y variable is controlled by the following fact:

sup
x∈B

21/ε

∫
|x−y|≤η

(1 ∨ |x| ∨ |y|)ε(m−2) cα,Ndy

|y − x|N+α−2
. η2−α (30)

since (1 ∨ |x| ∨ |y|)ε(m−2) . 1 if |y − x| ≤ η < 1 and α < 2.

Lemma 3.4. For η such that η ≤ c0α,N
2cα,NCϕ+

, we have:

Q+,−
int ≤

1

2
BG((u− ϕ+)+,−(u− ϕ+)−).

Let us recall that the constants of the singular integrals are defined by (3) and (12).

Proof. The term Q+,−
int is easy to handle. We simply write

Q+,−
int = −Qint

G ((u− ϕ+)+, (u− ϕ+)−)

= −
∫∫
|x−y|≤η

(u− ϕ+)+(x)(u− ϕ+)−(y)DG(u(x), u(y))
∇ϕ+(x)

ϕ+(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

≤ ‖∇ϕ+/ϕ+‖∞η
∫∫
|x−y|≤η

(u− ϕ+)+(x)(u− ϕ+)−(y)DG(u(x), u(y))
cα,Ndxdy

|y − x|N+α

≤ 1

2
BG((u− ϕ+)+,−(u− ϕ+)−)

provided η is chosen small enough to ensure that ηcα,N‖∇ϕ+/ϕ+‖∞ ≤ 1
2c

0
α,N .

Lemma 3.5. For α < 2 ≤ m, one has

Q+,0
int ≤ Cϕ+

|{(u− ϕ+) > 0}|,

where Cϕ+
& ‖∇ϕ+‖∞‖∇ϕ+/ϕ+‖∞.

Proof. The proof is similar to that of lemma 3.3, but this time the regularity of ϕ+ provides the local integra-
bility, instead of using Cauchy-Schwarz:

Q+,0
int =

∫∫
|x−y|≤η

u+
ϕ (x)(ϕ+(y)− ϕ+(x))DG(u(x), u(y))

∇ϕ+(x)

ϕ+(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

≤ ‖∇ϕ+‖∞‖∇ϕ+/ϕ+‖∞
∫
B

21/ε

u+
ϕ (x)

{∫
|x−y|≤η

(1 ∨ |x| ∨ |y|)ε(m−2) cα,Ndy

|y − x|N+α−2

}
dx

. |{(u− ϕ+) > 0}|.

Once more, we used (27), the fact that the variable x is confined into B21/ε and that α < 2 ≤ m.

Lemma 3.6. For α > 1 and ε < (α− 1)/(m− 1), we have:

Q+,+
out ≤ Cϕ+

|{(u− ϕ+) > 0}|,

with Cϕ+ & ‖∇ϕ+/ϕ+‖∞.
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Proof. We use (27), the boundedness of ∇ϕ+/ϕ+ and u+
ϕ (y) ≤ (1 ∨ |y|)ε in order to get

Q+,+
out .

∫∫
|x−y|≥η

u+
ϕ (x)(u+

ϕ (y) + u+
ϕ (x))(1 ∨ |x| ∨ |y|)ε(m−2) cα,Ndxdy

|y − x|N+α−1

.
∫
u+
ϕ (x)

{∫
|y−x|≥η

(1 ∨ |y|)ε(m−1) cα,Ndy

|y − x|N+α−1

}
dx

+

∫
u+
ϕ (x)2

{∫
|y−x|≥η

(1 ∨ |y|)ε(m−2) cα,Ndy

|y − x|N+α−1

}
dx.

We use here in an essential way that α > 1 and ε < (α−1)/(m−1) in order to get that the two terms in braces
are . 1. Note that as m ≥ 2, one has α− 1 > ε(m− 1) > ε(m− 2) ≥ 0. This yields the desired estimate.

Lemma 3.7. For α > 1 and ε < (α− 1)/(m− 1), we have:

Q+,−
out ≤ Cϕ+

|{(u− ϕ+) > 0}|,

with Cϕ+
& ‖∇ϕ+/ϕ+‖∞.

Proof. We use (27), the boundedness of ∇ϕ+/ϕ+ and (u− ϕ+)−(y) ≤ ϕ+(y) ≤ (1 ∨ |y|)ε in order to get

Q+,−
out .

∫∫
|x−y|≥η

(u− ϕ+)+(x)(u− ϕ+)−(y)(1 ∨ |x| ∨ |y|)ε(m−2) cα,Ndxdy

|y − x|N+α−1

.
∫

(u− ϕ+)+(x)

{∫
|x−y|≥η

(1 ∨ |y|)ε(m−1) cα,Ndy

|y − x|N+α−1

}
dx

.
∫

(u− ϕ+)+(x)dx

. C|{(u− ϕ+) > 0}|.

The integral in braces converges because ε(m− 1) < α− 1. This yields the desired estimate.

Lemma 3.8. For α > 1 and ε < (α− 1)/(m− 1), we have:

Q+,0
out ≤ Cϕ+

|{(u− ϕ+) > 0}|,

with Cϕ+
& ‖∇ϕ+/ϕ+‖∞.

Proof. We offer here a slightly simpler proof than in [8]. Again, let us observe that x is confined in B21/ε in
the following integral so one can use |ϕ+(y)− ϕ+(x)| . (1 + |x|+ |y|)ε and (27):

Q+,0
out =

∫∫
|x−y|≥η

u+
ϕ (x)(ϕ+(y)− ϕ+(x))DG(u(x), u(y))

∇ϕ+(x)

ϕ+(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

.
∫∫
|x−y|≥η

u+
ϕ (x)(1 ∨ |y|)ε(m−1) dxdy

|y − x|N+α−1

.
∫
u+
ϕ (x)

{∫
|y−x|≥η

(1 ∨ |y|)ε(m−1) dxdy

|y − x|N+α−1

}
dx

. |{u+
ϕ > 0}|.

The integral in braces converges because ε(m− 1) < α− 1.

Remark 9. Note that up to now, as α < 2 ≤ m, the most stringent condition on ε is

0 < ε < min

{
α

m
,
α− 1

m− 1

}
=
α− 1

m− 1
= ε0.
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3.4 Estimates for E− for α > 1

In order to estimate QG(−(u−ϕ−)−, u), we split it again as follows (see [8]), but we group the terms differently:

QG(−u−ϕ , u) = QG(u−ϕ , u
−
ϕ ) +QG(−u−ϕ , (u− ϕ−)+ + ϕ−).

Let us point out that the previous sub-split, which depends on the size of |x − y|, will still be necessary for
each term, but the cut-off value η will be different between the proof of lemma 3.9 and that of lemma 3.10.

Lemma 3.9. For α− 1 > ε(m− 2) ≥ 0, we have

QG(u−ϕ , u
−
ϕ ) ≤ 1

4
BG(u−ϕ , u

−
ϕ ) + CCϕ− |{u−ϕ > 0}|.

Proof. We first write
QG(u−ϕ , u

−
ϕ ) = Qint +Qout

with

Qint =

∫
|x−y|≤η

u−ϕ (x)(u−ϕ (x)− u−ϕ (y))DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

Qout =

∫
|x−y|≥η

u−ϕ (x)(u−ϕ (x)− u−ϕ (y))DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

for some η > 0 of arbitrary value.

We argue as in the proof of lemma 3.3 by writing first, thanks to (27) and the properties of ϕ−, that:

Qint ≤
1

4
BG(u−ϕ , u

−
ϕ ) + C

∫∫
|x−y|≤η

(u−ϕ )2(x)(1 ∨ |x| ∨ |y|)ε(m−2) |∇ϕ−(x)|2

ϕ2
−(x)

cα,Ndxdy

|y − x|N+α−2

≤ 1

4
BG(u−ϕ , u

−
ϕ ) + CCϕ−

∫
(u−ϕ )2(x)ϕ

−2/m0

− (x)dx.

Using u−ϕ ≤ ϕ− yields the desired estimate for this term since m0 ≥ 1. Note that the integral in dy did
converge because of the assumption α < 2.

For the outer part we use (27), ∇ϕ−/ϕ− ≤ Cϕ−ϕ
−1/m0

− and u−ϕ (y) ≤ ϕ−(y) ≤ 1 in order to get

Qout .
∫
u−ϕ (x)ϕ

−1/m0

− (x)

{∫
|x−y|≥η

(1 ∨ |x| ∨ |y|)ε(m−2) cα,Ndy

|y − x|N+α−1

}
dx

.Cϕ−

∫
u−ϕ (x)ϕ

−1/m0

− (x)dx ≤ Cϕ−
∫
u−ϕ>0

ϕ
1−1/m0

− (x)dx

.Cϕ− |{u−ϕ > 0}|.

We use here in an essential way the fact that α−1 > ε(m−2) ≥ 0 to ensure the convergence of the dy integral
in braces. This yields the desired estimate.

Lemma 3.10. For ε < α−1
m−1 , we have

QG((u− ϕ−)+ + ϕ−, u) ≤ −1

2
BG((u− ϕ−)+, (u− ϕ−)−) + CCϕ− |{u−ϕ > 0}|.

Proof. We first write
QG((u− ϕ−)+ + ϕ−, u) = Qint +Qout
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with (u− ϕ−)+ + ϕ− = u ∨ ϕ− and

Qint =

∫
|x−y|≤η

u−ϕ (x)(u ∨ ϕ−(x)− u ∨ ϕ−(y))DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

Qout =−
∫
|x−y|≥η

u−ϕ (x)u ∨ ϕ−(y)DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

for some parameter η > 0 to be chosen subsequently. Let us point out that we removed the term u ∨ ϕ−(x)
for |x − y| ≥ η, since it is away from the singularity, and that the kernel is anti-symmetric, which makes the
corresponding dy integral vanish.

Let us observe that u−ϕ is supported in B2. Choosing η large enough we can ensure that for |x− y| ≥ η one
has u ∨ ϕ−(y) = u(y) and consequently

Qout =−
∫
|x−y|≥η

u−ϕ (x)u(y)DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

.Cϕ−

∫
u−ϕ (x)ϕ

−1/m0

− (x)

{∫
|y−x|≥η

(1 ∨ |y|)ε(m−1) dy

|y − x|N+α−1

}
dx

.Cϕ−

∫
u−ϕ (x)ϕ

−1/m0

− (x)dx ≤ Cϕ−
∫
u−ϕ>0

ϕ
1−1/m0

− (x)dx

.Cϕ− |{u−ϕ > 0}|

since m0 ≥ 1 and u−ϕ ≤ ϕ−.

As far as Qint is concerned, we revert to u∨ϕ− = (u−ϕ−)+ +ϕ− and split it as Qint = Q−,+int +Q−,0int with

Q−,+int =

∫
|x−y|≤η

u−ϕ (x)((u− ϕ−)+(x)− (u− ϕ−)+(y))DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

Q−,0int =

∫
|x−y|≤η

u−ϕ (x)(ϕ−(x)− ϕ−(y))DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α
·

We split the integral further, depending on the size of the unsigned factors:

Q−,+int =−
∫
|x−y|≤η

(u− ϕ−)−(x)(u− ϕ−)+(y)DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

=−
∫
ϕ−1
− (x)|∇ϕ−(x)||y−x|≤1/2

|x−y|≤η

(u− ϕ−)−(x)(u− ϕ−)+(y)DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

−
∫
ϕ−1
− (x)|∇ϕ−(x)||x−y|≥1/2

|x−y|≤η

(u− ϕ−)−(x)(u− ϕ−)+(y)DG(u(x), u(y))
∇ϕ−(x)

ϕ−(x)
· (y − x)

cα,Ndxdy

|y − x|N+α
·

We then use the good extra term as follows:

Q−,+int ≤−
1

2
BG((u− ϕ−)+, (u− ϕ−)−)

+ CCϕ−

∫
(u− ϕ−)−(x)ϕ

−1/m0

− (x)

{∫
ϕ

1/m0
− (x)/(2Cϕ− )≤|x−y|≤η

dy

|y − x|N+α−1

}
dx

≤− 1

2
BG((u− ϕ−)+, (u− ϕ−)−) + CCϕ−

∫
(u− ϕ−)−(x)ϕ

−α/m0

− (x)dx.

As m0 ≥ 2 > α, the last integral is related to the measure of the set {u−ϕ > 0} in the following way:∫
u−ϕ>0

(u− ϕ−)−(x)ϕ
−α/m0

− (x)dx ≤
∫
u−ϕ>0

ϕ
1−α/m0

− (x)dx ≤ Cϕ− |{u−ϕ > 0}|.
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Similarly, using (27), the fact that suppu−ϕ ∈ B2 and the properties of ϕ−, we get for the last term:

Q−,0int . Cϕ−

∫
u−ϕ (x)ϕ

−1/m0

− (x)

{∫
|x−y|≤η

(1 ∨ |y|)ε(m−2) dy

|y − x|N+α−2

}
dx

. Cϕ−

∫
u−ϕ (x)ϕ

−1/m0

− (x)dx . Cϕ− |{u−ϕ > 0}|.

This yields the desired estimate.

Remark 10. Note that for this second half of the proof, as α < 2 ≤ m, the most stringent condition on ε is

0 < ε < min

{
α

m
,
α− 1

m− 1
,
α− 1

m− 2

}
=
α− 1

m− 1
= ε0,

which is the same critical value as before.

Remark 11. Note that the value of η (which defines the cut-off threshold between the inner and outer regions)
for the estimate of E− does not have to match the value of η for the estimate of E+. This is why one can
require η to be small in the proof of lemma 3.4 and large in lemma 3.10.

3.5 Modifications in the case α ≤ 1

The previous energy estimates of the terms Q+,+
out , Q+,−

out , Q+,0
out only work for α > 1 where the faster decay of

the non-local kernel allows the integrals to converge. Let us now deal with the necessary modifications of the
proof in the case where α ≤ 1. Instead of considering the solution u(t, x), the idea is to use a drifting change
of variable:

ū(t, x) = u(t, x− s(t)) (31)

with a properly chosen drift s : (0, T )→ RN . Such a function ū solves

∂tū = ∇·
(
ū∇α−1G(ū)

)
+ h, t > 0, x ∈ RN (32)

where the additional forcing term is given by:

h(t, x) = −s′(t) · ∇ū = −∇ · (v(t)ū) (33)

with a drift velocity v(t) = −s′(t) ∈ RN .

Because of the forcing term, the energy estimates (26) now contain one additional term:

d

dt
E±(t) + BG((ū− ϕ±)±, (ū− ϕ±)±)− BG((ū− ϕ±)+, (ū− ϕ±)−) (34)

= −BG(±(ū− ϕ±)±, ϕ±) +QG(±(ū− ϕ±)±, ū) +

∫
H ′
(

1± (ū− ϕ±)±
ϕ±

)
hdx.

The general idea is that the default of compactness and lack of convergence of the kernel in QG will ultimately
be compensated by that of the additional term, provided the drift is chosen properly. For α = 1, one will also
need to pay attention to what happens near the origin as 1/|x|N fails to be integrable at both ends.

Proceeding by integration by part as was done p.7, the additional term is:∫
H ′
(

1± (ū− ϕ±)±
ϕ±

)
hdx = −

∫
H ′
(

1± (ū− ϕ±)±
ϕ±

)
∇ · (v(t)ū)dx

= −
∫
H ′′

(
1± (ū− ϕ±)±

ϕ±

)
∇
(
±(ū− ϕ±)±

ϕ±

)
· (v(t)ū)dx

= −
∫
ϕ±∇

(
±(ū− ϕ±)±

ϕ±

)
· v(t)dx.
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As
∫
∇(±(ū− ϕ±)±) · v(t) = 0, it all boils down to:∫

H ′
(

1± (ū− ϕ±)±
ϕ±

)
h = ∓

∫
(ū− ϕ±)±

∇ϕ±
ϕ±

· v(t).

The hot term being QG(±(ū− ϕ±)±, ū) where

QG(k,w) =

∫∫
k(x)(w(y)− w(x))DG(ū(x), ū(y))

∇ϕ±(x)

ϕ±(x)
· (y − x)

cα,Ndxdy

|y − x|N+α
,

it is therefore natural to choose the drift s(t) such that

s(0) = 0 and v(t) = −s′(t) = cα,N

∫
yχ(|y|)
|y|N+α

(G(ū(y))−G(ū(y0))) dy, (35)

with a smooth cut-off χ(r) ' 1r>r0 supported in [r0,∞) and a point y0 chosen arbitrarily. Note that as∫
|y|=c

yχ(|y|)
|y|N+α dy = 0, one can adjust the choice of y0 on the fly without changing the value of v(t). For example,

choosing y0 = x when v(t) is paired with a function evaluated at x, one thus gets:∫
H ′
(

1± (ū− ϕ±)±
ϕ±

)
h = ∓

∫∫
(ū− ϕ±)±(x)(ū(y)− ū(x))DG(ū(y), ū(x))

∇ϕ±(x)

ϕ±(x)
· yχ(|y|)cα,Ndxdy

|y|N+α
·

For α = 1, the lack of integrability at the origin makes the cut-off absolutely necessary. For α < 1, it is just a
harmless convenience, but we can make the most of it by choosing r0 properly. The former Qout

G term is joined
with the new term and thus replaced by:

Qout
G (k,w) =

∫∫
|x−y|≥η

k(x)(w(y)− w(x))DG(ū(x), ū(y))
∇ϕ±(x)

ϕ±(x)
· (y − x)

cα,Ndxdy

|y − x|N+α

−
∫∫

k(x)(w(y)− w(x))DG(ū(y), ū(x))
∇ϕ±(x)

ϕ±(x)
· yχ(|y|)cα,Ndxdy

|y|N+α
·

Note that the second integral is a-priori computed on R2N and when |x−y| ≤ η, one will not be able to bound
the second integral by the other “good” terms as we did before. However, if one chooses

r0 > 21/ε + η + ‖s(t)‖L∞ ,

then in the second integral, one can also assume that |x − y| ≥ η because k(x) = (ū− ϕ+)+ is supported in
s(t) +B21/ε , k(x) = −(ū− ϕ−)− is supported in s(t) +B2 ⊂ s(t) +B21/ε and |y| > r0 because of the support
of χ. Therefore, with that choice for r0, one has:

Qout
G (k,w) =

∫∫
|x−y|≥η

k(x)(w(y)− w(x))DG(ū(x), ū(y))
∇ϕ±(x)

ϕ±(x)

(
y − x

|y − x|N+α
− yχ(|y|)
|y|N+α

)
cα,Ndxdy. (36)

Remark 12. Note that the drift vector s(t) given by (35) is uniformly bounded on a finite time-interval by

‖u‖L∞t (Lm−1
x ) which, by theorem 2.1, is itself controlled by ‖u0‖Lm−1 ≤ ‖u0‖

m−2
m−1

L∞ ‖u0‖
1

m−1

L1 . The finiteness of

this last quantity is part of our assumptions of theorem 1.1. This ensures that the definitions of r0 and s(t)
are meaningful.

For the energy estimate on E+, lemmas 3.6, 3.7 and 3.8 can now be replaced by the following single one.

Lemma 3.11. For 0 < α ≤ 1, m ≥ 2, and ε < α/(m− 1), we have:

Qout
G ((ū− ϕ+)+, ū) ≤ Cϕ+

|{(ū− ϕ+) > 0}|

with Cϕ+ & ‖∇ϕ+/ϕ+‖∞.
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Proof. We have already pointed out that x ∈ s(t) +B21/ε in (36). One therefore has:

|ū(x)− ū(y)| ≤ |ū(x)|+ |ū(y)|
≤ C + (1 ∨ |y − s(t)|)ε

≤ C ′(1 ∨ |y|)ε.

Using (27) and the boundedness of ∇ϕ+/ϕ+ in (36), one gets

Qout
G ((ū− ϕ+)+, ū) . Cϕ+

∫∫
|x−y|≥η

(ū− ϕ+)+(x) · (1 ∨ |y|)ε(m−1)

∣∣∣∣ y − x
|y − x|N+α

− yχ(|y|)
|y|N+α

∣∣∣∣ cα,Ndxdy.

Thanks to the compensation, one can now compute the formerly diverging dy integral when 0 < α ≤ 1:

sup
x∈B

21/ε

∫
|x−y|≥η

(1 ∨ |y|)ε(m−1)

∣∣∣∣ y − x
|y − x|N+α

− yχ(|y|)
|y|N+α

∣∣∣∣dy ≤ C
provided ε(m− 1) < α. One thus gets

Qout
G ((ū− ϕ+)+, ū) . Cϕ+

∫
(ū− ϕ+)+(x)dx,

which finally leads to the announced estimate as ū(t, x) ≤ 1 when x ∈ s(t) +B21/ε .

For the energy estimate on E−, lemmas 3.9 and 3.10 remain valid with the following update:

Lemma 3.12. For 0 < α ≤ 1, m ≥ 2, and ε < α/(m− 1), we have:

Qout
G (−(ū− ϕ−)−, ū) ≤ Cϕ− |{(ū− ϕ−)− > 0}|

with Cϕ− as in theorem 3.1.

Proof. In the following computation of (36), one has this time x ∈ supp(ū− ϕ−)− ⊂ s(t) +B2 and

|ū(x)− ū(y)| ≤ C(1 ∨ |y|)ε.

One has therefore:

Qout
G (−(ū− ϕ−)−, ū) . Cϕ−

∫∫
|x−y|≥η

ū−ϕ (x)ϕ
−1/m0

− (x) · (1 ∨ |y|)ε(m−1)

∣∣∣∣ y − x
|y − x|N+α

− yχ(|y|)
|y|N+α

∣∣∣∣ cα,Ndxdy.

As in the proof of lemma 3.11, the dy integral is now convergent and one gets:

Qout
G (−(ū− ϕ−)−, ū) . Cϕ−

∫
ū−ϕ (x)ϕ

−1/m0

− (x)dx.

The final trick is that, on supp ū−ϕ , one has ū−ϕ (x) ≤ ū(x) ≤ ϕ−(x) ≤ 1 and thus

Qout
G (−(ū− ϕ−)−, ū) . Cϕ−

∫
ū−ϕ>0

ϕ
1−1/m0

− (x)dx . Cϕ−
∣∣{ū−ϕ > 0}

∣∣
as claimed.

Remark 13. Note that in the case 0 < α ≤ 1 and m ≥ 2, the previous definition of ε0 is replaced by

ε0 = min

{
α

m
,

α

m− 1

}
=
α

m
·
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3.6 Local energy estimates

theorem 3.1 provides a global estimate with an embedded cut-off function ϕ±. In the sequel, we will need a
localized version with the integrals computed on balls.

Proposition 3.1 (Local energy estimates). Let us assume that α ∈ (0, 2) and m ≥ 2. We take ε0 > 0 given
by theorem 3.1. There then exists C > 0 (only depending on N,α,m) such that for any weak solution u of (1)
in (−2, 0]× RN satisfying (19) for some ε ∈ (0, ε0), the two following local energy estimates hold true (with u
replaced by ū if α ≤ 1).

• For any r < R in (0, 21/ε) and c > 1/4 and with −2 < t1 < t2 < 0, one has:∫
Br

(u(t2, x)− c)2
+dx+

∫ t2

t1

(∫
Br

(u− c)p+(x)dx

) 2
p

dt

+

∫ t2

t1

∫∫
Br×Br

(u(t, x)− c)+ (G(c)−G(u(y)))+

dxdy

|x− y|N+α
dt

.
∫
BR

(u(t1, x)− c)2
+dx+ C(R− r)−2 |{u > c} ∩ (t1, t2)×BR| . (37)

• For any cut-off function ϕ− such that ϕ− ≡ 0 outside B2 and ϕ− ≡ c > 0 in Br with |∇ϕ−/ϕ−| ≤
Cϕ−ϕ

−1/m0

− for some m0 ≥ 2, we have∫
RN

(u(t2, x)− ϕ−(x))
2
− ϕ
−1
− (x)dx+

∫ t2

t1

(∫
Br

(u(t, x)− c)
pm
2
− dx

) 2
p

dt

.
∫
RN

(u(t1, x)− ϕ−)
2
± ϕ
−1
− (x)dx+ Cϕ−

∣∣{(u− ϕ−)− > 0} ∩ (t1, t2)× RN
∣∣ . (38)

Remark 14. In this proposition, p = 2N/(N − α) is given by the Sobolev embedding (17).

Remark 15. The lower bound c > 1/4 in (37) is a direct inheritance from the restriction ϕ+ > 1/4 in
theorem 3.1, which in turn was constrained by the range on which the L2 norm is equivalent to the alternate
energy functional (21).

Remark 16. Note that the Lp or Lpm/2 controls of (u − c)± in (37)-(38) are produced by the coercive term
in (20). The good extra term appears as the third term on the left-hand side of (37). The good extra term
in (37), can be replaced for 0 < c̃ < c by

(G(c)−G(c̃))

∫ t2

t1

(∫∫
Br×Br

(u− c)+(x)I{u(y)≤c̃}dxdy

)
dt (39)

.
∫
BR

(u− c)2
+(t1, x)dx+ C(R− r)−2 |{u > c} ∩ (t1, t2)×BR| .

Proof. We first prove (37). We follow [8] by applying the energy estimates from theorem 3.1 with the cut-off
function

ϕ+(x) = 1 + Ψε(x)− (1− c)ξ(x)

where ξ is a smooth characteristic function such that ξ ≡ 1 on Br and supp ξ ⊂ BR. Remark that this cut-off
function satisfies the assumptions of theorem 3.1 with Cϕ+

' (R − r)−2. Moreover, ϕ+(x) ≡ c for x ∈ Br.
One can apply (29) to bound DG from below on the complementary set of {(x, y) ;u(x) ∨ u(y) ≤ c} on which
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the following integrand vanishes anyway. Thanks to the Sobolev embedding (17), one thus gets the following:∫∫
((u− c)+(y)− (u− c)+(x))2DG(u(t, x), u(t, y))

dxdy

|y − x|N+α

& cm−2

∫∫
Br×Br

((u− c)+(y)− (u− c)+(x))2 dxdy

|y − x|N+α

& cm−2

(∫
Br

(u− c)p+(x)dx

) 2
p

.

As far as the good extra term is concerned, we use the convexity inequality (28) to assert that:{
for u(x) ≥ c, DG(u(x), u(y)) ≥ DG(c, u(y)),

for u(x) ≥ c > c̃ ≥ u(y), (u(y)− c)−DG(c, u(y)) = G(c)−G(u(y)) ≥ G(c)−G(c̃)

and in particular ∫∫
(u(t, x)− ϕ+(x))+(u(t, y)− ϕ+(y))−DG(u(t, x), u(t, y))

dxdy

|y − x|N+α

&
∫∫

Br×Br
(u(t, x)− c)+ (G(c)−G(u(y)))+

dxdy

|x− y|N+α

& (G(c)−G(c̃))

∫∫
Br×Br

(u(t, x)− c)+ I{u(y)≤c̃}dxdy.

For the last estimate, we discarded the denominator because |x−y|−N−α & 1 if x, y ∈ Br. Applying (20) from
theorem 3.1 then yields the first desired estimate (37). In particular, (39) holds too.

We now turn to the proof of (38). Because m can be different from 2, the dissipation term BG(u−ϕ , u
−
ϕ )

appearing in (20) is treated in a slightly different way than in [8]. Let us recall that u−ϕ = (u − ϕ−)− =
u ∧ ϕ− − ϕ− and write

BG(u−ϕ , u
−
ϕ ) ≥

∫∫
Br×Br

((u(y)− c)− − (u(x)− c)−)2DG(u(x), u(y))
dxdy

|y − x|N+α

≥
∫∫

Br×Br
(u(y) ∧ c− u(x) ∧ c)2DG(u(x), u(y))

dxdy

|y − x|N+α
·

Using the convexity inequality (28), one gets:

BG(u−ϕ , u
−
ϕ ) ≥

∫∫
Br×Br

(u(y) ∧ c− u(x) ∧ c)2DG(u(x) ∧ c, u(y) ∧ c) dxdy

|y − x|N+α

≥
∫∫

Br×Br

(
u(y) ∧ c− u(x) ∧ c

)(
G(u(x) ∧ c)−G(u(y) ∧ c)

)
dxdy

|y − x|N+α

&
∫∫

Br×Br

(
(u(y) ∧ c)m/2 − (u(x) ∧ c)m/2

)2
dxdy

|y − x|N+α
.

For the last inequality, we used a well-known identity (74) that we recall in the appendix of this paper.
Applying the Sobolev embedding (17), we finally get

BG(u−ϕ , u
−
ϕ ) &

(∫
Br

(u ∧ c)
pm
2 (x)dx

) 2
p

.
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In particular, theorem 3.1 implies that for all −2 < t1 < t2 < 0,∫
RN

(u(t2, x)− ϕ−(x))
2
− ϕ

−1
− (x)dx+

∫ t2

t1

(∫
Br

(u ∧ c)
pm
2 (x)dx

) 2
p

dt

.
∫
RN

(u(t1)− ϕ−)
2
± ϕ
−1
− dx+ Cϕ−

∣∣{(u− ϕ−)− > 0} ∩ (t1, t2)× RN
∣∣ .

Using next that (u− c)m− = (c− u ∧ c)m . cm + (u ∧ c)m we can play around with the Lebesgue norm:(∫
Br

(u− c)
pm
2
− (x)dx

) 2
p

.
∥∥cmIu(x)<c + (u(x) ∧ c)m

∥∥
L2/p(Br)

≤ cm|{u < ϕ−} ∩Br|2/p +

(∫
Br

(u ∧ c)
pm
2 (x)dx

) 2
p

.

We thus get the desired estimate (38).

4 First lemmas of De Giorgi

This section is devoted to the first lemmas of De Giorgi. These lemmas are concerned with reducing the
oscillation of the solution, provided u spends “most” of the space-time Q = (−2, 0] × B2 either on the upper
side or on the lower side of the a-priori range [0, supQ u]. Depending on wether the maximum is lowered or
the infimum is increased, we get two lemmas.

Let us define some common notations that will be used in both proofs of lemmas 4.2 and 4.1. For k ∈ N,
let us define Tk = −1− 1

2k
and rk = 1 + 1

2k
. One thus has an increasing sequence of times

−2 = T0 < T1 < T2 < . . . < Tk < . . . < T∞ = −1

and a decreasing sequence of balls:

B2 = Br0 ⊃ Br1 ⊃ Br2 ⊃ . . . ⊃ Brk ⊃ . . . ⊃ Br∞ = B1.

The idea is to apply recursively the local energy estimates from proposition 3.1 with well chosen cut-off values.
The sequence of nested estimates then provides, for some c > 0, that∫

(−1,0]×B1

(u− c)2
±dxdt = 0,

which either means, depending on each respective case, that sup
(−1,0]×B1

u < c or inf
(−1,0]×B1

u > c.

4.1 Lowering the maximum

Lemma 4.1 (Lowering the maximum). Let α ∈ (0, 2). For any µ ∈ (0, 1), there exists δ ∈ (0, 1) such that for
any function u that satisfies the three assumptions:

1. u is locally bounded from above in the following way:

∀(t, x) ∈ (−2, 0]×B2, u(t, x) ≤ 1, (40)

2. the upper local energy-inequality (37) is satisfied,

3. u is “mostly” low-valued in the sense that∣∣∣{u ≤ 1+µ
2

}
∩ (−2, 0]×B2

∣∣∣ ≥ (1− δ) · |(−2, 0]×B2| , (41)
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then u(t, x) ≤ 3+µ
4 in (−1, 0]×B1.

Remark 17. Thanks to proposition 3.1, weak solutions of (1) that satisfy the mild growth assumption (19)
will automatically satisfy the first two assumptions of lemma 4.1. It is interesting to point out that the PDE
is not directly responsible for lemma 4.1 and that only the local energy inequality matters. We do not require
u to be non-negative; only (40) is necessary. Moreover, the “good extra term” in (37) is not required either.

Remark 18. The admissible values for δ form an interval (0, δ∗) where δ∗ is an increasing function of µ.

Remark 19. We will only use lemma 4.1 in the proof of its improved version, lemma 6.1. We will need to use
a high threshold value for µ (i.e. very close to 1).

Proof. Let us use the common definition for Tk and rk from the beginning of §4. We now define an increasing
sequence (the fact that it is increasing is crucial)

ck =
3 + µ

4
− 1− µ

4

1

2k
∈
[

1 + µ

2
,

3 + µ

4

]
and consider the quantity

Uk = sup
t∈[Tk,0]

∫
Brk

(u− ck)2
+(t, x)dx. (42)

To study the asymptotic behavior of the sequence (Uk)k∈N, we establish a recurrence inequality. We apply the
local upper energy estimate (37) with r = rk and R = rk−1 so that (R− r)−2 = 4k. Note that ck ≥ c0 > 1/4.
For all Tk−1 ≤ t1 ≤ Tk < t2 < 0, we get:

∫
Brk

(u− ck)2
+(t2, x)dx+

∫ t2

t1

(∫
Brk

(u− ck)p+(x)dx

) 2
p

dt

.
∫
Brk−1

(u− ck)2
+(t1, x)dx+ 4k

∣∣{u > ck} ∩ (t1, t2)×Brk−1

∣∣ .
In particular, Uk satisfies (choose a time t1 that realizes the following infimum and t2 that realizes Uk):

Uk ≤ inf
t∈[Tk−1,Tk]

∫
Brk−1

(u− ck)2
+(t, x)dx+ 4k

∫ 0

Tk−1

∫
Brk−1

I{u(t,x)>ck}dxdt.

We remark that, by positivity of the integral:

inf
t1∈[Tk−1,Tk]

∫
Brk−1

(u− ck)2
+(x, t1)dx ≤ 1

Tk − Tk−1

∫ Tk

Tk−1

∫
Brk−1

(u− ck)2
+(x, t1)dxdt1

≤ 2k
∫ 0

Tk−1

∫
Brk−1

(u− ck)2
+(x, t1)dxdt1

and as (u− ck)+ ≤ u(x) ≤ 1 on Brk−1
⊂ B2, it is bounded by the characteristic function:

inf
t1∈[Tk−1,Tk]

∫
Brk−1

(u− ck)2
+(x, t1)dx ≤ 2k

∫ 0

Tk−1

∫
Brk−1

I{u(t,x)>ck}dxdt.

Let us point out that this is the only point in the proof where the local boundedness assumption (40) will be
used. We have thus obtained that

Uk . 4k
∫ 0

Tk−1

∫
Brk−1

I{u(t,x)>ck}dxdt. (43)
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Moreover, as the sequence ck is increasing, we note that

(u− ck)+ > 0 =⇒ (u− ck−1)+ > ck − ck−1 ≥ 2−k
(

1− µ
4

)
> 0,

which transforms (43) into

Uk . 4k
∫ 0

Tk−1

∫
Brk−1

I{(u−ck−1)+>2−k( 1−µ
4 )}dxdt. (44)

Now we take θ = 2
p and q = 2(1− θ) + pθ. Then, using the Markov and Hölder inequalities, we get∫
Brk−1

I{(u−ck−1)+>2−k( 1−µ
4 )}dx

≤ 4q2qk

(1− µ)q

∫
Brk−1

(u− ck−1)q+dx

≤ 4q2qk

(1− µ)q

(∫
Brk−1

(u− ck−1)2
+dx

)1−θ (∫
Brk−1

(u− ck−1)p+dx

)θ
.

Integrating in time t along the interval [Tk−1, 0], we get:

Uk ≤ Ck
(

sup
t∈[Tk−1,0]

∫
Brk−1

(u− ck−1)2
+(t)dx

)1−θ
∫ 0

Tk−1

(∫
Brk−1

((u− ck−1)p+dx

) 2
p

dt

 . (45)

To control the last factor, we apply (37) one last time, but on the time interval t1 = Tk−1 and t2 = 0 and with
the radii r = rk−1 and R = rk−2; we get:∫ 0

Tk−1

(∫
Brk−1

((u− ck−1)p+dx

) 2
p

dt . Uk−1 + Ck
∫ 0

Tk−1

∫
Brk−2

I{u(t,x)>ck−1}dxdt. (46)

The measure term in (46) cannot be removed, but it is harmless. Indeed, let us define

Mk =

∫ 0

Tk−1

∫
Brk−1

I{u(t,x)>ck}dxdt. (47)

So far, thanks to (43)-(46), we have established that for any k ≥ 1:{
Uk ≤ CkMk,

Mk ≤ CkU1−θ
k−1 (Uk−1 +Mk−1).

(48)

Therefore, we have Mk ≤ C̃kMσ
k−1 with σ = 2− θ = 2− 2

p > 1.

Solving the recurrence equation, we get constants C̄ > 1 and C ′ = C̃−σ(σ−1)−2

> 0 such that

0 ≤Mk ≤ C̄k(C ′M1)σ
k

−→
k→∞

0

provided M1 < 1/C ′ is small enough. In turn, this estimate also implies that Uk → 0.

Using the last assumption (41) and the fact that c1 > c0 = 1+µ
2 , we get the final control

M1 =

∫ 0

−2

∫
B2

I{u(t,x)>c1}dxdt ≤ |{u > (1 + µ)/2} ∩ (−2, 0)×B2| < δ · |(−2, 0)×B2|, (49)

which can be made arbitrarily small for a proper choice of δ. Adjusting the value of δ properly in (49), we
obtain that U∞ = 0, which in turn implies that u ≤ µ in (−1, 0)×B1. This achieves the proof of this first De
Giorgi lemma about lowering the maximum.
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4.2 Increasing the infimum

Lemma 4.2 (Increasing the infimum). Let α ∈ (0, 2) and m ≥ 2. For any µ ∈ (0, 1), there exists δ > 0 such
that for any function u that satisfies the three assumptions:

1. u ≥ 0 on RN ,

2. the lower local energy-inequality (38) is satisfied (with the chosen value for m),

3. u is “mostly” high-valued in the sense that∣∣∣{u ≥ 1+2µ
3

}
∩ (−2, 0]×B2

∣∣∣ ≥ (1− δ) · |(−2, 0]×B2| , (50)

then u(t, x) ≥ µ in (−1, 0]×B1.

Remark 20. Again, thanks to proposition 3.1, weak solutions of (1) that satisfy the mild growth assump-
tion (19) will automatically satisfy the first two assumptions of lemma 4.2. In lemma 4.2, we do not require u
to be bounded from above, nor to have a mild growth at infinity. The non-negativity assumption is sufficient.
Again, no “good extra term” is required in (38) either.

Remark 21. The admissible values for δ form an interval (0, δ∗) where δ∗ is an increasing function of µ.

Remark 22. We have chosen to state (50) such that the cut-off value 1+2µ
3 ∈ (1/3, 1). Subsequently, we will

only use lemma 4.2 in the final proof of the main theorem, where we intend to use it with 1+2µ
3 ≥ 1

2 i.e.
for µ ≥ 1/4.

Proof. We use the common definition for Tk and rk from the beginning of §4. To apply (38), the key is to
choose the sequence of cut-off functions ϕ− = ϕk wisely. Following [8], we define a decreasing sequence

ck = µ+
1− µ

3

1

2k
∈
[
µ,

1 + 2µ

3

]
and will choose ϕk → µIB1

as k → +∞ while ensuring, for all k ≥ 0, that:{
ϕk ≡ ck in Brk ,

ϕk ≡ 0 outside Brk−1

and |∇ϕk/ϕk| ≤ Ckϕ−1/m0

k .

For k = 0, we set r−1 = 3 (note that 3 ≤ 21/ε0 with ε0 from theorem 3.1, if ε0 ≤ log 2
log 3 ) so that ϕ0 ≡ 1+2µ

3
on B2 with compact support in B3. The critical properties of ϕk are visible in the graph below.

Similarly to what we did in the proof of lemma 4.1, let us define:

Vk = sup
t∈[Tk,0]

∫
RN

(u(t, x)− ϕk(x))
2
− ϕ

−1
k (x)dx. (51)
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We apply the assumption (38) between a starting time t1 ∈ [Tk−1, Tk] such that∫
RN

(u(t1)− ϕk)
2
− ϕ

−1
k = inf

t∈[Tk−1,Tk]

∫
RN

(u(t)− ϕk)
2
− ϕ

−1
k

and a final time t2 ∈ [Tk, 0] that realizes Vk. As u ≥ 0, the function (u−ϕk)− is supported in suppϕk ⊂ Brk−1

and as ϕk ≤ 1, we also have (u− ϕk)2
−ϕ
−1
k ≤ ϕk ≤ 1 (note that it is the only point in the proof where we use

the first assumption). In particular, we get as in the proof of lemma 4.1:

inf
t∈[Tk−1,Tk]

∫
RN

(u(t)− ϕk)
2
− ϕ

−1
k ≤

1

Tk − Tk−1

∫ Tk

Tk−1

∫
RN

(u(t)− ϕk)
2
− ϕ

−1
k dxdt

≤ 2k
∫ 0

Tk−1

∫
Brk−1

I{u(t,x)<ϕk}dxdt.

The measure of {u < ϕk} ∩ (t1, t2)× RN is also obviously bound by the same right-hand side. Thus, for this
pair of times, assumption (38) implies:

Vk . 2k
∫ 0

Tk−1

∫
Brk−1

I{u(t,x)<ϕk}dxdt. (52)

As the sequence ϕk is decreasing both in amplitude and support in a coordinated way, we get:

∀x ∈ Brk−1
, ϕk(x) ≤ ϕk−1(x)−

(
1− µ

3

)
2−k

and in particular

u(t, x) < ϕk =⇒ (u(t, x)− ϕk−1)− >

(
1− µ

3

)
2−k.

We are thus allowed to rewrite (52) into

Vk . Ck
∫ 0

Tk−1

∫
Brk−1

I{(u−ϕk−1)−>(1−µ)2−k/3}dxdt. (53)

Now we take θ = 2
p and q = 2(1 − θ) + θ(pm/2) and apply the Markov inequality to (53), then the Hölder

inequality in the space variable and subsequently integrate in time; we get

Vk ≤ Ck
∫ 0

Tk−1

∫
Brk−1

(u− ϕk−1)q−dxdt

≤ Ck
(

sup
t∈[Tk−1,0]

∫
Brk−1

(u− ϕk−1)2
−ϕ
−1
k−1dx

)1−θ
∫ 0

Tk−1

(∫
Brk−1

(u− ϕk−1)
pm
2
− dx

) 2
p

dt

 .

Note that ϕ−1
k−1 ≡ c−1

k−1 ≥ 1 on Brk−1
so we can add it freely at the end of the computation. Finally, let us

apply (38) one more time, but between t1 = Tk−1 and t2 = 0 and with the truncation ϕk−1. We then get:

∫ 0

Tk−1

(∫
Brk−1

(u− ck−1)
pm
2
− dx

) 2
p

dt . Vk−1 + Ck
∫ 0

Tk−1

∫
Brk−2

I{u(t,x)<ϕk−1}dxdt. (54)

Roughly speaking, if we discard the measure term, the flavor of this recurrence equation is Vk ≤ CkV 1−θ
k−1 Vk−1.

However, as there is no hope to control I{u(t,x)<ϕk−1} by (u − ϕk−1)−, we have to consider the recurrence
equation as a system. For this purpose, let us define

Nk =

∫ 0

Tk−1

∫
Brk−1

I{u(t,x)<ϕk}dxdt. (55)
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What we have proved so far with (52)-(54) is the existence of a universal constant C such that:{
Vk ≤ CkNk
Nk ≤ CkV 1−θ

k−1 (Vk−1 +Nk−1).
(56)

From this system, we can infer that Nk ≤ C̃kN2−θ
k−1 . Provided that N1 is small enough, we will then get, as

in the proof of lemma 4.1, that Nk → 0 super-exponentially fast as k → ∞ (namely Nk ≤ C̄k(C ′N1)σ
k

with
σ = 2− θ > 1 so σk � k, and C ′N1 < 1) and therefore Vk → 0 too.

Let us check that N1 is indeed small enough. As ϕ1 ≤ ϕ0 = 1+2µ
3 on B2, our assumption (50) allows us to

write

N1 =

∫ 0

−2

∫
B2

I{u<ϕ1}dxdt ≤ |{u < (1 + 2µ)/3} ∩ (−2, 0)×B2| < δ · |(−2, 0)×B2| (57)

so it can be made arbitrarily small for a proper choice of δ. This achieves the proof of the De Giorgi lemma
about increasing the infimum.

5 Lemma on intermediate values

To prove the Hölder regularity of the weak solution, we need to improve lemma 4.1 by showing that a uniform
reduction of the maximum on a smaller ball can be obtained not only if u is below 1/2 for most of the space-
time domain (−2, 0]×B2 but that it is also true under the milder assumption that it happens for only a few
events (t, x) ∈ (−2, 0]×B2.

Remark 23. This type of result on intermediate values is sometimes called a “second De Giorgi lemma” (e.g.
in [7]) in reference to the historical papers of E. De Giorgi on elliptic PDEs. As we have already established
two De Giorgi lemmas of the first kind, it would probably be more proper to call it “a De Giorgi lemma of the
second kind”.

Lemma 5.1 (Intermediate values, or De Giorgi lemma of the second kind). Let α ∈ (0, 2). For any ρ ∈ (0, 1
8 )

and δ ∈ (0, 1
2 ), there exist λ ∈ (0, 1

2 ) and γ ∈ (0, 1) such that for any function u that satisfies the following
assumptions:

1. u(t, x) ≤ 1 in (−2, 0]×B2,

2. the upper local energy-inequality (37) is satisfied,

3. u takes “some” early low values in the sense that∣∣{u < 1
2

}
∩ (−2,−1]×B1

∣∣ ≥ ρ|B1|,

4. u takes “enough” late high values in the sense that∣∣{u > 1− λ2/2
}
∩ (−1, 0]×B1

∣∣ ≥ δ|B1|,

then ∣∣{1/2 ≤ u ≤ 1− λ2/2
}
∩ ((−2, 0]×B1)

∣∣ ≥ γ |(−2, 0]×B1|. (58)

Remark 24. In view of the proof, a formula can be given for γ as a function of ρ, δ and constants only depending
on N,m and α (see C+, C1, C2, CD in the proof below). The admissible values for λ form an interval of the
form(0, Cρδ2) defined precisely by (68).

Remark 25. Subsequently, we will use this result with some δ = δ given by lemma 4.1.
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Proof. We will follow closely the proofs given in Section 4 of [7] and in Section 9 of [8]. As pointed out in [8],
the key point is to collect a super-linear control of the good extra term∫ 0

−2

∫∫
B1×B1

(
u(t, x)− (1− λ

2 )
)

+

(
G(1− λ

2 )−G(u(y))
)

+

dxdy

|x− y|N+α
dt . λ1+ε

for λ < 1/2 and with some ε > 1. In what follows (as in [7], [8]), we will have ε + 1 = 2. Once this goal has
been achieved, then the subsequent steps are a straightforward adaptation of the end of Section 4 of [7]. For
the convenience of the reader, we will sketch how the end of the argument goes.

We define for λ < 1/2,

c0 =
1

2
, c1 = 1− λ

2
, c2 = 1− λ2

2
.

We fix ρ ∈ (0, 1/8) and we consider

E+(t) =

∫
B1

(u− c1)2
+(t, x)dx,

G(t) =

∫∫
B1×B1

(u− c1)+(t, x)(G(c1)−G(u(y)))+dxdy.

The proof proceeds in several steps. During the proof, we will freely use that, on B2:

(u− c1)+ ≤
λ

2
· I{u(x)>c1}. (59)

Step 1: Using the energy estimate, we first prove in this step that

E ′+(t) ≤ C+λ
2 and

∫ T2

T1

G(t)dt ≤ C+λ
2 (60)

for all −2 ≤ T1 < T2 < 0. For any c0 ∈ (0, c1), we can express our assumption (37) about the local energy
estimate using its alternate form (39) and obtain:

d

dt

∫
B1

(u− c1)2
+(t2, x)dx+ (G(c1)−G(c0))

(∫
B1×B1

(u− c1)+(x)I{u(y)<c0}dxdy

)
. C

∣∣{u > c1} ∩ (t1, t2)×B3/2

∣∣ . Cλ2.

For the last inequality, we followed [7]-[8] and used (59).

Step 2: We construct a set of “early times” for which the energy is “small”. More precisely, in order to do
this, we consider

Σ0 = {t ∈ (−2, 0) : |{u(t, .) < c0} ∩B1| ≥ ρ|B1|/4}
and we prove next that

|Σ0 ∩ (−2,−1)| ≥ ρ

2
, (61)∫

Σ0

E+(t)dt ≤ C1
λ3

ρ
. (62)

As far as (61) is concerned, we remark that the assumptions of the lemma imply

ρ|B1| ≤
∫ −1

−2

|{u(t) < c0} ∩B1|dt

≤
∫

Σ0∩(−2,−1)

|{u(t) < c0} ∩B1|dt+

∫
(−2,−1)\Σ0

ρ

4
|B1|dt

≤ |B1||Σ0 ∩ (−2,−1)|+ ρ

2
|B1|.
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In order to get (62), we first remark that (60) yields

Cλ2 ≥ (G(c1)−G(c0))

∫
Σ0

∫
B1

∫
{u(t,y)<c0}∩B1

(u− c1)+(t, x)dxdydt.

Now we use G(c1)−G(c0) =
(
1− 1

2λ
)m−1 −

(
1
2

)m−1 ≥
(

5
6

)m−1 −
(

1
2

)m−1
& 1 and get

Cλ2 & ρ

∫
Σ0

∫
B1

(u− c1)+(t, x)dxdt

&
ρ

λ

∫
Σ0

∫
B1

(u− c1)2
+(t, x)dxdt

using (59) again.

Step 3: We now consider the following set of “early times” for which the energy is small:

Σ̃0 = {t ∈ Σ0 ∩ (−2,−1) : E+(t) ≤ C2

2
δλ2}

with C2 to be chosen later, and we prove that it has a positive measure, i.e.

|Σ̃0| ≥
ρ

4
(63)

for λ small enough. Let F denote Σ0 \ Σ̃0. Using (62) we can write

|F | =
∫
F

dt ≤ 2

C2λ2δ

∫
F

E+(t)dt ≤ 2C1λ

C2δρ
≤ ρ

2

as soon as

λ ≤ C2δρ
2

4C1

and we get (63) from (61).

Step 4: We next construct a set of “late times” for which the energy is “large”. Precisely, we consider

Σ2 = {t ∈ (−2, 0); |{u(t) > c2} ∩B1| ≥
δ

4
|B1|}

and we prove that

|Σ2 ∩ (−1, 0)| ≥ δ

2
(64)

∀t ∈ Σ2, E+(t) ≥ C2δλ
2 (65)

for C2 = |B1|/64. Estimate (64) is obtained as above from the assumption of the lemma. As far as (65) is
concerned, we write for all t ∈ Σ2 that

E+(t) =

∫
B1

(u− c1)2
+(t, x)dx

≥ (c2 − c1)2|B1 ∩ {{u(t, x) > c2}|

≥ λ2(1− λ)2δ|B1|
16

≥ |B1|
64

δλ2

for λ ≤ 1
2 .
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Step 5: In this step, we prove that the energy E+ takes intermediate values between C2δλ
2/2 and C2δλ

2

“often enough”. Precisely, we consder

D = {t ∈ (−2, 0);
C2

2
λ2δ ≤ E+(t) ≤ C2λ

2δ}

and we prove that

|D| ≥ δCD (66)

|D \ Σ0| ≥
|D|
2

(67)

with CD = |C2|/(2C+). We start with (66) by picking a time T0 ∈ Σ̃0 where Σ̃0 (it has a positive measure
thanks to (63)) and T2 ∈ Σ2 ∩ (−1, 0) (it has a positive measure thanks to (64)). Consider the truncature
function

T (r) = max(min(r, C2δλ
2), C2δλ

2/2).

Remark that T ′(r) = I{C2δλ2/2≤r≤C2δλ2}. Then

C2

2
δλ2 ≤ T ◦ E(T2)− T ◦ E(T0)

≤
∫ T2

T0

E′(t)T ′(E(t))dt

≤ C+λ
2|D|

where we used (37).

As far as (67) is concerned, we use the definition of σ2, (62) and (67) in order to get

|D ∩ Σ0|
C2λ

2δ

2
≤
∫
D∩Σ0

E(t)dt ≤ C1
λ3

ρ
≤ CDδ

2
× C2λ

2δ

2
≤ |D|

2

C2λ
2δ

2
,

as soon as

0 < λ ≤ C2CDρδ
2

4C1
· (68)

Step 6: We will pick up an intermediate set in D \ Σ̃0 with a nontrivial measure. Precisely, for t ∈ (−2, 0) \
(Σ̃0 ∪ Σ2), we have (recall δ ≤ 1

2 and ρ ≤ 1
2 )

|B1| = |{u(t) < c0} ∩B1|+ |{u(t) > c2} ∩B1|+ |{c0 < u(t) < c2} ∩B1|

≤ ρ

2
|B1|+

δ

2
|B1|+ |{c0 < u(t) < c2} ∩B1|

≤ 1

2
|B1|+ |{c0 < u(t) < c2} ∩B1|.

Hence for all t ∈ (−2, 0) \ (Σ̃0 ∪ Σ2) we have

|{c0 < u(t) < c2} ∩B1| ≥
1

2
|B1|.
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Moreover D \ Σ̃0 ⊂ (−2, 0) \ (Σ̃0 ∪ Σ2). So we conclude∫ 0

−2

|{c0 < u(t) < c2} ∩B1|dt ≥
∫

(−2,0)\(Σ̃0∪Σ2)

|{c0 < u(t) < c2} ∩B1|dt

≥ 1

2
|B1||(−2, 0) \ (Σ̃0 ∪ Σ2)|

≥ 1

2
|B1||D \ Σ̃0|

≥ 1

2
|B1|.

|D|
2

≥ CDδ

4
|B1|.

Hence the lemma is proved with γ = CDδ
4 .

6 Lowering the maximum, improved

We are now in a position to prove the improved oscillation reduction result from above. We follow the argument
given in Section 10 of [8]. The key will be a proper rescaling of the solution.

Lemma 6.1 (Lowering the maximum, improved). Let α ∈ (0, 2). We take ε0 from theorem 3.1. For any
µ ∈ (0, 1/2] and ρ ∈ (0, 1), there exists µ∗ ∈ (0, 1) such that for any function u that satisfies the following
assumptions:

1. u satisfies
u(t, x) ≤ 1 in (−2, 0]×B2

2. the upper local energy-inequality (37) is satisfied,

3. u takes “some” early low values in the sense that

|{u < µ} ∩ (−2,−1]×B2| ≥ ρ |B2|,

then u(t, x) ≤ µ∗ in (−1/2, 0] × B1/2. Note that the value of µ∗ depends only on the dimension N , on γ, λ
from lemma 5.1, on ρ, µ and ε0.

Remark 26. Note that the major difference with the first De Giorgi lemma 4.1 is that the value of ρ is now
arbitrary while, previously, it was fixed to ρ = 1− δ. Also note that now, as we apply the intermediate values
lemma 5.1, the full length of (37) is required, i.e. the “good extra term” plays a crucial role. Lastly, there is
a time-gap (from t = −1 to t = −1/2) between the third assumption and the conclusion.

Proof. The key of the proof consists in applying lemma 5.1 to a sequence of functions until all the space-time
available for the intermediary values is spent. From then on, we will know that u is mostly low-valued on the
“late” times, i.e. on (−1, 0]×B1. The first De Giorgi lemma 4.1 will then be applied with a high threshold and
will reduce the maximum, but only on “late” times compared to its domain of application. This step is thus
responsible for a small but necessary time-gap between the assumptions and the conclusion and we can only
improve the maximum on (−1/2, 0]× B1/2. The first step consists in checking the assumptions of lemma 5.1
on a sequence of “pushed down and rescaled” versions of u.

Choice of constants. First, we take the values of λ < 1/2 and γ given in lemma 5.1. Next, we consider

j0 =

⌈
|(−2, 0]×B1|

γ

⌉
.

Finally, we take the value δ given by lemma 4.1 when applied to µ = 1− λ2j0+2.
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Claim 1. Our first claim is that the functions defined for 1 ≤ j ≤ j0 by

uj(t, x) =
u(t, x)− (1− λ2)(1 + λ2 + λ4 + . . .+ λ2j−2)

λ2j
=
u(t, x)− (1− λ2j)

λ2j

satisfy the local energy estimates (37) with uniform constants. Let us observe that as j → ∞, one has
λ2juj(t, x)→ u(t, x)− 1 ≤ 0 on B21/ε0 so that uj may take some negative values. Equivalently, the sequence
is defined iteratively by

uj+1(t, x) =
1

λ2

(
uj(t, x)− (1− λ2)

)
,

starting from u1(t, x) = λ−2(u(t, x)− (1− λ2)).

For any cj > 0, let us repeatedly apply our assumption (37) to the function u, with the cut-off constant

c = λ2jcj + (1− λ2j) > 1/4,

radii 0 < r < R < 21/ε0 and start and stop times −2 < t1 < t2 < 0. Using (39) to express the good extra
term, we get:∫

Br

(u− (1− λ2j)− λ2jcj)
2
+(t2, x)dx+

∫ t2

t1

(∫
Br

(u− (1− λ2j)− λ2jcj)
p
+(x)dx

) 2
p

dt

+

∫ t2

t1

(∫∫
Br×Br

(
u(x)− (1− λ2j)− λ2jcj

)
+

(
G((1− λ2j) + λ2jcj)−G(u(y))

)
+

dxdy

)
dt

.
∫
BR

(u(t1, x)− (1− λ2j)− λ2jcj)
2
+dx+ C(R− r)−2

∣∣{u− (1− λ2j) > λ2jcj} ∩ (t1, t2)×BR
∣∣ .

We deduce from the previous inequality that uj − cj = (u− c)/λ2j satisfies the following local energy estimate∫
Br

(uj(t2, x)− cj)2
+dx+

∫ t2

t1

(∫
Br

(uj(t, x)− cj)p+dx

) 2
p

dt

+

∫ t2

t1

(∫∫
Br×Br

(uj − cj)+(x)(G((1− λ2j) + λ2jcj)−G(u(y)))dxdy

)
dt

.
∫
BR

(uj(t1, x)− cj)2
+dx+ C(R− r)−2λ−4j |{uj > cj} ∩ (t1, t2)×BR| .

As λ−1 > 1, we have λ−4j ≤ λ−4j0 if j ≤ j0. We conclude that, as long as 1 ≤ j ≤ j0, all the functions uj
satisfy the local energy estimates (37) with uniform constants. Moreover, cj > 0 can be arbitrary.

Claim 2. We also claim that the early low-values assumption of lemma 5.1 does hold for uj . Indeed, as
λ < 1 then for any µ < 1, the inequality uj(t, x) < µ implies uj+1(t, x) < µ hence

|{uj < 1/2} ∩ (−2,−1]×B1| ≥ |{uj < µ} ∩ (−2,−1]×B1| ≥ |{u < µ} ∩ (−2,−1]×B1| ≥ ρ|B1|.

As µ ≤ 1/2, the early low-values assumption of lemma 5.1 is satisfied.

Main Step. Let us now reason by contradiction. We assume that for any j ∈ [1, j0] one has

|{uj > 1− λ2/2} ∩ (−1, 0]×B1| ≥ δ|B1|.

Then the lemma 5.1 on intermediate values can be applied to uj and implies that

|{1/2 ≤ uj ≤ 1− λ2/2} ∩ (−2, 0]×B1| ≥ γ|(−2, 0]×B1|.
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Translating this for the function u, we get∣∣∣∣{1− λ2j

2
≤ u ≤ 1− λ2j

2
− λ2j+1

2

}
∩ (−2, 0]×B1

∣∣∣∣ ≥ γ |(−2, 0]×B1|.

This implies in particular∣∣∣∣{1− λ2j

2
≤ u ≤ 1− λ2j+2

2

}
∩ (−2, 0]×B1

∣∣∣∣ ≥ γ |(−2, 0]×B1|.

But these intermediate level sets are disjoint and of positive measure so there can be only at most j0 − 1 of
them in the space-time ball (−2, 0]×B1. The original assumption is false.

In particular, there exists j1 ≤ j0 such that

|{uj1 > 1− λ2/2} ∩ (−1, 0]×B1| < δ|B1|.

As µ = 1− λ2j0+2, this translates back to u as

|{u > 1+µ
2 } ∩ (−1, 0]×B1| ≤ |{u > 1− λ2j1+2/2} ∩ (−1, 0]×B1| < δ|B1|. (69)

We want to apply the first De Giorgi lemma 4.1 to u with µ = 1− λ2j0+2. However, (69) only states that u is
“mostly low valued” at late times while lemma 4.1 requires u to be “mostly low valued” for all times.

We thus consider ũ(t, x) = u(t/2α, x/2), which satisfies

|{ũ > 1+µ
2 } ∩ (−2, 0]×B2| < δ|B1|.

because 2α > 2 (note that we use here again that α ≥ 1). Applying lemma 4.1 to ũ, we get:

ũ(t, x) ≤ 3 + µ

4
= µ∗ on (−1, 0]×B1

with µ∗ = 1− λ2(j0+1)/4. Hence u(t, x) ≤ µ∗ on (−1/2, 0]×B1/2.

7 Proof of the main theorem

In this section, we alternatively use the lemma of De Giorgi on increasing the infimum (lemma 4.2) and the
improved lemma about lowering the maximum (lemma 6.1) in order to prove theorem 1.1.

Proof of theorem 1.1. We now consider a weak solution of (1)-(2) associated with an initial data

u0 ∈ L1 ∩ L∞(RN ;R+).

We know from [5, theorem 2.6], which we recalled here as theorem 2.1, that this solution is globally bounded
in [0,+∞)× RN , by a constant M that depends on ‖u0‖L1(RN ), ‖u0‖L∞(RN ). To prove theorem 1.1, we want
to study its Hölder regularity on some interval [T0, T1] with 0 < T0 < T1.

When α ∈ (0, 1], one replaces u by the properly drifted ū(t, x) defined by (31)-(35) so that the upper local
energy-inequality (37) holds. The scaling transforms that appear in the rest of the proof can be adapted to
the drift term, as in [8, §12.3].

We can translate the time interval and study the equation in (−2, 0] × RN . It is then sufficient to prove
that it is Hölder continuous at the point (t0, x0) = (0, 0). Using the scale invariance, we can assume without

loss of generality that M = 1 (by choosing A = 1/M and C = M
m−1
α in (16)). In particular,

0 ≤ u(t, x) ≤ 1 + Ψε0(x) for (t, x) ∈ (−2, 0]× RN . (70)
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where Ψε0 is the mildly-growing function defined by (18).

In order to apply lemma 2.2, we are going to prove that the oscillation of u around the point (t0, x0) = (0, 0)
decays algebraically on (−r, 0]×Br as r → 0. More precisely, we will show subsequently that if the solution u
satisfies (70), then oscu

(−1,0]×B1

≤ ω0 < 1. Thanks to (16) we can then construct a sequence of rescaled solutions

vn+1(t, x) =
vn(t/τn, x/κn)

(τn/καn)1/(m−1)
with v1(t, x) = u(t, x)

and scaling parameters τn, κn ≥ 2 such that τn/κ
α
n ≤ 1. One can adjust the parameters such that all the vn

satisfy (70). Note that the values of the pair (τn, κn) can alternate between a few universal choices from one
iteration to the next, but overall, it has no detrimental effect.

Iterating this construct gives a dyadic formulation of the assumption of lemma 2.2, which can then ulti-
mately be applied to u and provides the desired Hölder regularity.

Let us now explain the fine details of the process that reduces the oscillation of vn on (−1, 0] × B1. We
consider an increasing sequence of thresholds

µn = 1− 1

2n
·

We take δn to be the value of δ associated with µ = µn by lemma 4.2. We will successively distinguish two
mutually exclusive cases.

• The first possibility is that

|{vn ≥ (1 + 2µn)/3} ∩ (−2,−1]×B2| ≥ (1− δn)|(−2, 0)×B2|. (71)

In particular, one has

|{vn ≥ (1 + 2µn)/3} ∩ (−2, 0]×B2| ≥ (1− δn)|(−2, 0)×B2|.

In this case, we can apply lemma 4.2 with µ = µn and get that u satisfies

vn(t, x) ≥ µn in (−1, 0]×B1.

The oscillation of vn has thus decreased from 1 on (−2, 0]×B2 to osc vn
(−1,0]×B1

≤ 1− µn = 2−n.

For the subsequent rescaling, we take

vn+1(t, x) = vn(t/τ, x/κ) with κ = 2 and τ = κα ≥ 2

which, according to (16), is also a solution of (1). Moreover, it satisfies

0 ≤ (1− 2−n) IB2(x) ≤ vn+1(t, x) ≤ 1 + Ψε0(x) on (−2, 0]× RN (72)

so in particular (70) holds again for vn+1.

• In case (71) fails, the alternative reads

|{vn ≥ (1 + 2µn)/3} ∩ (−2,−1]×B2| < (1− δn)|(−2, 0]×B2| (73)

which implies
|{vn < (1 + 2µn)/3} ∩ (−2,−1]×B2| ≥ 2δn|B2|.

In this case, we can apply lemma 6.1 with µ = (1 + 2µn)/3 and ρ = 2δn and get that

vn(t, x) ≤ µ∗ in (−1/2, 0]×B1/2.
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The oscillation of vn has thus decreased to osc vn
(−1/2,0]×B1/2

≤ µ∗.

We then consider the function

vn+1(t, x) =
vn(t/τ, x/κ)

µ∗

with τ = (µ∗)m−1κα. Note that τ/κα < 1. Thanks to (16), we know that vn+1 is still a weak solution of (1)
and that {

v ≤ 1 in (−τ/2, 0]×Bκ/2,
v ≤ (|x/κ|ε0−2)++1

µ∗ in (−τ, 0]× RN .

It is not difficult to check that for κ ≥ 2(1 + (µ∗)−1)1/ε > 4, then

(|x/κ|ε0 − 2)+ + 1

µ∗
≤ 1 + Ψε0(x) ouside Bκ/2.

By also choosing κ ≥ (4(µ∗)−(m−1))1/α, we get τ ≥ 4 and therefore

0 ≤ vn+1(t, x) ≤ 1 + Ψε0(x) on (−2, 0]× RN .

This concludes the treatment of the alternative case (73).

Conclusion. In both cases (71)-(73), we have reduced the oscillation of u by at least a universal factor

ω0 =
1

2
∧ µ∗ < 1

and proposed a universal rescaling process that brings us back to the initial situation (70). As explained in
the introduction of this proof, the oscillation then decays algebraically when zooming in and this fact achieves
the proof of the main theorem.

A Useful inequalities

Lemma A.1. The following inequalities are valid for any m > 1

∀a, b ≥ 0, (a− b)(am−1 − bm−1) ≥ 4(m−1)
m2

(
a
m
2 − bm2

)2
(74)

∀a, b ≥ 0, (a2 − b2)(am−1 − bm−1) ≥ 8(m−1)
(m+1)2

(
a
m+1

2 − b
m+1

2

)2

(75)

and
∀a, b ≥ c > 0, (a− b)2 ≤ c−(m−1)(a

m+1
2 − b

m+1
2 )2. (76)

Remark 27. The following proof also shows that converse inequalities to (74)-(75) are also true:

(a− b)(am−1 − bm−1) ≤
(
a
m
2 − bm2

)2
(77)

(a2 − b2)(am−1 − bm−1) ≤
(
a
m+1

2 − b
m+1

2

)2

(78)

for any a, b ≥ 0.

Proof. When a = 0, all inequalities are obvious, at least once we observe that

m2 − 4(m− 1) = (m− 2)2 ≥ 0 and (m+ 1)2 − 8(m− 1) = (m− 3)2 ≥ 0.
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Again, they are also true when a = b. We can thus assume that a 6= 0 and a 6= b and consider θ = b/a ∈ R+

but with θ 6= 1. We claim that the functions

f(θ) =
(1− θm2 )2

(1− θ)(1− θm−1)
, g(θ) =

(1− θm+1
2 )2

(1− θ2)(1− θm−1)
and h(θ) =

1− θ
1− θm+1

2

are continuous through θ = 1 and satisfy ‖f‖L∞(R+) ≤ m2

4(m−1) , ‖g‖L∞(R+) ≤ (m+1)2

8(m−1) and ‖h‖L∞(R+) ≤ 1. The

inequalities (74)-(75) then follow from (1−θ)(1−θm−1) > 0 and (1−θ2)(1−θm−1) > 0 while (76) comes from

(a− b)2 = a2g(θ)2(1− θ
m+1

2 )2 ≤ a−(m−1)(a
m+1

2 − b
m+1

2 )2‖g‖2L∞

and the final restriction a ≥ c.

To back up our claim, let us briefly study the functions f , g and h. The continuity around θ = 1 comes
from a simple Taylor expansion:

f(θ) =
m2

4(m− 1)
− m2(m− 2)2

192(m− 1)
(θ − 1)2 +O[(θ − 1)3]

g(θ) =
(m+ 1)2

8(m− 1)
− (m+ 1)2(m− 3)2

384(m− 1)
(θ − 1)2 +O[(θ − 1)3]

h(θ) =
2

m+ 1
− m− 1

2(m+ 1)
(θ − 1) +O[(θ − 1)2].

Moreover, one can check that f(θ) and g(θ) reach a global maximum when θ = 1 while h(θ) is maximal at
θ = 0, i.e.:

∀θ > 0,


1 ≤ f(θ) ≤ f(1),

1 ≤ g(θ) ≤ g(1),

0 ≤ h(θ) ≤ h(0).

The lower values follow from the limits at 0 and +∞, once we know the variations of f, g, h.
For example, for any θ > 0, one has

h′(θ) = − (m− 1)θ
m+1

2 − (m+ 1)θ
m−1

2 + 2

2θ
(

1− θm+1
2

)2 ≤ 0

because (m − 1)θ
m+1

2 − (m + 1)θ
m−1

2 + 2 is a positive function that vanishes only for θ = 1. Indeed, we can
rewrite it as a balance of two signed terms

(m− 1)θ
m+1

2 − (m+ 1)θ
m−1

2 + 2 = θ
m−1

2 (m− 1)(θ − 1) + 2(1− θ
m−1

2 )

whose derivative is

d

dθ

[
θ
m−1

2 (m− 1)(θ − 1) + 2(1− θ
m−1

2 )
]

= θ
m−3

2 (m− 1)(θ − 1)

(
θ +

m+ 1

2

)
and has therefore the same sign as θ − 1.

Similarly, one has f ′(θ) = (1−θm/2)(1−θ(m−2)/2)F(θ)
(1−θ)2(1−θm−1)2 with F(θ) = 1 − θm−1 + (m − 1)θm/2(1 − θ−1), which

(based on a quick study of F ′) has the sign of (m− 1)(2−m)(θ − 1). Therefore f ′(θ) has the same sign as

(m− 1)(2−m)(θ − 1)(1− θm/2)(1− θ(m−2)/2)

which, for m > 1 is positive on (0, 1) and negative on (1,+∞).

In the same spirit, one gets g′(θ) = (1−θ
m+1

2 )G(θ)
θ2(1−θ2)2(1−θm−1)2 for some auxiliary function G(θ) ≥ 0 and thus g′(θ)

has the same sign as 1− θm+1
2 .
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[13] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem.
Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3 (1957), pp. 25–43.

[14] C. Imbert, Finite speed of propagation for a non-local porous medium equation, Colloq. Math., 143 (2016),
pp. 149–157.

[15] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc.,
River Edge, NJ, 1996.

[16] A. F. Vasseur, The De Giorgi method for elliptic and parabolic equations and some applications, in
Lectures on the analysis of nonlinear partial differential equations. Part 4, vol. 4 of Morningside Lect.
Math., Int. Press, Somerville, MA, 2016, pp. 195–222.

[17] J. L. Vázquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press,
Oxford University Press, Oxford, 2007. Mathematical theory.

34


	Introduction
	Preliminaries
	Energy estimates
	An alternate energy functional
	Common estimate for E+ and E- and any (0,2)
	Estimates for E+ for >1
	Estimates for E- for >1
	Modifications in the case 1
	Local energy estimates

	First lemmas of De Giorgi
	Lowering the maximum
	Increasing the infimum

	Lemma on intermediate values
	Lowering the maximum, improved
	Proof of the main theorem
	Useful inequalities

