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FROM THE CARLITZ EXPONENTIAL TO DRINFELD MODULAR FORMS

F. PELLARIN

Abstract. This paper contains the written notes of a course the author gave at the VIASM of
Hanoi in the Summer 2018. It provides an elementary introduction to the analytic naive theory

of Drinfeld modular forms for the simplest ’Drinfeld modular group’ GL2(Fq[θ]) also providing
some perspectives of development, notably in the direction of the theory of vector modular forms
with values in certain ultrametric Banach algebras.
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1. Introduction

The present paper contains the written notes of a course the author gave at the VIASM of Hanoi
in the Summer 2018. It provides an elementary introduction to the analytic naive theory of Drinfeld
modular forms essentially for the simplest ’Drinfeld modular group’ GL2(Fq[θ]) also providing some
perspectives of development, notably in the direction of the theory of vector modular forms with
values in certain ultrametric Banach algebras initiated in [48].

The course was also the occasion to introduce the very first basic elements of the arithmetic
theory of Drinfeld modules in a way suitable to sensitise the attendance also to more familiar
processes of the classical theory of modular forms and elliptic curves. Most parts of this work are
not new and are therefore essentially covered by many other texts and treatises such as the seminal
works of Goss [31, 32, 33] and Gekeler [23]. The present text also has interaction and potential
developments along with the contributions to this volume by Poineau-Turchetti and Tavares Ribeiro
[55, 59]. It also contains suggestions for further developments, see Problems 4.10,4.15,6.5,8.4 and
8.9.
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2 F. PELLARIN

This paper will not cover several advanced recent works such that the higher rank theory, includ-
ing the delicate compactification questions in the path of Basson, Breuer, Pink [9, 10, 11], Gekeler
[26, 27, 28, 29] and it does not even go in the direction of the important arithmetic explorations
notably involving the cohomological theory of crystals by Böckle [14, 15] or toward several other
crucial recent works by several other authors we do not mention here, at once inviting the reader
to realise a personal bibliographical research to determine the most recent active areas.

Perhaps, one of the original points of our contribution is instead to consider exponential functions
from various viewpoints, all along the text, stressing how they interlace with modular forms. The
paper describes, for example, a product expansion of the exponential function associated to the
lattice A := Fq[θ] in the Ore algebra of non-commutative formal series in the Frobenius automor-
phism which is implicit in Carlitz’s work [17]. It will be used to give a rather precise description
of the analytic structure of the cusp of Γ = GL2(A) acting on the Drinfeld upper-half plane by
homographies. We will also use it in connection with local class field theory for the local field
K∞ = Fq((

1
θ )). Another new feature is that, in the last two sections, we explore structures which

at the moment have no known analogue in the classical complex setting. Namely, Drinfeld modular
forms with values in modules over Tate algebras, following the ideas of [48].

Here is, more specifically, the plan of the paper. In the very elementary §2 the reader familiarises
with the rings and the fields which carry the values of the special functions we are going to study in
this paper. Instead of the field of complex numbers C, our ’target’ field is a complete, algebraically
closed field of characteristic p > 0. There is an interesting parallel with the classical complex theory
where we have the quadratic extension C/R and the quotient group R/Z is compact, but there are
also interesting differences to take into account as the analogue C∞/K∞ of the extension C/R is
infinite dimensional, C∞ is not locally compact, although the analogue A := Fq[θ] of Z is discrete
and co-compact in the analogue K∞ = Fq((

1
θ )) of R.

We dedicate the whole §3 to exponential functions. More precisely, we give a proof of the
correspondence by Drinfeld between A-lattices of C∞ and Drinfeld A-modules. To show that to any
Drinfeld module we can naturally associate a lattice we pass by the more general Anderson modules.
We introduce Anderson’s modules in an intuitive way, privileging one of the most important and
useful properties, namely that they are equipped with an exponential function at a very general
level. Just like abelian varieties, Anderson modules can be of any dimension. When the dimension
is one, one speaks about Drinfeld modules.

In §4 we focus on a particular case of Drinfeld module: the Carlitz module. This is the analogue
of the multiplicative group in this theory. We give a detailed account of the main properties of its
exponential function denoted by expC . We point out that its (multiplicative, rescaled) inverse u is
used as uniformiser at infinity to define the analogue of the classical complex ’q-expansions’ for our
modular forms. In this section we prove, for example, that any generator of the lattice of periods of
expC can be expressed by means of a certain convergent product expansion (known to Anderson).
To do this, we use the so-called omega function of Anderson and Thakur.

In §5 we first study the Drinfeld ’half-plane’ Ω = C∞ \K∞ topologically. We use, to do this, a
fundamental notion of distance from the analogue of the real line K∞. The group GL2(A) acts on
Ω by homographies and we construct a fundamental domain for this action. After a short invitation
to the basic notions of rigid analytic geometry, we describe the Bruhat-Tits tree of Ω, the natural
action of GL2(K∞) on it, and, after a glimpse on Schottky groups (see [55] for a more in-depth
development), we construct a reasonable analogue of a fundamental domain for the homographic
action of GL2(Fq[θ]) on Ω.
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In §6 we discuss the following question: find an analogue for the Carlitz module of the following
statement: Every holomorphic function which is invariant for the translation by one has a Fourier
series. The answer is: every Fq[θ]-translation invariant function has a ’u-expansion’. We show
why in this section. To do this we introduce the problem of rigid analytic structures on quotient
spaces. We mainly focus on the example of the quotient of the rigid affine line A1,an

C∞
by the group

of translations by the elements of A. The reader will notice how hard things can become without
the use of the tool of the analytification functor, also discussed in this section.

In §7 we give a quick account of (scalar) Drinfeld modular forms for the group GL2(A) (charac-
terised by the u-expansion in C∞[[u]]). This appears already in many other references: the main
feature is that C∞-vector spaces of Drinfeld modular forms are finitely dimensional spaces. Also,
non-zero Eisenstein series can be constructed; this was first observed by D. Goss in [32]. The
coefficients of the u-expansions of Eisenstein series are, after normalisation, in A = Fq[θ].

The paper also has advanced, non-foundational parts. In §4.3 we apply the developed knowledge
of the Carlitz exponential function to give an explicit description of local class field theory for the
field K∞; this subsection is also independent from the rest of the paper. In §8 and 9 we revisit
Drinfeld modular forms. We introduce vector Drinfeld modular forms with values in other fields
and algebras, following [48]; the case we are interested in is that of functions which take values
in finite dimensional K-vector spaces where K is the completion for the Gauss norm of the field
of rational functions in a finite set of variables with coefficients in C∞. With the use of certain
Jacobi-like functions, we deduce an identity relating a matrix-valued Eisenstein series of weight one
with certain weak modular forms of weight −1 from which one easily deduces [48, Theorem 8] in a
different, more straightforward way.

1.1. Acknowledgements. The author is thankful to the VIASM of Hanoi for the very nice con-
ditions that surrounded the development of the course and the stimulating environment in which
he was continuously immersed all along his visit in June 2018. Part of this text was written during
a stay at the MPIM of Bonn in April 2019 and the author wishes to express gratitude for the very
good conditions of work there. The author is thankful to A. Thuillier for the proof of Proposition
6.2 and to L. Gurney for fruitful discussions. He expresses his gratitude to the reviewers that,
by means of a careful reading and interesting suggestions, allowed to improve it. This work was
supported by the ERC ANT.

This work is dedicated to the memory of Velia Stassano. She was the mother of the author.

2. Rings and fields

Before entering the essence of the topic, we first propose the reader to familiarise with certain
rings and fields, notably local fields and non-archimedean valued fields. For more about these topics
read, for example, the books [18, 56]. The reader must notice that the basic notations of the two
other chapters of this volume [55, 59] slightly differ from ours.

Let R be a ring.

Definition 2.1. A real valuation | · | (or simply a valuation) over R is a map R
|·|
−→ R≥0 with the

following properties.

(1) For x ∈ R, |x| = 0 if and only if x = 0.
(2) For x, y ∈ R, |xy| = |x||y|.
(3) For x, y ∈ R we have |x+ y| ≤ max{|x|, |y|} and if |x| 6= |y|, then |x+ y| = max{|x|, |y|}.
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The inequality |x + y| ≤ max{|x|, |y|} is usually called the ultrametric inequality (the term ‘ultra-
metric’ indicates a reinforced triangular inequality). A ring with valuation is called a valued ring.
A valuation is non-trivial if its image is infinite. If the image of a valuation is finite, then it is equal
to the set of two elements {0, 1} ⊂ R≥0 and all the non-zero elements of R are sent to 1 while 0 is
sent to 0. This is the trivial valuation of R. A map as above satisfying (2), (3) but not (1) is called
a semi-valuation.

A valuation over a ring R induces a metric in an obvious way and one easily sees that R, together
with this metric, is totally disconnected (the only connected subsets are ∅ and the points). To any
valued ring (R, |·|) we can associate the subsetOR = {x ∈ R : |x| ≤ 1} which is a subring of R, called
the valuation ring of | · |. This ring has the prime idealMR = {x ∈ R : |x| < 1}. The quotient ring

kR := OR/MR is called the residue ring. The ring homomorphism f ∈ OR 7→ f +MR ∈ OR/MR

is called the reduction map. With R a ring, we denote by R× the multiplicative group of invertible
elements. The image |R×| = {|x| : x ∈ R×} is a subgroup of R× called the valuation group.

If R is a field,MR is a maximal ideal. Two valuations | · | and | · |′ over a ring R are equivalent
if for all x ∈ R, c1|x| ≤ |x|′ ≤ c2|x| for some c1, c2 > 0. Two equivalent valuations induce the same

topology. If (R, | · |) is a valued ring, we denote by R̂ (or R̂|·|) the topological space completion of

R for | · |. It is a ring and if additionally R is a field, R̂ is also a field.
While working over complete valued fields, many properties which are usually quite delicate to

check for real numbers, have simple analogues in this context. For instance, the reader can check
that in a valued field (L, | · |), a sequence (xn)n≥0 is Cauchy if and only if (xn+1 − xn)n≥0 tends
to zero. A series

∑
n≥0 xn converges if and only if xn → 0 and an infinite product

∏
n≥0(1 + xn)

converges if and only if xn → 0. Another immediate property is that if (xn)n≥0 is convergent, then
(|xn|)n≥0 is ultimately constant.

2.1. Local compactness, local fields. Let (L, | · |) be a valued field. Choose r ∈ |L×| and x ∈ L.
We set

DL(x, r) = {y ∈ L : |x− y| ≤ r}.

This is the disk of center x and radius r. Some authors like to call r the diameter to stress the fact
that the metric induced by the valuation makes every point of DL(x, r) into a center so that it does
not really distinguishes between ‘radius’ and ‘diameter’.

Observe that OL = DL(0, 1). Also,

ML =
⋃

r∈|L×|
r<1

DL(0, r) =: D◦
L(0, 1).

More generally we write D◦
L(0, r) = {x ∈ L : |x| < r}. We use the simpler notation D(x, r) or

D◦(0, r) when L is understood from the context. Note that D(x, r) = x + D(0, r) and D(0, r) is
an additive group. If |x| ≤ r (that is, x ∈ D(0, r)), then D(x, r) = D(0, r). If |x| > r (that is,
x 6∈ D(0, r)), then D(x, r)∩D(0, r) = ∅. In other words, if two disks with same radii have a common
point, then they are equal. If the radii are not equal, non-empty intersection implies that one is
contained in the other.

Now pick r ∈ |L×| and x0 ∈ L× with |x0| = r. Then, D(0, r) = x0D(0, 1) = x0OL. This means
that all disks are homeomorphic to OL = D(0, 1). This is due to the fact that we are choosing
r ∈ |L×|.

A complete valued field L is locally compact if every disk is compact. We have the following:
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Lemma 2.2. A valued field which is complete is locally compact if and only if the valuation group
is discrete and the residue field is finite.

Proof. Let L be a field with valuation | · |, complete. We first show that OL = D(0, 1) is compact
if the valuation group is discrete (in this case there exists r ∈]0, 1[∩|L×| such thatML = D(0, r))
and the residue field is finite. Let B be any infinite subset of OL. We choose a complete set of
representatives R of OL moduloML. Note the disjoint union

OL =
⊔

ν∈R

(ν +ML).

Multiplying all elements of B by an element of L× (rescaling), we can suppose that there exists
b1 ∈ B with |b1| = 1. Then, the above decomposition induces a partition ofB and by the fact that kL
is finite and the box principle there is an infinite subset B1 ⊂ B∩(b1+M

n1

L ) for some integer n1 > 0.

We continue in this way and we are led to a sequence b1, b2, . . . in B with bi+1 ∈M
ni

L \M
ni−1
L with

the sequence of the integers ni which is strictly increasing (set n0 = 0). Hence, bm+1 − bm ∈M
nm

L

is a Cauchy sequence, thus converging in L because it is complete.
Let us suppose that kL is infinite. Then any set of representativesR ofOL moduloML is infinite.

For all b, b′ ∈ R distinct, we have |b− b′| = 1 and R has no converging infinite sub-sequence. Let us
suppose that the valuation group G = |L×| is dense in R>0. There is a strictly decreasing sequence
(ri)i ⊂ G with ri → 1. This means that for all i, there exists ai ∈ OL such that |ai| = ri and for
all i 6= j we have that |ai − aj | = max{ri, rj} so that we cannot extract from (ai)i a convergent
sequence and OL is not compact. �

Definition 2.3. A valued field which is locally compact is called a local field.

Note that R and C, with their euclidean topology, are locally compact, but not valued. Some
authors define local fields as locally compact topological field for a non-discrete topology. Then,
they distinguish between the non-Archimedean (or ultrametric) local fields, which are the valued
ones, and the Archimedean local fields: R and C.

An important property is the following. Any valued local field L of characteristic 0 is isomor-
phic to a finite extension of the field of p-adic numbers Qp for some p, while any local field L of
characteristic p > 0 is isomorphic to a local field Fq((π)), and with q = pe for some integer e > 0.
We say that π is an uniformiser. Note that |L×| = |π|Z and |π| < 1. The proof of this result is a
not too difficult deduction from the following well known fact: a locally compact topological vector
space over a non-trivial locally compact field has finite dimension.

2.2. Valued rings and fields for modular forms. Let C be a smooth, projective, geometrically
irreducible curve over Fq, together with a closed point ∞ ∈ C. We set

R = A := H0(C \ {∞},OC).

This is the Fq-algebra of the rational functions over C which are regular everywhere except, perhaps,
at ∞. The choice of ∞ determines an equivalence class of valuations | · |∞ on A in the following
way. Let d∞ be the degree of∞, that is, the degree of the extension F of Fq generated by∞ (which
is also equal to the least integer d > 0 such that τd(∞) = ∞, where τ is the geometric Frobenius
endomorphism). Then, for any a ∈ A, the degree

deg(a) := dimFq
(A/aA)

is a multiple −v∞(a)d∞ of d∞ and we set |a|∞ = c−v∞(a) for c > 1, which is easily seen to be a
valuation. It is well known that A is an arithmetic Dedekind domain with A× = F×. In addition



6 F. PELLARIN

v∞(a) ≤ 0 for all a ∈ A \ {0} and v∞(a) = 0 if and only if a ∈ F× (as a consequence of the proof of
the subsequent Lemma 2.4). A good choice to normalise | · |∞ is c = q. We can thus consider the

field K∞ := K̂|·|∞ completion of K for | · |∞ which can be written as the Laurent series field F((π))
where π is a uniformiser element of K∞ (such that v∞(π) = 1). K∞ is a local field with valuation
ring OK∞ = F[[π]], maximal idealMK∞ = πF[[π]], residue field F and valuation group |π|Z∞. Note
that we have the direct sum of Fq-vector spaces:

K∞ = F[π−1]⊕MK∞ .

The case of C = P1
Fq

with its point at infinity ∞ (defined over Fq) is the simplest one. Let θ be

any rational function having a simple pole at infinity, regular away from it. Then, A = Fq[θ],
K = Fq(θ) and we can take π = θ−1 so that K∞ = Fq((

1
θ )) the completion of K for the valuation

| · |∞ = qdegθ(·). Note that for all π = λθ−1 +
∑

i>1 λiθ
−i ∈ K∞ with λ ∈ F×

q and λi ∈ Fq, we have
K∞ = Fq((π)). The field K∞ has an advantage over the field R: it has uniformisers. But there
also is a disadvantage: there is no canonical choice in the uncountable subset of uniformisers.

We come back to the case of A general. Let U be a subset of K∞. We say that U is strongly
discrete if any disk

DK∞(x, r) = {y ∈ K∞ : |x− y|∞ ≤ r} ⊂ K∞

only contains finitely many y ∈ U for every r ≥ 0. Note that, transposing the definition to the case
of R, the ring Z is discrete and co-compact in R (this is well known).

Analogously:

Lemma 2.4. The Fq-algebra A is strongly discrete and co-compact in K∞.

Proof of the first part of Lemma 2.4. That A is strongly discrete in K∞ can be seen by using the
Liouville inequality, asserting that for any x ∈ A \ {0}, |x|∞ ≥ 1. The fraction field K of A is an
extension of F of transcendence degree one, and F is algebraically closed in K. The closed points P
of C correspond to the classes of equivalence of multiplicative valuations over K which have discrete
image in R>0 (discrete valuations), and which are trivial over F. There is a set of valuations | · |P
(associated to the closed points of C different from ∞) such that for all a ∈ A \ {0}, |a|P ≤ 1 and
|a|P = 1 for all but finitely many P , and such that

|a|∞
∏

P

|a|P = 1,

see the axiomatic theory of Artin and Whaples and [5, Theorem 2]. This is the product formula for
A. Let us consider x ∈ A \ {0}. We cannot have |x|∞ < 1 because this would violate the product
formula. Therefore, |x|∞ ≥ 1 and this suffices to show strong discreteness. �

We deduce that A ∩MK∞ = {0}. The next Lemma tells us that, as a ‘valued vector space over
F’, A is not too different from F[π−1]. This can be used to show co-compactness.

Lemma 2.5. There exists a finite dimensional vector space V ⊂ F[π−1] over F such that, isomet-
rically, K∞

∼= A⊕ V ⊕MK∞.

Proof. We can invoke Weierstrass’ gap Theorem (it can be seen as one of the consequences of the
Theorem of Riemann-Roch and it is nicely presented in Stichtenoth’s book, [57, Theorem 1.6.8]).
Let H(∞) be the subset of N whose elements are the nonnegative integers k such that there exists an
element f in A with polar divisor k[∞]. The Weierstrass gap Theorem asserts that the set N\H(∞)
contains exactly g elements, where g is the genus of C. Additionally, N \ H(∞) = {n1, . . . , ng},
with 1 = n1 < · · · < ng ≤ 2g − 1 (so that if the genus g of C is zero, this set is empty). We set
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V := ⊕g
i=1Fπ

−ni and if g = 0 we set V = {0}. Note that A ∩ V = V ∩MK∞ = A ∩MK∞ = {0}.
Then, every element f ofK∞ can be decomposed in a unique way as f = a⊕v⊕m with a ∈ A, v ∈ V
and m ∈ MK∞ . �

Proof of the second part of Lemma 2.4. Co-compactness is equivalent to the property that, for the
metric induced on the quotient K∞/A, every sequence contains a convergent sequence. We have
an isometric isomorphism

K∞

A
∼= V ⊕MK∞

where V is a vector space as in Lemma 2.5 and we deduce that K∞/A, with the induced metric, is
compact. �

Up to a certain extent, the tower of rings A ⊂ K ⊂ K∞ associated to the datum (C,∞) can be
viewed in analogy with the tower of rings Z ⊂ Q ⊂ R.

Here is a fact which encourages to ’think ultrametrically’. We cannot cover a disk of radius q
(e.g. DL(0, q)) of a non locally compact field L, with finitely many disks of radius 1. Of course, this
is possible, by local compactness, for the disk DK∞(0, q) in K∞. Explicitly, in the case C = P1

Fq
:

DK∞(0, q) = DK∞(0, 1)⊕ Fqθ = ⊔λ∈F
×
q
DK∞(λθ, 1) ⊔DK∞(0, 1).

2.3. Algebraic extensions. We start with an example in the local field L = Fq((π)) (with |π| < 1).
Let M be an element of L such that |M | < 1. We want to solve the equation

(1) Xq −X =M.

Assuming that there exists a solution x ∈ L we have x = xq −M so that inductively for all n:

x = xq
n+1

−
n∑

i=0

M qi .

The series
∑n

i=0M
qi converges to H inML by the hypothesis onM and |H | = |M |. But Hq−H =

M and x = H is a solution of (1) and the polynomial Xq −X −M totally splits in L[X ] as all the
roots are in {H+λ : λ ∈ Fq}. If |M | = 1 we could think of writingM =M0+M

′ withM0 ∈ F×
q and

|M ′| < 1 but the equation (1) with M =M0 has no roots in Fq. One easily sees that the equation
(1) has no roots in L if |M | ≥ 1. What makes the above algorithm of approximating a solution in the
case |M | < 1 is that the equation Xq −X has solutions in Fq. These arguments can be generalised
and formalised in what is called Hensel’s lemma. It can be used to show the following property,
which is basic and will be used everywhere. Let L be a valued field with valuation | · | = c−v(·)

(with a map v : L → R ∪ {∞}), complete, and let us consider F/L a finite extension (necessarily
complete). Then, setting

NF/L(x) =

(∏

σ∈S

σ(x)

)[F :L]i

, x ∈ F,

where S is the set of embeddings of F in an algebraic closure of L and [F : L]i is the inseparable
degree of the extension F/L, the map w : F → R ∪ {∞} determined by w(0) =∞ and

w(x) =
v(NF/L(x))

[F : L]
, x ∈ F×

defines a valuation | · |w := c−w(·) extending | · | over F in the only possible way. Coming back to
the local field L = Fq((π)), denoting by Lac an algebraic closure of L, there is a unique valuation
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over Lac extending the one of L; we will denote it by | · | by abuse of notation. The valuation group
is |π|Q = {|π|ρ : ρ ∈ Q} therefore dense in R>0 and the residue field is the algebraic closure Fac

q of
Fq. It is easy to see that Lac is not complete, although each intermediate finite extension is so.

Lemma 2.6. The completion L̂ac of Lac is algebraically closed.

Proof. We follow [34, Proposition 2.1]. Let F/L̂ac be a finite extension. Then, as seen previously,

F carries a unique extension of the valuation | · | of L̂ac. Let x be an element of F . We want to

show that x ∈ L̂ac. For a polynomial P =
∑

i PiX
i ∈ L̂ac[X ] we set ‖P‖ := sup{|Pi|}. It is easy to

see that ‖ · ‖ is a valuation over L̂ac[X ], called the Gauss valuation (to see the multiplicativity it
suffices to study the image of a polynomial in O

L̂ac [X ] by the residue map

O
L̂ac [X ]→ k

L̂ac [X ]

which is a ring homomorphism). Let P ∈ L̂ac[X ] be the minimal polynomial of x over L̂ac. For
‖ · ‖, P is a limit of polynomials of the same degree, which split completely. It is easy to show that
for all ǫ > 0, there exists N ≥ 0 with the property that for all i ≥ N , a root xi ∈ Kac

∞ of Pi satisfies

|x− xi|∞ < ǫ. This shows that x is a limit of a sequence of L̂ac and therefore, x ∈ L̂ac. �

2.4. Analytic functions on disks. To introduce the next discussions we recall here some basic
facts about ultrametric analytic functions in disks, following [34, Chapter 3]. In this subsection, L
denotes a valued field which is algebraic closed and complete for a valuation | · | (e.g. C∞). We
consider a map v : L× → R such that | · | = c−v(·) for some c > 1. We consider a formal power
series

(2) f =
∑

i≥0

fiX
i ∈ L[[X ]].

The Newton polygon N of f is the lower convex hull in R2 of the set S = {(i, v(fi)) : i ≥ 0}. It is
equal to

⋂
HH where H runs over all the closed half-planes of R2 which contain at once S and a

half-line {(x, y) : y ≫ 0} for some x ∈ R, where y ≫ 0 (‘large enough’) means that y ≥ y0 for some
y0 ∈ R.

Here is a practical method of constructing the Newton polygon N of a formal series f ∈ L[[X ]],
if you have on-hand a wooden board, a pencil, nails, a hammer, string and a compass. Draw the
axes coordinates i and v on the board, with the positive direction of the latter pointed toward
the north, as indicated by the compass. Mark the coordinate points (i, v(i)) with the pencil, then
hammer nails into the points. Place yourself in front of the wooden board pointing north. Take
the string and pull it tautly between your hands, then begin winding it from south to north (being
careful to not choose f = 0, meaning you must have hammered in at least one nail!). A polygon
figure will appear, which, transferred on the board, represents the Newton polygon of f .

Note that if f 6= 0, there is always a vertical side on the left of N . If f is a non-zero polynomial,
there is also a vertical side on the right. If x ∈ L and |fixi| → 0 then the series

∑
i fix

i converges
in L to an element that we denote by f(x). There exists r ∈ |L| such that f(x) is defined for all
x ∈ D(0, r) := DL(0, r) and we have thus defined a function

D(0, r)
f
−→ L

that we call analytic function on the disk D(0, r) (note the abuse of langage).

Proposition 2.7. The following properties hold.
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(1) The sequence of slopes of N is strictly increasing and its limit is −ρ(f) = lim supi→∞ v(fi).
The real number ρ(f) is unique with the property that the series f(x) converges for x ∈ L
such that v(x) > ρ(f), and f(x) diverges if v(x) < ρ(f).

(2) If there is a side of the Newton polygon of f which has slope −m and such that it does not
contain any point of the Newton polygon in its interior, then f has exactly r(m) zeroes x
counted with multiplicity, with v(x) = m, where r(m) is the length of the projection of this
side of slope −m onto the horizontal line. There are no other zeroes of f with this property.

(3) If ρ(f) = −∞, assuming that f is not identically zero, we can expand, in a unique way
(Weierstrass product expansion):

f(X) = cXn
∏

i

(
1−

X

αi

)βi

with c ∈ L×, where αi → ∞ is the sequence of zeroes such that v(αi) > v(αi+1) (with
multiplicities βi ∈ N∗).

By (2) of the proposition, if we set r = c−ρ(f) ∈ R≥0, f is analytic on D(0, r′) for all r′ ∈ |L|
such that r′ < r and r is maximal with this property. If ρ(f) = −∞ then we say that f is entire.
We can show easily that if f is entire and non-constant, then it is surjective, and furthermore, an
entire function without zeroes is constant. Also, if f as above is non-entire and non-constant, in
general it is not surjective, but we have a reasonable description of the image of disks by it, given
by the next corollary, the proof of which is left to the reader.

Corollary 2.8. Let f be as in (2) with f0 = 0 and let us suppose that it converges on DL(0, r)
with r ∈ |L×|. Then, f

(
DL(0, r)

)
= DL(0, s) for some s ∈ |L|.

To be brief: an analytic function sends disks to disks.

2.5. Further properties of the field C∞. We consider as in §2.2 the local field K∞. Then,
K∞ = F((π)) for some uniformiser π and by Lemma 2.6, the field

C∞ := K̂ac
∞

is algebraically closed and complete. It will be used in the sequel as an alternative to C ’for silicon-
based mathematicians’ (1), but there are many important differences. For instance, note that
C/R has degree 2, while C∞/K∞ is infinite dimensional, as the reader can easily see by observing
that F-linear elements of Fac

q are also K∞-linearly independent (in fact, this K∞-vector space is
uncountably-dimensional and the group of automorphisms is an infinite, profinite group).

Complex analysis makes heavy use of local compactness so that we can cover a compact analytic
space with finitely many disks. For example, we can cover an annulus with finitely many disks so that
the union does not contain the center, which is very useful in path integration of analytic functions
over C \ {0}. The ultrametric counterparts of this and other familiar and intuitive statements are
false in C∞ as well as in other non-locally compact fields. We cannot use ’partially overlapping
disks’ to ’move’ in C∞, or, more generally, in a non-Archimedean space. The intuitive idea of
‘moving’ itself is different even thought it is not too different, as two annuli, or a disk and an
annulus, may overlap somewhere without being one included in the other.

On another hand, the field C∞ also has ’nice’ properties. Let us review some of them; we denote
by Lsep the separable closure of a field L.

1Opposed to ’carbon-based mathematicians’, following David Goss.
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Lemma 2.9. We have C∞ = K̂sep
∞ .

Proof. This is consequence of simple metric properties of Artin-Schreier extensions. We follow [6].
First look at the equation

Xq′ −X =M

with M ∈ K∞ and where q′ = pe
′

for some e′ > 0. Then, if |M |∞ > 1, all the solutions γ ∈ C∞

of the equation are such that |γ|q
′

∞ = |M |∞ and |γq
′

−M |∞ < |M |∞. This also is a very simple

consequence of Proposition 2.7: the reader can study the Newton polygon of f(X) = Xq′ −X −M
inspecting the three different cases |M |∞ < 1, |M |∞ = 1 and |M |∞ > 1. Here, with |M∞| > 1,
the extension K∞(γ)/K∞ is clearly separable but ramified as by Proposition 2.7, the polynomial

Xq′ − X −M has q′ distinct roots x in Kac
∞ with valuation |x|∞ = |M |

1
q′

∞ . It is in fact a wildly
ramified extension: this means that the characteristic p of Fq divides the index of ramification.

We now consider α ∈ Kac
∞. We want to show that α is a limit of Ksep

∞ . There exists q′ = pe
′

with

a := αq′ ∈ Ksep
∞ . For instance, we can take q′ = [K∞(α) : K∞]i (inseparable degree). Consider

b ∈ K×
∞ and a root β ∈ Kac

∞ of the polynomial equation Xq′ − bX − a = 0. Clearly, β ∈ Ksep
∞ . Let

λ ∈ Ksep
∞ be such that λq

′−1 = b. Then, setting γ = β
λ , we have γq

′

= βq′

λq′ = βq′

bλ so that

γq
′

− γ =
a

bλ
=:M.

We can choose b ∈ K×
∞ such that |b|∞ is small enough so that |M |∞ > 1. If this is the case, then

|γ|q
′

∞ = | abλ |∞ so that

|β|q
′

∞ = |a|∞.

Since (β − α)q
′

= βq′ − a = bβ,

v∞(β − α) =
1

q′
v∞(βq′ − a) =

1

q′
(v∞(b) + v∞(β)) =

1

q′

(
v∞(b) +

1

q′
v∞(a)

)
.

We choose a sequence (bi)i ⊂ K×
∞ with bi → 0. For all i, let βi ∈ Ksep

∞ be such that βq′ = βibi + a
and βi → α. Then, v∞(βi − α)→∞ as v∞(bi)→∞ so that βi → α. �

We deduce that |C×
∞|∞ = |π|Q∞ with π a uniformiser of K∞, and the residue field of C∞ is Fac

q

the algebraic closure of Fq in C∞.
The next results are not used in the rest of the text but mentioning them is helpful in under-

standing important subtleties lying in the bases of the theory of Drinfeld modular forms.

Lemma 2.10. The group C×
∞ contains a subgroup πQ ∼= (Q,+) which is totally ordered for | · |∞.

There are group epimorphisms

C×
∞

̟
−→ πQ, C×

∞
sgn
−−→ (Fac

q )×

such that ̟ induces the identity on πZ, sgn induces the identity on (Fac
q )×, and for all x ∈ C×

∞,

|x−̟(x) sgn(x)|∞ < |x|∞.

One can see that a choice of πQ, ̟ etc. corresponds to an embedding of C∞ in a maximal
immediate extension of it (that is to say, a field extension which is maximal with same valuation
group and same residue field) or, equivalently, in a certain type of field of Hahn generalised series,
spherically complete. Read Poineau and Turchetti’s contribution [55, Definition I.2.17, Theorem
I.2.18, Example I.2.20]. Read also Kedlaya’s [41].
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The group G := Gal(Ksep
∞ /K∞) acts on C∞ by continuous K∞-linear automorphisms. Then the

following important result holds, where the completion on the right is that of the perfect closure of
K∞ in C∞ (see for example [6]):

Theorem 2.11 (Ax-Sen-Tate). CG
∞ := {x ∈ C∞ : g(x) = x, ∀g ∈ G} = K̂perf

∞ .

3. Drinfeld modules and uniformisation

Drinfeld modules are also at the hearth of Tavares Ribeiro contribution to this volume, read [59,
§1.4]. Let R be an Fq-algebra and τ : R → R be an Fq-linear endomorphism. We denote by R[τ ]
the left R-module of the finite sums

∑
i fiτ

i (fi ∈ R) equipped with the R-algebra structure given
by τb = τ(b)τ for b ∈ R (2).

Let f =
∑n

i=0 fiτ
i be in R[τ ]. For any b ∈ R we can evaluate f in b by setting

f(b) =
n∑

i=0

fiτ
i(b) ∈ R.

This gives rise to an Fq-linear map R→ R. Note that the element f =
∑

i fiτ
i and the associated

evaluation map f : R → R are two completely different objects. However, in this text, we will
denote them with the same symbols.

We choose R by returning to the notations of §2.2. In particular considering the Fq-algebra
A = H0(C \ {∞},OC) we construct the tower of rings

A ⊂ K ⊂ K∞ ⊂ C∞

arising from §2.3 which is analogous of Z ⊂ Q ⊂ R ⊂ C.

3.1. Drinfeld A-modules and A-lattices. We show here the crucial correspondence between
Drinfeld A-modules and A-lattices, due to Drinfeld [20]. The definition of Drinfeld module that we
give here is not the most general one but it will nevertheless be enough for our purposes. Remember
that, in the construction of the tower of rings A ⊂ K ⊂ K∞ ⊂ Kac

∞ ⊂ C∞ we have in fact chosen
an embedding A ⊂ C∞.

Definition 3.1. An injective Fq-algebra morphism φ : A→ EndFq
(Ga(C∞)) ∼= C∞[τ ] is a Drinfeld

A-module of rank r > 0 if for all a ∈ A

φa := φ(a) = a+ (a)1τ + · · ·+ (a)rd∞ deg(a)τ
rd∞ deg(a) ∈ C∞[τ ],

where d∞ is the degree over Fq of the residue field of A and the coefficients (a)i are in C∞ and
depend on a, and where deg(a) = dimFq

(A/(a)). If R is an Fq-subalgebra of C∞ containing A and
the coefficients (a)i with 1 ≤ i ≤ rd∞ deg(a) and a ∈ A, we say that the Drinfeld A-module φ is
defined over R and we write φ/R.

Note that geometrically, a Drinfeld module defined over C∞ is just Ga over C∞. What makes
the theory interesting is the fact that there are many embeddings of A in EndFq

(Ga(C∞)). The
case of the Carlitz module, which can be viewed as the ’simplest’ Drinfeld module of rank one, is
analysed in §4.

The set of Drinfeld A-modules of rank r is equipped with a natural structure of small category. If
ϕ and φ are two Drinfeld A-modules, we say that they are isogenous if there exists ν ∈ C∞[τ ] such

2It would be more appropriate, to define this R-algebra, to choose an indeterminate X and consider as the
underlying R-module the polynomial ring R[X] setting the product to be Xb = τ(b)X. This is an Ore algebra and
the standard notation for it is R[X; τ ]. For the purposes we have in mind, the abuse of notation R[τ ] is harmless.
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that ϕaν = νψa for all a ∈ A. If ν, seen as a non-commutative polynomial in τ , is constant, then
we say that ϕ and ψ are isomorphic. Being isogenous induces an equivalence relation on Drinfeld
A-modules and isogenies are the morphisms connecting Drinfeld A-modules of same rank in our
category.

We prove that the category of Drinfeld A-modules of rank r is equivalent to another category,
that of A-lattices.

Definition 3.2. An A-lattice in C∞ is a finitely generated strongly discrete A-submodule Λ ⊂ C∞

and two A-lattices Λ and Λ′ are isogenous if there exists c ∈ C×
∞ such that cΛ ⊂ Λ′ with cΛ of finite

index in Λ′.

Isogenies are the morphisms connecting lattices. Clearly, this also defines an equivalence relation.
If two A-lattices Λ and Λ′ are such that there exists c ∈ C∞ with cΛ = Λ′, then we say that Λ and
Λ′ are isomorphic.

Since A is a Dedekind ring, any A-lattice Λ is projective and has a rank r = rankA(Λ). We have
the following lemma, the proof of which is left to the reader.

Lemma 3.3. Let Λ be a projective A-module of rank r. Then Λ is an A-lattice if and only if
K∞-vector space generated by Λ has dimension r.

Observe that, in contrast with the complex case, for all r > 1 there exist infinitely many non-
isomorphic A-lattices (this can be deduced from the fact that C∞ is not locally compact). We
choose an A-lattice Λ of rank r as above.

By Proposition 2.7 the following product (where the dash (·)′ indicates that the factor corre-
sponding to λ = 0 is omitted)

expΛ(Z) := Z
∏′

λ∈Λ

(
1−

Z

λ

)

converges to an entire function C∞ → C∞ (hence surjective) called the exponential function asso-
ciated to Λ. Note that this is an Fq-linear entire function with kernel Λ, and we can write

expΛ(Z) =
∑

i≥0

αiτ
i(Z), αi ∈ C∞, α0 = 1, ∀Z ∈ C∞.

In particular, d
dZ expΛ(Z) = 1, and the ’logarithmic derivative’ (defined in the formal way) of expΛ

coincides with its multiplicative inverse and is equal to the series
∑

λ∈Λ

1

Z − λ
, Z ∈ C∞ \ Λ.

We refer to [23, §2] for an account on the properties of this fundamental class of analytic functions.
It is not always an easy task to construct explicitly Drinfeld A-modules for a given A = H0(C \

{∞},OC), if C 6= P1
Fq
. The following result is due to Drinfeld [20] and shows the depth of the

problem.

Theorem 3.4. There is an equivalence of small categories

{A− lattices of rank r} → {Drinfeld A-modules of rank r defined over C∞}.

Proof. The proof that we propose is essentially self-contained except for the use of Theorem 3.7
which is the crucial tool, showing how to associate to any Drinfeld A-module an exponential func-
tion. We postpone this result and its proof to §3.2.
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Let Λ be a lattice of rank r (so that it is a projective A-module). The Fq-linear entire map expΛ
gives rise to the exact sequence of Fq-vector spaces

0→ Λ→ C∞
expΛ−−−→ C∞ → 0.

For any a ∈ A there is a unique Fq-linear map C∞
φa
−→ C∞ such that

expΛ(aZ) = φa(expΛ(Z))

for all Z ∈ C∞ and we want to show that the family (φa)a∈A gives rise to a Drinfeld A-module of rank
r. By the snake lemma we get ker(φa) ∼= Λ/aΛ ∼= (A/(a))r . Note also that ker(φa) = expΛ(a

−1Λ).
We set

Pa(Z) := aZ
∏′

α∈ker(φa)

(
1−

Z

α

)
= aZ + (a)1Z

q + · · ·+ (a)r deg(a)Z
qr deg(a)

.

Note that the functions Pa(expΛ(Z)) and expΛ(aZ) are both entire with divisor a−1Λ and the
coefficient of Z in their entire series expansions are equal. Hence these functions are equal and we
can write

φa(Z) = aZ + (a)1Z
q + · · ·+ (a)r deg(a)Z

qr deg(a)

, ∀a ∈ A, Z ∈ C∞.

This defines a Drinfeld A-module φ of rank r such that expΛ(aZ) = φa(expΛ(Z)) for all a ∈ A so
we have defined a map associating to Λ an A-lattice of rank r a Drinfeld module φΛ of rank r.

The next step is to show that the map Λ 7→ φΛ that we have just constructed, from the set of
A-lattices of rank r to the set of Drinfeld A-modules of rank r, is surjective. From the proof it will
be possible to derive that it is also injective. Let φ be a Drinfeld A-module of rank r. We want to
construct Λ an A-lattice of rank r such that φ = φΛ. By the subsequent Theorem 3.7, there exists a
unique entire Fq-linear function expφ : C∞ → C∞ such that for all a ∈ A, expφ(aZ) = φa(expφ(Z)),
and this, for all Z ∈ C∞. We set Λ = Ker(expφ). Then Λ is a strongly discrete A-module in C∞.
The snake lemma implies that Λ/aΛ ∼= Ker(φa), which is an Fq-vector space of dimension r deg(a).
Let ǫ > 0 be a real number and let Vǫ be the K∞-subvector space of C∞ generated by Λ ∩D(0, ǫ).
We also set Λǫ := Vǫ∩Λ. Observe that Λǫ is an A-lattice (it is a finitely generated A-module because
of the finiteness of the dimension of Vǫ) which is saturated by construction. Hence Λǫ/aΛǫ injects
in Λ/aΛ and this for all ǫ > 0 which means rankA(Λǫ) = dimK∞(Λǫ) ≤ r for all ǫ > 0. Setting
V = ∪ǫVǫ we see that dimK∞(V ) ≤ r. From this we easily deduce that Λ is finitely generated and
since Λ/aΛ ∼= (A/(a))r we derive that Λ is an A-lattice of rank r.

Hence the map Λ 7→ φΛ is surjective and one sees easily that it is also injective by looking
at expΛ. Finally, the map is in fact an equivalence of small categories with the natural notions
of morphisms between A-lattices and Drinfeld A-modules that we have introduced. We leave the
details of these verifications to the reader. �

3.2. From Drinfeld modules to exponential functions. In order to complete the proof of
Theorem 3.4 it remains to show how to associate to a Drinfeld A-module an exponential function.
This is the object of the present subsection and we will take the opportunity to present things in a
rather more general setting, by introducing Anderson’s A-modules. We recall here the definition of
Hartl and Juschka in [37].

Definition 3.5. An Anderson A-module of dimension d (over C∞) is a pair E = (E,ϕ) where
E is an Fq-module scheme isomorphic to Ga(C∞)d, together with a ring homomorphism ϕ : A →
EndFq

(E), such that for all a ∈ A, (Lie(ϕ(a)) − a)d = 0.
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If R is a ring, we denote by Rm×n the set of matrices with m rows and n columns with entries
in R. Note that there is an Fq-isomorphism EndFq

(E) ∼= C∞[τ ]d×d. If d = 1 we are brought to
Definition 3.1 of Drinfeld A-modules.

Anderson modules fit in a category which can be compared to that of commutative algebraic
groups; this category is of great importance for the study of global function field arithmetic. A
remarkable feature which allows to track similarities with commutative algebraic groups is the fact
that we can associate, to every such module, an exponential function. In [16, Proposition 8.7]
(see also Anderson in [1, Theorem 3]) Böckle and Hartl proved that every Anderson’s A-module E
possesses a unique exponential function

expE : Lie(E)→ E(C∞)

in the following way (compare also with [59, Proposition 1.11]). Identifying Lie(E) (defined foncto-
rially) with Cd×1

∞ , expE is an entire function of d variables z = t(z1, . . . , zd) ∈ Cd×1
∞ (t(· · · ) denotes

the transposition)

z 7→ expE(z) =
∑

i≥0

Eiz
qi

with E0 = Id and Ei ∈ Cd×d
∞ such that, for all a ∈ A and z ∈ Cd

∞,

expE(Lie(ϕa)z) = ϕa(expE(z)).

We show how to construct expE in a slightly more general setting. Let B be any commutative

integral countably dimensional Fq-algebra. We follow [22] and we define ‖ · ‖∞ on A ⊗Fq
B by

setting, for x ∈ A⊗Fq
B, ‖x‖∞ to be the infimum of the values maxi |ai|∞, running over any finite

sum decomposition

x =
∑

i

ai ⊗ bi

with ai ∈ A and bi ∈ B \ {0}. Then, ‖ · ‖∞ is a norm of A ⊗Fq
B extending the valuation of A

via a 7→ a⊗ 1. The Fq-algebra A⊗Fq
B is equipped with the B-linear endomorphism τ defined by

a⊗ b 7→ aq ⊗ b (thus extending the q-th power map a 7→ aq which is an Fq-linear endomorphism of
A). Similarly, we can consider the C∞-algebra

T = C∞⊗̂Fq
B,

the completion of C∞⊗Fq
B for ‖ · ‖∞ defined accordingly, and we also have a B-linear extension of

τ . Let d > 0 be an integer. We allow τ to act on d× d matrices of Td×d with entries in T on each
coefficient. Then, T[τ ] acts on T by evaluation and T[τ ]d×d ⊂ EndB(Td×1). If f ∈ T[τ ]d×d we can
write f =

∑n
i=0 fiτ

i with fi ∈ Td×d and we set Lie(f) := f0 which provides a T-algebra morphism

Lie(f) : T[τ ]d×d → Td×d.

Definition 3.6. An Anderson A ⊗Fq
B-module ϕ of dimension d is an injective B-algebra homo-

morphism

A⊗Fq
B

ϕ
−→ T[τ ]d×d

such that for all a ∈ A, (Lie(ϕ(a)) − a)d = 0.

We prefer to write ϕa in place of ϕ(a).
We now revisit the proof of Proposition 8.7 of [16] and the method is flexible enough to adapt to

the setting of Definition 3.6. Note also that later in this text, we will be interested in the case B = Fq

only, case in which we essentially recover [1, Theorem 3]. In the following, the non-commutative
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ring T[[τ ]] is defined in the obvious way with T[τ ] as a subring. In the following, we denote by
‖M‖∞ the supremum of ‖x‖∞ where x varies in the entries of a matrix M ∈ Tm×n. We show:

Theorem 3.7. Given an Anderson A⊗Fq
B-module ϕ, there exists a unique series

expϕ =
∑

i≥0

Eiτ
i ∈ T[[τ ]]d×d

with the coefficients Ei ∈ Td×d and with E0 = Id, such that the evaluation series expϕ(z) is

convergent for all z ∈ Td×1, and such that

ϕa(expϕ(z)) = expϕ(Lie(ϕa)z),

for all z ∈ Td×1 and a ∈ A ⊗Fq
B. For all a ∈ A \ {0} we have that expϕ is the limit for n → ∞

of the sequence of entire functions ϕana−n ∈ C∞[[τ ]]d×d, uniformly convergent on every subset of
T[[τ ]]d×1, bounded for the norm ‖ · ‖∞.

Before proving this result, we need two lemmas.

Lemma 3.8. Let us consider L,M ∈ T[τ ]d×d with L = α + N , with α ∈ GLd(T) such that
‖α‖∞ > 1 and M,N ∈ (T[τ ]τ)d×d. Then, for all R ∈ ‖T×‖∞, the sequence of functions given by
the evaluation of (LNMα−N )N≥0 converges uniformly on DT(0, R)

d×1 to the zero function.

Proof. The multiplication defining LNMα−N is that of T[[τ ]]d×d. Locally near the origin, α−1L
is an isometric isomorphism and there exists R0 ∈ ‖T×‖∞ with 0 < R0 < 1 such that for all
x ∈ DT(0, R0)

d×1, ‖L(x)‖∞ = ‖αx‖∞ ≤ ‖α‖∞‖x‖∞. Hence, for N ≥ 0, if ‖x‖∞ ≤ ‖α‖−N
∞ R0

(< R0 because of the hypothesis on α), we have ‖LN (x)‖∞ ≤ ‖α‖N∞‖x‖∞.

We can choose R0 small enough so that ‖M(x)‖∞ ≤ β‖x‖q
l

∞ for some β ∈ ‖T×‖∞ and l > 0.
Let R be in ‖T×‖∞ fixed, and let us suppose that N is large enough so that ‖α‖−N

∞ R ≤ R0. Then,

for all x ∈ DT(0, R)
d, ‖M(α−Nx)‖∞ ≤ β(‖α‖−N

∞ R)q
l

. If N is large enough, we can also suppose
that

β(‖α‖−N
∞ R)q

l

< ‖α‖−N
∞ R0

(because l > 0). Therefore, ‖(LNM)(α−Nx)‖∞ ≤ ‖α‖N∞β(‖α‖
−N
∞ R)q

l

→ 0 as N → ∞, for all
x ∈ DT(0, R)

d×1. �

We consider an Anderson A⊗B-module ϕ and we recall that Lie(ϕa) is the coefficient in Td×d of
τ0Id in the expansion of ϕa ∈ T[τ ]d×d along powers of Idτ . If a ∈ A⊗B\Fq×B, Lie(ϕa) = aId+Na

with Na nilpotent. Then, α = Lie(ϕa) ∈ GLd(T) is such that ‖α‖∞ > 1. Indeed otherwise
Na − α− aId would be invertible.

Let us consider a, b ∈ A ⊗ B, ‖a‖∞ > 1. We construct the sequence of B-linear functions

Td×1 Fa
N−−→ Td×1 defined by

Fa
N = ϕaN b Lie(ϕaN b)

−1, N ≥ 0.

Lemma 3.9. The sequence (Fa
N ) converges uniformly on every polydisk DT(0, R)

d×1 and the limit
function Td×1 → Td×1 is independent of the choice of b.

Proof. We set GaN = Fa
N+1 −F

a
N . Then,

GaN = ϕaN︸︷︷︸
=:LN

ϕb(ϕa Lie(ϕa)
−1 − Id) Lie(ϕb)

−1

︸ ︷︷ ︸
=:M

Lie (ϕa)
−N

︸ ︷︷ ︸
=:α−N
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and by Lemma 3.8, the sequence converges uniformly to the zero function on every polydisk
DT(0, R)

d×1 which ensures the uniform convergence of the sequence ′Fa
N ). Observe now that,

writing momentarily Fa,b
N to designate the above function associated to the choice of a, b,

Fa,b
aN −F

a,1
aN = ϕaN︸︷︷︸

=:LN

(ϕb Lie(ϕb)
−1 − Id)︸ ︷︷ ︸

=:M

Lie(ϕaN )−1

︸ ︷︷ ︸
=:α−N

,

so that, again by Lemma 3.8 this sequence tends to zero uniformly on every polydisk, and the limit
Fa of the sequence Fa

N is uniquely determined, independent of b. �

Proof of Theorem 3.7. Let us denote by Fa the continuous B-linear map which, by Lemma 3.9

is the common limit of all the sequences (Fa,b
N )N (that can be identified with a formal series

x 7→
∑

i≥0Eiτ
i(x) ∈ Td×d[[τ ]]). First of all, note that E0 = Id so that this map is not identically

zero. Moreover, observe that, for all b ∈ A⊗B:

ϕbF
a = ϕb lim

N→∞
Fa,1

N

= ϕb lim
N→∞

ϕaN Lie(ϕaN )−1

= lim
N→∞

ϕbaN Lie(ϕbaN )−1 Lie(ϕb)

= lim
N→∞

Fa,b
N Lie(ϕb)

= Fa Lie(ϕb).

Hence we see that for all a, Fa satisfies the property of the theorem. Now, let F1 and F2 be two
elements of Td×d[[τ ]] such that ϕb(Fi(z)) = Fi(bz) for all b ∈ A ⊗ B and i = 1, 2, and with the
property that F3 = F1 − F2 ∈ Td×d[[τ ]]τ . Suppose by contradiction that F3 is non-zero. Then
we can write F3 =

∑
i≥i0

Fiτ
i with Fi ∈ Td×d and Fi0 non-zero. Since F3 also satisfies the same

functional identities of both F1,F2 (for b ∈ A ⊗ B), we get Lie(ϕb)Fi0 = Fi0τ
i0 (Lie(ϕb)) for all b.

Let w be an eigenvector of Fi0 with non-zero eigenvalue, defined over some algebraic closure of the
fraction field of T. We consider b ∈ A ⊗ B with ‖b‖∞ > 1. Writing Lie(ϕb) = b + Nb with Nb

nilpotent, we see that Lie(ϕb)w = τ i0 (Lie(ϕb))w which implies (b − τ i0 (b))w = (τ i0 (Nb)−Nb)w =
Mw and M is nilpotent. Hence, there is a power c of b − τ i0(b) such that cw = 0 which means
that b = τ i0(b); a contradiction because the valuations do not agree. This means that F1 = F2. In
particular, F = Fa does not depend on the choice of a and the theorem is proved. �

4. The Carlitz module and its exponential

In this section we set
A = H0(P1

Fq
\ {∞},OP1

Fq
) = Fq[θ],

θ being a rational function over P1
Fq

having a simple pole at ∞ and no other singularity. The

simplest example of Anderson’s A-module is the Carlitz module which is discussed here; it has
rank one and it is perhaps the only one with which we can make very simple computations so it is
legitimate to spend some time on it. In order to simplify our notations, we write

| · | = | · |∞ = q−v∞(·), ‖ · ‖ = ‖ · ‖∞

from now on; this will not lead to confusion.

Definition 4.1 (Cf. Example 1.9 of [59]). The Carlitz A-module is the Drinfeld A-module A
C
−→

C∞[τ ] uniquely defined by Cθ = C(θ) = θ + τ .
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Let a be in A. Then, Ca ∈ A[τ ] has degree degθ(a) in τ and the rank is 1. Note also that C is
defined over the Fq-algebra A.

We give an example of computation where we can see how this A-module structure over an
A-algebra R works. We suppose q = 2. Let 1 be the unit of R×. We have Cθ(1) = θ + 1. Hence,

Cθ2+θ(1) = Cθ+1(Cθ(1)) = (θ + 1)2 + θ2 + 1 = 0.

This means that 1 is a (θ2 + θ)-torsion point for this A-module structure given by the Carlitz
module.

By Theorem 3.7, the limit series

expC := lim
N→∞

CθN θ−N ∈ C∞[[τ ]],

not identically zero and which can be identified with an entire Fq-linear endomorphism of C∞,
satisfies

(3) expC a = Ca expC

for all a ∈ A and has constant term (with respect to the expansion in powers of τ) equal to one.
By Theorem 3.4, the Carlitz module C corresponds to a rank one lattice νA ⊂ C∞, with generator
ν ∈ C∞, and we have

expC(Z) = expνA(Z) = Z
∏′

λ∈νA

(
1−

Z

λ

)
, Z ∈ C∞.

Our next purpose is to compute ν explicitly. To do this, we are going to use properties of the Newton
polygon of expC . Indeed, staring at (3) it is a simple exercise to show that there is a unique solution
Y ∈ C∞[[τ ]] of CθY = Y θ with the coefficient of τ0 equal to one, and by uniqueness, we find

expC =
∑

i≥0

d−1
i τ i,

where

di = (θq
i

− θq
i−1

) · · · (θq
i

− θq)(θq
i

− θ) = (θq
i

− θ)dqi−1

(if i > 0 and with d0 = 1). From v∞(di) = −iqi we observe again that expC defines an Fq-
linear entire function which is therefore also surjective over C∞ (use Proposition 2.7). We have the
normalisation of | · | by |θ| = q.

Proposition 4.2. There exists an element ν ∈ C∞ with v∞(ν) = − q
q−1 , such that the kernel of

expC is equal to the Fq-vector space νA. The element ν is defined up to multiplication by an element
of F×

q .

Proof. We know already from Theorem 3.4 that the kernel of expC has rank one overA. The novelty
here is that we can compute the valuation of its generators, a property which is not available from
the theorem. The Newton polygon of expC is the lower convex hull in R2 of the set whose elements
are the points (qi, iqi). Since

(qi+1, (i+ 1)qi+1)− (qi, iqi) = (qi(q − 1), iqi(q − 1) + qi+1)

for i ≥ 0, the sequence (mi) of the slopes of the Newton polygon is

iqi(q − 1) + qi+1

qi(q − 1)
= i+

q

q − 1
.
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Projecting this polygon on the horizontal axis we deduce that for all i ≥ 0, expC has exactly qi(q−1)
zeroes x such that v∞(x) = −i− q

q−1 (counted with multiplicity) and no other zeroes. In particular,

we have q − 1 distinct zeroes such that v∞(x) = − q
q−1 . The multiplicity of any such zero is one

(note that d
dX expC(X) = 1) so they are all distinct. Now, since expC is Fq-linear, we have that

all the roots x such that v∞(x) = −1 − 1
q−1 are multiple, with a factor in F×

q , of a single element

ν (there are q − 1 choices). We denote by A[d] the set of polynomials of A of exact degree d. For
all a ∈ A[d], 0 = Ca(expC(ν)) = expC(aν) and v∞(aν) = −d− q

q−1 . This defines an injective map

from A[d] to the set of zeroes of expC of valuation −d− q
q−1 . But this set has cardinality q

d(q− 1)

which also is the cardinality of A[d]. This means that expC(x) = 0 if and only if x ∈ νA. �

Corollary 4.3. We have expC(X) = X
∏

a∈A\{0}

(
1− X

aν

)
and expC induces an exact sequence of

A-modules

0→ νA→ C∞
expC−−−→ C(C∞)→ 0.

4.1. A formula for ν. We have seen that if Λ ⊂ C∞ is the kernel of expC , then Λ is a free
A-module of rank one generated by ν ∈ C∞ with v∞(ν) = − q

q−1 , defined up to multiplication

by an element of F×
q . Let us choose a (q − 1)-th root (−θ)

1
q−1 of −θ; this is also defined up to

multiplication by an element of F×
q , and the valuation is − 1

q−1 . We want to prove the following

formula:

ν = θ(−θ)
1

q−1

∏

i>0

(
1−

θ

θqi

)−1

.

To do this, we will use Theorem 3.7. We recall that this result implies that the sequence

fn(z) = expC(z)− Cθn(zθ−n)

converges uniformly on every bounded disk of C∞ to the zero function. To continue further, we
need to introduce the function ω of Anderson and Thakur. This function is defined by the following
product expansion:

ω(t) = (−θ)
1

q−1

∏

i≥0

(
1−

t

θqi

)−1

.

The convergence of this product is easily seen to hold for any t ∈ C∞ \ {θ, θq, θq
2

, . . .}. Also, for all
n 6= 1, the function

(t− θ)(t − θq) · · · (t− θq
n−1

)ω(t)

extends to an analytic function over DC∞(0, qn−1) (we can also say that ω defines a meromorphic
function over C∞ having simple poles at the singularities defined above). To study the arithmetic
properties of ω, it is useful to work in Tate algebras. However, at this level of generality, this is
not necessary, strictly speaking. For the purposes we have in mind now, it will suffice to work with
formal Newton-Puiseux series. Let y, t be two variables, choose a (q − 1)-th root of y and define:

F (y, t) = (−y)
1

q−1

∏

i≥0

(
1−

t

yqi

)−1

∈ Fq((y
− 1

q−1 ))((t)).

Then,

F (yq, t) = (t− y)F (y, t).
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Writing the series expansion

ω(t) =
∑

i≥0

λi+1t
i ∈ C∞[[t]],

we deduce, from the uniqueness of the series expansion of an analytic function in DC∞(0, 1), that
the sequence (λi)i≥0 can be defined by setting λ0 = 0 and the algebraic relations

Cθ(λi+1) = λqi+1 + θλi+1 = λi

which include λ1 = (−θ)
1

q−1 . Now set µi = θiλi, i ≥ 0.

Lemma 4.4. For all i ≥ 1, |µi| = q
q

q−1 and (µi)i≥0 is a Cauchy sequence.

Proof. Developing the product defining ω we see that |λi| = q
q

q−1−i. To see that (µi) is a Cauchy
sequence, it suffices to show that µi+1 − µi → 0. But

µi+1 − µi = θi+1λi+1 − θ
iλi = θi(λi − λ

q
i+1)− θ

iλi = −θ
iλqi+1 → 0.

�

Let µ ∈ C∞ be the limit of (µi).

Lemma 4.5. We have µ = − limt→θ(t− θ)ω(t) = θ(−θ)
1

q−1
∏

i>0(1− θ
1−qi)−1.

Proof. From the functional equation of F (y, t) we see that limt→θ(t − θ)ω(t) = (−θ)
q

q−1
∏

i>0(1 −

θ1−qi)−1 =
∑

i≥0 θ
iλqi+1, the latter series being convergent. Using that Cθ(λi+1) = λi we see that

the last sum is:

∑

i≥0

θi(λi − θλi+1) =

N−1∑

i=0

θi(λi − θλi+1) +
∑

i≥N

θiλqi+1, ∀N.

The first sum telescopes to −θNλN while the second being a tail series of a convergent series, it
converges and the sum depending on N tends to 0 as N →∞. �

Hence µ is the residue of −ω at t = θ. We can write

µ = −Rest=θ(ω).

This is the analogue of a well known lemma sometimes called Appell’s Lemma: if (an) is a converging
sequence of complex numbers, then limn an = limx→1−(1− x)

∑
n anx

n.
We are now ready to prove the following well known and classical result:

Theorem 4.6. The kernel Λ of expC is generated, as an A-module, by

µ = ν = θ(−θ)
1

q−1

∏

i>0

(
1− θ1−qi

)−1

.

Proof. Since Λ = νA for some ν ∈ C∞ such that |ν| = q
q

q−1 and since |µ| = q
q

q−1 , it suffices to

show that expC(µ) = 0. Now, we can write µ = µn + ǫn where ǫn → 0 and |ǫn| < q
q

q−1 . Also, we
have expC(z) = fn(z)+Cθn(θ−nz) and we have that the sequence of entire functions (fn) converges
uniformly to the zero function on any bounded subset of C∞. We have:

expC(µ) = (Cθnθ−n + fn)(µn + ǫn)

= Cθn(λn)︸ ︷︷ ︸
=0

+ fn(µn)︸ ︷︷ ︸
→0

+expC(ǫn)︸ ︷︷ ︸
→0

.
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Hence, µ = ν. �

Remark 4.7. The formula of Theorem 4.6 can be easily derived from the following result of Carlitz
in [17] that also appears in [34, Theorem 3.2.8]. Let η be a (q− 1)-th root of θ− θq in the algebraic
closure Kac of K in C∞. We set:

ξ = η
∏

j≥1

(
1−

θq
j

− θ

θqj+1 − θ

)
∈ Kac

∞.

Then µ ∈ F×
q ξ. To see this, observe the identity:

d−1∏

j=1

(
1−

θq
j

− θ

θqj+1 − θ

)
=

d−1∏

j=0

(1− θq
j(1−q))

d∏

i=1

(1− θ1−qi)−1, d ≥ 1.

Both products on d converge in K∞ for d→ ∞. If we set H = η
∏

j≥0(1 − θ
qj(1−q)) ∈ Kac

∞ we see

that H is algebraic over K by the relations Hq = (θ−θq)η(1−θ1−q)−1
∏

j≥0(1−θ
qj(1−q)) = −θqH .

Since −θq = θq−1(−θ), we deduce that H ∈ F×
q θ(−θ)

1
q−1 . The formulation that we adopt in our

text is that of Anderson, Brownawell and Papanikolas in [2, §5.1]. In fact, the proof of Theorem
4.6 that we gave above is inspired by that of these authors.

One of the most used notations for our µ is π̃. This is suggestive due to the resemblance between

the exact sequence of Corollary 4.3 and 0 → 2πiZ → C
exp
−−→ C → 1; there is an analogy between

π̃ ∈ C∞ and 2πi ∈ C. It can be proved, by the product expansion we just found, that π̃ in
transcendental over K = Fq(θ). The first transcendence proof of it is that of Wade in [62] but there
are several others, very different from each other. See for example [2, §3.1.2]. There are proofs
which make use of computations of dimensions of ‘motivic Galois groups’ which connect to the
topics of Di Vizio’s contribution to this volume [19] and which are the roots of a vast program in
transcendence and algebraic independence inaugurated by Anderson, Brownawell and Papanikolas
in [2], and later by Papanikolas in [46].

4.2. A factorization property for the Carlitz exponential. In Corollary 4.3, we described
the Weierstrass product expansion of the entire function expC : C∞ → C∞. We now look again at
expC as a formal series and we provide it with another product expansion, this time in C∞[[τ ]]; see
Proposition 4.9. This result is implicit in Carlitz’s [17, (1.03), (1.04) and (5.01)]. The function we
factorise is not expC but a related one:

expA(z) = z
∏

a∈A\{0}

(
1−

z

a

)
= π̃−1 expC(π̃z),

so that

expA =
∑

i≥0

d−1
i π̃qi−1τ i ∈ K∞[[τ ]].

Before going on we must discuss the Carlitz logarithm. It is easy to see that in C∞[[τ ]], there
exists a unique formal series logC with the following properties: (1) logC = 1+· · · (the constant term
in the power series in τ is the identity 1 = τ0) and (2) for all a ∈ A, a logC = logC Ca, a condition
which is equivalent to θ logC = logC Cθ by the fact that A = Fq[θ]. Writing logC =

∑
i≥0 l

−1
i τ i and

using this remark one easily shows that

li = (θ − θq)(θ − θq
2

) · · · (θ − θq
i

),
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i ≥ 0. We note that v∞(li) = −q qi−1
q−1 . This means that the series logC does not converge to

an entire function but for all R ∈ |C×
∞| such that R < |π̃|, logC defines an Fq-linear function on

DC∞(0, R). We also note, reasoning with the Newton polygons of expC and logC , that

(4) | expC(z)| = |z| = | logC(z)|, ∀z ∈ D◦
C∞

(0, |π̃|),

which implies that the Carlitz’s exponential induces an isometric automorphism of D◦
C∞

(0, |π̃|).
More generally, the exponential function of a Drinfeld module induces, locally, an isometric auto-
morphism, see [59, Corollary 1.12]. We observe that the series U = expC logC and V = logC expC
in K∞[[τ ]] satisfy Ua = aU and V a = aV for all a ∈ A. Since they further satisfy U = 1+ · · · and
V = 1 + · · · , we deduce that logC is the inverse of expC in K∞[[τ ]]. In particular,

Ca = expC a logC ∈ K∞[τ ], ∀a ∈ A.

We define:

Cz = expC z logC ∈ C∞[[τ ]], z ∈ C∞.

Then,

Cz =
∑

i≥0

d−1
i τ iz

∑

j≥0

l−1
j τ j

=
∑

i≥0

d−1
i zq

i

τ i
∑

j≥0

l−1
j τ j

=
∑

k≥0




k∑

i=0

d−1
i l−qi

k−iz
qi

︸ ︷︷ ︸
=:Ek(z).



τk

We can thus expand, for all z ∈ C∞:

Cz =
∑

k≥0

Ek(z)τ
k ∈ C∞[[τ ]]

with the coefficients

Ek(z) =
k∑

i=0

d−1
i l−qi

k−iz
qi =

z

lk
+ · · ·+

zq
k

dk
∈ K[z]

which are Fq-linear polynomials of degree qk in z for k ≥ 0. They are called the Carlitz’ polynomials.
In the next proposition we collect some useful properties of these polynomials.

Proposition 4.8. The following properties hold:

(1) For all k ≥ 0 we have

Ek(z) = d−1
k

∏

a∈A
|a|<qk

(z − a).

(2) For all k ≥ 0 and z ∈ C∞ we have

Ek(z)
q = Ek(z) + (θq

k+1

− θ)Ek+1(z).

(3) We have lkEk(z)→ expA(z) uniformly on every bounded subset of C∞.



22 F. PELLARIN

Proof. (1). Since Ca ∈ A[τ ] has degree in τ which is equal to degθ(a), Ek vanishes on A(< k) the
Fq-vector space of the polynomials of A which have degree < k. Since the cardinality of this set is
equal to the degree of Ek, this vector space exhausts the zeroes of Ek, and the leading coefficient
is clearly d−1

k .
(2) This is a simple consequence of the relation CaCz = CzCa.
(3) We note that

lk
dk

∏

|a|<qk

(z − a) =
lk
dk
z
∏

a 6=0

|a|<qk

(−a)
(
1−

z

a

)
.

Now, it is easy to see that

(5)
∏

06=|a|<qk

(−a) =
∏

06=|a|<qk

a =
dk
lk
.

(see [34, §3.2]). The uniform convergence is clear. �

We come back to the series expA =
∑

i≥0 d
−1
i π̃qi−1τ i ∈ K∞[[τ ]]. We now show that

(6) expA = · · ·

(
1−

τ

lq−1
n

)(
1−

τ

lq−1
n−1

)
· · ·

(
1−

τ

lq−1
1

)
(1− τ) =

= · · · ln(1 − τ)
1

θqn − θ
(1− τ) · · ·

1

θq2 − θ
(1− τ)

1

θq − θ
(1− τ).

in K∞[[τ ]] with its (τ)-topology. We have in fact more:

Proposition 4.9. On every bounded subset of C∞, the entire function expA(z) is the uniform limit
of the sequence of Fq-linear polynomials

(
z −

zq

lq−1
n

)
◦

(
z −

zq

lq−1
n−1

)
◦ · · · ◦

(
z −

zq

lq−1
1

)
◦ (z − zq) ,

where ◦ is the composition.

Proof. We write:

Ẽn =

(
1−

τ

lq−1
n−1

)
· · ·

(
1−

τ

lq−1
1

)
(1− τ) ∈ K[τ ].

We also denote by En ∈ K[τ ] the unique element such that for all z ∈ C∞, En(z) = En(z)
(evaluation). Part (3) of Proposition 4.8 implies that lkEk converges uniformly to expA(z) on every

bounded subset of C∞. Hence, we are done if we show that the evaluations agree: Ẽn = lnEn for
all n ≥ 0. This is certainly true if n = 0. We continue by induction. From part (2) of Proposition
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4.8 we see that τEn = En + (θq
n+1

− θ)En+1 for all n ≥ 0. Therefore:

Ẽn+1 =

(
1−

τ

lq−1
n

)
Ẽn

=

(
1−

τ

lq−1
n

)
lnEn

= lnEn − l
q
nl

−q+1
n τEn

= lnEn − ln(En + (θq
n+1

− θ)En+1)

= ln(θ − θ
qn+1

)︸ ︷︷ ︸
=ln+1

En+1,

and we are done. �

Proposition 4.9 was essentially known by Carlitz; it can be derived easily with elementary manip-
ulations on the left-hand side of [17, (5.01)]. It is interesting to note the two rationality properties
for expC = expπ̃A and expA which follow from the above result: the terms of the series defining
expC are defined over K (the coefficients d−1

i ) and the factors of the infinite product of expA we

just considered are also defined over K (the coefficients are l1−q
i ).

Problem 4.10. Generalise Lemma 4.14 and Proposition 4.9 to the framework of Drinfeld-Hayes A-
modules of rank one considered in [38] for a general Fq-algebra of regular functions A and highlight
a connection to the shtuka functions in the sense of [34, §7.11] in this context, see also [59, §4.2].

Remark 4.11. This can be viewed as a digression. There is a simple connection with Thakur’s
multiple zeta values, defined by:

ζA(n1, n2, . . . , nr) :=
∑

a1,...,an∈A+

|a1|>···>|ar|

a−n1
1 · · · a−nr

r ∈ K∞, n1, . . . , nr ∈ N∗, r ≥ 1,

where A+ denotes the subset of monic polynomials of A. Indeed, one sees directly that the coefficient
of τr in (6) is equal to

(−1)r
∑

i1>···>ir≥0

l1−q
i1

lq−q2

i2
· · · lq

r−1−qr

ir
.

One proves easily
∑

a∈A+

|a|=qi
a−l = l−l

i for 1 ≤ l ≤ q and we deduce that

expA =
∑

r≥0

(−1)rζA(q − 1, q(q − 1), . . . , qr−1(q − 1))τr.

Therefore, equating the corresponding coefficients of the powers of τ we reach the formula:

ζA(q − 1, q(q − 1), . . . , qr−1(q − 1)) = (−1)r
π̃qr−1

dr
, r ≥ 0,

with the convention ζA(∅) = 1. Note that the identity derived by the specialisation t = θ in [50, (22)]
rather involves the ‘reversed’ multiple zeta values ζ∗A(q

r−1(q−1), . . . , q(q−1), q−1), the ∗ denoting
the variant of multiple zeta value involving sums with non-strict inequalities |a1| ≥ · · · ≥ |ar|.
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4.3. The function expA and local class field theory. This subsection is not logically related to
the other topics of the text. Just as the Euler exponential function, the Carlitz exponential function
has an important role in explicit class field theory for the field K (see Hayes [38] for the rational
function field K = Fq(θ), [39] and the more recent work of Zywina [63], for the general case). Note
that even more recently, a direct link between the explicit class field theory of K = Fq(θ) and the
function ω of Anderson and Thakur has been found in [3]. It does not belong to our purposes to
describe these results here. In this subsection we are going to achieve a more modest objective
which is to apply, in the case A = Fq[θ], the properties of the function expA we have reviewed so
far, in relation with the local class field theory for K∞ = Fq((

1
θ )). Interestingly, these properties

do not seem to have simple analogues in the theory of Euler’s exponential function.
Let L ⊂ C∞ be an algebraic extension of K∞. Then, expA defines an Fq-linear map L → L.

Indeed, for all x ∈ L,K∞(x)/K∞ is a finite extension, hence complete, and expA(K∞(x)) ⊂ K∞(x).

Definition 4.12. We say that L is uniformised by expA if the map expA : L→ L is surjective.

For example, L = C∞ is uniformised by expA, thanks to Proposition 2.7. Observe that if
L,L′ ⊂ C∞ are two algebraic extensions of K∞ which are uniformised by expA, then also L ∩ L′

is uniformised by expA. Indeed, let x be an element of L ∩ L′ and let y ∈ L, y′ ∈ L′ be such that
expA(y) = expA(y

′) = x. Then y − y′ ∈ A = Ker(expA) ⊂ K∞ so that y, y′ ∈ L ∩ L′. Hence, there
is a minimal algebraic extension L/K∞ in C∞ that is uniformised by expA; this is what we want
to study here.

We denote by Kab
∞ the maximal abelian extension of K∞ in Ksep

∞ ⊂ C∞, that is, the maximal
extension of K∞ which is Galois, with abelian Galois group. We also choose λθ a (q− 1)-th root of
−θ ∈ Ksep

∞ and we note that if L/K∞ is an algebraic extension, then L[λθ] is an algebraic extension
of K∞. The aim of this subsection is to prove:

Theorem 4.13. Let L be the minimal algebraic extension of K∞ in C∞ which is uniformised by
expA. Then, L[λθ] = Kab

∞ .

In the complex setting, and for the Eulerian exponential, we would have the analogue but
deceiving result: the minimal algebraic extension of R which is uniformised by z 7→ ez is C.
Theorem 4.13 confirms that in some sense, function field arithmetic is more transparent and allows
to see more structure in the watermark. We need the next:

Lemma 4.14. Let n be a non-negative integer. For every r ∈ |C×
∞| with r < |ln| the product

Fn := · · ·

(
1−

τ

lq−1
n+1

)(
1−

τ

lq−1
n

)
∈ K[[τ ]]

defines an entire function C∞ → C∞ and induces an isometric bi-analytic isomorphism of the disk
DC∞(0, r).

Proof. This is easy to verify by using Proposition 2.7 and Corollary 2.8. Indeed, if we set

ψm := 1−
τ

lq−1
m

, m ≥ 0

we see that for all z ∈ C∞ such that |z| < |ln|, ψm(z) = z + z′ with z′ ∈ C∞ depending on m and
|z′| < |z|, for all m ≥ n. �

Proof of Theorem 4.13. We have a well defined Fq-linear map expA : Kab
∞ → Kab

∞ . We first show
that this map is surjective so that if L is the minimal algebraic extension ofK∞ which is uniformised
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by expA, then L ⊂ Kab
∞ . To do this, we note that we have, for all n ≥ 0, a well defined Fq-linear

algebraic map En : A1
Kab

∞
→ A1

Kab
∞

given by the Carlitz polynomials (An
L denotes the affine space

of dimension n over a field L). By the proof of Proposition 4.9, En is surjective. Indeed, for all
y′ ∈ Kab

∞ , the splitting field of the polynomial En(X)− y′ ∈ K∞(y′)[X ] is an abelian extension of
K∞(y′) which can be constructed by iterating Artin-Schreier extensions. Let x be an element of
Kab

∞ . There exists n ≥ 0 such that |x| < |ln|. By Lemma 4.14, F−1
n (x) ∈ Kab

∞ is well defined. Let
x′ ∈ Kab

∞ be such that

lnEn(x
′) = F−1

n (x).

Then we have, by Proposition 4.9, expA(x
′) = Fn(lnEn(x

′)) = Fn(F−1
n (x)) = x and we have

proved that Kab
∞ is uniformised by expA. Now let L ⊂ C∞ be an algebraic extension of K∞ that is

uniformised by expA. To show that L[λθ] contains K
ab
∞ we proceed in two steps.

In the first step, we show that Kun
∞ , the maximal abelian extension of K∞ which is unramified

at the ∞-place, is contained in L. To do this it suffices to show that the algebraic closure Fac
q of Fq

in C∞ is contained in L. Indeed, it is easy to see that Kun
∞ = Fac

q ((1θ )).
By using Proposition 2.7 we see that for every y ∈ C∞ such that |y| = 1 there exists a unique

x ∈ C∞ with |x| = 1, such that expA(x) = y, and of course if y ∈ L, then x ∈ L because we have
supposed that L is uniformised by expA. Since Fq ⊂ K∞ ⊂ L, if y ∈ F×

q , there exists x ∈ L, |x| = 1,
such that expA(x) = y. Now observe with Proposition 4.9 that expA(x) = (F1 ◦ E1)(x) = y and
applying Lemma 4.14

x− xq = E1(x) = F
−1(y) = y + y′

where y′ ∈ 1
θFq[[

1
θ ]]. Setting x′ =

∑
i≥0(y

′)q
i

∈ 1
θFq[[

1
θ ]] we deduce that x − x′ ∈ Fq2 \ Fq ⊂ C∞ is

an element of L, and Fq2 ⊂ L. This shows that Fq2((
1
θ )) ⊂ L because Fq2((

1
θ )) = Fq((

1
θ ))[Fq2 ]. We

can of course repeat this argument with y ∈ Fq2 ⊂ L etc. to show that, inductively, Fqd ⊂ L for all

d ≥ 1 so that Fqd((
1
θ )) = K∞[Fqd ] ⊂ L for all d ≥ 1 and with a little additional work we conclude

that Kun
∞ ⊂ L.

Before passing to the second step we need a little bit of terminology. We say that a sequence
(xi)i≥0 in Kab

∞ is a Lubin-Tate sequence if 1
θx0 + xq0 = 0 and

1

θ
xi + xqi = xi−1, i > 0.

We note that x0λθ ∈ F×
q . Similarly, we say that a sequence (yi)i≥0 of Kab

∞ is an Artin-Schreier
sequence if y0 = 1 and

E1(yi) = yi − y
q
i = θyi−1, i > 0.

By a simple application of Proposition 2.7 we see that |yi| = |θ|
1
q
+···+ 1

qi for all i > 0. Moreover,

1

θ
x0yi + (x0yi)

q = x0yi−1, i > 0

so that if (yi)i≥0 is an Artin-Schreier sequence and x0 satisfies the previous equation, then (x0yi)i≥0

is a Lubin-Tate sequence and if (xi)i≥0 is a Lubin-Tate sequence with x0λθ = 1, then ( xi

x0
)i≥0 is an

Artin-Schreier sequence.
The second step of the proof of our theorem is to show that L contains an Artin-Schreier sequence.

First of all, we note that for any Artin-Schreier sequence (yi)i≥0, θyi ∈ DKab
∞
(0, r) for all r ∈ |C×

∞|

such that r < |θ|
q

q−1 so that |θyi| < |l1| for all i ≥ 0. We fix i ≥ 0. Let ai+1 ∈ Kab
∞ be such that

ai+1 − a
q
i+1 = F−1

1 (θyi).
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We have that

expA(ai+1) = F1(F
−1(θyi)) = θyi.

Since by hypothesis, L is uniformised by expA, we have that ai+1 ∈ L if yi ∈ L. It is easy to see that

F−1
1 (θyi) = θyi + y′i where |y

′
i| < 1. In particular, a′i+1 =

∑
j≥0(y

′
i)

qj converges to an element of L

such that a′i+1 − (a′i+1)
q = y′i. If we set bi+1 = ai+1 − a′i+1 we can conclude, under the hypothesis

that yi ∈ L, that bi+1 ∈ L is such that

bi+1 − b
q
i+1 = θyi.

By induction over i ≥ 0 we obtain that L contains an Artin-Schreier sequence (yi)i≥0.
We can now conclude the proof of the theorem. By what written earlier, L[λθ] contains a Lubin-

Tate sequence (xi)i≥0. We set K̃ := K∞[xi : i ≥ 0]. By Lubin-Tate theory (see [43]) Kab
∞ is the

compositum in C∞ of K̃ and Kun
∞ and therefore, L[λθ] contains K

ab
∞ . �

We are not going to deepen the facts outlined below, but the main theorem of local class field
theory asserts, in the special case of our local field K∞ (it holds for any local field with appropriate
modifications) the existence of an isomorphism of profinite groups

θ̂K∞ : K̂×
∞ → Gal(Kab

∞ /K∞),

the local Artin homomorphism, where K̂×
∞ is the profinite group completion of K×

∞
∼= Fq[[

1
θ ]]

××Z,

non-canonically isomorphic to the profinite group Fq[[
1
θ ]]

× × Ẑ. The non-canonical isomorphism

depends on the choice of a uniformiser π of K∞. If we set Kπ to be the subfield of Kab
∞ which is

fixed by θ̂K∞(π) ∈ Gal(Kab
∞ /K∞), then Kab

∞ is the compositum KπK
un
∞ , and we have isomorphisms

Gal(Kun
∞ /K∞) ∼= Ẑ and Gal(Kπ/K∞) ∼= Fq[[

1
θ ]]

×. Choosing a Lubin-Tate sequence in Kab
∞ /K∞

is therefore equivalent to the choice of a uniformiser π of K∞. One can see, along these remarks
(but we will not give full details), that the minimal algebraic extension L ⊂ Kab

∞ of K∞ that is
uniformised by expA is determined by Gal(Kab

∞ /L) ∼= F×
q .

Problem 4.15. The notion of minimal field extension of K∞ which is uniformised by the expo-
nential expA can be generalised to e.g. Drinfeld A-modules via Theorem 3.4 in a natural way, but
it is unclear how this field can be characterised in the light of local class field theory so that the
role of a statement like Theorem 4.13 must be clarified in this more general setting.

5. Topology of the Drinfeld upper-half plane

We go back to the settings and notations of §2.2, considering the Fq-algebra A = H0(C\{∞},OC)
with C a smooth projective curve over Fq and ∞ a closed point. We therefore have the tower of
inclusions of Fq-algebras A ⊂ K ⊂ K∞ ⊂ C∞. In this section we give an explicit topological
description of what is called the Drinfeld upper-half plane Ω. It goes back to Drinfeld, in [20].
D. Goss called it the ’algebraist’s upper-half plane’ in [31]. It can be viewed as an analogue of the
complex upper-half plane that can be constructed by cutting C in two along the real line and taking
one piece only. As a set, Ω is very simple:

Ω = C∞ \K∞,

but subtracting K∞ results in a different operation than cutting; this is what we are going to show

here. We begin by presenting some elementary properties following [30]. We recall that C∞ = K̂ac
∞,

where K∞ = F((π)) for some uniformiser π. First of all, there is an action of GL2(K∞) on Ω by
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homographies. If γ = ( a b
c d ) ∈ GL2(K∞), then we have the automorphism of P1

Fq
(C∞) uniquely

defined by

z 7→ γ(z) :=
az + b

cz + d

if z 6∈ {∞,− d
c }. Observe that if F/L is a field extension, then GL2(L) acts by homographies on the

set F \ L. For instance, GL2(R) acts on C \ R = H+ ⊔ H− (disjoint union of the complex upper-
and lower-half planes).

It is well known that the imaginary part ℑ(z) of a complex number z, the distance of z from the
real axis, is submitted to the following transformation rule under the action by homographies. If
γ = ( a b

c d ) ∈ GL2(R):

(7) ℑ(γ(z)) =
ℑ(z) det(γ)

|cz + d|2
, z ∈ C \ R.

There is an analogous notion of distance from K∞ in C∞. We set:

|z|ℑ := inf{|z − x| : x ∈ K∞}, z ∈ C∞.

We have the following result.

Proposition 5.1. (1) For all z ∈ C∞, |z|ℑ is a minimum, and |z|ℑ = 0 if and only if z ∈ K∞.
(2) Let z be an element of Ω. Then, there exist z0 = πm(α0+ · · ·+αnπ

−n) ∈ Fq[π, π
−1] and z1 ∈ Ω

with |z1| = |z1|ℑ < |π|m, uniquely determined, with n ∈ N ∪ {−∞} and α0 6= 0 if n 6= −∞, such
that z = z0 + z1.

Proof. (1) If z ∈ K∞, there is nothing to prove. Assume thus that z ∈ Ω ⊂ C∞ is fixed. Define the

map K∞
f
−→ |C×

∞|, f(x) = |z−x|. Then, f is locally constant, hence continuous. But K∞ is locally
compact so there is x0 ∈ DK∞(0, |z|) (not uniquely determined) such that f(x0) is a minimum
(note that if |x| > |z|, then f(x) = |z|) and |z|ℑ = |z − x0|.

(2) For all x ∈ K∞, |x| > |z|, we have |z − x| = |x|. Then, we have two cases.
(a). For all x ∈ DK∞(0, |z|), |z − x| = |z|. In this case, |z|ℑ = |z| and |z|ℑ is a minimum. We

thus get n = −∞, z0 = 0 and z = z1.
(b). There exists x ∈ DK∞(0, |z|)\{0} such that |z| = |x| and |z−x| < |z|. This implies that the

image of z/x in the residue field of C∞ is 1. We can therefore write z = λ1π
−n1 + η1 with λ1 ∈ F

and η1 ∈ Ω, |η1| < |z| = |θ|n1 .
We can iterate by studying now η1 at the place of z. Either the procedure stops and we get a

decomposition z = λ1π
−n1 + · · · + λkπ

−nk + ηk with n1 > · · · > nk, |z|ℑ = |ηk| = |ηk|ℑ and there
exists z0 ∈ K∞ such that |z − z0| = |z|ℑ > 0 as claimed in the statement, or the procedure does
not stop but in this case we have z ∈ K∞ which is excluded. �

In particular, either |z1| 6∈ |K×
∞|, or |z1| = |π

m| but the image of z1π
−m in the residue field of

C∞ is not one of the elements of F×. Part (2) of Proposition 5.1 implies that for all x = z0 + y
with y ∈ DK∞(0, |z1|), |z − x| = |z|ℑ = |z1| = |z1|ℑ.

We also have the following elementary consequences of the above proposition. First of all, if
c ∈ K∞, then |cz|ℑ = |c||z|ℑ for all z ∈ Ω. Moreover, if v∞(z) 6∈ Z, then |z|ℑ = |z|. Also, if |z| = 1,
we have |z|ℑ = 1 if and only if the image of z in the residue field of C∞ is not in F.

The next property is the analogous of (7):

Lemma 5.2. For all z ∈ Ω and γ = ( ∗ ∗
c d ) ∈ GL2(K∞),

|γ(z)|ℑ =
| det(γ)||z|ℑ
|cz + d|2

.
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Proof. First of all, suppose that we have proved that

(8) |γ(z)|ℑ ≤
| det(γ)||z|ℑ
|cz + d|2

, ∀γ = ( ∗ ∗
c d ) ∈ GL2(K∞), ∀z ∈ Ω.

In particular, for all z̃ ∈ Ω, and with γ replaced by γ−1 = δ−1( ∗ ∗
−c a ) (where δ = det(γ)), we get

|γ−1(z̃)|ℑ ≤
|δ||z̃|ℑ

| − cz̃ + a|2
.

We set z̃ = γ(z). Then, −cz̃ + a = δ
cz+d and therefore,

|z|ℑ = |γ−1(z̃)|ℑ ≤ |z̃|ℑ|δ|

∣∣∣∣
cz + d

δ

∣∣∣∣
2

= |δ|−1|cz + d|2|z̃|ℑ = |δ|−1|cz + d|2|γ(z)|ℑ,

so that
|δ||z|ℑ
|cz + d|2

≤ |γ(z)|ℑ,

and we get the identity we are looking for. All we need is therefore to show that (8) holds.
Now, let x ∈ C∞ be such that x is not a pole of γ. An easy calculation shows that

γ(z)− γ(x) =
det(γ)(z − x)

(cz + d)(cx + d)
.

Hence, if x ∈ K∞ is not a pole of γ, we have

(9) |γ(z)− γ(x)| =
| det(γ)||z − x|

|cz + d|2
|cz + d|

|cx+ d|
.

We can find x ∈ K∞ such that |z − x| = |z|ℑ and with the property that x is not a pole of γ (we
have noticed that there are infinitely many such elements). We claim that |cx + d| ≤ |cz + d|. If
c = 0 this is clear. Otherwise, if this were false we would have |cx+ d| > |cz + d| and

|c||z|ℑ = |c||z − x| = |cz + d− (cx+ d)| = |cx+ d| > |cz + d|ℑ = |c||z|ℑ

which would be impossible. Hence, with the claim in mind, we deduce from (9):

|γ(z)|ℑ ≤ |γ(z)− γ(x)| ≤
| det(γ)||z − x|

|cz + d|2
=
| det(γ)||z|ℑ
|cz + d|2

by our choice of x and we are done. �

5.1. Rigid analytic spaces. The notion of rigid analytic space originates in ideas of Tate in the
years 1960’. We do not want to go in very precise details because there is already a plethora of
important references, among which [13, 21]. A more recent introduction to rigid analytic spaces
is the chapter ‘Several approaches to non-archimedean geometry’ by Conrad, see [7, Chapter 2]
(the whole volume is close, in many aspects, to the topics of the present text). Important is also
Berkovich’s viewpoint which is outlined in this volume, [55]. We discuss, in a rather informal way,
the nature of these structures before making use of some very particular special cases. Let L be a
field with valuation | · |, complete, algebraically closed.

We are going to describe a rigid analytic space over L (or analytic space over L) as a triple

(X,G,OX)

where X is a non-empty set, G a Grothendieck topology on X , OX a sheaf, satisfying several
natural conditions. A Grothendieck topology G on X can be outlined as a set S of subsets U of
X and, for all U ∈ G, a ‘covering’ Cov(U) of U again by elements of G. If C is the family of all
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such coverings (3), then G is the datum (S, C) and the quality of being a Grothendieck topology
results in a collection of properties we shall not give here, refining the simpler notion of topology
(see [21] for the precise collection of conditions). If a Grothendieck topology G = (S, C) on X is
given, then the elements of S are called the admissible subsets of X and the elements of C are called
the admissible coverings. This refines the notion of topology because if we forget the coverings, the
conditions we are left on S are precisely those of a topology on X so that right at the beginning
we could have said that X is a topological space, and the admissible sets are just the open sets for
this topology. We have of course a corresponding notion of morphism of Grothendieck’s topological
spaces which strengthens that of continuous maps of topological spaces: pre-images of admissible
sets (resp. coverings) are again admissible.

What is a sheaf on a Grothendieck topological space? If we choose a ring R, a sheaf F of
R-algebras (R-modules. . . ) is a contravariant functor from S (with inclusion) to the category of R-
algebras (or R-modules. . . this is called a pre-sheaf) which satisfy certain compatibility conditions.
For instance, if f, g ∈ F(U), U ∈ S and f |V = g|V for all V ∈ Cov(U) ∈ C, then f = g. Furthermore,
if we choose Cov(U) = (Ui)i∈I ∈ C and for all i, fi ∈ F(Ui) are such that fi|Ui∩Uj

= fj|Ui∩Uj
, then

there exists a ’continuation’ f ∈ F(U) with f |Ui
= fi for all i (this is an abstract formalisation of

’analytic continuation’). Every pre-sheaf can be embedded in a sheaf canonically, but checking that
a given pre-sheaf is itself a sheaf might result in subtle problems. The datum of (X,G,F) with
G a Grothendieck topology and F a sheaf of R-algebras on (X,G) is called a Grothendieck ringed
space of R-algebras and there is a natural notion of morphism of such structures which mimics the
more familiar notion of morphism of ringed spaces of algebraic geometry. Say for commodity that
X,Y are two Grothendieck topological spaces with respective sheaves F and G, then a morphism
of Grothendieck ringed spaces of R-algebras

(X,F)
(f,f♯)
−−−−→ (Y,G)

is the datum of a morphism of Grothendieck topological spaces f and for all U ⊂ Y admissible,
an R-algebra morphism f ♯ : G(U) → F(f−1(U)). So far, we discussed Grothendieck topological
spaces, sheaves etc. But now, what is a rigid analytic variety? A rigid analytic variety over L,
our valued field, complete, algebraically closed (say, L = C∞, the most relevant in our notes), is a
particular kind of Grothendieck ringed space; let us see how. We still need a few more tools. We
have the unit disk

DL(0, 1) = {z ∈ L : |z| ≤ 1}

playing the role of a basic brick for constructing rigid analytic spaces, just as the affine line does
for algebraic varieties. For this reason, we focus on affinoid algebras. An affinoid algebra over L is
any quotient of a Tate algebra

Tn(L) = L̂[t]‖·‖

by an ideal, where the Tate algebra Tn(L) of dimension n is the completion ·̂ of the polynomial
ring L[t] in n indeterminates t = (ti)1≤i≤n for the Gauss valuation ‖ · ‖ that we recall it is defined,

for elements ai1,...,in ∈ L, by ‖
∑

i1,...,in
ai1,...,int

i1
1 · · · t

in
n ‖ = sup |ai1,...,in |. It is known that it is

noetherian, with unique factorization, of Krull dimension the number of variables n. The resulting
quotient A of Tn(L) (by an ideal) is endowed with a structure of L-Banach algebra. In other words,

the Gauss norm of L̂[t] induces a (sub-multiplicative) norm on A, and it is complete. In fact, any
L-Banach algebra A together with a continuous epimorphism Tn(L) → A for some n, making A

3Do not mix up with the curve C of the previous sections.
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into a finitely generated Tn(L)-algebra, is an affinoid algebra. Affinoid algebras over L are the basic
bricks to construct a rigid analytic variety.

The maximal spectrum Spm(A) of an affinoid L-algebra R can be made into a Grothendieck
ringed space (X,G,F) over A; this is called an affinoid variety over L. If X = Spm(R) and
Y = Spm(R′), an L-algebra morphism R→ R′ defines a morphism of ringed spaces Y → X which
is called a morphism of affinoid algebras. This serves to describe the other pieces of (X,G,F).
The admissible sets in S (recall that G = (S, C)) are exactly the images in X of open immersions
of affinoid varieties and similarly, we define the coverings in C. This gives rise to a Grothendieck
topology G on X = Spm(A). Furthermore, we have the pre-sheaf OX defined by associating to
U ⊂ X an admissible set the L-algebra OX(U) = R′ where U = Spm(R′). Thanks to Tate’s
acyclicity theorem one shows that this is in fact a sheaf (see [58], see also [21, Theorem 4.2.2]). This
result was generalised by Grauert and Gerritzen [13, 7.3.5 and 8.2]). Dulcis in fundo, we have:

Definition 5.3. A Grothendieck ringed space X = (X,G,F) is a rigid analytic variety over L if
X has an admissible covering of admissible subsets U which have the property that (U,F|U ) is an
affinoid variety over L for all U .

5.1.1. Analytification. An important process to construct rigid analytic spaces is the analytification
of an algebraic variety. Let X/L be a scheme of finite type. The analytification Xan of X is a rigid
analytic space over L that can be defined by an affinoid covering starting from the geometric data
as follows. We consider affine Zariski open subsets U = Spec(A) →֒ X and embeddings U →֒ AN

L

which correspond, on the algebraic side, to surjective L-algebra maps L[t] → A (where t denotes
the set of independent variables t1, . . . , tN ) endowing A with a structure of L[t]-algebra, for some
N . Taking the completion for the Gauss valuation yields a surjective morphism:

L̂[t]→ A⊗L[t] L̂[t]

which gives rise to a map V := Spm(A ⊗L[t] L̂[t]) →֒ DL(0, 1)
N = Spm(L̂[t]). We can proceed

similarly for polydisks of different radii in |L×| and this is used to construct a rigid analytic space
Uan such that V = Uan ∩ DL(0, 1)

N . Glueing, we construct the rigid analytic space Xan. For

example, the rigid affine line over L, A1,an
L is obtained by glueing together the rigid analytic spaces

DL(0, r) along the inclusions with r ∈ |L×|. Similarly, the rigid projective line over L, P1,an
L , can

be constructed by glueing two copies of DL(0, 1) along the set {z ∈ L : |z| = 1}, or also glueing two

copies of A1,an
L , see also Berkovich’s construction in [55, Definition II.1.5]. The Berkovich’s affine

line is described in detail in ibid. See [55, Definition I.1.1].
Rigid analytification defines a functor, called the ’GAGA functor’ from the category of L-schemes

of finite type to the category of rigid analytic spaces over L. Note that we can also consider ana-
lytifications of morphisms, coherent sheaves etc. Finally, there is an alternative way to define the
analytification functor over an affine variety X over L, introduced by Berkovich, which makes the
underlying topological space particularly easy to compute as it is defined over the set of multi-
plicative seminorms over the coordinate ring of X satisfying certain compatibility conditions with
the valuation of L. See [55, Definition II.1.1] for the construction of the Berkovich spectrum of an
algebra of finite type over L. See also Temkin’s [61, Chapter 1] for a nice survey in the area.

5.1.2. The rigid analytic variety Ω. We now focus on L = C∞ with A = H0(C \ {∞},OC) in our
usual notation. We discuss a structure of rigid analytic space over C∞ on Ω = C∞ \K∞. Note that

Ω =
⋃

M>1

UM ,
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where UM = {z ∈ Ω : M−1 ≤ |z|ℑ ≤ |z| ≤ M}, the filtered union being over the elements
M ∈ |C∞| \ |K∞| with M > 1. Observe now:

Lemma 5.4. With M ∈ |C∞| \ |K∞| we have

UM = DC∞(0,M) \
⊔

λ∈F[π,π−1]

λ=λ−βπ
β+···+λβπ

−β

1≤|π|−β≤M

D◦
C∞

(λ,M−1).

Proof. This easily follows from the fact that K∞ is locally compact in combination with the ultra-
metric inequality. �

Hence, UM is admissible and carries a structure of affinoid variety UM = Spm(AM ) where

AM is an integral affinoid algebra. We say that UM is a connected affinoid of P1,an
C∞

(as in the

language introduced in [21], motivated by the integrality of AM ). In particular Ω can be covered
(in fact filled) with connected affinoids and the analytic structure of Ω arises from viewing it as the
complementary in C∞ of smaller and smaller disks located over certain elements of K∞ which is
close to the familiar view that we have also for the set C \R. This gives the Grothendieck topology
on Ω, and the sheaf OΩ is that of rigid analytic functions over Ω. Practically, a rigid analytic
function f : Ω→ C∞ is a function such that the restriction on every set UM is the uniform limit of
a sequence of rational functions on UM without poles in UM .

5.2. Fundamental domains for Γ\Ω. This subsection is motivated by an essential construction
in the theory of Schottky groups, that of fundamental domains. Schottky groups have been first
introduced by Schottky in 1877 in the complex setting; they are useful to analytically uniformise
compact Riemann surfaces. In the years 1970, after the work of Tate on p-adic uniformisation of
elliptic curves with split multiplicative reduction, Mumford discovered how to p-adically uniformise
smooth projective curves of genus g ≥ 2 with ‘split degenerate stable reduction’ by using p-adic
Schottky groups Γ acting on non-archimedean variants ΩΓ of the classical complex upper-half plane.
The reader is encouraged to read the modern contribution of Poineau-Turchetti to this volume
[55]. An older reference is [30]; it also contains determinant tools to explore this profound theory.
Consequently, we will not give all the details, this would bring us too far away from our path.

Let us recall that, given a local field L with valuation | · |, the group PGL2(L) (
4) acts on the rigid

analytic projective line P1,an
F where F is the completion of an algebraic closure of L (see [30, 21]). A

Schottky group over L is a finitely generated subgroup Γ of PGL2(L) which is discrete and such that
no element but the identity has finite order. Schottky groups are free (see [30, Theorem (3.1)]) this
being an important consequence of the fact that they act freely on certain rigid analytic spaces.
Every Schottky group Γ over L has a compact limit set LΓ ⊂ P1,an

F so that Γ acts freely over

ΩΓ := P1,an
F \ LΓ. The quotient space Γ\ΩΓ naturally carries a structure of rigid analytic space

over L which is associated with a smooth, geometrically connected, projective curve XΓ over L, of
genus g the rank of Γ. We learn from [30, Theorem (4.3)] that every Schottky group Γ in PGL2(L)
admits a good fundamental domain FΓ. Without entering the details, for every element z ∈ ΩΓ the
set of γ ∈ Γ such that γ(z) ∈ FΓ is non-empty and finite. In fact, if γ ∈ Γ, then FΓ ∩ γ(FΓ) 6= ∅ if
and only if γ ∈ {1, γ±1

1 , . . . , γ±1
g }, where γ1, . . . , γg freely generate Γ. Moreover, FΓ can be written

4Projective linear group over L, defined as the quotient of GL2(L) by its center.
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as

FΓ := P1,an
F \

2g⊔

i=1

Di

where the Di’s are the rigid analytic spaces associated to disks D◦
F (ai, ri) = {z ∈ F : |z − ai| < ri}

with ri ∈ |L×| for all i, such that the disks DF (ai, ri) = {z ∈ F : |z−ai| ≤ ri} are pairwise disjoint.
One can therefore see easily that FΓ carries a structure of rigid analytic variety over F (read also [55,
§II.3.1] along with its more general settings and the theory of uniformisation of Mumford curves).

The interesting point in this discussion is that if we set L = K∞ = F((π)), A = H0(C\{∞},OC) ⊂

K∞, F = C∞ etc. the group PGL2(A) acts on Ω = P1,an
F \P1,an

K∞
but the action is in general not free;

there usually are elliptic points (this happens, for instance, when [F : Fq] is odd, see [44]). Even
more seriously, the group itself is not finitely generated (see Serre’s book [56] for more details), so
that PGL2(A) is not a Schottky group.

5.2.1. Some structural properties of Γ = GL2(A). For the purposes of the present paper, we will
be content to study the case in which C has genus 0, so that in Lemma 2.5 we have V = {0} and
therefore, K∞

∼= A ⊕MK∞ . It is easy to see that there exists a uniformiser π of K∞ such that
A = F[π−1]. We can indeed choose π = θ−1 where θ is any element of A with a simple pole at ∞.
In particular, A = F[θ].

It is not difficult to show that the group GL2(F[θ]) is generated by its subgroups GL2(F) (finite)
and the Borel subgroup B(∗) = {( ∗ ∗

0 ∗ )}. In fact, a Theorem of Nagao in [45] asserts that, given a
field k and an indeterminate t,

(10) GL2(k[t]) = GL2(k) ∗B(k) B(k[t]),

where ∗B(k) denotes the amalgamated product along B(k), which is by definition the quotient of
the free product GL2(k)∗B(k[t]) by the normal subgroup generated by those elements arising from
the natural identifications existing between the elements of B(k) ∗ 1 and 1 ∗B(k) coming from the
maps

GL2(k)→ GL2(k) ∗B(k[t])← B(k[t])

(a gluing along compatibility conditions). Note that B(k[t]) is not finitely generated, so that
GL2(k[t]) is not finitely generated (this is trivial if k is infinite) in contrast with a theorem of
Livingston, asserting that GLn(k[t]) is finitely generated if n ≥ 3, and also with the more familiar
result that SL2(Z) ∼= Z/2Z ∗ Z/3Z so that it is, in particular, finitely presented.

Corollary 5.5. PGL2(F[θ]) is not a Schottky group.

5.2.2. Bruhat-Tits trees and ‘good fundamental domains’. We recall that K∞ = F((π)) for a uni-
formiser π, with F a finite extension of Fq. Our first task is to describe a combinatorial structure
which allows to ‘move inside’ Ω, the Bruhat-Tits tree; in practice, we can ‘move along annuli’. The
second task, in the case A = F[θ], is to construct a subset of Ω that we can qualify as a ‘good
fundamental domain’ for the homography action of GL2(A) over Ω, being understood that GL2(A)
is not a Schottky group.

We recall that if x ∈ C∞, D◦
C∞

(x, r) = {z ∈ C∞ : |z − x| < r}. Let S be a subset of C×
∞ such

that if x, x′ ∈ S are distinct, |x− x′| = max{|x|, |x′|}. Then, with x ∈ S, the sets

Dx := D◦
C∞

(x, |x|) = x+D◦
C∞

(0, |x|)

are pairwise distinct subsets of C×
∞. Indeed, clearly, they do not contain 0. Moreover, if x 6= x′ we

have y ∈ D◦
C∞

(x, |x|) ∩D◦
C∞

(x′, |x′|) if and only if we can find z ∈ D◦
C∞

(x, |x|), z′ ∈ D◦
C∞

(x′, |x′|),
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such that y = x + z = x′ + z′ with |z| < |x| and |z′| < |x′|, so that |z − z′| < max{|x|, |x′|}. This
means that max{|x|, |x′|} > |z − z′| = |x′ − x| = max{|x|, |x′|} which is impossible.

We choose, for any element r ∈ Z>1, an element, denoted by π
1
r ∈ C∞, with the property that

(π
1
r )r = π, which exists because C∞ is algebraically closed. The set Σ := {(π

1
r )s} inherits the total

order of R by s
r ∈ Q ⊂ R (5). We have observed (after Lemma 2.9) that the valuation group of | · |

is |π|Q. Hence if z ∈ C×
∞, we can find r, s relatively prime, unique, such that |z(π

1
r )s| = 1. Since

the residue field of C∞ is Fac, we obtain that there exists a unique ζ ∈ (Fac)× such that

|z − ζ(π
1
r )s| < |z|.

If we set S = {ζ(π
1
r )s : ζ ∈ (Fac)×, r > 1, s ∈ Z such that r, s are relatively prime}, then for all

x, x′ ∈ S distinct we have |x− x′| = max{|x|, |x′|} and we obtain a partition of C×
∞:

(11) C×
∞ =

⊔

x∈S

Dx.

Let us now consider the subset

S̃ := {x ∈ S : |x| 6∈ |π|Z} ⊔ {ζπn : ζ ∈ Fac \ F, n ∈ Z} ⊂ S.

With it, we can still somehow reconstruct C∞. Indeed, the reader can easily see that if x ∈ S̃,
Dx ∩K∞ = ∅ and

C∞ =


K∞ +

⊔

x∈S̃

Dx


 ⊔K∞.

As a consequence we have

Ω = K∞ +
⊔

x∈S̃

Dx

and ⊔

x∈S̃

Dx = {z ∈ Ω : |z| = |z|ℑ}.

We observe that if λ ∈ Q \ Z, then
⊔

x∈S
|x|=|π|λ

Dx =
⊔

x∈S̃
|x|=|π|λ

Dx = {z ∈ C∞ : |z| = x} =: Cλ.

We also set, for λ ∈ Z,

Cλ :=
⊔

ζ∈Fac\F

D◦
C∞

(ζπλ, |π|λ).

Note that Cλ = {z ∈ Ω : |z| = |z|ℑ = |π|λ} for all λ ∈ Q. For all λ, the set Cλ is invariant by
translation of elements in DK∞(0, |π|⌈λ⌉), where ⌈·⌉ denotes the smallest between the integers which
are larger than (·). If α ∈ K∞ \DK∞(0, |π|⌈λ⌉) = ⊕i≤⌊λ⌋Fπi (with ⌊·⌋ the largest integer which is
smaller than (·)) then Cλ ∩ (α+ Cλ) = ∅. We have obtained the next result.

5Thanks to Lemma 2.10 we can even additionally suppose that the elements π
1
r are chosen in such a way that

Σ = πQ is a subgroup of C×

∞.
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Lemma 5.6. The following partition of Ω holds:

Ω =
⊔

λ∈Q

α∈K∞\DK∞ (0,|π|⌈λ⌉)

α+ Cλ.

Note that this can be very easily used to construct admissible coverings of Ω. The above is the
crucial statement which allows to construct the Bruhat-Tits tree associated to Ω. It relies on the
existence of a natural partial ordering on the set T := {α+Cλ : α ∈ K∞ \DK∞(0, |π|⌈λ⌉), λ ∈ Q}.
We declare that α+Cλ ≻ α′ + Cλ′ if λ < λ′ and α′ + Cλ = Cλ so that, for example, α+ Cλ ≻ Cλ

if and only if |α| ≤ |π|λ. Then T can be enriched with the structure of a tree, the Bruhat-Tits tree.
We recall that a tree T is a metric space such that, on one side, for any distinct points P, P ′ of T
there exists one and only one topological arc in T of extremities P, P ′ and, on the other side, this
arc is isometric to an interval of R (this definition is due to Tits). A tree has edges and vertices. The
vertices of our Bruhat-Tits tree T are represented by the subsets α+Cλ of C∞ with λ ∈ Z and the
edges are represented by real intervals ]n− 1, n[ with n ∈ Z, with the extremities given by a couple
of vertices (α+Cn−1, α

′+Cn) such that α′+Cn−1 = Cn−1. The intervals are oriented and our tree
itself acquires an orientation. The upper direction is that of the negative λ’s or, alternatively, of the
larger |z|ℑ’s. The edges are therefore organised so that at every lower (for the ordering) extremity
the vertex is a qd∞ + 1 branching point with qd∞ edges below and one above (with respect to the
orientation).

The next picture represents a small piece of T for qd∞ = 2.

...

C−1

C0

...

0 < λ < 1

...

−1 < λ < 0

...
...

−2 < λ < −1

...
...

...
...

α+ Cλ, λ = 0

Also note that the euclidean closure of the image in T of any set α+ ⊔λ∈QCλ for α ∈ K∞ fixed
is isometric to R and any two such sets, if distinct, have a upper half-line in common. Any element
of Ω is K∞-translation equivalent to finitely many elements in ⊔λ∈QCλ and finally, the homography
action of GL2(K∞) over Ω is compatible with a continuous action over T in a way that can be
made completely explicit.

The structure of the spaces C∞ and Ω may look topologically very complicate but the Bruhat-
Tits tree is some kind of ‘central nervous system’ which allows to obtain a combinatorial picture of
these spaces (or rather, their admissible coverings) and to move in their interior, by means of the
reduction map, which is GL2(K∞)-equivariant

red : Ω→ T ,
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defined by z 7→ α+Cλ ∈ T where α+Cλ is the unique element of the partition of Lemma 5.6 such
that z ∈ α + Cλ. This presentation may look different, it is in fact essentially equivalent to that
of Teitelbaum in [60, Preliminaries] (see also Teitelbaum’s chapter in [7]). To help the reader to
connect with the formalism of Teitelbaum, which also is that of [30], note that the set U(1) of [60,
p. 492] plays the role of our disjoint union ⊔λ∈]−1,1[Cλ and that the set V introduced one page later
is equal to our ⊔λ∈]−1,0[Cλ. The sets γ(U(1)) for γ ∈ GL2(K∞) define an admissible covering of
Ω and T can be alternatively constructed defining edges and vertices by a criterion of overlapping
for the various γ(U(1))’s and an identification between the set {γ(U(1)) : γ ∈ GL2(K∞)} and the
quotient GL2(OK∞)\GL2(K∞), corresponding to the vertices.

We set F := {z ∈ Ω : |z| = |z|ℑ ≥ 1}. By Lemma 5.6, we have F = ⊔λ≤0Cλ and red(F) is an
upper half-line in T . We deduce that

F = C∞ \


⊔

ζ∈F

D◦
C∞

(ζ, 1) ⊔
⊔

n≥1

⊔

ζ∈F×

D◦
C∞

(ζπ−n, |π|−n)


 .

We now focus on the case A = F[θ]. For z ∈ Ω we denote by Fz the set {z′ ∈ F : there exists γ ∈
GL2(A) such that γ(z) = z′} ⊂ F. We show:

Proposition 5.7. For all z, the set Fz is non-empty and finite.

Proof. If z ∈ F then there exists x ∈ S̃ such that |x| ≥ 1 and z ∈ Dx and we see that the set of
a ∈ A such that z − a ∈ F is finite. Note that 1/z ∈ D1/x so that 1/z 6∈ F (in fact, if γ = ( 0 1

1 0 ),
γ(Dx) = Dγ(x)). From Nagao’s Theorem we deduce that the set {γ ∈ GL2(A) : γ(z) ∈ F} is finite
so that, for all z ∈ Ω, Fz is finite (but note that the cardinality is not uniformly bounded in terms
of z). Let z be in Ω. If |z|ℑ ≥ 1 there exists a ∈ A such that |z − a| = |z|ℑ and Fz is non-empty.
All we need to show is that if z ∈ Ω is such that |z|ℑ < 1, then there exists γ ∈ GL2(A) such that
γ(z) ∈ F. To see this, there is no loss of generality in supposing that |z| < 1. Indeed, we can replace
z with z − a for a ∈ A. We can therefore write:

z = w + x+ y

where w ∈ ⊕
⌊λ⌋
i=1Fπ

i ∈ MK∞ , x ∈ S̃ with |x| = |π|λ and y ∈ Dx. Applying γ = ( 0 1
1 0 ) we see that z is

GL2(A)-equivalent to an element z′ ∈ α′+Cλ′ with λ′ such that λ−λ′ ∈ Z>1 and α′ ∈ ⊕i≤⌊λ′⌋Fπ
i,

so that, in particular, |z′|ℑ > |z|ℑ. We can iterate this process with z′ playing the role of z. The fact
that λ−λ′ ∈ Z≥1 implies that z is GL2(A)-equivalent to an element of F and Fz is non-empty. �

This seems enough to allow us calling F a ‘good fundamental domain’ for Γ\Ω with A = F[θ], even
though it is undoubtedly not as well behaved as the good fundamental domains in the framework
of Schottky groups. Note that Γ\T contains an ‘end’: this metric space is not compact, but can be
made compact with the addition of one point represented by one of the upper half-lines contained
by T which, at the level of Γ\Ω, corresponds to a ‘cusp’.

Similar constructions are possible for Γ = GL2(A) with a more general projective curve C but we
do not describe them here. In this broader case it is possible to show that Γ\T has the structure of
a finite graph with finitely many ends attached to it. More general ’fundamental domains’ can be
constructed from the Bruhat-Tits tree of Ω and constructed by Serre (see [56, Theorem 10]) thanks
to a more refined interpretation of the elements of Γ\Ω as classes of rank two vector bundles over
C. We refer to ibid. for the details.
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5.3. An elementary result on translation-invariant functions over Ω. We recall that H
denotes the complex upper-half plane. Let f : H → C be a holomorphic function such that for all
n ∈ Z and for all z ∈ H, f(z + n) = f(z). Then, we can expand

f(z) =
∑

n∈Z

fne
2πinz, fn ∈ C,

a series which is convergent for q(z) = e2πiz in

Ḋ◦
C(0, 1) = {z ∈ C : 0 < |z| < 1}

the punctured open unit disk centered at 0 of C or equivalently, for z in every horizontal strip of
finite height in H (note that they are invariant by horizontal translation).

5.3.1. A digression. The proof of the above statement for f is simple and we can afford a short
digression. The function z 7→ q(z) does not allow a global holomorphic section H ← Ḋ◦

C(0, 1). But
we can cover C× with say, three open half-planes U1, U2, U3, and there are sections s1, s2, s3 defined
and holomorphic over U1, U2, U3 such that si−sj ∈ Z over Ui∩Uj for all i, j. Let f be holomorphic
on H such that f(z + 1) = f(z) for all z ∈ H. Define gi(q) = f(si(q)) for all i = 1, 2, 3. Then, the
compatibility conditions and the fact that the pre-sheaf of holomorphic functions over any open set
is a sheaf (the well known principle of analytic continuation) ensure that this defines a holomorphic

function g(q) over Ḋ◦
C(0, 1). But the ring of holomorphic functions over Ḋ◦

C(0, 1) is precisely that
of the convergent double series

∑
n∈Z fnq

n, as one can easily see, and our claim follows. One also
deduces that there is an isomorphism of Riemann’s surfaces

H/Z ∼= Ḋ◦
C(0, 1)

induced by e2πiz , concluding the digression.

We now come back to our characteristic p > 0 setting and we suppose, from now on, that

A = H0(P1
Fq
\ {∞},OP1

Fq
).

We note that Ω is invariant by translations of a ∈ A and the function

expA(z) = z
∏

a∈A\{0}

(
1−

z

a

)
= π̃−1 expC(π̃z)

is an entire function C∞ → C∞, Fq-linear, surjective, of kernel A = Fq[θ], hence also invariant by
translations by elements of A. It is thus natural to ask for an analogue statement of the above,
complex one. Consider R ∈ |C×

∞|. Now, note that A acts on ΩR by translations. Giving A\ΩR the
quotient topology we have:

Lemma 5.8. There is S ∈ |C×
∞| such that the function expA induces a homeomorphism of topo-

logical spaces

A\ΩR → {z ∈ C∞ : |z| ≥ S}.

Proof. From the Weierstrass product expansion we see that, setting

S := max
z∈DC∞ (0,R)

| expA(z)| =: ‖ expA ‖R = ‖z‖R
∏

a∈A
a 6=0

∥∥∥1− z

a

∥∥∥
R
= R

∏

a∈A
a 6=0
|a|<R

R

|a|
,
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expA(D(0, R)) = D(0, S) by Corollary 2.8. Hence, D◦(0, S) = D◦
C∞

(0, S) = expA(D
◦(0, R)) from

which we deduce that
{z ∈ C∞ : | expA(z)| < S} = A+D◦(0, R).

Recall that K∞ = A⊕MK∞ . If R ≥ 1, we have D◦(0, R) ⊃MK∞ . Now observe that

{z ∈ C∞ : |z|ℑ < R} = ∪a∈K∞D
◦(a,R) = ∪a∈AD

◦(a,R).

Therefore we have the chain of identities

A+D◦(0, R) = K∞ +D◦(0, R) = ∪a∈K∞D
◦(a,R) = {z ∈ C∞ : |z|ℑ < R} = Ω \ ΩR,

and taking complementaries, we see that

ΩR = {z ∈ C∞ : | expA(z)| ≥ S}, R ≥ 1.

�

6. Some quotient spaces

Our topologies are totally disconnected and Lemma 5.8 is weaker if compared with analogous
statements in the complex setting. Fortunately there is a structure of quotient analytic space over
ΩR/A, and it is isomorphic to the analytic structure of the complementary of the disk D◦(0, S).

6.1. A-periodic functions over Ω. We suppose that A = Fq[θ] all along this subsection. The
analogue for Ω = C∞ \ K∞ of the simple claim over C of the beginning of §5.3 and the proof in
§5.3.1 is not as easy to prove but it is true, and not too difficult. In fact, the following result holds:

Proposition 6.1. Let f : Ω→ C∞ be an analytic function such that f(z+a) = f(z) for all a ∈ A.
Then, there exists S ∈ |C×

∞|, S < 1, such that

f(z) =
∑

n∈Z

fn expA(z)
n, fn ∈ C∞,

the series being uniformly convergent for expA(z)
−1 in every annulus of Ḋ◦

C∞
(0, S) = {x ∈ C∞ :

0 < |x| < S}, S ∈ |C×
∞|, small enough.

To prove this result and to motivate the proof we are giving, we need some preparation.

6.1.1. Analytification and quotients. Let X be a rigid analytic variety over a valued field L, complete
and algebraically closed. Let us consider a group Γ acting on X with ’admissible action’. ’Admissible
action’ means that X can be covered by Γ-stable admissible subsets and that Γ acts through an
embedding ι of Γ in Aut(X ), topological group, and the image is discrete. We are interested in
such triples

(X ,Γ, ι).

For example, we can take Γ = A acting on Ω or A1
C∞

by translations (the theme of Proposition 6.1)
or Γ = GL2(A) acting on Ω by homographies (the theme of the text).

The quotient map
X → Γ\X

can be used to define a structure of Grothendieck ringed space on the quotient Γ\X . A subset
of Γ\X is admissible if its pre-image is admissible, and the sections are Γ-invariant C∞-valued
functions over pre-images of Γ-invariant subsets. One needs conditions under which the quotient
acquires a structure of rigid analytic space. For example, a finite group Γ acting on X = Spm(A)
affinoid variety which allows a covering by invariant admissible subsets gives rise to an isomorphism
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of affinoid varieties Γ\ Spm(A) → Spm(AΓ), where AΓ is the sub-algebra of Γ-invariant elements
of A; see [13, §6.3.3]. See also Hansen’s more general [36, Theorem 1.3].

We invoke the analytification functor in §5.1.1 by choosing X = Xan. If X is a scheme of finite
type over L with an ’admissible action’ of a finite group Γ ’admissible’, now in the algebraic sense
that there is a covering with Γ-invariant affine sub-schemes, it can be proved that there exists a
unique scheme structure (of finite type over L) on the ringed quotient space

p : X → Γ\X.

The following proposition is due to Amaury Thuillier: we warmly thank him for having brought
our attention to it.

Proposition 6.2. The canonical map Γ\Xan → (Γ\X)an is an isomorphism of rigid analytic
varieties.

Proof. We can suppose, without loss of generality, X = Spec(A) affine, so that Γ\X = Spec(AΓ).
In terms of algebras, we have (horizontal arrows are surjective and vertical arrows injective, and

L̂[t] is the standard Tate L-algebra in the variables t = (t1, . . . , tN ) for some N):

L[t] A

L̂[t]
L̂[t]

ker(π)
.

π

Then we have:

AV :=
L̂[t]

ker(π)
= A⊗L[t] L̂[t] = H0(V,OXan)

where V := Spm(A⊗L[t] L̂[t]) ⊂ (Γ\X)an.
The L-algebra B = A ⊗AΓ AV is finite over AV , hence it inherits a structure of affinoid L-

algebra. We deduce, with pan : Xan → (Γ\X)an the analytification of p, that W = (pan)−1(V ) is
a Γ-invariant affinoid domain of Xan and AW = H0(W,OXan) = B. The quotient space Γ\W is
also affinoid, of algebra BΓ (see [13, §6.3.3]). Therefore, all we need to show is that the canonical
morphism

AV → B = A⊗AΓ AV

induces an isomorphism AV → BΓ = (A⊗AΓ AV )
Γ.

The morphism A → AV is flat [12, Theorem 3.4.1, (ii)]. Therefore the exact sequence

0→ AΓ → A
⊕(g−IdA)
−−−−−−→

⊕

g∈Γ

A

yields an exact sequence

0→ AV = AΓ ⊗AΓ AV → A⊗AΓ AV
⊕(g−IdA)
−−−−−−→

⊕

g∈Γ

A⊗AΓ AV .

We have thus that AV is equal to the kernel of the last arrow, which is just BΓ. �
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We consider L = C∞ and we denote by A(n) the Fq-vector space {a ∈ A : |a| < |θ|n} (dimension
n and cardinality qn). If X = A1

C∞
and we look at Γ = A(n) acting on X by translations, we have

the quotient scheme Γ\X = Spec(C∞[x]Γ). Note that C∞[x]Γ = C∞[En(x)] with En characterised
by Proposition 4.8, by Euclidean division. Proposition 6.2 applies.

We introduce the sets for n ≥ 1

Bn = D◦
C∞

(0, |θ|n) \
⋃

a∈A(n)

D◦
C∞

(a, 1).

We define, in parallel, with ln = (θ − θq) · · · (θ − θq
n

):

Cn = D◦
C∞

(0, |ln|) \D
◦
C∞

(0, 1).

Each of these sets has an admissible covering by affinoid subsets so that it is a rigid analytic sub-
variety of A1,an

C∞
. A function f : Bn → C∞ is analytic if its restriction to every affinoid subset is

analytic. Note that Bn ⊂ Bn+1 and Cn ⊂ Cn+1 for all n ≥ 1. We set

ψm := 1−
τ

lq−1
m

, m ≥ 0

(recall that τ(x) = xq for x ∈ C∞). It is easy to see that ψn induces an isometric biholomorphic
isomorphism of Cm for all n ≥ m. In particular the non-commutative infinite product

Fn := · · ·

(
1−

τ

lq−1
n+1

)(
1−

τ

lq−1
n

)
∈ K[[τ ]]

induces an isometric biholomorphic isomorphism of Cn (for every n).
In a similar vein, Proposition 6.2 implies:

Corollary 6.3. The function En = lnEn is a degree qn étale covering Bn → Cn which induces an
isomorphism of rigid analytic spaces

A(n)\Bn → Cn,

where the analytic structure on the pre-image is induced by the analytification of Spec(C∞[x]A(n)).

6.1.2. Proof of Proposition 6.1. A global section gn of OCn
can be identified, in a unique way, with

a convergent series
∑

k∈Z

g
(n)
k xk, g

(n)
k ∈ C∞.

Let f : Ω→ C∞ be a rigid analytic function with the property that for all a ∈ A, f(z+a) = f(z). We
fix m > 0, let n be such that n ≥ m. Then, f : Bn → C∞ is holomorphic such that f(z + a) = f(z)
for all a ∈ A(n) and therefore there exists a unique gn ∈ OCn

such that f(z) = gn(En(z)) over Cn
and we can write:

f(z) =
∑

k∈Z

g
(n)
k (En(z))

k.

We observe that Bm ⊂ Bn. Thus, we have the following commutative diagram for n > m, where
the left vertical arrows are the identity, and the bottom right vertical arrow is ψm, while the top
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one is ψm+1,n, where ψm,n is the composition ψm,n := ψn−1 ◦ · · · ◦ ψm:

Bm
En−−→ Cm

↑ ↑

Bm
Em+1
−−−→ Cm

↑ ↑

Bm
Em−−→ Cm,

and there also exists a unique gm ∈ OCm
such that f(z) = gm(Em(z)), this time over Cm ⊂ Cn so

that, noticing that ψm,n induces an isometric biholomorphic isomorphism of Cm, we must have:

g(n)(ψm,n(x)) = g(m)(x), x ∈ Cm.

In particular, we have the equality

g(n+1)(ψn(x)) = g(n)(x), x ∈ Cm.

Since ψn(x) = x(1 − ( x
ln
)q−1) and ψn(x)

k = xk(1 + σn,k(x)) with |σn,k(x)| ≤ |
x
ln
|q−1 < 1 for all

n ≥ m, k ∈ Z, we deduce that the function g(n+1)−g(n) tends to zero uniformly on every admissible
subset of Cm, for n ≥ m. This means that the sequence of functions (g(n))n≥m converges to an
element g =

∑
k gkx

k ∈ OCm
uniformly on every admissible subset of Cm.

With this new function g the existence of which is given by Cauchy convergence criterion, we
can write:

g(m)(x) = g(Fm(x)), x ∈ Cm.

We use the results of §4.2 and more precisely Proposition 4.9, or with a more manageable notation,
(6). We thus recall the identity of entire functions:

expA = Fn

(
1−

τ

lq−1
n−1

)
· · ·

(
1−

τ

lq−1
1

)
(1− τ)

︸ ︷︷ ︸
En

.

In particular, by uniqueness:

f(z) = g(expA(z)), z ∈ Bm, ∀m.

Since the sets Bn cover the set Ω1 := {z ∈ C∞ : |z|ℑ ≥ 1}, the result follows.
Restated in more geometric, but essentially equivalent langage, the arguments of the proof of

Proposition 6.1 lead to:

Proposition 6.4. For all M ∈ [1,∞[∩|C×
∞|, the function z 7→ 1

expA
yields an isomorphism of rigid

analytic spaces A\ΩM
∼= ḊC∞(0, S) = DC∞(0, S) \ {0} for some S ≥ 1 depending on M .

Problem 6.5. The above proof, although simple, is longer than the one we gave in the digression
5.3.1, in the complex case. This leads to the following question: is it possible to construct explicitly
an admissible covering (Ui)i of an annulus DC∞(0, R)\D◦

C∞
(0, r) and local inverses gi ∈ OUi

of the

function expA or even better, the function 1
expA

, delivering a simpler proof of Proposition 6.1 and

making no use of the process of analytification?

Also, note that the fact that the Grothendieck ringed space A\A1,an carries a structure of rigid
analytic variety and much more general results in this vein can be also deduced from Simon Häberli’s
thesis [35, Proposition 2.34].
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6.1.3. The Bruhat-Tits tree and expA. As a complement for the previous discussions, in this sub-
section we describe how the Bruhat-Tits tree of §5.2.2 can be used to study the function expA. We

are going to see that somewhat, expA defines a covering A1,an
C∞
→ A1,an

C∞
‘ramified of degree q∞’; the

reader is invited to compare with the results of §4.3. To give more strength to this, we use again
Proposition 4.9. We are therefore led to analyse the image of En = lnEn on D◦

C∞
(0, |θ|n) and then,

take the limit for n→∞. We note that

D◦
C∞

(0, |θ|n) \K∞ =
⊔

λ∈Q∩]−n,∞[

α∈⊕−λ≤i<nFqθ
i

α+ Cλ.

Since

En(z) =
ln
dn

∏

a∈A(n)

(z − a)

is Fq-linear of kernel A(n), it suffices to study how En behaves over

Tn =
⊔

λ∈Q∩]−n,∞[

α∈⊕−λ≤i<0Fqθ
i

α+ Cλ.

Note that if λ ≤ 0, the direct sum over i is empty. This means that in the Bruhat-Tits tree T , Tn
entails a very simple subtree which can be obtained by glueing in 0 a segment ]− n, 0] (the subtree
T −
n ) with the union of q disjoint copies of a complete q-ary tree equating T +

0 = red(D◦
C∞

(0, 1)\K∞)

(independent of n), so that Tn = T −
n ⊔T

+
0 and T0 = T +

0 . Since En induces an isometric isomorphism
of D◦

C∞
(0, 1) such that for all z ∈ D◦

C∞
(0, 1), En(z) = z + z′ with |z′| < |z|, it induces the identity

on T +
0 , and this, for all n ≥ 0. The action of the maps En are all equal to the action of E0(z) = z on

T +
0 . We now choose n > 0 and we look at the behaviour of En on T −

n , which is the most interesting
part of the story.

Consider x such that red(x) ∈ T −
n . Then, there exists i > 0 maximal with the property that

x ∈ T −
i \ T

−
i−1 (T −

0 is empty by definition) and there exists a unique λ ∈ Q with −λ ∈ [i− 1, i[ such

that x ∈ Cλ. We recall that
∏

06=a∈A(n) a = dn

ln
, see (5). We have:

En(x) =
ln
dn

∏

a∈A(i)

(x− a)
∏

a∈A(n)\A(i)

(x− a)

= Ei(x)
ln
dn

di
li

∏

a∈A(n)\A(i)

(−a)
∏

a∈A(n)

(
1−

x

a

)

= (1 + ξ)Ei(x),

where ξ ∈ D◦
C∞

(0, 1) (because |x|
|a| < 1 for all a ∈ A(n) \A(i)). If y ∈ D◦

C∞
(0, |x|) we get

En(x+ y) = Ei(x) + ξEi(x) + (1 + ξ)Ei(y)︸ ︷︷ ︸
element of C◦

C∞
(0,|Ei(x)|)

.

We deduce that the map

D◦
C∞

(x, |x|)
En−−→ D◦

C∞
(Ei(x), |Ei(x)|)
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is an étale covering of degree qi. Hence, the image by En of res−1(T −
i \ T

−
i−1) (annulus) is an étale

covering of degree qi of the annulus

li
di

[
D◦

C∞
(0, |θ|iq

i

) \D◦
C∞

(0, |θ|(i−1)qi)
]
= D◦

C∞
(0, |li|) \D

◦
C∞

(0, |li−1|).

From this it is not difficult to deduce that En defines a coveringD◦
C∞

(0, |θ|n)→ D◦
C∞

(0, |ln|) ramified
of degree qn at the points of A(n) and étale on the complementary of these points but we get even
more. Namely, that for any z ∈ Ω, res(expA(z)) can be very easily computed. If |z|ℑ < 1 then
| expA(z)| < 1 and if z 6∈ K∞, res(expA(z)) is equal to res(z− a) where a ∈ A is the unique element
such that res(z − a) ∈ T +

0 . If |z|ℑ ≥ 1 then res(expA(z)) = res(En(z)) for all but finitely many n
(depending on how large is |z|ℑ).

We consider T −
∞ = ∪n≥1T −

n (homeomorphic to R≤0) and T∞ = T −
∞ ⊔T

+
0 . Note that res(F) = T −

∞

and res(F ⊔ {z ∈ Ω : |z|, |z|ℑ < 1}) = T∞. In the terminology of §5.2.2, F ⊔ {z ∈ Ω : |z|, |z|ℑ < 1}
can be viewed as a ‘good fundamental domain’ for the action of A over Ω by translations. We
ultimately get, with a few more details to develop which are left to the reader:

Proposition 6.6. The map expA induces a surjective, A-periodic map F→ A1,an
C∞
\D◦

C∞
(0, 1) and

rigid analytic isomorphisms A\F→ A1,an
C∞
\D◦

C∞
(0, 1) and A\A1,an

C∞
→ A1,an

C∞
.

Note that F is not, properly speaking, invariant by A-translations, but A-translations define an
equivalence relation on F. The above statement needs to be interpret in the light of the richer
combinatorial structure described earlier. In the classical setting we have, of course, the classical
well known properties that the Eulerian exponential z 7→ ez induces analytic isomorphisms Z\H →
D◦

C(0, 1) and Z\C→ C×. Interestingly too, we note that, just as C = H⊔R⊔H− (the latter is the
lower complex half-plane), here we have an analogous decomposition

C∞ = Ω ⊔K∞ = Ω1 ⊔ Ω− ⊔K∞

with Ω1 = {z ∈ Ω : |z|ℑ ≥ 1}, Ω− = {z ∈ Ω : |z|ℑ < 1}.
We hope that, with this description, we have convinced the reader that the functions expA

and the Carlitz’s exponential carry an extraordinary structural richness. We now complete our
discussion with the quick exposition of some properties of the quotient GL2(A)\Ω and then we
move our attention to Drinfeld modular forms.

6.2. The quotient GL2(A)\Ω. In the previous subsection we gave, in the most explicit way, but
also in compatibility with the purposes of this text, a description of the analytic structure of the
quotient space (A = Fq[θ] acting by translations) A\Ω1. Following [30, Chapter 10]), we now
describe the action of GL2(Fq) on certain admissible subsets of Ω. We consider M ∈ |C×

∞| and we
set

ΩM := {z ∈ Ω : |z|ℑ ≥M}.

Note that this set, which is called horocycle neighbourhood of ∞, is non-empty and is invariant by
translations by elements of K∞. The multiplication by elements of F×

q induce bijections of ΩM .
Here is a lemma that will be useful later.

Lemma 6.7. If M > 1 and if γ ∈ GL2(A) is such that γ(ΩM ) ∩ ΩM 6= ∅, then γ belongs to the
Borel subgroup ( ∗ ∗

0 ∗ ) of GL2(A).

Proof. Let γ = ( a b
c d ) ∈ GL2(A). By Lemma 5.2, |γ(z)|ℑ = |z|ℑ

|cz+d|2 . Let us suppose that z, γ(z) ∈

ΩM , and that c 6= 0. Then, since |c| ≥ 1 if c ∈ A \ {0},

|cz + d| ≥ |cz + d|ℑ = |c||z|ℑ ≥ |z|ℑ.
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Then, γ(z) ∈ ΩM implies that |z|ℑ ≥ M |cz + d|2 ≥ M |z|2ℑ so that M−1 ≥ |z|ℑ. Now, if M > 1,
from |z|ℑ ≥M we get a contradiction. �

We set, with M ∈ |C×
∞|∩]1,∞[:

DM := DC∞(0,M) \ (Fq +D◦
C∞

(0,M−1)) ⊂ Ω.

This is the complementary in P1,an
Fq

(C∞) of the union of q+1 disjoint disks and is an affinoid subset

of Ω. In the following, we can choose M = |θ|
1
2 . It is easy to see that the group GL2(Fq) acts

by homographies on DM (note that more generally, the subsets {z ∈ C∞ : |z| ≤ qn, |z|ℑ ≥ q−n},
which also are affinoid subsets, are invariant under the action by homographies of the subgroups
of GL2(A) finitely generated by GL2(Fq) and {( λ θi

0 µ ) : λ, µ ∈ F×
q , i ≤ n}, the union of which is

GL2(A)). Further, if γ ∈ GL2(A), one easily sees that if γ(DM )∩DM 6= ∅, then γ ∈ GL2(Fq). It is
also easily seen that

Ω =
⋃

γ∈GL2(A)

γ(DM ).

We can apply Proposition 6.2 to the isomorphism of affine varieties

GL2(Fq)\A
1
C∞

j0
−→ A1

C∞
,

where

j0(z) = −
(1 + zq−1)q+1

zq−1

(this is the finite j-invariant of Gekeler in [25]) to obtain an isomorphism of analytic spaces

GL2(Fq)\DM
∼= DC∞(0, 1).

In parallel, we have the Borel subgroup B = B(A) = {( ∗ ∗
0 ∗ )} which acts on ΩM and the

isomorphism of analytic spaces B\ΩM
∼= ḊC∞(0, S) induced by the map expA(z)

−1 (Proposition
6.4). We recall from Lemma 6.7 that γ ∈ GL2(Fq) is such that γ(ΩM ) ∩ΩM 6= ∅ if and only if γ is
in B.

There is a procedure of gluing two quotient rigid analytic spaces with such compatibility bound-
ary conditions, into a new rigid analytic space, along with (10) for k = Fq and t = θ. Note that
DM ∩ ΩM = {z ∈ C∞ : |z|ℑ = |z| = M} and the two actions of B over ΩM and of GL2(Fq)
on DM agree with the action of B ∩ GL2(Fq) on DM ∩ ΩM and the gluing of these two quotient
spaces is a well defined analytic space whose underlying topological space is homeomorphic to the
quotient topological space GL2(A)\Ω which also carries a natural structure of analytic space. Ad-
ditionally, this quotient space is isomorphic to the gluing of DC∞(0, 1) and C∞ \D◦

C∞
(0, 1) along

{z ∈ C∞ : |z| = 1}, which is in turn isomorphic to C∞. This construction finally yields:

Theorem 6.8. There is an isomorphism between the quotient rigid analytic space Γ\Ω and the

rigid analytic affine line A1,an
C∞

.

7. Drinfeld modular forms

We give a short synthesis on Drinfeld modular forms for the group Γ = GL2(A) in the simplest
case where A = Fq[θ], so that we can prepare the next part of this paper, where we construct
modular forms for Γ with (vector) values in certain C∞-Banach algebras.

The map

GL2(K∞)× Ω→ C×
∞
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defined by (γ, z) 7→ Jγ(z) = cz + d if γ = ( ∗ ∗
c d ) behaves like the classical factor of automorphy for

GL2(R). Indeed we have the cocycle condition:

Jγδ(z) = Jγ(δ(z))Jδ(z), γ, δ ∈ GL2(K∞).

Note that the image is indeed in C×
∞, as z, 1 are K∞-linearly independent if z ∈ Ω.

Definition 7.1. Let f : Ω→ C∞ be an analytic function. We say that f is modular-like of weight
w ∈ Z if for all z ∈ Ω,

f(γ(z)) = Jγ(z)
wf(z), ∀γ ∈ GL2(A).

It is a simple exercise to verify that w is uniquely determined.
We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists N ∈ Z such that the map z 7→ | expA(z)
Nf(z)|

is bounded over ΩM for some M > 1,
(2) a modular form if the map z 7→ |f(z)| is bounded over ΩM for some M > 1.
(3) a cusp form if it is a modular form and maxz∈ΩM

|f(z)| → 0 as M →∞.

Let f be modular like (of weight w ∈ Z). Taking γ = ( 1 ∗
0 1 ) we see that f(z + a) = f(z) for all

a ∈ A. Therefore, by Proposition 6.1, there is a convergent series expansion of the type

f(z) =
∑

i∈Z

fi expA(z)
i, fi ∈ C∞.

There is a rigid analytic analogue of Riemann’s principle of removable singularities due to Barten-
werfer (see [8]) in virtue of which we see that the C∞-vector space M !

w of weak modular forms of
weight w embeds in the field of Laurent series C∞((u)) with the discrete valuation given by the
order in u, where u = u(z) is the uniformiser at infinity

u(z) =
1

π̃ expA(z)
=

1

π̃

∑

a∈A

1

z − a
,

which is an analytic function Ω → C∞. Since M !
w ∩M

!
w′ = {0} if w 6= w′ we have a C∞-algebra

M ! = ⊕wM
!
m which also embeds in the field of Laurent series C∞((u)). Denoting by Mw the

C∞-vector space of modular forms of weight w and by M = ⊕wMw the C∞-algebra of modular
forms, we also have an embedding M → C∞[[u]] and cusp forms generate an ideal whose image in
C∞[[u]] is contained in the ideal generated by u.

It is easy to deduce, from the modularity property, thatM !
w 6= {0} implies q−1 | w. Furthermore,

for all w such that Mw 6= {0}, Mw can be embedded via u-expansions in C∞[[uq−1]] and therefore
the C∞-vector space of cusp forms Sw can be embedded in uq−1C∞[[uq−1]].

7.1. u-expansions. We have seen that we can associate in a unique way to any Drinfeld modular
form f a formal series

∑
i≥0 fiu

i ∈ C∞[[u]] which is analytic in some disk D(0, R), R ∈ |C×
∞|∩]0, 1[.

This is the analogue of the ’Fourier series’ of a complex-valued modular form for SL2(Z); for such
a function f : H → C we deduce, from f(z + 1) = f(z), a Fourier series expansion

f =
∑

i≥0

fiq
i, fi ∈ C,

converging for q = q(z) = e2πiz ∈ D◦
C(0, 1). We want to introduce some useful tools for the study

of u-expansions of Drinfeld modular forms.
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For n ≥ 0 we introduce the C∞-linear map C∞[z]
Dn−−→ C∞[z] uniquely determined by

Dn(z
m) =

(
m

n

)
zm−n.

Note that we have Leibniz’s formula Dn(fg) =
∑

i+j=nDi(f)Dj(g). The linear operators Dn

extend in a unique way to C∞(z) and further, on the C∞-algebra of analytic functions over any
rational subset of Ω therefore inducing linear endomorphisms of the C∞-algebra of analytic functions
Ω → C∞. Additionally, if f : Ω → C∞ is analytic and A-periodic, Dn(f) has this same property,
and for all n, Dn induces C∞-linear endomorphisms of C∞[[u]] (this last property follows from the
fact that Dn(u) is bounded on ΩM as one cas easily see distributing Dn on u = 1

π̃

∑
a∈A

1
z−a , which

gives (−1)n 1
π̃

∑
a∈A

1
(z−a)n+1 ). We normalise Dn by setting:

Dn = (−π̃)−nDn.

Lemma 7.2. For all n ≥ 0, Dn(K[u]) ⊂ u2K[u].

Proof. It suffices to show that for all n ≥ 0, Dn(u) ∈ u2K[u]. We proceed by induction on n ≥ 0;
there is nothing to prove for n = 0. Recall that u(z) = 1

expC(π̃z) . Then, by Leibniz’s formula:

0 = Dn(1) = Dn(u expC(π̃z))

= Dn(u) expC(π̃z) +
∑

i+qk=n
k≥0

Di(u)Dqk(expC(π̃z)),

because expC is Fq-linear. In fact, Dqk(expC(π̃z)) is constant and equals the coefficient of zq
k

in

the z-expansion of expC , which is 1
dk
. We can therefore use induction to conclude that

Dn(u) = −u


−

∑

i+qk=n
k≥0

Di(u)d
−1
k


 ∈ u

2K[u].

�

The polynomials Gn+1(u) := Dn(u) ∈ K[u] (n ≥ 1) are called the Goss polynomials (see [23,
§3]). It is easy to deduce from the above proof that Dj(u) = uj+1 as j = 1, . . . , q − 1. There is no
general formula currently available to compute Dj(u) for higher values of j.

7.1.1. Constructing Drinfeld modular forms. The first non-trivial examples of Drinfeld modular
forms have been described by Goss in his Ph. D. Thesis. To begin this subsection, we follow Goss
[32] and we show how to construct non-zero Eisenstein series by using that Az + A is strongly
discrete in C∞ if z ∈ Ω. We set:

Ew(z) =
∑′

a,b∈A

1

(az + b)w
.

There are many sources where the reader can find a proof of the following lemma (see for instance
[23, (6.3)]), but we prefer to give full details.

Lemma 7.3. The series Ew defines a non-zero element of Mw if and only if w > 0 and q − 1 | w.
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Proof. The above series converges uniformly on every set ΩM and this already gives that Ew is
analytic over Ω. The first property, that Ew is modular-like of weight w, follows from a simple
rearrangement of the sum defining Ew(γ(z)) for γ ∈ Γ and its (unconditional) convergence, which
leaves it invariant by permutation of its terms. Additionally, it is very easy to see that all terms
involved in the sum are bounded on ΩM for every M which, by the ultrametric inequality, implies
that Ew itself is bounded on ΩM for every M . It remains to describe when the series are zero
identically, or non-zero.

For the non-vanishing property, we give an explicit evidence whyEw has a u-expansion in C∞[[u]],
and we derive from partial knowledge of its shape the required property (but we are not able to
compute in limpid way the coefficients of the u-expansion!). First note that

Dn(u) =
1

π̃n+1

∑

b∈A

1

(z − b)n+1
,

so that we can use the Goss’ polynomialsGn+1(u) = Dn(u) as a ’model’ to construct the u-expansion
of Ew. Now, observe, for w > 0:

Ew(z) =
∑

b∈A

1

bw
+
∑′

a∈A

∑

b∈A

1

(az + b)w
.

If (q − 1) | w, we note that

∑

b∈A

1

bw
= −

∏

P

(
1− P−w

)−1
=: −ζA(w),

where the product runs over the monic irreducible polynomials P ∈ A and therefore is non-zero.
Then, if (q − 1) | w and if A+ denotes the subset of monic polynomials in A:

Ew(z) = −ζA(w) −
∑

a∈A+

∑

b∈A

1

(az + b)w

= −ζA(w) − π̃
w
∑

a∈A+

Gw(u(az)),

a series which converges uniformly on every affinoid subset of Ω. Note that for a ∈ A \ {0}, the
function u(az) can be expanded as a formal series ua of u|a|K[[u]] (normalise | · | by |θ| = q) locally
converging at u = 0 (in a disk of positive radius r independent of a). This yields the explicit series
expansion (convergent for the u-valuation, or for the sup-norm over the disk D(0, r) in the variable
u):

(12) Ew(z) = −ζA(w) − π̃
w
∑

a∈A+

Gw(ua).

This also shows that Ew is, in this case, not identically zero. Indeed ζA(w) is non-zero, while the
part depending on u in the above expression tends to zero as |z|ℑ tends to ∞. On the other hand,
if (q − 1) ∤ w, the factor of automorphy Jw

γ does not induce a factor of automorphy for the group
PGL2(A) defined as the quotient of GL2(A) by scalar matrices and this implies that any modular
form of such weight w vanishes identically, and so it happens that Ew vanishes in this case. �

Remark 7.4. It is instructive at this point to compare our observations with the settings of the
original, complex-valued Eisenstein series. Indeed, it is well known, classically, that if w > 2, 2 | w
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and q = e2πiz :

Ew(z) =
∑′

a,b∈Z

1

(az + b)w
= 2ζ(w) + 2

(2πi)
w
2

(w2 − 1)!

∑

n≥1

n
w
2 −1qn

1− qn
, ℑ(z) > 0.

The analogy is therefore between the series
∑

a∈A+

Gw(ua)

and
∑

n≥1

n
w
2 −1qn

1− qn
.

However, it is well known that the latter series can be further expanded as follows, with σk(n) =∑
d|n d

k:
∑

n≥1

σw
2
−1(n)q

n.

For the series
∑

a∈A+ Gw(ua), this aspect is missing, and there is no available intelligible recipe to
compute the coefficients of the u-expansion of Ew directly, at the time being.

7.2. Construction of non-trivial cusp forms. We have constructed non-trivial modular forms,
but they are not cusp forms. We construct non-zero cusp forms in this section. Let z be an element
of Ω. Then, Λ = Λz = Az + A is an A-lattice of rank 2 of C∞. By Theorem 3.4, we have the
Drinfeld A-module φ := φΛ which is of rank 2. Hence, we can write

φθ(Z) = θZ + g̃(z)Zq + ∆̃(z)Zq2 , ∀(z, Z) ∈ Ω× C∞

for functions g̃, ∆̃ : Ω→ C∞.

We consider the function Ω× C∞
(z,Z) 7→E(z,Z)
−−−−−−−−−→ C∞ which associates to (z, Z) the value

(13) E(z, Z) := expΛ(Z) =
∑

i≥0

αi(z)Z
qi = Z

∏′

λ∈Λ

(
1−

Z

λ

)

at Z of the exponential series expΛ associated to the A-lattice Λ = Λz of C∞. It is an analytic
function and we have φa(expΛ(Z)) = expΛ(aZ) for all a ∈ A.

The following result collects the various functional properties of E(z, Z); proofs rely on simple
computations that we leave to the reader.

Lemma 7.5. For all z ∈ Ω, Z ∈ C∞, γ ∈ Γ and a ∈ A:

(1) φΛ(a)(E(z, Z)) = E(z, aZ),
(2) E(γ(z), Z) = Jγ(z)

−1E(z, Jγ(z)Z).
(3) E(z, Z + az + b) = E(z, Z), for all a, b ∈ A.

Remark 7.6. Loosely, we can say that E is a ’non-commutative modular form of weight (−1, 1)’.
The second formula can be also rewritten as:

E

(
γ(z),

Z

Jγ(z)

)
= Jγ(z)

−1E(z, Z), γ ∈ GL2(A),

so that E functionally plays the role of a Jacobi form of level 1, weight −1 and index 0 (this is in
close analogy with the Weierstrass ℘-functions).
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By taking the formal logarithmic derivative in the variable Z of the Weierstrass product expansion
of expΛ(Z) (for z fixed) we note that

Z

E(z, Z)
= 1−

∑

k≥0
(q−1)|k

Ek(z)Z
k

so that the coefficients in this expansion in powers of Z are analytic functions on Ω, from which
we deduce, by inversion, that the coefficient functions αi : Ω → C∞ of E are analytic. By Lemma
7.3 and the homogeneity of the algebraic expressions expressing the functions αi in terms of the
Eisenstein series Ek we see that αi ∈ Mqi−1 for all i ≥ 0. As |z|ℑ →∞ we have Ek(z)→ −ζA(k),
after a simple computation we see that

E(z, Z)→ expA(Z)

uniformly for Z ∈ D for every disk D ⊂ C∞. This means that the functions αi are not cusp forms
(the coefficients of expA ∈ K∞[[τ ]] are all non-zero). To construct cusp forms, we now look at the

coefficients g̃, ∆̃ of φθ which are functions of the variable z ∈ Ω. By (1) and (2) of Lemma 7.5, for
γ ∈ Γ, writing now φΛz

(θ) in place of φθ:

φΛγ(z)
(θ)(Jγ(z)

−1E(z, Jγ(z)Z)) = φΛγ(z)
(θ)(E(γ(z), Z))

= E(γ(z), θZ)

= Jγ(z)
−1E(z, θJγ(z)Z).

Hence, φΛγ(z)
(θ)(Jγ(z)

−1E(z,W )) = Jγ(z)
−1E(z, θW ) = Jγ(z)

−1φΛz
(E(z,W )) for W ∈ C∞. Since

it is obvious that the coefficient functions g̃, ∆̃ are analytic on Ω, they are in this way respectively
modular-like functions of respective weights q − 1 and q2 − 1. Furthermore:

Lemma 7.7. g̃ ∈Mq−1 \ Sq−1 and ∆̃ ∈ Sq2−1 \ {0}. Additionally, ∆̃(z) 6= 0 for all z ∈ Ω.

Proof. The modularity of g̃ and ∆̃ follows from the previously noticed fact that expΛz
(Z) →

expA(Z) uniformly with Z in disks as |z|ℑ → ∞. Indeed, this implies that φθ(Z)→ θZ + π̃q−1Zq

(uniformly on every disk) so that g̃ → π̃q−1 and ∆̃→ 0 as |z|ℑ →∞ and we see that g̃ is a modular

form of weight q − 1 which is not a cusp form, and ∆̃ is a cusp form.

We still need to prove that ∆̃ is not identically zero; to do this, we prove now the last property
of the lemma, which is even stronger. Assume by contradiction that there exists z ∈ Ω such that

∆̃(z) = 0. Then

φΛz
(θ) = θ + g̃(z)τ

which implies that the exponential expΛz
induces an isomorphism of A-modules expΛz

: C∞/Λz →
C(C∞) (the Carlitz module). But this disagrees with Theorem 3.4 which would deliver an iso-

morphism Λz
∼= A between lattices of different ranks. This proves that ∆̃ does not vanish on

Ω. �

Following Gekeler in [23], we define the modular forms g,∆ of respective weights q−1 and q2−1

by g̃ = π̃q−1g and ∆̃ = π̃q2−1∆. The reason for choosing these normalisations is that it can be
proved that the u-expansions of g,∆ have coefficients in A. We are not far from a complete proof
of the following (see [23, (5.12)] for full details):

Theorem 7.8. M = ⊕w∈ZMw = C∞[g,∆]
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The proof rests on three crucial properties (1) existence of Eisenstein series (2) existence of the
cusp form ∆ which additionally is nowhere vanishing on Ω, and (3) modular forms of weight 0 for
Γ are constant, which follows from the fact that a modular form of weight 0 can be identified with
a holomorphic function over P1

Fq
(C∞) by Theorem 6.8, which is constant. We omit the details.

7.2.1. Drinfeld modular forms and the Bruhat-Tits tree. We briefly sketch the interaction between
Drinfeld modular forms and the Bruhat-Tits tree, mainly inviting the reader, yet in quite an informal
way, to read the important work of Teitelbaum in [60]. A simple computation indicates that if f is
a rigid analytic function over the annulus V = ⊔−1<λ<0Cλ (or on a more general annulus in Ω) so
that f is defined by a convergent series

∑
i∈Z fiz

i with the coefficients fi in C∞, then the residue

ResV (f(z)dz) := f−1

does not depend on the local coordinate chosen to express the differential form ω = f(z)dz. Namely,
if t is another local coordinate and z = z(t) =

∑
i>0 zit

i with zi ∈ C∞ and z1 ∈ C×
∞ (with suitable

convergence conditions), then the coefficient of t−1dt in ω(z(t)) = f(z(t))dz(t) = f(z(t))dzdt dt is
also equal to f−1, and in particular, ResV (fdz) does not depend on the choice of the ‘center’ of the
annulus.

We consider T e the set of the oriented edges of the Bruhat-Tits tree. The elements are in
one-to-one correspondence with the disjoint subsets of Ω:

Vn,α := α+
⊔

λ∈]n−1,n[

Cλ, n ∈ Z, α ∈ ⊕i≤n−1Fπ
i.

Note that Vn,α = {z ∈ C∞ : |π|n < |z − α| < |π|n−1}, which is an annulus centered at elements
of K∞ with inner radius |π|n and outer radius |π|n−1, n varying in Z. Moreover, V = V0,0. If
f : Ω → C∞ is a rigid analytic function, then f is rigid analytic on every Vn,α and we have a well
defined residue map

T e res(f)
−−−−→ C∞

which is a ‘harmonic function’ in virtue of the ultrametric residue theorem (see [30, §3]; we do not
give full details and definitions of ‘harmonic functions’ etc., this would bring us too far away from
the objectives of this paper). Of course, we do not expect the map res(f) to reproduce faithfully
the behaviour of f . For example, if f is entire over C∞ then all the residues of the differential form
fdz are clearly zero and res(f) vanishes identically, which might not be the case for f .

Where the map res(f) becomes really useful is with rigid analytic functions f which are deter-
mined by more elaborate patching of local data than just entire functions. Typically, functions
defined by globally non uniform convergent series over Ω. If f is a Drinfeld modular form, Teitel-
baum proved, in a much more general setting (Γ arithmetic subgroup of GL2(A)), that a suitable
variant of the residue map provides us with an isomorphism of C∞-vector spaces

Sw(Γ)→ Char(Γ, w),

where Sw(Γ) is the space of Drinfeld cusp forms of weight w for Γ as defined in ibid. and generalising
our space Sw for Γ = GL2(A), and where Char(Γ, w) is the space of ‘weight w harmonic cocycles’
for Γ. This map can be defined also over Mw(Γ), the space of Drinfeld modular forms of weight
w for Γ. Then, the kernel is spanned by the Eisenstein series of weight w. For this and other
deep properties such as a homological interpretation of the residue map and an interesting and yet
mysterious analysis of the Fourier series of cusp forms, see the paper [60].
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8. Eisenstein series with values in Banach algebras

The final purpose of this and the next more advanced sections of the present paper is to show
certain identities for a variant-generalisation of Eisenstein series (see Theorem 9.9). We recall that
A = Fq[θ]. Let B be a C∞-Banach algebra with sub-multiplicative norm ‖·‖ (6) norm ‖·‖ (extending
the norm | · | of C∞) with the property that ‖B‖ = |C∞|. Let X be a rigid analytic variety. We set

OX/B = OX⊗̂C∞B,

with OX the structural sheaf of X , of C∞-algebras. In other words, if U ⊂ X is an affinoid subset of
X , then OX(U) carries the supremum norm ‖ · ‖U and we define OX/B(U) to be the completion of
OX ⊗C∞B for the norm induced by ‖f⊗b‖ = |f |U , for f ∈ OX(U) and b ∈ B. If B has a countable
orthonormal basis B = (bi)i∈I , an element f ∈ OX/B(U) has a convergent series expansion

f =
∑

i∈I

fibi,

where fi ∈ OX(U), with |fi|U → 0 for the Fréchet filter on I.
One sees that that Tate’s acyclicity Theorem extends to this setting, namely, if X is an affinoid

variety, OX/B is a sheaf of B-algebras. The global sections are the analytic functions X → B.
We will mainly use the cases X = Ω and X = As,an

C∞
. If X = As,an

C∞
, an element of OX/B is

a B-valued entire function of s variables. We can identify it with a map Cs
∞ → B allowing a

series expansion in B[[t]] with t = (t1, . . . , ts) converging on D(0, R)s for all R > 0. A bounded
entire function C∞ → B is constant (this is a generalisation of Liouville’s theorem which uses the
hypothesis that ‖B‖ = |C∞| is not discrete, see [51]).

We work with B-valued analytic functions where B = K is the completion of C∞(t) for the Gauss
norm ‖ · ‖ = ‖ · ‖∞, where t = (t1, . . . , ts). We have ‖K‖ = |C∞| and the residue field is Fac

q (t). In
all the following, we consider matrix-valued analytic functions and we extend norms to matrices in
the usual way by taking the supremum of norms of the entries of a matrix.

We extend the Fq-automorphism τ : C∞ → C∞, x 7→ xq, Fq(t)-linearly and continuously on K.
The subfield of the fixed elements Kτ=1 = {x ∈ K : τ(x) = x} is easily seen to be equal to Fq(t) by
a simple variant of Mittag-Leffler theorem. Let λ1, . . . , λr ∈ C∞ be K∞-linearly independent. This
is equivalent to saying that the A-module

Λ = Aλ1 + · · ·+Aλr ⊂ C∞

is an A-lattice. In this way, the exponential function expΛ induces a continuous open Fq(t)-linear
endomorphism of K, the kernel of which contains Λ⊗Fq

Fq(t) (it can be proved that expΛ is surjective
over K and the kernel is exactly Λ ⊗Fq

Fq(t) but we do not need this in the present paper). The
Drinfeld A-module φ = φΛ gives rise to a structure of Fq(t)

nr×n[θ]-module

φ(Knr×n)

by simply using the Fq(t)-vector space structure of K and defining the multiplication φθ by θ with
the above extension of τ .

We consider an injective Fq-algebra morphism

A
χ
−→ Fq(t)

n×n

6That is, ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ B. We adopt the simpler notations ‖ · ‖ and | · | at the place of | · |∞ etc.
that we have used in the first few sections of our text.
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and we set, with (λ1, . . . , λr) an A-basis of Λ (the exponential now applied coefficientwise):

ωΛ = expΛ


(θIn − χ(θ))

−1



λ1In
...

λrIn





 ∈ Krn×n.

Lemma 8.1. For all a ∈ Fq(t)[θ] we have the identity φa(ωΛ) = χ(a)ωΛ in Krn×n.

Proof. Since the variables ti are central for τ and Fq(t)[θ] is euclidean, it suffices to show that
φθ(ωΛ) = χ(t)ωΛ. Now observe, for a ∈ A:

φΛ(a)(ωΛ) = expΛ((θIn − χ(θ))
−1



(aIn − χ(a) + χ(a))λ1

...
(aIn − χ(a) + χ(a))λr




= χ(a)ωΛ,

because (θIn − χ(θ))−1(aIn − χ(a)) ∈ Fq(t)[θ]
n×n so that (θIn − χ(θ))−1(aIn − χ(a))λi lies in the

kernel of expΛ (applied coefficientwise). �

Hence, ωΛ is a particular instance of special function as defined and studied in [4, 22]. Note also
that the map

ΦΛ : Z 7→ expΛ((θIn − χ(θ))
−1Z)

defines an entire function C∞ → Kn×n. An easy variant of the proof of Lemma 8.1 delivers:

Lemma 8.2. We have the functional equation τ(ΦΛ(Z)) = (χ(θ) − θIn)ΦΛ(Z) + expΛ(Z)In in
Kn×n.

We now introduce a ’twist’ of the logarithmic derivative of expΛ. We recall that A
χ
−→ Fq(t)

n×n

is an injective Fq-algebra morphism. We introduce the Perkins’ series (introduced in a slightly
narrower setting by Perkins in his Ph. D. thesis [53]):

ψΛ(Z) :=
∑

a1,...,ar∈A

1

Z − a1λ1 − · · · − arλr
(χ(a1), . . . , χ(ar)), Z ∈ C∞

(depending on the choice of the basis of Λ as well as on the choice of the algebra morphism χ).
The series converges for Z ∈ C∞ \ Λ to a function C∞ \ Λ → Kn×rn. We have (after elementary
rearrangement of the terms):

(14) ψΛ(Z − b1λ1 − · · · − brλr) = ψΛ(Z)− (χ(b1), . . . , χ(br)) expΛ(Z)
−1, b1, . . . , br ∈ A.

The next proposition explains why we are interested in the Perkins’ series: they can be viewed as
generating series of certain K-vector-valued Eisenstein series that we introduce below. Determining
identities for the Perkins’ series results in determining identities for such Eisenstein series.

Proposition 8.3. There exists r ∈ |C×
∞| such that the following series expansion, convergent for

Z in D(0, r), holds:

ψΛ(Z) = −
∑

j≥1
j≡1(q−1)

Zj−1EΛ(j;χ),

where for j ≥ 1,

EΛ(j;χ) :=
∑′

a1,...,ar∈A

1

(a1λ1 + · · ·+ arλr)j
(χ(a1), . . . , χ(ar)) ∈ Kn×rn.
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The series EΛ(j;χ) is the Eisenstein series of weight j associated to Λ and χ. Note that this is
in deep correspondence with the canonical deformations of the Carlitz module in Tavares Ribeiro’s
contribution to this volume, [59, §4.2]. The reader can make these connections deeper with an
accurate analysis on which we skip here.

Problem 8.4. Develop the appropriate generalisation of the theory of harmonic cocycles of Teitel-
baum [60] and construct the residue map along the notion of K-vector-valued modular form which
naturally includes the above Eisenstein series as in [52].

Proof of Proposition 8.3. Since Λ is strongly discrete, D(0, r)∩ (Λ\ {0}) = ∅ for some r 6= 0. Then,
we can expand, for the coefficients ai not all zero,

1

Z − a1λ1 − · · · − arλr
=

−1

a1λ1 + · · ·+ arλr

∑

i≥0

(
Z

a1λ1 + · · ·+ arλr

)i

.

The result follows from the fact that EΛ(j;χ), which is always convergent for j > 0, vanishes
identically for j 6≡ 1 (mod q − 1) which is easy to check observing that Λ = λΛ for all λ ∈ F×

q , and
reindexing the sum defining EΛ(j;χ). �

Lemma 8.5. The function F ♯(Z) := expΛ(Z)ψΛ(Z) defines an entire function C∞ → Kn×rn such
that, for all λ = a1λ1 + · · ·+ arλr ∈ Λ, F ♯(λ) = (χ(a1), . . . , χ(ar)) ∈ Fq(t)

n×nr.

Proof. This easily follows from the fact that ψΛ converges at Z = 0, and (14). �

The function ψΛ is intimately related to the exponential expΛ by means of the following result,
where expΛ on the right is the unique continuous map Kn×n → Kn×n which induces a Fq(t)

n×n[θ]-
module morphism Kn×n → φΛ(Kn×n).

Lemma 8.6. We have the identity of entire functions C∞ → Kn×n of the variable Z:

expΛ(Z)ψΛ(Z)ωΛ = expΛ((θIn − χ(θ))
−1Z).

Proof. By Lemma 8.5, the function

F (Z) := F ♯(Z) · ωΛ : C∞ → Kn×n

is an entire function such that

F (λ) = (χ(a1), . . . , χ(ar))ωΛ ∈ Kn×n, ∀λ = a1λ1 + · · ·+ arλr ∈ Λ.

We set

G(Z) = expΛ((θIn − χ(θ))
−1Z).

Let λ = a1λ1 + · · ·+ arλr ∈ Λ. We have, by Lemma 8.1,

G(λ) = expΛ((θIn − χ(θ))
−1((a1In − χ(a1) + χ(a1))λ1 + · · ·+ (arIn − χ(ar) + χ(ar))λr)

= (χ(a1), . . . , χ(ar))ωΛ.

Hence, the entire functions F,G agree on Λ. The function F −G is an entire function C∞ → Kn×n

which vanishes over Λ. Hence,

H(Z) =
F (Z)−G(Z)

expΛ(Z)

defines an entire function over C∞. Now, it is easy to see that

lim
|Z|→∞

‖H(Z)‖ = 0.
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Since the valuation group of K is dense in R×, the appropriate generalisation of Liouville’s theorem
[51, Proposition 8] for entire functions holds in our settings and H = 0 identically. �

Remark 8.7. More generally, we can study A-module maps

Λ
χ
−→ Kn×n

with bounded image (the A-module structure on Kn×n being induced by an injective algebra ho-
momorphism A →֒ Fq(t) →֒ Kn×n) and Perkins’ series

ψΛ(n;χ) :=
∑

λ∈Λ

χ(λ)

(Z − λ)n
.

Lemma 8.6 delivers an identity for ψΛ in terms of certain analytic functions of the variable
Z which are explicitly computable in terms of expΛ. To see this, observe that the K-algebra of
analytic functions D(0, r)→ K is stable by the K-linear divided higher derivatives DZ,n defined by

DZ,n(Z
m) =

(
m
n

)
Zm−n. In particular, DZ,n(ψΛ) is well defined for any n > 0. We write f (k) for

τk(f), f ∈ K or for f more generally a Kr×s-valued map for arbitrary integers r, s. If f =
∑

i≥0 fiZ
i

is an analytic function over a disk D(0, r) in the variable Z, then f (k) =
∑

i≥0 τ(fi)Z
qki is again

analytic if k ≥ 0. Observe that in particular,

ψΛ(Z)
(k) = Dqk−1(ψΛ(Z)), k ≥ 0.

Lemma 8.6 implies

ψΛ(Z)ωΛ = H(Z) := expΛ(Z)
−1 expΛ((θIn − χ(θ))

−1Z),

and we note that on the right we have an analytic function D(0, r) → Kn×n for some r ∈ |C×
∞|.

Applying Dqk−1 on both sides of this identity and observing that ωΛ does not depend on Z, we
deduce:

ψΛ(Z)
(k)ωΛ = Dqk−1(H)(Z), k ≥ 0.

Now, since the function ψΛ(Z)
(k) is in fact an analytic function of the variable Zqk , this is also true

for the function Dqk−1(H)(Z) so that

Hk(Z) = (Dqk−1(H)(Z))
(−k), k ≥ 0

are all analytic functions D(0, r)→ Kn×n (note that H0 = H). We introduce the matrices

ΩΛ = (ωΛ, ω
(−1)
Λ , . . . , ω

(1−r)
Λ ) ∈ Krn×rn, HΛ(Z) = (H0, . . . ,Hr−1),

where the latter is an n× rn-matrix of analytic functions D(0, r)→ K. Then,

ψΛ(Z)ΩΛ = HΛ(Z).

But a simple variant of the Wronskian lemma (see [47, §4.2.3]) implies that ΩΛ is invertible. We
have reached:

Theorem 8.8. The identity ψΛ(Z) = HΛ(Z)Ω
−1
Λ holds, for functions locally analytic at Z = 0.

The identity of the previous theorem connects the ’twisted logarithmic derivative’ ψΛ(Z) to the
inverse Frobenius twists of the divided higher derivatives of the mysterious function H, which are
certainly not always easy to compute, unless r = 1, where there is no higher derivative to compute
at all. If we set, additionally, χ = χt where χt(a) = a(t) so that n = 1, then we reach a known
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identity, which was first discovered by R. Perkins in [54] (that we copy below adapting it to our
notations):

expA(Z)ω(t)
∑

a∈A

a(t)

Z − a
= expA

(
Z

θ − t

)
,

with ω Anderson-Thakur’s function and expA(Z) = Z
∏′

a∈A
(1 − Z

a ). This formula is expressed

in [51, Theorem 1] in a slightly different manner by using Papanikolas’ deformation of the Carlitz
logarithm. Note that these references also contain other types of generalisation. The above formula
can be viewed as an analogue of [40, Lemma 1.3.21] (the analogy can be pursued further). We owe
this remark to Lance Gurney that we thankfully acknowledge.

Problem 8.9. This should be considered as a starting point for an extension of Kato’s arguments
related to the connection between the zeta-values phenomenology and Iwasawa’s theory appearing
in [40]. One may ask how far a parallel with Kato’s viewpoint can go.

9. Modular forms with values in Banach algebras

In this section, more technical than the previous ones, we suppose that B is a Banach C∞-
algebra with norm ‖ · ‖ such that ‖B‖ = |C∞| and we suppose that it is endowed with a countable
orthonormal basis B = (bi)i∈I . The example on which we are focusing here is that of B = K, the

completion of the field Ĉ∞(t) for the Gauss valuation ‖ · ‖. Any basis of Fac
q (t) as a vector space

over Fac
q is easily seen to be an orthonormal basis of K. We recall that we have considered, in §8,

a notion of B-valued analytic function. The main purpose of this section is to show, through some
examples, that if N > 1, there is a generalisation

Ω→ KN×1

of Drinfeld modular form which cannot by studied by using just ’scalar’ Drinfeld modular forms.
We consider a representation

ρ : Γ→ GLN (Fq(t)) ⊂ GLN (K).

Definition 9.1. Let f : Ω→ KN×1 be an analytic function. We say that f is modular-like (for ρ)
of weight w ∈ Z if for all γ ∈ GL2(A),

f(γ(z)) = Jγ(z)
wρ(γ)f(z), γ ∈ GL2(A).

We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists L ∈ Z such that the map z 7→ ‖ expA(z)
Lf(z)‖

is bounded over ΩM for some M > 1,
(2) a modular form if the map z 7→ ‖f(z)‖ is bounded over ΩM for some M > 1.
(3) a cusp form if it is a modular form and maxz∈ΩM

‖f(z)‖ → 0 as M →∞.

We denote by M !
w(ρ),Mw(ρ), Sw(ρ) the K-vector spaces of weak modular, modular, and cusp

forms of weight w for ρ. Note that these notations are loose, in the sense that these vector spaces
strongly depend of the choice of K (in particular, of the variables t = (ti)).

We now describe a very classical example with N = 1 and B = C∞ (no variables t at all). If
ρ : Γ→ C×

∞ is a representation, there exists m ∈ Z/(q− 1)Z unique, such that ρ(γ) = det(γ)−m for
all γ. We write

ρ = det−m
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(note that this is well defined). Gekeler constructed a cusp form h ∈ Sq+1(det
−1) \ {0}; see [23,

(5.9)]. The first few terms of its u-expansion in C∞ can be computed explicitly by various methods
(including the explicit formulas (16) and (17) below):

(15) h(z) = −u(1 + u(q−1)2 + · · · ).

We deduce that hq−1∆−1 is a Drinfeld modular form of weight zero which is constant by Theorem
7.8. The factor of proportionality is easily seen to be −1: ∆ = −hq−1.

The computation in (15) can be pushed to coefficients of higher powers of the uniformiser u
by using two formulas that we describe here. The first formula is due to López [42]. We have
the convergent series expansion (in both K[[u]] for the u-adic metric and in D(0, r) for some
r ∈ |C∞|∩]0, 1[ for the norm of the uniform convergence)

(16) h = −
∑

a∈A
monic

aqua ∈ A[[u]].

The second formula is due to Gekeler [24] and is an analogue of Jacobi’s product formula

∆ = q
∏

n≥0

(1− qn)24 ∈ qZ[[q]]

for the classical complex-valued normalised discriminant cusp form ∆ (we have an unfortunate and
unavoidable conflict of notation here!). Gekeler’s formula is the following u-convergent product
expansion:

(17) h = −u
∏

a∈A
monic

(
u|a|Ca

(
1

u

))q2−1

∈ A[[u]],

with Ca the multiplication by a for the Carlitz module structure. Note that (u|a|Ca(
1
u ))

q2−1 ∈
1 +K[[u]] and the u-valuation of

(
u|a|Ca(u

−1)
)q2−1

− 1

goes to infinity as a runs in A \ {0}. One deduces, from Gekeler’s result [23, Theorem (5.13)], that
Mw(det

−m) = hmMw−m0(q+1) if m0 = m ∩ {0, . . . , q − 2} (m is a class modulo q − 1).

9.1. Weak modular forms of weight −1. We analyse another class of representations, this time
in higher dimension and we construct a new kind of modular form associated to it. Let

A
χ
−→ Fq(t)

n×n

be an injective Fq-algebra morphism. Then, the map

ρχ : Γ→ GL2n(Fq(t)) ⊂ GL2n(K)

defined by

ρχ

(
a b
c d

)
=

(
χ(a) χ(b)
χ(c) χ(d)

)

is a representation of Γ. We denote by ρ∗χ the contragredient representation

ρ∗χ = tρ−1
χ .

We shall study the case ρ = ρχ or ρ∗χ. We also set N = 2n.
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We construct weak modular forms of weight −1 associated to the representations ρχ; the main
result is Theorem 9.3 where we show that a certain matrix function defined in (19) has its columns
which are weak modular forms of weight −1. We think that this construction is interesting because
there seems to be no analogue of it in the settings of complex-vector-valued modular forms for
SL2(Z).

Before going on, we need the next lemma, where we give a uniform bound for the valuations of
the coefficients of the u-expansions

∑
m≥0 ci,mu

m of the modular forms αi appearing in (13).

Lemma 9.2. There exists a constant C > 0 such that for all i,m ≥ 0,

|ci,m| ≤ q
−iqi |π̃|q

i−1Cm.

Proof. This is [49, Lemma 2.1]. Although the statement presented in this reference is correct, there
is a typographical problem in (2.17) so that, to avoid confusion, we give full details here. We set
without loss of generality |θ| = q. We recall ([49, (2.14)]) that

αi =
1

θqi − θ
(g̃αq

i−1 + ∆̃αq2

i−2), i > 0,

with the initial values α0 = 1 and α−1 = 0. Now, writing additionally the u-expansions:

g̃ =
∑

i≥0

γ̃iu
i, ∆̃ =

∑

i≥0

δ̃iu
i,

we find (as in ibid.)

ci,m =
1

θqi − θ


 ∑

j+qk=m

γ̃jc
q
i−1,k +

∑

j′+q2k′=m

δ̃j′c
q2

i−2,k′


 , i > 0, m ≥ 0

with the initial values ci,0 = π̃qi−1

di
and c−1,m = 0. Clearly, we can choose C > 0 such that |δ̃j | ≤ Cj

and |γ̃j | ≤ Cj |π̃q−1| for all j ≥ 0, and additionally, we can suppose that the inequality of the Lemma
is true for |ci,m| with i = 0, 1. We now prove the inequality by induction over i. Indeed, note

that if j + qk = m, then, by induction hypothesis, |γ̃jc
q
i−1,k| ≤ Cjq−(i−1)qi−1qCkq|π̃|q

i−q|π̃|q−1 ≤

Cmq−(i−1)qi |π̃|q
i−1 and similarly, if j + q2k = m, then we have |δ̃jc

q2

i−2,k| ≤ Cmq−(i−2)qi |π̃|q
i−2−1,

and the inequality follows. �

We write ϑ = χ(θ). If we set

W = (θIn − ϑ)
−1 ∈ GLn(K),

we have that for all a ∈ A:

(18) (χ(a)− aIn)W ∈ Fq(tΣ)[θ]
n×n.

Now, we consider, for χ andW as in (18), the matrix function Q(z) =
(
zW
W

)
, which is a holomorphic

function Ω→ KN×n. We observe that if γ = ( a b
c d ) ∈ Γ, then

Q(γ(z)) = Jγ(z)
−1

(
(az + b)W

(cz + d)W

)
≡ Jγ(z)

−1ρχ(γ)Q(z) (mod ΛN×n
z ).

Hence, if we set

(19) F(z) := E(z,Q(z)),
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then, by the fact that Λz ⊗ Fq(t) is contained in the kernel of expΛz
,

F(γ(z)) = Jγ(z)
−1E(z, Jγ(z)Jγ(z)

−1ρχ(γ)Q(z)) = Jγ(z)
−1ρχ(γ)F(z), ∀γ ∈ Γ.

This means that the function F : Ω→ KN×n is modular-like of weight −1 for ρχ. We are going to
describe this function F in more detail.

Theorem 9.3. We have F ∈M !
−1(ρχ)

1×n.

Proof. We set eC(z) = expC(π̃z) so that u(z) = 1
eC(z) . Lemma 8.2 implies:

τ(eC(W )) = (ϑ− θIn)eC(W ), τ(eC(zW )) = (ϑ− θIn)eC(zW ) + eC(z).

The subset W ⊂ R>0 of the r ∈ |C∞| such that the elements |d−1
i rq

i

| are all distinct for i ≥ 0 is
dense in R>0. Let z ∈ C∞ be such that r = |π̃z| ∈ W . Then:

|eC(z)| = max
i
{q−iqi |π̃|q

i

|z|q
i

}.

We write F =
(
F1

F2

)
with Fi : Ω→ Kn×n. We first look at the matrix function

F1 = expΛ(zW ) =
∑

i≥0

αi(z)z
qiτ i(W ).

We suppose that |u(z)| < 1
B with B as in Lemma 9.2. Then

F1 =
∑

i≥0

zq
i

τ i(W )
∑

j≥0

ci,ju
j

so that if ‖zWπ̃‖ = r ∈ W with |u| < 1
B , then

‖F1‖ = max
i,j
{|z|q

i

q−iqi |π̃|q
i−1(C|u|︸︷︷︸

<1

)j}

= ‖ expC(π̃zW )‖

= ‖eC(z/θ)‖,

and F1

eC(z/θ) − π̃
−1In is bounded as |z|ℑ is bounded from below.

We now look at the matrix function F2 = eΛ(W ). Since F2 =
∑

i≥0 αi(z)τ
i(W ), for |u| < 1

B we

get in a similar way that F2 − π̃
−1eC(W ) goes to zero as |z|ℑ → ∞. Hence, the n columns of the

matrix function F, which are modular-like of weight −1 are weak modular forms of M !
−1(ρχ). �

We set

F = (F, τ(F)) =

(
F1 τ(F1)
F2 τ(F2)

)
.

Then, F is an analytic function Ω → KN×N and the first n columns are weak modular forms of
weight −1, while the last n columns are weak modular forms of weight −q (for the representation
ρχ).

Lemma 9.4. We have the difference equation τ(F) = FΦ where

Φ =

(
0 ∆̃−1(χ(θ)− θIn)

1 −∆̃−1g̃In

)
.
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Proof. For any choice of n,m > 0, we extend the function E(z, Z) of Lemma 7.5 to

Ω×Kn×m E
−→ Kn×m

by setting E(z, Z) =
∑

i≥0 αi(z)τ
i(Z) (so τ acts diagonally). Lemma 7.5 holds in this generalised

setting, where the Drinfeld modules φΛ now acts on Kn×m (case of Λ = Λz). The present statement
follows from (1) of Lemma 7.5 with a = θ in a manner which is sensibly similar to that of [49,

Theorem 1.3]. Indeed, note that, with φΛ(θ) = θ + g̃τ + ∆̃τ2, we have φΛ(θ)(F) − χ(θ)F = 0. �

Lemma 9.5. We have that supz∈ΩM
‖F−XYZ‖ → 0 as M →∞, where

X =

(
In 0
0 eC(W )

)
, Y =

(
eC(zW ) τ(eC(zW ))
In ϑ− θIn

)
, Z =

(
π̃−1In 0

0 π̃−qIn

)
.

Proof. We observe (recall that ϑ = χ(θ)):

XYZ =

(
π̃−1eC(zW ) π̃−q((ϑ− θIn)eC(zW ) + e0In)
π̃−1eC(W ) π̃−q(ϑ− θIn)eC(W )

)
.

Since the second block column of F is the image by τ of the first block column, all we need to show

is that supz∈ΩM
‖F−

(π̃−1eC(zW )
π̃−1eC(W )

)
‖ → 0 as M →∞. We note that

F1 = eΛ(zW ) = π̃−1eC(zW ) +
∑

i≥0

zq
i

τ i(W )
∑

j>0

ci,ju
j

︸ ︷︷ ︸
=:Υ

.

We show that ‖Υ‖ tends to zero when |z|ℑ → ∞. We suppose that |z|ℑ is large so that |u|C < 1.
then, the double series defining Υ is convergent and we can write

Υ =
∑

j>0

∑

i≥0

ujci,jz
qiτ i(W ).

The general term of this series, Υi,j := ujci,jz
qiτ i(W ), has absolute value which satisfies:

‖Υi,j‖ ≤ q−iqi |π̃|q
i−1(|u|C)j |z|q

i

‖W‖q
i

≤ |u|Cmax
i
{|z|q

i

‖W‖q
i

|π̃|q
i−1}

≤ |π̃|−1C

∣∣∣∣
eC(z/θ)

eC(z)

∣∣∣∣

and tends to zero as |z|ℑ →∞. In a similar way, one proves that ‖F2 − π̃
−1eC(W )‖ tends to zero

in the same way, we leave the details to the reader. �

Lemma 9.6. We have ‖ det(F) − (−1)neC(z)nπ̃−n(q+1) det(eC(W ))‖ → 0 as |z|ℑ → ∞, and
det(eC(W )) is non-zero.

Proof. The formula follows directly from the expression for XYZ. The non-vanishing of det(eC(W ))
is easy to show. �

This result implies that the columns of F are linearly independent. Moreover, it is plain that
supz∈ΩM

‖ det(F−1) − (−1)nunπ̃(q+1)n det(eC(W ))−1‖ → 0 as M → ∞. Since at once the scalar

function F = det(F−1) satisfies F (γ(z)) = Jγ(z)
n(q+1) det(γ)−nF (z) for all z ∈ Ω and γ ∈ Γ, we

get F ∈ Mn(q+1)(det
−n) ⊗C∞ K. Now, Fh−n is a modular form of weight 0, therefore equal to an

element of K×. We obtain:
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Corollary 9.7. We have det(F−1) = (−1)nπ̃−(q+1)nhn det(eC(W ))−1 and, writing H := tF−1 =
(H1,H2) with Hi : Ω → Kn×n, we have that the n columns of H1 are linearly independent modular
forms of weight 1 and the n columns of H2 are linearly independent modular forms of weight q for
the representation ρ∗χ.

What can be further proved is, by setting

M(ρ∗χ) =
⊕

w

Mw(ρ
∗
χ)

the weight-graded (M ⊗C∞ K)-module of modular forms for ρ∗χ, where M =
⊕

wMw(1) is the
C∞-algebra of scalar modular forms (1 is the trivial representation):

Theorem 9.8. M(ρ∗χ) = (M ⊗C∞ K)1×NH.

We will not give the details of the deduction of the proof of this theorem from Corollary 9.7,
since it rests on an easy generalisation and modification of [52, Theorem 3.9]. Instead of this, we
insist on the result of Gekeler [23, Theorem (5.13)], which implies that

Mw(det
−m) =Mw−m(q+1)h

m, m ≤ q − 1

with h the Poincaré series of weight q + 1 and ’type 1’ defined in ibid. (5.11) (with u-expansion
(15)) so that, with M(det−m) = ⊕wMw(det

−m),

M(det−m) =Mhm.

In view of this, we can think about H (up to normalisation) as to a matrix-valued generalisation of
the Poincaré series h.

9.2. Jacobi-like forms. We consider the series

Ψ(z, Z) := ψΛz
(Z) =

∑

a,b∈A

1

Z − az − b
(χ(a), χ(b)),

converging for Z ∈ C∞ \ Λ where Λ = Λz = Az + A, z ∈ Ω. We have the following functional
identities

Ψ

(
γ(z),

Z

Jγ(z)

)
= Jγ(z)Ψ(z, Z)ρ(γ)−1, γ ∈ Γ,

together with the identities arising from (14). Proposition 8.3 implies that, for Z ∈ D(0, r) for some
r ∈ |C∞|∩]0, 1[,

tΨ(z, Z) = −
∑

j>0
j≡1(q−1)

Zj−1E(j;χ)

where E(j;χ) is the Eisenstein series (non-vanishing if j ≡ 1 (mod q − 1))

E(j;χ) :=
∑′

a,b∈A

1

(az + b)j

(
χ(a)

χ(b)

)
,

which satisfies
E(j;χ)(γ(z)) = Jγ(z)

jρ∗χ(γ)E(j;χ), γ ∈ Γ, z ∈ Ω.

Since it is also apparent that ‖E(j;χ)(z)‖ is bounded on ΩM for M > 1 and j > 0, we deduce that
the n columns of E(j;χ) are modular forms of weight j for ρ∗χ in the sense of Definition 9.1 (see
[52, §3.2.1] for a special case). By Theorem 8.8 we obtain

(20) Ψ(z, Z) = [H(Z),Dq−1(H)(Z)
(−1)]ΩΛ(z)

−1
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which allows to explicitly compute the Eisenstein series E(j;χ) in terms of the function H(Z). To
make this interesting relation a little bit more transparent, we give below an explicit expression of
the matrix ΩΛ(z)

−1. We have:

(21) ΩΛ(z)
−1 =

(
0 1
1 0

)
τ−1(Φ)F−1 =


1 −

(
g̃

∆̃

) 1
q

0 (χ(θ) − θ
1
q )∆̃− 1

q


F−1,

with Φ the matrix defined in Lemma 9.4. To see this, observe that in the notation of Theorem 8.8,

ΩΛ(z) = (F, τ−1(F)) = τ−1(F)

(
0 1
1 0

)
,

with Λ = Λz as above. By Lemma 9.4, τ(F) = FΦ , so that τ−1(F) = F(τ−1(Φ))−1 which yields

ΩΛ = τ−1(F)

(
0 1
1 0

)
= F

(
0 1
1 0

)(
0 1
1 0

)
(τ−1(Φ))−1

(
0 1
1 0

)
,

which implies (21) by the (licit) inversion of the two sides.
Substituting in (20) and transposing, we get:

−
∑

j≥1
j≡1(q−1)

E(j;χ)Zj−1 = H




1 0

−
(

g̃

∆̃

) 1
q

∆̃− 1
q (tχ(θ) − θ

1
q )



(

tH(Z)
Dq−1(

tH)(Z)(−1)

)
.

For example, the Eisenstein series of weight one E(1;χ) arises as the coefficient of Z0 in the left-hand
side and the above yields an explicit formula for it. Note that the constant term of the Z-expansion
of t[H(Z),Dq−1(H)(Z)(−1)] is

t[(θIn − χ(θ))
−1, α1(z)

1
q ((θIn − χ(θ))

−1 − (θ
1
q In − χ(θ))

−1)].

The formula that we get is this one:

−E1(1;χ) = H




1 0

−
(

g̃

∆̃

) 1
q

∆̃− 1
q (tχ(θ)− θ

1
q )



( t(θIn − χ(θ))−1

α1(z)
1
q t((θIn − χ(θ))−1 − (θ

1
q In − χ(θ))−1)

)
,

and what looks as a miracle at first sight is that it greatly simplifies, by using the explicit compu-
tation of α1 which arises from [49, (2.14)], and which is α1 = g̃

θq−θ , we reach the following:

Theorem 9.9. The following identity holds

E1(1;χ) = −H

(
t(θIn − χ(θ))−1

0n

)
,

involving N × n matrices whose columns are modular forms of weight 1.

In fact, this is not a miracle; it is just due to the fact that the left-hand side must be bounded
at the infinity; this is only possible if the second matrix entry of the column above is identically

zero, because it is anyway a multiple by a constant matrix of the weak modular form g̃/∆̃ (this
somewhat forces α1 to be equal to the above multiple of g̃, giving this artificial impression of
miraculous simplification). It is easy from here to deduce [48, Theorem 8] in the special case of
N = 2, n = 1 and χ = χt.
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[48] F. Pellarin. Values of certain L-series in positive characteristic. Ann. of Math. 176, (2012), 2055–2093
[49] F. Pellarin. Estimating the order of vanishing at infinity of Drinfeld quasi-modular forms, J. Reine Angew.

Math. 687, (2014), 1–42.
[50] F. Pellarin. A note on multiple zeta values in Tate algebras. Riv. Mat. Univ. Parma, 7, (2016), 71–100.
[51] F. Pellarin, & R. B. Perkins. On certain generating functions in positive characteristic. Monat. Math. 180,

(2016), 123–144.
[52] F. Pellarin, & R. B. Perkins. On vectorial Drinfeld modular forms over Tate algebras. Int. J. of Number Theory,

14, (2018), 1729–1783.
[53] R. B. Perkins. On Special Values of Pellarin’s L-Series. Ph.D. Dissertation. The Ohio State University (2013).
[54] R. B. Perkins. Explicit formulae for L-values in positive characteristic. Math. Z. 248, (2014), 279–299.
[55] J. Poineau & D. Turchetti. Berkovich curves and Schottky uniformisation. This volume.
[56] J.-P. Serre. Local fields. Berlin, New York: Springer-Verlag, (1980).
[57] H. Stichtenoth. Algebraic function fields and codes. Graduate Texts in Mathematics 254, Springer Verlag (2008).
[58] J. Tate. Rigid analytic spaces. Invent. Math. 12, (1971) 257–289.
[59] F. Tavares Ribeiro. On the Stark units of Drinfeld modules. This volume.
[60] J. Teitelbaum. The Poisson kernel for Drinfeld modular curves. J. of the AMS, 4, (1991), 491–511.
[61] M. Temkin. Introduction to Berkovich Analytic Spaces. In Berkovich Spaces and Applications. A. Ducros, Ch.

Favre & J. Nicaise Editors, Springer Lecture Notes in Mathematics 2119, (2015).
[62] L. Wade. Certain quantities transcendental over GF (pn, x). Duke Math. J. 8 (1941), 707–720.
[63] D. Zywina. Explicit class field theory for global function fields. J. Number Theory, 133, (2013), 1062–1078.

Federico Pellarin, Institut Camille Jordan, UMR 5208, Site de Saint-Etienne, 23 rue du Dr. P.

Michelon, 42023 Saint-Etienne, France


	1. Introduction
	2. Rings and fields
	3. Drinfeld modules and uniformisation
	4. The Carlitz module and its exponential
	5. Topology of the Drinfeld upper-half plane
	6. Some quotient spaces
	7. Drinfeld modular forms
	8. Eisenstein series with values in Banach algebras
	9. Modular forms with values in Banach algebras
	References

