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FROM THE CARLITZ EXPONENTIAL TO DRINFELD MODULAR FORMS

F. PELLARIN

Abstract. This paper contains the written notes of a course the author gave at the VIASM of
Hanoi in the Summer 2018. It provides an elementary introduction to the analytic naive theory

of Drinfeld modular forms for the simplest ’Drinfeld modular group’ GL2(Fq[θ]) also providing
some perspectives of development, notably in the direction of the theory of vector modular forms
with values in certain ultrametric Banach algebras.
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This paper contains the written notes of a course the author gave at the VIASM of Hanoi in
the Summer 2018. It provides an elementary introduction to the analytic naive theory of Drinfeld
modular forms essentially for the simplest ’Drinfeld modular group’ GL2(Fq[θ]) also providing some
perspectives of development, notably in the direction of the theory of vector modular forms with
values in certain ultrametric Banach algebras.

1. Introduction

The present paper contains the written notes of a course the author gave at the VIASM of Hanoi
in the Summer 2018. It provides an elementary introduction to the analytic naive theory of Drinfeld
modular forms essentially for the simplest ’Drinfeld modular group’ GL2(Fq[θ]) also providing some
perspectives of development, notably in the direction of the theory of vector modular forms with
values in certain ultrametric Banach algebras initiated in [35].

The course was also the occasion to introduce the very first basic elements of the arithmetic
theory of Drinfeld modules in a way suitable to sensitise the attendance also to more familiar
processes of the classical theory of modular forms and elliptic curves. Most parts of this work are
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2 F. PELLARIN

not new and are therefore essentially covered by many other texts and treatises such as the seminal
works of Goss [24, 25, 26] and Gekeler [16]. This paper will not cover several advanced recent works
such that the higher rank theory, including the delicate compactification questions, by Basson,
Breuer, Pink [5, 6, 7] and Gekeler [19, 20, 21, 22] and it does not even go in the direction of the
important arithmetic explorations notably involving the cohomological theory of crystals by Böckle
[10, 11] or toward several other crucial recent works by several other authors we do not mention
here.

Perhaps, one of the original points of our contribution is instead to consider exponential func-
tions from various viewpoints, all along the text, stressing how they interlace with modular forms.
The paper contains, for example, a product expansion of the exponential function associated to the
lattice A := Fq[θ] in the Ore algebra of non-commutative formal series in the Frobenius automor-
phism which does not seem to have been previously noticed. It will be used to give a rather precise
description of the analytic structure of the cusp of Γ = GL2(A) acting on the Drinfeld upper-half
plane by homographies. Another new feature is that, in the last two sections, we explore structures
which at the moment have no close analogue in the classical complex setting. Namely, Drinfeld
modular forms with values in modules over Tate algebras, following the ideas of [35].

Here is, more specifically, the plan of the paper. In the very elementary §2 the reader familiarises
with the rings and the fields which carry the values of the special functions we are going to study in
this paper. Instead of the field of complex numbers C, our ’target’ field is a complete, algebraically
closed field of characteristic p > 0. There is an interesting parallel with the classical complex theory
where we have the quadratic extension C/R and the quotient group R/Z is compact, but there are
also interesting differences to take into account as the analogue C∞/K∞ of the extension C/R is
infinite dimensional, C∞ is not locally compact, although the analogue A := Fq[θ] of Z is discrete
and co-compact in the analogue K∞ = Fq((

1
θ )) of R.

We dedicate the whole §3 to exponential functions. More precisely, we give a proof of the
correspondence by Drinfeld between A-lattices of C∞ and Drinfeld A-modules. To show that to any
Drinfeld module we can naturally associate a lattice we pass by the more general Anderson modules.
We introduce Anderson’s modules in an intuitive way, privileging one of the most important and
useful properties, namely that they are equipped with an exponential function at a very general
level. Just like abelian varieties, Anderson modules can be of any dimension. When the dimension
is one, one speaks about Drinfeld modules.

In §4 we focus on a particular case: the Carlitz module; this is the analogue of the multiplicative
group in this theory. We give a detailed account of the main properties of its exponential function
denoted by expC . We point out that its (multiplicative, rescaled) inverse u is used as uniformiser at
infinity to define the analogue of the classical complex ’q-expansions’ for our modular forms. In this
section we prove, for example, that any generator of the lattice of periods of expC can be expressed
by means of a certain convergent product expansion (known to Anderson). To do this, we use the
so-called omega function of Anderson and Thakur.

In §5 we first study the Drinfeld ’half-plane’ Ω = C∞ \K∞ topologically. We use, to do this, a
fundamental notion of distance from the analogue of the real line K∞. The group GL2(A) acts on
Ω by homographies and we construct a fundamental domain for this action. After a short invitation
to the basic notions of rigid analytic geometry, we discuss the following question: find an analogue
for the Carlitz module of the following statement. Every holomorphic function which is invariant
for the translation by one has a Fourier series. The answer is: every Fq[θ]-translation invariant
function has a ’u-expansion’. We show why in this section.
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In §7 we give a quick account of (scalar) Drinfeld modular forms for the group GL2(A) (charac-
terised by the u-expansion in C∞[[u]]). This appears already in many other references: the main
feature is that C∞-vector spaces of Drinfeld modular forms are finitely dimensional spaces. Also,
non-zero Eisenstein series can be constructed; this was first observed by D. Goss in [25]. The
coefficients of the u-expansions of Eisenstein series are, after normalisation, in A = Fq[θ].

In §9 we revisit Drinfeld modular forms. We introduce vector Drinfeld modular forms with values
in other fields and algebras, following [35]; the case we are interested in is that of functions which
take values in finite dimensional K-vector spaces where K is the completion for the Gauss norm
of the field of rational functions in a finite set of variables with coefficients in C∞. With the use
of certain Jacobi-like functions, we deduce an identity relating a matrix-valued Eisenstein series
of weight one with certain weak modular forms of weight −1 from which one easily deduces [35,
Theorem 8] in a different, more straightforward way.

1.1. Acknowledgements. The author is thankful to the VIASM of Hanoi for the very nice con-
ditions that surrounded the development of the course and the stimulating environment in which
he was continuously immersed all along his visit in June 2018. Part of this text was written during
a stay at the MPIM of Bonn in April 2019 and the author wishes to express gratitude for the very
good conditions of work there. The author is thankful to A. Thullier for the proof of Proposition
6.4 and to L. Gurney for fruitful discussions. This work was supported by the ERC ANT.

2. Rings and fields

Before entering the essence of the topic, we first propose the reader to familiarise with certain
rings and fields. Let R be a ring.

Definition 2.1. A real valuation | · | (or simply a valuation) over R is a map R
|·|
−→ R≥0 with the

following properties.

(1) For x ∈ R, |x| = 0 if and only if x = 0.
(2) For x, y ∈ R, |xy| = |x||y|.
(3) For x, y ∈ R we have |x+ y| ≤ max{|x|, |y|}.

(3) is usually called the ultrametric inequality. A ring with valuation is called a valued ring. A
valuation is non-trivial if its image is infinite. A map as above satisfying (2), (3) but not (1) is
called a semi-valuation.

The map which sends all the elements of R to 1 ∈ R≥0 is a valuation called the trivial valuation.
A valuation over a ring R induces a metric in an obvious way and one easily sees that R, together
with this metric, is totally disconnected (the only connected subsets are ∅ and the points). To any
valued ring (R, |·|) we can associate the subsetOR = {x ∈ R : |x| ≤ 1} which is a subring of R, called
the valuation ring of | · |. This ring has the prime idealMR = {x ∈ R : |x| < 1}. The quotient ring
kR := OR/MR is called the residue ring. The ring homomorphism f ∈ OR 7→ f +MR ∈ OR/MR

is called the reduction map. The image |R×| is a subgroup of R× called the valuation group.
If R is a field,MR is a maximal ideal. Two valuations | · | and | · |′ over a ring R are equivalent

if for all x ∈ R, c1|x| ≤ |x|′ ≤ c2|x| for some c1, c2 > 0. Two equivalent valuations induce the same

topology. If (R, | · |) is a valued ring, we denote by R̂ (or R̂|·|) the topological space completion of

R for | · |. It is a ring and if additionally R is a field, R̂ is also a field.
While working over complete valued fields, many properties which are usually quite delicate

to check for real numbers, become simple. For instance, the reader can check that in a valued
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field (L, | · |), a sequence (xn)n≥0 is Cauchy if and only if (xn+1 − xn)n≥0 tends to zero. A series∑
n≥0 xn converges if and only if xn → 0 and an infinite product

∏
n≥0(1 + xn) converges if and

only if xn → 0. Another immediate property is that if (xn)n≥0 is convergent, then (|xn|)n≥0 is
ultimately constant.

2.1. Local compacity, local fields. Let (L, | · |) be a valued field. Choose r ∈ |L×| and x ∈ L.
We set

DL(x, r) = {y ∈ L : |x− y| ≤ r}.

This is the disk of center x and diameter r. Observe that OL = DL(0, 1). Also,

ML =
⋃

r∈|L×|
r<1

DL(0, r) =: D◦
L(0, 1).

More generally we write D◦
L(0, r) = {x ∈ L : |x| < r}. We use the simpler notation D(x, r) or

D◦(0, r) when L is understood from the context. Note that D(x, r) = x + D(0, r) and D(0, r) is
an additive group. If |x| ≤ r (that is, x ∈ D(0, r)), then D(x, r) = D(0, r). If |x| > r (that is,
x 6∈ D(0, r)), then D(x, r) ∩D(0, r) = ∅. In other words, if two disks with same diameters have a
common point, then they are equal. If the diameters are not equal, non-empty intersection implies
that one is contained in the other.

Now pick r ∈ |L×| and x0 ∈ L× with |x0| = r. Then, D(0, r) = x0D(0, 1) = x0OL. This means
that all disks are homeomorphic to OL = D(0, 1). This is due to the fact that we are choosing
r ∈ |L×|.

A complete valued field L is locally compact if every disk is compact. We have the following:

Lemma 2.2. A valued field which is complete is locally compact if and only if the valuation group
is discrete and the residue field is finite.

Proof. Let L be a field with valuation | · |, complete. We first show that OL = D(0, 1) is compact
if the valuation group is discrete (in this case there exists r ∈]0, 1[∩|L×| such thatML = D(0, r))
and the residue field is finite. Let B be any infinite subset of OL. We choose a complete set of
representatives R of OL moduloML. Note the disjoint union

OL =
⊔

ν∈R

(ν +ML).

Multiplying all elements of B by an element of L× (rescaling), we can suppose that there exists
b1 ∈ B with v(b1) = 0. Then, the above decomposition induces a partition of B and by the
fact that kL is finite and the box principle there is an infinite subset B1 ⊂ B ∩ (b1 +Mn1

L ) for
some integer n1 > 0. We continue in this way and we are led to a sequence b1, b2, . . . in B with
bi+1 ∈ M

ni

L \M
ni−1
L with the sequence of the integers ni which is strictly increasing (set n0 = 0).

Hence, bm+1 − bm ∈M
nm

L is a Cauchy sequence, thus converging in L because it is complete.
Let us suppose that kL is infinite. Then any set of representativesR ofOL moduloML is infinite.

For all b, b′ ∈ R distinct, we have |b− b′| = 1 and R has no converging infinite sub-sequence. Let us
suppose that the valuation group G = v(L×) is dense in R. There is a strictly decreasing sequence
(ri)i ⊂ G with ri → 0. This means that for all i, there exists ai ∈ OL such that v(ai) = ri and for
all i 6= j we have that v(ai − aj) = min{ri, rj} so that we cannot extract from (ai)i a convergent
sequence and OL is not compact. �

Definition 2.3. A valued field which is locally compact is called a local field.
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An important property is the following. Any valued local field L of characteristic 0 is isomor-
phic to a finite extension of the field of p-adic numbers Qp for some p, while any local field L of
characteristic p > 0 is isomorphic to a local field Fq((π)) (with uniformizer π so that |L×| = |π|Z

and |π| < 1), and with q = pe for some integer e > 0. The proof of this result is a not too difficult
deduction from the following well known fact: a locally compact topological vector space over a
non-trivial locally compact field has finite dimension.

2.2. Valued rings and fields for modular forms. Let C be a smooth, projective, geometrically
irreducible curve over Fq, together with a rational point ∞ ∈ C. We set

R = A := H0(C \ {∞},OC).

This is the Fq-algebra of the rational functions over C which are regular everywhere except, perhaps,
at ∞. The choice of ∞ determines an equivalence class of valuations | · |∞ on A in the following
way. Let d∞ be the degree of∞, that is, the degree of the extension F of Fq generated by∞ (which
is also equal to the least integer d > 0 such that τd(∞) = ∞, where τ is the geometric Frobenius
endomorphism). Then, for any a ∈ A, the degree

deg(a) := dimFq
(A/aA)

is a multiple −v∞(a)d∞ of d∞ and we set |a|∞ = c−v∞(a) for c > 1, which is easily seen to be a

valuation. A good choice here is c = q. We can thus consider the field K∞ := K̂ completion of K
for | · |∞ which can be written as the Laurent series field F((π)) where π is an uniformising element
of K∞ (such that v∞(π) = 1). K∞ is a local field with valuation ring OK∞

= F[[π]], maximal ideal
MK∞

= πF[[π]], residual field F and valuation group |π|Z∞.
The ring Z is discrete and co-compact in R. Analogously, A is strongly discrete and co-compact

in K∞. Here, strong discreteness means that any disk D(x, r) = {y ∈ K∞ : |x−y| ≤ r} ⊂ K∞ only
contains finitely many y ∈ A for every r ≥ 0. Co-compactness is equivalent to the property that,
for the metric induced on the quotient K∞/A, every sequence contains a convergent sequence. To
see this, one observes, by the Weierstrass gap Theorem, that we can always choose the uniformiser
π such that π−s ∈ A for some s > 0 (1). In particular, as an F-vector space, we have the direct
sum decomposition

K∞ = F[π−1]⊕MK∞

with F[π−s] ⊂ A. Up to a certain extent, the tower of rings A ⊂ K ⊂ K∞ associated to the datum
(C,∞) can be viewed in analogy with the tower of rings Z ⊂ Q ⊂ R.

The case of C = P1 with its point at infinity ∞ (defined over Fq) is the simplest one. Let θ
be any rational function having a simple pole at infinity, regular away from it. Then, A = Fq[θ],
K = Fq(θ) and we can take π = θ−1 so that K∞ = Fq((

1
θ )) the completion of K for the valuation

| · |∞ = qdegθ(·). Note that for all π = λθ−1 +
∑

i>1 λiθ
−i ∈ K∞ with λ ∈ F×

q and λi ∈ Fq, we have
K∞ = Fq((π)).

Here is a fact which allows to ’think ultrametrically’. We cannot cover a disk of diameter q (e.g.
D(0, q)) of a non locally compact field L, with finitely many disks of diameter 1. Of course, this is
possible, by local compacity, for the disk D(0, q) in K∞. Explicitly, in the case C = P1:

D(0, q) = D(0, 1)⊕ Fqθ = ⊔λ∈F
×
q
D(λθ, 1) ⊔D(0, 1).

1If the genus g of C is zero, we can choose s = 1, otherwise we can choose s = 2g.
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2.3. Algebraic extensions. We start with an example in the local field L = Fq((π)) (with |π| < 1).
Let M be an element of L such that |M | < 1. We want to solve the equation

(1) Xq −X =M.

Assuming that there exists a solution x ∈ L we have x = xq −M so that inductively for all n:

x = xq
n+1

−
n∑

i=0

M qi .

The series converges to H inML by the hypothesis on M and |H | = |M |. But Hq −H = M and
x = H is a solution of (1) and the polynomial Xq−X−M totally split in L[X ] as all the roots are in
{H + λ : λ ∈ Fq}. If |M | = 1 we could think of writing M =M0 +M ′ with M0 ∈ F×

q and |M ′| < 1
but the equation (1) with M = M0 has no roots in Fq. One easily sees that the equation (1) has
no roots in L if |M | ≥ 1. What makes the above algorithm of approximating a solution in the case
|M | < 1 is that the equation Xq −X has solutions in Fq. These arguments can be generalised and
formalised in what is called Hensel’s lemma. It can be used to show the following property, which
is basic and will be used everywhere. Let L be a valued field with valuation | · | = c−v(·), complete,
and let us consider F/L a finite extension (necessarily complete). Then, setting

NF/L(x) =

(∏

σ∈S

σ(x)

)[F :L]i

, x ∈ F,

where S is the set of embeddings of F in an algebraic closure of L and [F : L]i is the inseparable
degree of the extension F/L, the map w : F → R ∪ {∞} determined by w(0) =∞ and

w(x) =
v(NF/L(x))

[F : L]
, x ∈ F×

defines a valuation | · |w := c−w(·) extending | · | over F in the only possible way. Coming back to
the local field L = Fq((π)), denoting by Lac an algebraic closure of L, there is a unique valuation
over Lac extending the one of L; we will denote it by | · | by abuse of notation. The valuation group
is dense in R× and the residue field is the algebraic closure Fac

q of Fq. It is easy to see that Lac is
not complete, although each intermediate finite extension is so.

Lemma 2.4. The completion L̂ac of Lac is algebraically closed.

Proof. We follow [27, Proposition 2.1]. Let F/L̂ac be a finite extension. Then, as seen previously,

F carries a unique extension of the valuation | · | of L̂ac. Let x be an element of F . We want to show

that x ∈ L̂ac. For a polynomial P =
∑

i PiX
i ∈ L̂ac[X ] we set ‖P‖ := sup{|Pi|}. It is easy to see

that ‖·‖ is a valuation over L̂ac[X ], called the Gauss valuation (to see the multiplicativity it suffices

to study the image of P by the residue map L̂ac[X ] → k
L̂ac [X ] which is a ring homomorphism).

Let P ∈ L̂ac[X ] be the minimal polynomial of x over L̂ac. For ‖ · ‖, P is a limit of polynomials of
the same degree, which split completely. It is easy to show that for all ǫ > 0, there exists N ≥ 0
with the property that for all i ≥ N , a root xi ∈ Kac

∞ of Pi satisfies |x− xi|∞ < ǫ. This shows that

x is a limit of a sequence of L̂ac and therefore, x ∈ L̂ac. �

We consider as in §2.2 the local field K∞. Then, K∞ = F((π)) for some uniformiser π and by
Lemma 2.4, the field

C∞ := K̂ac
∞
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is algebraically closed and complete. It will be used in the sequel as an alternative to C ’for silicon-
based mathematicians’ (2), but there are many important differences. For instance, note that
C/R has degree 2, while C∞/K∞ is infinite dimensional, as the reader can easily see by observing
that F-linear elements of Fac

q are also K∞-linearly independent (in fact, this field is uncountably-
dimensional).

Complex analysis makes heavy use of local compacity so that we can cover a compact analytic
space with finitely many disks. For example, we can cover an annulus with finitely many disks
so that the union does not contain the center, which is very useful in path integration of analytic
functions over C×. The ultrametric counterpart of this and other familiar and intuitive statements
is false in C∞ as well as in other non-locally compact fields. We cannot use ’partially overlapping
disks’ to ’move’ in C∞, or, more generally, in a ultrametric field. At least, two annuli, or a disk
and an annulus, may overlap somewhere without being one included in the other.

On another hand, the field C∞ also has ’nice’ properties. Let us review some of them; we denote
by Lsep the separable closure of a field L.

Lemma 2.5. We have C∞ = K̂sep
∞ .

Proof. This due to simple metric properties of Artin-Schreier extensions. We follow [3]. First look
at the equation

Xq′ −X =M

with M ∈ K∞ and where q′ = pe
′

for some e′ > 0. Then, if |M |∞ > 1, all the solutions γ ∈ C∞ of

the equation are such that |γ|q
′

∞ = |M |∞ and |γq
′

−M |∞ < |M |∞. The extension K∞(γ)/K∞ is
clearly separable and wildly ramified.

We now consider α ∈ Kac
∞ . We want to show that α is a limit of Ksep

∞ . There exists q′ = pe
′

with a := αq′ ∈ Ksep
∞ . For instance, we can take q′ = [K∞(α) : K∞]i. Consider b ∈ K×

∞ and a root

β ∈ Kac
∞ of the polynomial equation Xq′ − bX − a = 0. Clearly, β ∈ Ksep

∞ . Let λ ∈ Ksep
∞ be such

that λq
′−1 = b. Then, setting γ = β

λ , we have γq
′

= βq′

λq′ = βq′

bλ so that

γq − γ = −
a

bλ
=:M.

We can choose b ∈ K×
∞ such that |b|∞ is small enough so that |M |∞ > 1. If this is the case, then

|γ|q
′

∞ = | abλ |∞ so that

|β|q
′

∞ = |a|∞.

Since (β − α)q
′

= βq′ − a = bβ,

v∞(β − α) =
1

q′
v∞(βq′ − a) =

1

q′
(v∞(b) + v∞(β)) =

1

q′

(
v∞(b) +

1

q′
v∞(a)

)
.

We choose a sequence (bi)i with bi → 0. For all i, let βi ∈ K
sep
∞ be such that βq′ = βibi + a and

βi → α. Then, v∞(βi − α)→∞ as v∞(bi)→∞ so that βi → α. �

The group G := Gal(Ksep
∞ /K∞) acts on C∞ by continuous K∞-linear automorphisms. Then the

following important result holds, where the completion on the right is that of the perfect closure of
K∞ in C∞ (see for example [3]):

Theorem 2.6 (Ax-Sen-Tate). CG
∞ = {x ∈ C∞ : g(x) = x, ∀g ∈ G} = K̂perf

∞ .

2Opposed to ’carbon-based mathematicians’, following David Goss.
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3. Drinfeld modules and uniformisation

Let R be an Fq-algebra and τ : R → R be an Fq-linear endomorphism. We denote by R[τ ] the
left R-module of the finite sums

∑
i fiτ

i (fi ∈ R) equipped with the R-algebra structure given by
τb = τ(b)τ for b ∈ R (3).

Let f =
∑n

i=0 fiτ
i be in R[τ ]. For any b ∈ R we can evaluate f in b by setting

f(b) =

n∑

i=0

fiτ
i(b) ∈ R.

This gives rise to an Fq-linear map R→ R. Note that the element f =
∑

i fiτ
i and the associated

evaluation map f : R → R are two completely different objects. However, in this text, we will
denote them with the same symbols.

We choose R by returning to the notations of §2.2 in particular considering the Fq-algebra
A = H0(C \ {∞},OC) we construct the tower of rings

A ⊂ K ⊂ K∞ ⊂ C∞

arising from §2.3 which is analogous of Z ⊂ Q ⊂ R ⊂ C.

3.1. Analytic functions on disks. To introduce the next discussion we recall here some basic facts
about ultrametric analytic functions in disks, following [27, Chapter 3]. Let L be an algebraically
closed field which is complete for a valuation | · | (e.g. C∞). We consider a map v : L× → R such
that | · | = c−v(·) for some c > 1. We consider a formal power series

(2) f =
∑

i≥0

fiX
i ∈ L[[X ]].

The Newton polygon N of f is the lower convex hull in R2 of the set S = {(i, v(fi)) : i ≥ 0}. It
is equal to

⋂
HH where H runs over all the closed half-planes of R2 which contain at once S and

{(0, y) : y ≫ 0}. Note that if f 6= 0, there is always a vertical side on the left. If f is a non-zero
polynomial, there is also a vertical side on the right. If x ∈ L and |fixi| → 0 then the series

∑
i fix

i

converges in L to an element that we denote by f(x). There exists R ∈ |L| such that f(x) is defined
for all x ∈ D(0, R) and we have thus defined a function

D(0, R)
f
−→ L

that we call analytic function on the disk D(0, R) (note the abuse of notation).

Proposition 3.1. The following properties hold.

(1) The sequence of slopes of N is strictly increasing and its limit is −ρ(f) = lim supi→∞ v(fi).
The real number ρ(f) is unique with the property that the series f(x) converges for x ∈ L
such that v(x) > ρ(f), and f(x) diverges if v(x) < ρ(f).

(2) If there is a side of the Newton polygon of f which has slope −m, then f has exactly r(m)
zeroes x counted with multiplicity, with v(x) = m, where r(m) is the length of the projection
of this side of slope −m onto the horizontal line. There are no other zeroes of f with this
property.

3It would be more appropriate, to define this R-algebra, to choose an indeterminate X and consider as the
underlying R-module the polynomial ring R[X] setting the product to be Xb = τ(b)X. This is an Ore algebra and
the standard notation for it is R[X; τ ]. For the purposes we have in mind, the abuse of notation R[τ ] is harmless.
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(3) If ρ(f) = −∞, assuming that f is not identically zero, we can expand, in an unique way
(Weierstrass product expansion):

f(X) = cXn
∏

i

(
1−

X

αi

)βi

with c ∈ L×, where αi → ∞ is the sequence of zeroes such that v(αi) > v(αi+1) (with
multiplicities βi ∈ N∗).

By (2) of the proposition, if we set R = c−ρ(f) ∈ R≥0, f is analytic on D(0, R′) for all R′ ∈ |L|
such that R′ < R and R is maximal with this property. If ρ(f) = −∞ then we say that f is entire.
We can show easily that if f is entire and non-constant, then it is surjective, and furthermore, an
entire function without zeroes is constant. Also, if f as above is non-entire and non-constant, in
general it is not surjective, but we have a reasonable description of the image of disks by it, given
by the next corollary, the proof of which is left to the reader.

Corollary 3.2. Let f be as in (2) with f0 = 0 and let us suppose that it converges on D := DL(0, R)
with R ∈ |L×|. Then, f(D) = DL(0, S) for some S ∈ |L|.

To be brief: an analytic function sends disks to disks.

3.2. Drinfeld A-modules and A-lattices. We show here the crucial correspondence between
Drinfeld A-modules and A-lattices, due to Drinfeld [13].

Definition 3.3. An injective Fq-algebra morphism φ : A→ EndFq
(Ga(C∞)) ∼= C∞[τ ] is a Drinfeld

A-module of rank r > 0 defined over C∞ if for all a ∈ A

φa := φ(a) = a+ (a)1τ + · · ·+ (a)r deg(a)τ
r deg(a) ∈ C∞[τ ]

where the coefficients (a)i are in C∞ and depend on a, and where deg(a) = dimFq
(A/(a)).

Note that geometrically, a Drinfeld module is just Ga over C∞. What makes the theory inter-
esting is the fact that there are many embeddings of A in EndFq

(Ga(C∞)). The case of the Carlitz
module, which can be viewed as the ’simplest’ Drinfeld module of rank one, is analysed in §4.

The set of Drinfeld A-modules of rank r is equipped with a natural structure of small category. If
ϕ and φ are two Drinfeld A-modules, we say that they are isogenous if there exists ν ∈ C∞[τ ] such
that ϕaν = νψa for all a ∈ A. If ν, seen as a non-commutative polynomial in τ , is constant, then
we say that ϕ and ψ are isomorphic. Being isogenous induces an equivalence relation on Drinfeld
A-modules and isogenies are the morphisms connecting Drinfeld A-modules of same rank in our
category.

We prove that the category of Drinfeld A-modules of rank r is equivalent to another category,
that of A-lattices.

Definition 3.4. An A-lattice in C∞ is a finitely generated strongly discrete A-submodule Λ ⊂ C∞

and two A-lattices Λ and Λ′ are isogenous if there exists c ∈ C×
∞ such that cΛ ⊂ Λ′ with cΛ of finite

index in Λ′.

Isogenies are the morphisms connecting lattices. Clearly, this also defines an equivalence relation.
If two A-lattices Λ and Λ′ are such that there exists c ∈ C∞ with cΛ = Λ′, then we say that Λ and
Λ′ are isomorphic.

Since A is a Dedekind ring, any A-lattice Λ is projective and has a rank r = rankA(Λ). We have
the following lemma, the proof of which is left to the reader.
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Lemma 3.5. Let Λ be a projective A-module of rank r. Then Λ is an A-lattice if and only if
Λ⊗A K∞ is a K∞-vector space of dimension r.

Observe that, in contrast with the complex case, for all r > 1 there exist infinitely many non-
isomorphic A-lattices (this can be deduced from the fact that C∞ is not locally compact). We
choose an A-lattice Λ of rank r as above.

By Proposition 3.1 the following product

expΛ(Z) := Z
∏′

λ∈Λ

(
1−

Z

λ

)

converges to an entire function C∞ → C∞ (hence surjective) called the exponential function asso-
ciated to Λ. Note that this is an Fq-linear entire function with kernel Λ, and we can write

expΛ(Z) =
∑

i≥0

αiτ
i(Z), αi ∈ C∞, α0 = 1, ∀Z ∈ C∞.

In particular, d
dZ expΛ(Z) = 1, and the ’logarithmic derivative’ (defined in the formal way) of expΛ

coincides with its multiplicative inverse and is equal to the series
∑

λ∈Λ

1

Z − λ
, Z ∈ C∞ \ Λ.

We refer to [16, §2] for an account on the properties of this fundamental class of analytic functions.
The following result is due to Drinfeld [13].

Theorem 3.6. There is an equivalence of small categories

{A− lattices of rank r} → {Drinfeld A-modules of rank r}.

Proof. The proof that we propose is essentially self-contained except for the use of Theorem 3.9
which is the crucial tool, showing how to associate to any Drinfeld A-module an exponential func-
tion. We postpone this result and its proof to §3.3.

Let Λ be a lattice of rank r (so that it is a projective A-module). The Fq-linear entire map expΛ
gives rise to the exact sequence of Fq-vector spaces

0→ Λ→ C∞
expΛ−−−→ C∞ → 0.

For any a ∈ A there is a unique Fq-linear map C∞
φa
−→ C∞ such that

expΛ(aZ) = φa(expΛ(Z))

for all Z ∈ C∞ and we want to show that the family (φa)a∈A gives rise to a Drinfeld A-module of rank
r. By the snake lemma we get ker(φa) ∼= Λ/aΛ ∼= (A/(a))r . Note also that ker(φa) = expΛ(a

−1Λ).
We set

Pa(Z) := aZ
∏′

α∈ker(φa)

(
1−

Z

α

)
= aZ + (a)1Z

q + · · ·+ (a)r deg(a)Z
qr deg(a)

.

Note that the functions Pa(expΛ(Z)) and expΛ(aZ) are both entire with divisor a−1Λ and the
coefficient of Z in their entire series expansions are equal. Hence these functions are equal and we
can write

φa(Z) = aZ + (a)1Z
q + · · ·+ (a)r deg(a)Z

qr deg(a)

, ∀a ∈ A, Z ∈ C∞.

This defines a Drinfeld A-module φ of rank r such that expΛ(aZ) = φa(expΛ(Z)) for all a ∈ A so
we have defined a map associating to Λ an A-lattice of rank r a Drinfeld module φΛ of rank r.



EXPONENTIAL AND MODULAR FORMS 11

The next step is to show that the map Λ 7→ φΛ that we have just constructed, from the set of
A-lattices of rank r to the set of Drinfeld A-modules of rank r, is surjective. From the proof it will
be possible to derive that it is also injective. Let φ be a Drinfeld A-module of rank r. We want to
construct Λ an A-lattice of rank r such that φ = φΛ. By the subsequent Theorem 3.9, there exists a
unique entire Fq-linear function expφ : C∞ → C∞ such that for all a ∈ A, expφ(aZ) = φa(expφ(Z)),
and this, for all Z ∈ C∞. We set Λ = Ker(expφ). Then Λ is a strongly discrete A-module in C∞.
The snake lemma implies that Λ/aΛ ∼= Ker(φa), which is an Fq-vector space of dimension r deg(a).
Let ǫ > 0 be a real number and let Vǫ be the K∞-subvector space of C∞ generated by Λ ∩D(0, ǫ).
We also set Λǫ := Vǫ∩Λ. Observe that Λǫ is an A-lattice (it is a finitely generated A-module because
of the finiteness of the dimension of Vǫ) which is saturated by construction. Hence Λǫ/aΛǫ injects
in Λ/aΛ and this for all ǫ > 0 which means rankA(Λǫ) = dimK∞

(Λǫ) ≤ r for all ǫ > 0. Setting
V = ∪ǫVǫ we see that dimK∞

(V ) ≤ r. From this we easily deduce that Λ is finitely generated and
since Λ/aΛ ∼= (A/(a))r we derive that Λ is an A-lattice of rank r.

Hence the map Λ 7→ φΛ is surjective and one sees easily that it is also injective by looking
at expΛ. Finally, the map is in fact an equivalence of small categories with the natural notions
of morphisms between A-lattices and Drinfeld A-modules that we have introduced. We leave the
details of these verifications to the reader. �

3.3. From Drinfeld modules to exponential functions. In order to complete the proof of
Theorem 3.6 it remains to show how to associate to a Drinfeld A-module an exponential function.
This is the object of the present subsection and we will take the opportunity to present things in a
rather more general setting, by introducing Anderson’s A-modules. We recall here the definition of
Hartl and Juschka in [30].

Definition 3.7. An Anderson A-module over C∞ is a pair E = (E,ϕ) where E is an Fq-module
scheme E isomorphic to Ga(C∞)d together with a ring homomorphism ϕ : A → EndFq

(E), such

that for all a ∈ A, (Lie(ϕ(a)) − a)d = 0.

Note that there is an Fq-isomorphism A → EndFq
(E) ∼= C∞[τ ]d×d. If d = 1 we are brought to

Definition 3.3 of Drinfeld A-modules.
Anderson modules fit in a category which can be compared to that of commutative algebraic

groups; this category is of great importance for the study of global function field arithmetic. A
remarkable feature which allows to track similarities with commutative algebraic groups is the fact
that we can associate, to every such module, an exponential function. In [12, Proposition 8.7] (see
also Anderson in [1, Theorem 3]) Böckle and Hartl proved that every A-module of Anderson E
possesses a unique exponential function

expE : Lie(E)→ E(C∞)

in the following way. Identifying Lie(E) (defined fonctorially) with Cd×1
∞ , expE is an entire function

of d variables z = t(z1, . . . , zd) ∈ Cd×1
∞

z 7→ expE(z) =
∑

i≥0

Eiz
qi

with E0 = Id and Ei ∈ Cd×d
∞ such that, for all a ∈ A and z ∈ Cd

∞,

expE(Lie(ϕa)z) = ϕa(expE(z)).

We show how to construct expE in a slightly more general setting. Let B be any commutative

integral countably dimensional Fq-algebra. We follow [15] and we define ‖ · ‖∞ on A ⊗Fq
B by
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setting, for x ∈ A⊗Fq
B, ‖x‖∞ to be the infimum of the values maxi |ai|∞, running over any finite

sum decomposition

x =
∑

i

ai ⊗ bi

with ai ∈ A and bi ∈ B \ {0}. Then, ‖ · ‖∞ is a norm of A ⊗Fq
B extending the valuation of A

via a 7→ a⊗ 1. The Fq-algebra A⊗Fq
B is equipped with the B-linear endomorphism τ defined by

a⊗ b 7→ aq ⊗ b (thus extending the q-th power map a 7→ aq which is an Fq-linear endomorphism of
A). Similarly, we can consider the C∞-algebra

T = C∞⊗̂Fq
B,

the completion of C∞⊗Fq
B for ‖ · ‖∞ defined accordingly, and we also have a B-linear extension of

τ . Let d > 0 be an integer. We allow τ to act on d× d matrices of Td×d with entries in T on each
coefficient. Then, T[τ ] acts on T by evaluation and T[τ ]d×d ⊂ EndB(Td×1). If f ∈ T[τ ]d×d we can
write f =

∑n
i=0 fiτ

i with fi ∈ Td×d and we set Lie(f) := f0 which provides a T-algebra morphism

Lie(f) : T[τ ]d×d → Td×d.

Definition 3.8. An Anderson A ⊗Fq
B-module ϕ of dimension d is an injective B-algebra homo-

morphism

A⊗Fq
B

ϕ
−→ T[τ ]d×d

such that for all a ∈ A, (Lie(ϕ(a)) − a)d = 0.

We prefer to write ϕa in place of ϕ(a).
We now revisit the proof of Proposition 8.7 of [12] and the method is flexible enough to adapt to

the setting of Definition 3.8. Note also that later in this text, we will be interested in the case B = Fq

only, case in which we essentially recover [1, Theorem 3]. In the following, the non-commutative
ring T[[τ ]] is defined in the obvious way with T[τ ] as a subring. We show:

Theorem 3.9. Given an Anderson A⊗Fq
B-module ϕ, there exists a unique series

expφ(Z) =
∑

i≥0

Eiτ
i(Z) ∈ T[[τ ]]d×d

with the coefficients Ei ∈ Td×d and with E0 = Id, such that the evaluation series expφ(z) is

convergent for all z ∈ Td×1, such that

ϕa(expφ(z)) = expφ(Lie(ϕa)z),

for all z ∈ Td×1 and a ∈ A⊗Fq
B.

Before proving this result, we need two lemmas. In the following, we denote by ‖M‖∞ the
supremum of ‖x‖∞ for x running in the coefficients of the matrix M ∈ Tm×n.

Lemma 3.10. Let us consider L,M ∈ T[τ ]d×d with L = α + N , with α ∈ GLd(T) such that
‖α‖∞ > 1 and M,N ∈ (T[τ ]τ)d×d. Then, for all R ∈ ‖T×‖∞, the sequence of functions given by
the evaluation of (LNMα−N )N≥0 converges uniformly on DT(0, R)

d×1 to the zero function.

Proof. The multiplication defining LNMα−N is that of T[[τ ]]d×d. Locally near the origin, α−1L
is an isometric isomorphism and there exists R0 ∈ ‖T

×
Σ‖∞ with 0 < R0 < 1 such that for all

x ∈ DT(0, R0)
d×1, ‖L(x)‖∞ = ‖αx‖∞ ≤ ‖α‖∞‖x‖∞. Hence, for N ≥ 0, if ‖x‖∞ ≤ ‖α‖−N

∞ R0

(< R0 because of the hypothesis on α), we have ‖LN (x)‖∞ ≤ ‖α‖N∞‖x‖∞.
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We can choose R0 small enough so that ‖M(x)‖∞ ≤ β‖x‖q
l

∞ for some β ∈ ‖T×‖∞ and l > 0.
Let R be in ‖T×‖∞ fixed, and let us suppose that N is large enough so that ‖α‖−N

∞ R ≤ R0. Then,

for all x ∈ DT(0, R)
d, ‖M(α−Nx)‖∞ ≤ β(‖α‖−N

∞ R)q
l

. If N is large enough, we can also suppose
that

β(‖α‖−N
∞ R)q

l

< ‖α‖−N
∞ R0

(because l > 0). Therefore, ‖(LNM)(α−Nx)‖∞ ≤ ‖α‖N∞β(‖α‖
−N
∞ R)q

l

→ 0 as N → ∞, for all
x ∈ DT(0, R)

d×1. �

We consider an Anderson A⊗B-module ϕ and we recall that Lie(ϕa) is the coefficient in Td×d of
τ0Id in the expansion of ϕa ∈ T[τ ]d×d along powers of Idτ . If a ∈ A⊗B\Fq×B, Lie(ϕa) = aId+Na

with Na nilpotent. Then, α = Lie(ϕa) ∈ GLd(T) is such that ‖α‖∞ > 1. Indeed otherwise
Na − α− aId would be invertible.

Let us consider a, b ∈ A⊗B, ‖a‖ > 1. We construct the sequence of B-linear functions Td×1 Fa
N−−→

Td×1 defined by
Fa

N = ϕaN b Lie(ϕaN b)
−1, N ≥ 0.

Lemma 3.11. The sequence (Fa
N ) converges uniformly on every polydisk DT(0, R)

d×1 and the limit
function Td×1 → Td×1 is independent of the choice of b.

Proof. We set GaN = Fa
N+1 −F

a
N . Then,

GaN = ϕaN︸︷︷︸
=:LN

ϕb(ϕa Lie(ϕa)
−1 − Id) Lie(ϕb)

−1

︸ ︷︷ ︸
=:M

Lie (ϕa)
−N

︸ ︷︷ ︸
=:α−N

and by Lemma 3.10, the sequence converges uniformly to the zero function on every polydisk
D(0, R)d×1 which ensures the uniform convergence of the sequence Fa

N . Observe now that, writing

momentarily Fa,b
N to designate the above function associated to the choice of a, b,

Fa,b
aN −F

a,1
aN = ϕaN︸︷︷︸

=:LN

(ϕb Lie(ϕb)
−1 − Id)︸ ︷︷ ︸

=:M

Lie(ϕaN )−1

︸ ︷︷ ︸
=:α−N

,

so that, again by Lemma 3.10 this sequence tends to zero uniformly on every polydisk, and the
limit Fa of the sequence Fa

N is uniquely determined, independent of b. �

Proof of Theorem 3.9. Let us denote by Fa the continuous B-linear map which, by Lemma 3.11

is the common limit of all the sequences (Fa,b
N )N (that can be identified with a formal series

x 7→
∑

i≥0Eiτ
i(x) ∈ Td×d[[τ ]]). First of all, note that E0 = Id so that this map is not identically

zero. Moreover, observe that, for all b ∈ A⊗B:

ϕbF
a = ϕb lim

N→∞
Fa,1

N

= ϕb lim
N→∞

ϕaN Lie(ϕaN )−1

= lim
N→∞

ϕbaN Lie(ϕbaN )−1 Lie(ϕb)

= lim
N→∞

Fa,b
N Lie(ϕb)

= Fa Lie(ϕb).

Hence we see that for all a, Fa satisfies the property of the theorem. Now, let F1 and F2 be two
elements of Td×d[[τ ]] such that ϕb(Fi(z)) = Fi(bz) for all b ∈ A ⊗ B and i = 1, 2, and with the
property that F3 = F1 − F2 ∈ Td×d[[τ ]]τ . Suppose by contradiction that F3 is non-zero. Then
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we can write F3 =
∑

i≥i0
Fiτ

i with Fi ∈ Td×d and Fi0 non-zero. Since F3 also satisfies the same

functional identities of both F1,F2 (for b ∈ A ⊗ B), we get Lie(ϕb)Fi0 = Fi0τ
i0 (Lie(ϕb)) for all b.

Let w be an eigenvector of Fi0 with non-zero eigenvalue, defined over some algebraic closure of the
fraction field of T. We consider b ∈ A ⊗ B with ‖b‖∞ > 1. Writing Lie(ϕb) = b + Nb with Nb

nilpotent, we see that Lie(ϕb)w = τ i0 (Lie(ϕb))w which implies (b − τ i0 (b))w = (τ i0 (Nb)−Nb)w =
Mw and M is nilpotent. Hence, there is a power c of b − τ i0(b) such that cw = 0 which means
that b = τ i0(b); a contradiction because the valuations do not agree. This means that F1 = F2. In
particular, F = Fa does not depend of the choice of a and the theorem is proved. �

4. The Carlitz module and exponential

One of the simplest examples of Drinfeld A-module is the Carlitz module which is discussed here;
it has rank one. Let R be any A-algebra, where

A = H0(P1 \ {∞},OP1) = Fq[θ],

θ being a rational function having a simple pole at ∞ and no other singularity. This choice of A
will be fixed all along this section.

In order to simplify our notations, we shall write

| · | = | · |∞, ‖ · ‖ = ‖ · ‖∞

from now on; this will not lead to confusion.

Definition 4.1. The Carlitz A-module over R is the Fq-algebra morphism A
C
−→ R[τ ] uniquely

defined by Cθ = C(θ) = θ + τ .

This gives rise to a functor from A-algebras to A-modules. The Carlitz module exhibits simi-
larities with the functor Gm, from Z-algebras to Z-modules, which associates to a Z-algebra R the
Z-module Gm(R) = R×, i.e. the group of invertible elements of R. Note that, of the structure
of A-algebra of R we really use, to construct C(R) the structure of Fq-vector space and the map
x 7→ xq which is built on the multiplicative structure of R, but we never use the product of two
distinct elements.

Let a be in A. Then, Ca ∈ A[τ ] has degree degθ(a) in τ and the rank is 1. We give an example
of computation where we can see how this A-module structure over an A-algebra R works. We
suppose q = 2. Let 1 be the unit of R×. We have Cθ(1) = θ + 1. Hence,

Cθ2+θ(1) = Cθ+1(Cθ(1)) = (θ + 1)2 + θ2 + 1 = 0.

This means that 1 is a (θ2 + θ)-torsion point for this A-module structure given by the Carlitz
module.

By Theorem 3.9, the limit series

expC := lim
N→∞

CθN θ−N ∈ C∞[[τ ]],

not identically zero and which can be identified with an entire Fq-linear endomorphism of C∞,
satisfies

(3) expC a = Ca expC

for all a ∈ A and has constant term (with respect to the expansion in powers of τ) equal to one.
By Theorem 3.6, the Carlitz module C corresponds to a rank one lattice νA ⊂ C∞, with generator
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ν ∈ C∞, and we have

expC(Z) = expνA(Z) = Z
∏′

λ∈νA

(
1−

z

λ

)
, Z ∈ C∞.

Our next purpose is to compute ν explicitly. To do this, we are going to use properties of the Newton
polygon of expC . Indeed, staring at (3) it is a simple exercise to show that there is a unique solution
Y ∈ C∞[[τ ]] of CθY = Y θ with the coefficient of τ0 equal to one, and by uniqueness, we find

expC =
∑

i≥0

d−1
i τ i,

where

di = (θq
i

− θq
i−1

) · · · (θq
i

− θq)(θq
i

− θ) = (θq
i

− θ)dqi−1

(if i > 0 and with d0 = 1). Fron v∞(di) = −iqi we observe again that expC defines an Fq-linear
entire function which is therefore also surjective over C∞ (use Proposition 3.1). From now on we
normalise | · | by |θ| = q.

Proposition 4.2. There exists an element ν ∈ C∞ with v∞(ν) = − q
q−1 , such that the kernel of

expC is equal to the Fq-vector space νA. The element ν is defined up to multiplication by an element
of F×

q .

Proof. We know already from Theorem 3.6 that the kernel of expC has rank one overA. The novelty
here is that we can compute the valuation of its generators, a property which is not available from
the theorem. The Newton polygon of expC is the lower convex hull in R2 of the set whose elements
are the points (qi, iqi). Since

(qi+1, (i+ 1)qi+1)− (qi, iqi) = (qi(q − 1), iqi(q − 1) + qi+1)

for i ≥ 0, the sequence (mi) of the slopes of the Newton polygon is

iqi(q − 1) + qi+1

qi(q − 1)
= i+

q

q − 1
.

Projecting this polygon on the horizontal axis we deduce that for all i ≥ 0, expC has exactly qi(q−1)
zeroes x such that v∞(x) = −i− q

q−1 (counted with multiplicity) and no other zeroes. In particular,

we have q − 1 distinct zeroes such that v∞(x) = − q
q−1 . The multiplicity of any such zero is one

(note that d
dX expC(X) = 1) so they are all distinct. Now, since expC is Fq-linear, we have that all

the zeroes x such that v∞(x) = −1 − 1
q−1 are multiple, with a factor in F×

q , of a single element ν

(there are q − 1 choices). We denote by A[d] the set of polynomials of A of exact degree d. For all
a ∈ A[d], 0 = Ca(expC(ν)) = expC(aν) and v∞(aν) = −d − q

q−1 . This defines an injective map

from A[d] to the set of zeroes of expC of valuation −d− q
q−1 . But this set has cardinality q

d(q− 1)

which also is the cardinality of A[d]. This means that expC(x) = 0 if and only if x ∈ νA. �

Corollary 4.3. We have expC(X) = X
∏

a∈A\{0}

(
1− X

aν

)
and expC induces an exact sequence of

A-modules

0→ νA→ C∞
expC−−−→ C(C∞)→ 0.
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4.1. A formula for ν. We have seen that if Λ ⊂ C∞ is the kernel of expC , then Λ is a free
A-module of rank one generated by ν ∈ C∞ with v∞(ν) = − q

q−1 , defined up to multiplication

by an element of F×
q . Let us choose a (q − 1)-th root (−θ)

1
q−1 of −θ; this is also defined up to

multiplication by an element of F×
q , and the valuation is − 1

q−1 . We want to prove the following

formula:

ν = θ(−θ)
1

q−1

∏

i>0

(
1−

θ

θqi

)−1

.

To do this, we will use Theorem 3.9. We recall that this result implies that the sequence

fn(z) = expC(z)− Cθn(zθ−n)

converges uniformly on every bounded disk of C∞ to the zero function. To continue further, we
need to introduce the function ω of Anderson and Thakur. This function is defined by the following
product expansion:

ω(t) = (−θ)
1

q−1

∏

i≥0

(
1−

t

θqi

)−1

.

The convergence of this product is easily seen to hold for any t ∈ C∞ \ {θ, θq, θq
2

, . . .}. Also, for all
n 6= 1, the function

(t− θ)(t − θq) · · · (t− θq
n−1

)ω(t)

extends to an analytic function over DC∞
(0, qn−1) (we can also say that ω defines a meromorphic

function over C∞ having simple poles at the singularities defined above). To study the arithmetic
properties of ω, it is useful to work in Tate algebras. However, this is not necessary. For the
purposes we have in mind now, it will suffice to work with formal Newton-Puiseux series. Let y, t
be two variables, choose a (q − 1)-th root of y and define:

F (y, t) = (−y)
1

q−1

∏

i≥0

(
1−

t

yqi

)−1

∈ Fq((y
− 1

q−1 ))((t)).

Then,

F (yq, t) = (t− y)F (y, t).

Writing the series expansion

ω(t) =
∑

i≥0

λi+1t
i ∈ C∞[[t]],

we deduce, from the uniqueness of the series expansion of an analytic function in D(0, 1), that the
sequence (λi)i≥0 can be defined by setting λ0 = 0 and the algebraic relations

Cθ(λi+1) = λqi+1 + θλi+1 = λi

which include λ1 = (−θ)
1

q−1 . Now set µi = θiλi, i ≥ 0.

Lemma 4.4. For all i ≥ 1, |µi| = q
q

q−1 and (µi)i≥0 is a Cauchy sequence.

Proof. Developing the product defining ω we see that |λi| = q
q

q−1−i. To see that (µi) is a Cauchy
sequence, it suffices to show that µi+1 − µi → 0. But

µi+1 − µi = θi+1λi+1 − θ
iλi = θi(λi − λ

q
i+1)− θ

iλi = −θ
iλqi+1 → 0.

�
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Let µ ∈ C∞ be the limit of (µi).

Lemma 4.5. We have µ = − limt→θ(t− θ)ω(t) = θ(−θ)
1

q−1
∏

i>0(1− θ
1−qi)−1.

Proof. From the functional equation of F (y, t) we see that limt→θ(t − θ)ω(t) = (−θ)
q

q−1
∏

i>0(1 −

θ1−qi)−1 =
∑

i≥0 θ
iλqi+1, the latter series being convergent. Using that Cθ(λi+1) = λi we see that

the last sum is:

∑

i≥0

θi(λi − θλi+1) =

N−1∑

i=0

θi(λi − θλi+1) +
∑

i≥N

θiλqi+1, ∀N.

The first sum telescopes to −θNλN while the second being a tail series of a convergent series, it
converges and the sum depending on N tends to 0 as N →∞. �

Hence µ is the residue of −ω at t = θ. We can write

µ = −Rest=θ(ω).

This is the analogue of a well known lemma sometimes called Appell’s Lemma: if (an) is a converging
sequence of complex numbers, then limn an = limx→1−(1− x)

∑
n anx

n.
We are now ready to prove the following classical result:

Theorem 4.6. The kernel Λ of expC is generated, as an A-module, by

µ = ν = θ(−θ)
1

q−1

∏

i>0

(1 − θ1−qi)−1.

Proof. Since Λ = νA for some ν ∈ C∞ such that |ν| = q
q

q−1 and since |µ| = q
q

q−1 , it suffices to

show that expC(µ) = 0. Now, we can write µ = µn + ǫn where ǫn → 0 and |ǫn| < q
q

q−1 . Also, we
have expC(z) = fn(z)+Cθn(θ−nz) and we have that the sequence of entire functions (fn) converges
uniformly to the zero function on any bounded subset of C∞. We have:

expC(µ) = (Cθnθ−n + fn)(µn + ǫn)

= Cθn(λn)︸ ︷︷ ︸
=0

+ fn(µn)︸ ︷︷ ︸
→0

+expC(ǫn)︸ ︷︷ ︸
→0

.

Hence, µ = ν. �

One of the most used notations for µ is π̃. This is suggestive due to the resemblance between the

exact sequence of Corollary 4.3 and 0→ 2πiZ→ C
exp
−−→ C→ 1; there is an analogy between π̃ ∈ C∞

and 2πi ∈ C. It can be proved, by the product expansion we just found, that π̃ in transcendental
over K = Fq(θ).

4.2. A factorization property for the Carlitz exponential. In Corollary 4.3, we described
the Weierstrass product expansion of the entire function expC : C∞ → C∞. We now look again at
expC as a formal series of C∞[[τ ]] and we provide it with another product expansion, this time in
C∞[[τ ]]; see Proposition 4.8. The function we factorise is not expC but a related one:

expA(z) = z
∏

a∈A\{0}

(
1−

z

a

)
= π̃−1 expC(π̃z),

so that
expA =

∑

i≥0

d−1
i π̃qi−1τ i ∈ K∞[[τ ]].
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Before going on we must discuss the Carlitz logarithm. It is easy to see that in C∞[[τ ]], there
exists a unique formal series logC with the following properties: (1) logC = 1 + · · · (the constant
term in the power series in τ is 1) and (2) for all a ∈ A, a logC = logC Ca, a condition which is
equivalent to θ logC = logC Cθ by the fact that A = Fq[θ]. Writing logC =

∑
i≥0 l

−1
i τ i and using

this remark one easily shows that

li = (θ − θq)(θ − θq
2

) · · · (θ − θq
i

),

i ≥ 0. We note that v∞(li) = −q qi−1
q−1 . This means that the series logC does not converge to

an entire function but for all R ∈ |C∞| such that R < |π̃|, logC defines an Fq-linear function on
D(0, R). We also note, reasoning with the Newton polygons of expC and logC , that

(4) | expC(z)| = |z| = | logC(z)|, ∀z ∈ D◦(0, |π̃|).

We observe that the series U = expC logC and V = logC expC in K∞[[τ ]] satisfy Ua = aU and
V a = aV for all a ∈ A. Since they further satisfy U = 1 + · · · and V = 1 + · · · , we deduce that
logC is the inverse of expC in K∞[[τ ]]. In particular,

Ca = expC a logC ∈ K∞[τ ], ∀a ∈ A.

We define:

Cz = expC z logC ∈ C∞[[τ ]], z ∈ C∞.

Then,

Cz =
∑

i≥0

d−1
i τ iz

∑

j≥0

l−1
j τ j

=
∑

i≥0

d−1
i zq

i

τ i
∑

j≥0

l−1
j τ j

=
∑

k≥0




k∑

i=0

d−1
i l−qi

k−iz
qi

︸ ︷︷ ︸
=:Ek(z).



τk

We can thus expand, for all z ∈ C∞:

Cz =
∑

k≥0

Ek(z)τ
k ∈ C∞[[τ ]]

with the coefficients

Ek(z) =

k∑

i=0

d−1
i l−qi

k−iz
qi =

z

lk
+ · · ·+

zq
k

dk
∈ K[z]

which are Fq-linear polynomials of degree qk in z for k ≥ 0. They are called the Carlitz’ polynomials.
In the next proposition we collect some useful properties of these polynomials.

Proposition 4.7. The following properties hold:

(1) For all k ≥ 0 we have

Ek(z) = d−1
k

∏

a∈A
|a|<qk

(z − a).
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(2) For all k ≥ 0 and z ∈ C∞ we have

Ek(z)
q = Ek(z) + (θq

k

− θ)Ek+1(z).

(3) We have lkEk(z)→ expA(z) uniformly on every bounded subset of C∞.

Proof. (1). Since Ca ∈ A[τ ] has degree in τ which is equal to degθ(a), Ek vanishes on A(< k) the
Fq-vector space of the polynomials of A which have degree < k. Since the cardinality of this set is
equal to the degree of Ek, this vector space exhausts the zeroes of Ek, and the leading coefficient
is clearly d−1

k .
(2) This is a simple consequence of the relations CaCz = CzCa = Caz .
(3) We note that

lk
dk

∏

|a|<qk

(z − a) =
lk
dk
z
∏

a 6=0

|a|<qk

(−a)
(
1−

z

a

)
.

Now, it is easy to see that
∏

06=|a|<qk(−a) =
∏

06=|a|<qk(a) = dk

lk
. The uniform convergence is

clear. �

We come back to the series expA =
∑

i≥0 d
−1
i π̃qi−1τ i ∈ K∞[[τ ]]. We now show that

(5) expA = · · ·

(
1−

τ

lq−1
n

)(
1−

τ

lq−1
n−1

)
· · ·

(
1−

τ

lq−1
1

)
(1− τ) .

in K∞[[τ ]] with its (τ)-topology. We have in fact more:

Proposition 4.8. On every bounded subset of C∞, the entire function expA(z) is the uniform limit
of the sequence of Fq-linear polynomials

(
z −

zq

lq−1
n

)
◦

(
z −

zq

lq−1
n−1

)
◦ · · · ◦

(
z −

zq

lq−1
1

)
◦ (z − zq) ,

where ◦ is the composition.

Proof. We write:

Ẽn =

(
1−

τ

lq−1
n−1

)
· · ·

(
1−

τ

lq−1
1

)
(1− τ) ∈ K[τ ].

We also denote by En ∈ K[τ ] the unique element such that for all z ∈ C∞, En(z) = En(z)
(evaluation). Part (3) of Proposition 4.7 implies that lkEk converges uniformly to expA(z) on every

bounded subset of C∞. Hence, we are done if we show that the evaluations agree: Ẽn = lnEn for
all n ≥ 0. This is certainly true if n = 0. We continue by induction. From part (2) of Proposition
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4.7 we see that τEn = En + (θq
i+1

− θ)En+1 for all n ≥ 0. Therefore:

Ẽn+1 =

(
1−

τ

lq−1
n

)
Ẽn

=

(
1−

τ

lq−1
n

)
lnEn

= lnEn − l
q
nl

−q+1
n τEn

= lnEn − ln(En + (θq
n+1

− θ)En+1)

= ln(θ − θ
qn+1

)︸ ︷︷ ︸
=ln+1

En+1,

and we are done. �

It is interesting to note the two rationality properties for expC = expπ̃A and expA which follow
from the above result: the terms of the series defining expC are defined over K (the coefficients
d−1
i ) and the factors of the infinite product of expA we just considered are also defined over K (the

coefficients are l1−q
i ).

Remark 4.9. This can be viewed as a digression. There is a simple connection with Thakur’s
multiple zeta values, defined by:

ζA(n1, n2, . . . , nr) :=
∑

a1,...,an∈A+

|a1|>···>|ar|

a−n1
1 · · · a−nr

r ∈ K∞, n1, . . . , nr ∈ N∗, r ≥ 1,

where A+ denotes the subset of monic polynomials of A. Indeed, one sees directly that the coefficient
of τr in (5) is equal to

(−1)r
∑

i1>···>ir≥0

l1−q
i1

lq−q2

i2
· · · lq

r−1−qr

ir
.

One proves easily
∑

a∈A+

|a|=qi
a−l = l−l

i for 1 ≤ l ≤ q and we deduce that

expA =
∑

r≥0

(−1)rζA(q − 1, q(q − 1), . . . , qr−1(q − 1))τr.

Therefore, equating the corresponding coefficients of the powers of τ we reach the formula:

ζA(q − 1, q(q − 1), . . . , qr−1(q − 1)) = (−1)r
π̃qr−1

dr
, r ≥ 0,

with the convention ζA(∅) = 1. Note that the identity derived by the specialisation t = θ in [37, (22)]
rather involves the ‘reversed’ multiple zeta values ζ∗A(q

r−1(q−1), . . . , q(q−1), q−1), the ∗ denoting
the variant of multiple zeta value involving sums with non-strict inequalities |a1| ≥ · · · ≥ |ar|.

5. Topology of the Drinfeld upper-half plane

In this section we give an explicit topological description of what is called the Drinfeld upper-half
plane Ω. It goes back to Drinfeld, in [13]. D. Goss called it the ’algebraist’s upper-half plane’ in
[24]. It can be viewed as an analogue of the complex upper-half plane that can be constructed by
cutting C in two along the real line and taking one piece only. As a set, Ω is very simple:

Ω = C∞ \K∞,
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but subtracting K∞ results in a different operation than cutting; this is what we are going to show

here. We begin by presenting some elementary properties following [23]. We recall that C∞ = K̂ac
∞ ,

where K∞ = F((π)) for some uniformiser π. Additionally (this serves later), we can suppose that

π−s ∈ A

for some s > 0 and we can choose s = 1 if the genus of C is zero. First of all, there is an action
of GL2(K∞) on Ω by homographies. If γ = ( a b

c d ) ∈ GL2(K∞), then we have the automorphism of
P1(C∞) uniquely defined by

z 7→ γ(z) :=
az + b

cz + d

if z 6∈ {∞,− d
c }. Observe that if F/L is a field extension, then GL2(L) acts by homographies on the

set F \ L. For instance, GL2(R) acts on C \ R = H+ ⊔ H− (disjoint union of the complex upper-
and lower-half planes).

It is well known that the imaginary part ℑ(z) of a complex number z, the distance of z from the
real axis, is submitted to the following transformation rule under the action by homographies. If
γ = ( a b

c d ) ∈ GL2(R):

ℑ(γ(z)) =
ℑ(z) det(γ)

|cz + d|2
, z ∈ C \ R.

There is an analogous notion of distance from K∞ in C∞. We set:

|z|ℑ := inf{|z − x| : x ∈ K∞}, z ∈ C∞.

We have the following result.

Proposition 5.1. (1) For all z ∈ C∞, |z|ℑ is a minimum, and |z|ℑ = 0 if and only if z ∈ K∞.
(2) Let z be an element of Ω. Then, there exist z0 = πm(α0+ · · ·+αnπ

−n) ∈ Fq[π, π
−1] and z1 ∈ Ω

with |z1| = |z1|ℑ < |π|m, uniquely determined, with n ∈ N ∪ {−∞} and α0 6= 0 if n 6= −∞, such
that z = z0 + z1.

Proof. (1) If z ∈ K∞, there is nothing to prove. Assume thus that z ∈ Ω ⊂ C∞ is fixed. Define the

map K∞
f
−→ |C×

∞|, f(x) = |z−x|. Then, f is locally constant, hence continuous. But K∞ is locally
compact so there is x0 ∈ DK∞

(0, |z|) (not uniquely determined) such that f(x0) is a minimum
(note that if |x| > |z|, then f(x) = |z|) and |z|ℑ = |z − x0|.

(2) For all x ∈ K∞, |x| > |z|, we have |z − x| = |x|. Then, we have two cases.
(a). For all x ∈ DK∞

(0, |z|), |z − x| = |z|. In this case, |z|ℑ = |z| and |z|ℑ is a minimum. We
thus get n = −∞, z0 = 0 and z = z1.

(b). There exists x ∈ DK∞
(0, |z|) \ {0} such that |z| = |x| and |z − x| < |z|. This implies that

the image of z/x in the residual field of C∞ is 1. We can therefore write z = λ1π
−n1 + η1 with

λ1 ∈ F and η1 ∈ Ω, |η1| < |z| = |θ|n1 .
We can iterate by studying now η1 at the place of z. Either the procedure stops and we get a

decomposition z = λ1π
−n1 + · · · + λkπ

−nk + ηk with n1 > · · · > nk, |z|ℑ = |ηk| = |ηk|ℑ and there
exists z0 ∈ K∞ such that |z − z0| = |z|ℑ > 0 as claimed in the statement, or the procedure does
not stop but in this case we have z ∈ K∞ which is excluded. �

In particular, either |z1| 6∈ |K×
∞|, either |z1| = |π

m| but the image of z1π
−m in the residual field

of C∞ is not one of the elements of F×. Part (2) of Proposition 5.1 implies that for all x = z0 + y
with y ∈ DK∞

(0, |z1|), |z − x| = |z|ℑ = |z1| = |z1|ℑ.
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We also have the following elementary consequences of the above proposition. First of all, if
c ∈ K∞, then |cz|ℑ = |c||z|ℑ for all z ∈ Ω. Moreover, if v∞(z) 6∈ Z, then |z|ℑ = |z|. Also, if |z| = 1,
we have |z|ℑ = 1 if and only if the image of z in the residual field of C∞ is not in F.

The next property is also important:

Lemma 5.2. For all z ∈ Ω and γ = ( ∗ ∗
c d ) ∈ GL2(K∞),

|γ(z)|ℑ =
|z|ℑ| det(γ)|

|cz + d|2
.

Proof. First of all, suppose that we have proved that

(6) |γ(z)|ℑ ≤
| det(γ)||z|ℑ
|cz + d|2

, ∀γ = ( ∗ ∗
c d ) ∈ GL2(K∞), ∀z ∈ Ω.

In particular, for all z̃ ∈ Ω, and with γ replaced by γ−1 = δ−1( ∗ ∗
−c a ) (where δ = det(γ)), we get

|γ(z̃)|ℑ ≤
|δ||z̃|ℑ

| − cz̃ + a|2
.

We set z̃ = γ(z). Then, −cz̃ + a = δ
cz+d and therefore,

|z|ℑ = |γ(z̃)|ℑ ≤ |z̃|ℑ|δ|

∣∣∣∣
cz + d

δ

∣∣∣∣
2

= |δ|−1|cz + d|2|z̃|ℑ = |δ|−1|cz + d|2|γ(z)|ℑ,

so that

|δ||z|ℑ
|cz + d|2

≤ |γ(z)|ℑ,

and we get the identity we are looking for. All we need is therefore to show that (6) holds.
Now, let x ∈ C∞ be such that x is not a pole of γ. An easy calculation shows that

γ(z)− γ(x) =
det(γ)(z − x)

(cz + d)(cx + d)
.

Hence, if x ∈ K∞ is not a pole of γ, we have

(7) |γ(z)− γ(x)| =
| det(γ)||z − x|

|cz + d|2
|cz + d|

|cx+ d|
.

We can find x ∈ K∞ such that |z − x| = |z|ℑ and with the property that x is not a pole of γ (we
have noticed that there are infinitely many such elements). We claim that |cx + d| ≤ |cz + d|. If
c = 0 this is clear. Otherwise, if this were false we would have |cx+ d| > |cz + d| and

|c||z|ℑ = |c||z − x| = |cz + d− (cx+ d)| = |cx+ d| > |cz + d|ℑ = |c||z|ℑ

which would be impossible. Hence, with the claim in mind, we deduce from (7):

|γ(z)|ℑ ≤ |γ(z)− γ(x)| ≤
| det(γ)||z − x|

|cz + d|2
=
| det(γ)||z|ℑ
|cz + d|2

by our choice of x and we are done. �
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5.1. Fundamental domain for Γ\Ω. We compute a fundamental domain for the homography
action of Γ on Ω in the case of C = P1 with its point at infinity marked. At the beginning of the
subsection we work for general C and ∞ but we will switch to this special case later on.

We consider M ∈ |C×
∞| and we set

ΩM := {z ∈ Ω : |z|ℑ ≥M}.

Note that this set is non-empty and is invariant by translations by elements of K∞. The multipli-
cation by elements of F× induce bijections of this set ΩM which is called horocycle neighbourhood
of ∞.

Lemma 5.3. If M > 1 and if γ ∈ GL2(A) is such that γ(ΩM ) ∩ ΩM 6= ∅, then γ belongs to the
Borel subgroup ( ∗ ∗

0 ∗ ) of GL2(A).

Proof. Let γ = ( a b
c d ) ∈ GL2(A). By Lemma 5.2, |γ(z)|ℑ = |z|ℑ

|cz+d|2 . Let us suppose that z, γ(z) ∈

ΩM , and that c 6= 0. Then, since |c| ≥ 1 if c ∈ A \ {0},

|cz + d| ≥ |cz + d|ℑ = |c||z|ℑ ≥ |z|ℑ.

Then, γ(z) ∈ ΩM implies that |z|ℑ ≥ M |cz + d|2 ≥ M |z|2ℑ so that M−1 ≥ |z|ℑ. Now, if M > 1,
from |z|ℑ ≥M we get a contradiction. �

Lemma 5.4. Let z ∈ C∞ \K. Then Az ⊕A is strongly discrete if and only if z ∈ Ω.

Proof. All we need to show is that if z ∈ Ω, then Az ⊕A is strongly discrete. Assume this is false.
Then, there is R ∈ R≥0 and an infinite sequence (ci, di)i≥0 ∈ A2 such that |ciz + di| ≤ R for all i.
Note that the sequence (ci)i≥0 is necessarily infinite, as otherwise the set of the elements |cz + di|
would be bounded for infinitely many i, for some c ∈ A. But then, we can assume |ci| → ∞ so that
|z + di

ci
| → 0 and z ∈ K∞, hypothesis that we have excluded. �

From now on we suppose that C = P1 with its point ∞ at infinity.

Lemma 5.5. Every point of Ω is GL2(A)-equivalent to a point of Ω1 = {z ∈ Ω : |z|ℑ ≥ 1}.

Proof. By the assumption on C and ∞, we have K∞ = Fq((π)) for some uniformiser π such that
A = Fq[π

−1]. Let z be in Ω, such that |z|ℑ < 1. We claim that there exists γ ∈ GL2(A) such
that |γ(z)|ℑ > |z|ℑ. To see this, note that we can cover the open tubular neighbourhood of K∞ of
diameter 1

{z ∈ C∞ : |z|ℑ < 1}

in the following way:

(8) {z ∈ C∞ : |z|ℑ < 1} =
⊔

a∈A

D◦(a, 1),

(the union is disjoint) where D◦(a, 1) = {z ∈ C∞ : |z − a| < 1}. This is due to the fact that,
because by hypothesis, K∞ = A ⊕MK∞

as a vector space over Fq. Hence, there exists a1 ∈ A,
unique, such that z1 := z + a1 is such that |z1| < 1 and there exists a unique n ∈ N∗ such that
|π|n ≤ |z1| < |π|n−1.

Now, if |z1| = |z1|ℑ, setting z2 = 1
z1

we have by Lemma 5.2 |z2|ℑ = |z1|ℑ
|z1|2

= 1
|z1|

> 1 > |z1|ℑ
and there exists γ ∈ GL2(A) such that |γ(z)|ℑ > |z|ℑ. Otherwise, we have |z1|ℑ < |z1|. In this
case, there exists λ ∈ K∞ such that |z1 + λ| = |z1|ℑ. Let us write λ = απn + µ ∈ Mn

K∞
where

|µ| < |λ|, and where α ∈ F×
q . Then, n ≥ 1, so that |z1| = |θ|−n. We can choose π so that π−1 ∈ A.



24 F. PELLARIN

We thus set c = π−n ∈ A, d = α and we see that |z + απn| < |π|n. We can find an element

γ = ( ∗ ∗
c d ) ∈ GL2(A). Again, we see that |γ(z1)|ℑ = |z1|ℑ

|cz+d|2 . Now,

|cz1 + d| = |π−nz1 + α| = |π−n||z1 + απn| < |π|n−n = 1.

Hence, |γ(z1)|ℑ > |z1|ℑ. This proves the claim. In particular, the above construction provides, given
zi ∈ Ω such that |zi|ℑ < 1, an element γi ∈ GL2(A) such that zi+1 := γi(zi) satisfies |zi+1|ℑ > |zi|ℑ.
To complete the proof of the lemma we have to analyse two situations. The first one is when there
exists i > 0 such that |zi|ℑ ≥ 1; in this case, the lemma is proved. The second case is when for all
i > 0,

|z1|ℑ < |z2|ℑ < · · · < |zi|ℑ < 1.

Again by Lemma 5.2, writing γi = ( ∗ ∗
ci di

), we see that the sequence (ciz+di)i≥0 is strictly decreas-
ing, hence contradicting that Az ⊕A is strongly discrete, thanks to Lemma 5.4. �

We set F = {z ∈ Ω : |z| = |z|ℑ ≥ 1}.

Corollary 5.6. The set F is a fundamental domain for the action of GL2(A) over Ω.

Proof. In view of Lemma 5.5, all we need to prove is that for all z ∈ Ω with |z|ℑ ≥ 1 there exist
finitely many a ∈ A such that |a+ z| = |z|ℑ. But since K∞ = A ⊕MK∞

, if λ ∈ K∞ is such that
|z − λ| = |z|ℑ then, since |z − λ| ≥ 1, writing λ = a + µ with a ∈ A and µ ∈ MK∞

, we have
|z − a| ≥ 1 and |µ| < 1 so that |z − a| = |z|ℑ. Of course, this can only happen for finitely many a,
because although the subgroup ( 1 ∗

0 1 ) of GL2(A) is not finitely generated (isomorphic to the additive

group A), it is the filtered union of the finite subgroups generated by the matrices ( 1 cπ−b

0 1
) with

c ∈ Fq and b ≤ n, for n ≥ 0. �

5.2. An elementary result on translation-invariant functions over Ω. We recall that H
denotes the complex upper-half plane. Let f : H → C be a holomorphic function such that for all
n ∈ Z and for all z ∈ H, f(z + n) = f(z). Then, we can expand

f(z) =
∑

n∈Z

fne
2πinz, fn ∈ C,

a series which is normally convergent for q(z) = e2πiz in every annulus of the punctured open unit
disk centered at 0 of C or equivalently, for z in every horizontal strip of finite height in H (note
that they are invariant by translation).

5.2.1. A digression. The proof of the above statement for f is simple and we can afford a short
digression. The function z 7→ q(z) does not allow a global holomorphic section H ← D◦

C
(0, 1).

However, we can cover C× with say, three open half-planes U1, U2, U3, and there are sections
s1, s2, s3 defined and holomorphic over U1, U2, U3 such that si − sj ∈ Z over Ui ∩ Uj for all i, j.
Let f be holomorphic on H such that f(z + 1) = f(z) for all z ∈ H. Define gi(q) = f(si(q)) for
all i = 1, 2, 3. Then, the compatibility conditions and the fact that the pre-sheaf of holomorphic
functions over any open set is a sheaf (the well known principle of analytic continuation) ensure
that this defines a holomorphic function g(q) over

Ḋ◦ = {z ∈ C : 0 < |z| < 1}.

But the ring of holomorphic functions over Ḋ◦ is precisely that of the convergent double series∑
n∈Z

fnq
n and our claim follows. One also also deduces that there is an isomorphism of Riemann’s

surfaces
H/Z ∼= Ḋ◦
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induced by e2πiz , concluding the digression.

We now come back to our characteristic p > 0 setting and we suppose, from now on, that

A = H0(P1 \ {∞},OP1).

We note that Ω is invariant by translations of a ∈ A and the function

expA(z) = z
∏

a∈A\{0}

(
1−

z

a

)
= π̃−1 expC(π̃z)

is an entire function C∞ → C∞, Fq-linear, surjective, of kernel A = Fq[θ], hence also invariant by
translations by elements of A. it is thus natural to ask for an analogue statement of the above,
complex one. Consider R ∈ |C×

∞|. Now, note that A acts on ΩR. Giving ΩR/A the quotient
topology (the action of A is by translations) we have:

Lemma 5.7. There is S ∈ |C×
∞| such that the function expA induces a homeomorphism of topo-

logical spaces
ΩR/A→ {z ∈ C∞ : |z| ≥ S}.

Proof. From the Weierstrass product expansion and Corollary 3.2 we see that, setting

S := max
z∈DC∞

(0,R)
| expA(z)| =: ‖ expA ‖R = ‖z‖R

∏

a∈A
a 6=0

‖1−
z

a
‖ = R

∏

a∈A
a 6=0
|a|<R

R

|a|
,

expA(D(0, R)) = D(0, S) by Corollary 3.2. Hence, D◦
C∞

(0, S) = D◦(0, S) = expA(D
◦(0, R)) from

which we deduce that
{z ∈ C∞ : | expA(z)| < S} = A+D◦(0, S).

Recall that K∞ = A⊕MK∞
. If R ≥ 1, we have D◦(0, R) ⊃MK∞

. Now observe that

{z ∈ C∞ : |z|ℑ < R} = ∪a∈K∞
D◦(a,R) = ∪a∈AD

◦(a,R).

Therefore we have the chain of identities

A+D◦(0, R) = K∞ +D◦(0, R) = ∪a∈K∞
D◦(a,R) = {z ∈ C∞ : |z|ℑ < R} = Ω \ ΩR,

and taking complementaries, we see that

ΩR = {z ∈ C∞ : | expA(z)| ≥ S}, R ≥ 1.

�

6. Some quotient spaces

Our topologies are totally disconnected and Lemma 5.7 is weaker if compared with analogous
statements in the complex settings. Fortunately there is a structure of quotient analytic space over
ΩR/A, and it is isomorphic to the analytic structure of the complementary of the disk D◦(0, S).
This goes back to the ideas of Tate in the years 1960’. We do not want to go into the very precise
details because there is already a plethora of important references, among which [9, 14], but we
discuss, in an informal way, the nature of these structures.

A rigid analytic space (or analytic space) is a triple

(X,G,OX)

where X is a non-empty set, G is a Grothendieck topology on X , OX a sheaf, satisfying several
natural conditions. Let us review them quickly. A Grothendieck topology G on X can be outlined
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as a set S of subsets U of X and, for all U ∈ G, a covering Cov(U) of U again by elements of G. If
C is the family of all such coverings, then we can say that G is the datum (S, C) and the quality of
being a Grothendieck topology results in a collection of properties we shall not give here, refining
the simpler notion of topology (see [14] for the precise collection of conditions). If a Grothendieck
topology G = (S, C) on X is given, then the elements of S are called the admissible subsets of X and
the elements of C are called the admissible coverings. This refines the notion of topology because
if we forget the coverings, the conditions we are left on S are precisely those of a topology on X so
that right at the beginning we could have said that X is a topological space, and the admissible sets
are just the open sets for this topology. We have of course a corresponding notion of morphism of
Grothendieck’s topological spaces which strengthens that of continuous maps of topological spaces:
pre-images of admissible sets (resp. coverings) are again admissible.

What is a sheaf on a Grothendieck topological space? If we choose a ring R, a sheaf F of
R-algebras (R-modules. . . ) is a contravariant functor from S (with inclusion) to the category of R-
algebras (or R-modules. . . this is called a pre-sheaf) which satisfy certain compatibility conditions.
For instance, if f, g ∈ F(U), U ∈ S and f |V = g|V for all V ∈ Cov(U) ∈ C, then f = g. Furthermore,
if we choose Cov(U) = (Ui)i∈I ∈ C and for all i, fi ∈ F(Ui) are such that fi|Ui∩Uj

= fj|Ui∩Uj
, then

there exists a ’continuation’ f ∈ F(U) with f |Ui
= fi for all i (this is an abstract formalisation of

’analytic continuation’). Every pre-sheaf can be embedded in a sheaf canonically, but checking that
a given pre-sheaf is itself a sheaf might result in subtle problems. The datum of (X,G,F) with G
a Grothendieck topology and F a sheaf of say R-algebras on (X,G) is called a Grothendieck ringed
space of R-algebras and there is a natural notion of morphism of such structures which mimics the
more familiar notion of morphism of ringed spaces of algebraic geometry. Say for commodity that
X,Y are two Grothendieck topological spaces with respective sheaves F and G, then a morphism
of Grothendieck ringed spaces of R-algebras

(X,F)
(f,f♯)
−−−−→ (Y,G)

is the datum of a morphism of Grothendieck topological spaces f and for all U ⊂ Y admissible, an
R-algebra morphism f ♯ : G(U)→ F(f−1(U)). Then, a rigid analytic variety is a particular kind of
Grothendieck ringed space; let us see how. The field we choose in these notes is C∞ but many facts
also hold outside this case for any valued field L (with valuation | · |), complete, and algebraically
closed so we are going to temporarily use L. We have the unit disk

DL(0, 1) = {z ∈ L : |z| ≤ 1}

playing the role of a basic brick for constructing rigid analytic spaces, just as the affine line does
for algebraic varieties. For this reason, we focus on affinoid algebras. An affinoid algebra is any
quotient of a Tate algebra

Tn(L) = L̂[t]

by an ideal. Here, the Tate algebra Tn(L) of dimension n is the completion ·̂ of the polynomial ring
L[t] in n indeterminates t = (ti)1≤i≤n for the Gauss valuation; it is known that it is noetherian,
with unique factorization, of Krull dimension the number of variables n. The resulting quotient A
of Tn(L) (by an ideal) is endowed with a structure of L-Banach algebra. In other words, the Gauss

norm of L̂[t] induces a (sub-multiplicative) norm on A, and it is complete. In fact, any L-Banach
algebra A together with a continuous epimorphism Tn(L)→ A for some n, making A into a finitely
generated Tn(L)-algebra, is an affinoid algebra. Affinoid algebras over L are the basic bricks to
construct a rigid analytic variety.
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The maximal spectrum Spm(A) of an affinoid L-algebra R can be made into a Grothendieck
ringed space (X,G,F) over A; this is called an affinoid variety over L. If X = Spm(R) and
Y = Spm(R′), an L-algebra morphism R→ R′ defines a morphism of ringed spaces Y → X which
is called a morphism of affinoid algebras. This serves to describe the other pieces of (X,G,F).
The admissible sets in S (recall that G = (S, C)) are exactly the images in X of open immersions
of affinoid varieties and similarly, we define the coverings of C. This gives rise to a Grothendieck
topology G on X = Spm(A). Furthermore, we have the pre-sheaf OX defined by associating to
U ⊂ X an admissible set the L-algebra OX(U) = R′ where U = Spm(R′). Thanks to Tate’s
acyclicity theorem one shows that this is in fact a sheaf (see [42], see also [14, Theorem 4.2.2]). This
result was generalised by Grauert and Gerritzen [9, 7.3.5, 8.2]).

Definition 6.1. A Grothendieck ringed space X = (X,G,F) is a rigid analytic variety if X has
an admissible covering of admissible subsets U which have the property that (U,F|U ) is an affinoid
variety for all U .

6.1. The rigid analytic variety Ω. We come back to L = C∞ with A = Fq[θ] and discuss the
structure of rigid analytic space on Ω = C∞ \K∞. Note that

Ω =
⋃

M>1

UM ,

where UM = {z ∈ Ω : M−1 ≤ |z|ℑ ≤ |z| ≤ M}, the filtered union being over the elements
M ∈ |C∞| \ |K∞| with M > 1. Observe now:

Lemma 6.2. With M ∈ |C∞| \ |K∞| we have

UM = D(0,M) \
⊔

λ∈Fq[θ,θ
−1]

λ=λ−βθ
−β+···+λβθ

β

1≤|θ|β≤M

D◦(λ,M).

Proof. This easily follows from the fact that K∞ is locally compact in combination with the ultra-
metric inequality. �

Hence, UM is admissible and carries a structure of affinoid variety UM = Spm(AM ) where
AM is an integral affinoid algebra. We say that UM is a connected affinoid of P1(C) (as in the
language introduced in [14], motivated by the integrality of AM ). In particular Ω can be covered
(in fact filled) with connected affinoids and the analytic structure of Ω arises from viewing it as the
complementary in C∞ of smaller and smaller disks located over the elements of K which is close to
the familiar view that we have also for the set C \ R. This gives the Grothendieck topology on Ω,
and the sheaf OΩ is that of rigid analytic functions over Ω: an analytic function f : Ω → C∞ is a
function such that the restriction on every set UM is analytic in the above sense.

6.2. A-periodic functions over Ω. The analogue for A = Fq[θ] acting by translations on Ω of
the simple claim over C of the beginning of §5.2 and the proof in §5.2.1 is not as easy to prove but
it is true. In fact, the following result holds:

Proposition 6.3. Let f : Ω→ C∞ be an analytic function such that f(z+a) = f(z) for all a ∈ A.
Then, there exists S ∈ |C×

∞|, S < 1, such that

f(z) =
∑

n∈Z

fn expA(z)
n, fn ∈ C∞,
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the series being uniformly convergent for expA(z)
−1 in every annulus of Ḋ◦(0, S) = {x ∈ C∞ : 0 <

|x| < S}, S ∈ |C×
∞|, small enough.

To prove this result, we will need some preparation. We consider a rigid analytic variety X and
a group Γ acting on X with ’admissible action’. ’Admissible action’ means that X can be covered
by Γ-stable admissible subsets and that Γ acts through an embedding ι of Γ in Aut(X), topological
group, and the image is discrete. So, we are interested in such triples

(X,Γ, ι).

For example, we can take Γ = A acting on Ω or A1
C∞

by translations (the theme of Proposition 6.3)
or Γ = GL2(A) acting on Ω by homographies (the theme of the paper). The quotient map

p : X → Γ\X

can be used to define a structure of Grothendieck ringed space on the quotient Γ\X . A subset
of Γ\X is admissible if its pre-image is admissible, and the sections are Γ-invariant C∞-valued
functions over pre-images of Γ-invariant subsets. We need conditions under which the quotient
acquires a structure of rigid analytic space.

In the algebraic setting, if X/L is a scheme of finite type over L with an ’admissible action’ of
a finite group Γ ’admissible’, now in the algebraic sense that there is a covering with Γ-invariant
affine sub-schemes, it can be proved that there exists a unique scheme structure (of finite type over
L) on the ringed quotient space p : X → Γ\X . The analogue of this result for rigid analytic spaces
can be found in [29, Theorem 1.3] (see also the references therein).

A finite group Γ acting on X = Spm(A) affinoid variety which allows a covering by invariant
admissible subsets gives rise to an isomorphism of affinoid varieties Γ\ Spm(A)→ Spm(AΓ), where
AΓ is the sub-algebra of Γ-invariant elements of A; see [29, Theorem 1.3]. Let us see how it works
in a particularly simple case.

We start with X/L a scheme of finite type endowed with an admissible action of a finite group
Γ. We denote by Xan the analytification of X , constructed as follows. We can give Xan an affinoid
covering in the following way. We consider affine open subsets U = Spec(A) →֒ X and embeddings
U →֒ AN

L . We set V = Uan ∩ DL(0, 1)
N . In this way we have constructed a Grothendieck ringed

space, and it is not difficult to see that this carries, additionally and in unique way, a structure of
rigid analytic variety. Rigid analytification defines a functor, called the ’GAGA functor’ from the
category of L-schemes of finite type to the category of rigid analytic spaces over L. Note that we
can also consider analytifications of morphisms, coherent sheaves etc. In terms of algebras, we have

(horizontal arrows are surjective and vertical arrows injective, and ̂L[t1, . . . , tN ] is the standard Tate
L-algebra in the variables t1, . . . , tN ):

L[t1, . . . , tN ]
π
−→ A

↓ ↓

̂L[t1, . . . , tN ] →
̂L[t1, . . . , tN ]

ker(π)
= AV = H0(V,OXan).

Note also that
̂L[t1, . . . , tN ]

ker(π)
= A⊗L[t1,...,tN ]

̂L[t1, . . . , tN ].

The following proposition is due to Amaury Thullier: we warmly thank him for having brought our
attention to it.
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Proposition 6.4. The canonical map Xan/Γ → (X/Γ)an is an isomorphism of rigid analytic
varieties.

Proof. We can suppose, without loss of generality, X = Spec(A) affine, so that Γ\X = Spec(AΓ).
Let V ⊂ (Γ\X)an be an admissible subset with corresponding algebra AV , together with the
canonical morphism A → AV . The L-algebra B = A⊗AΓ AV is finite over AV , hence it inherits a
structure of affinoid L-algebra. We deduce that W = (pan)−1(V ) is a Γ-invariant affinoid domain
of Xan and AW = H0(W,OXan) = B. The quotient space Γ\W is also affinoid, of algebra BΓ (see
[9, 6.3.3]). Therefore, all we need to show is that the canonical morphism

AV → B = A⊗AΓ AV

induces an isomorphism AV → BΓ = (A⊗AΓ AV )
Γ.

The morphism A → AV is flat [8, Theorem 3.4.1, (ii)]. Therefore the exact sequence

0→ AΓ → A
⊕(g−IdA)
−−−−−−→

⊕

g∈Γ

A

yields an exact sequence

0→ AV = AΓ ⊗AΓ AV → A⊗AΓ AV
⊕(g−IdA)
−−−−−−→

⊕

g∈Γ

A⊗AΓ AV .

We have thus that AV is equal to the kernel of the last arrow, which is just BΓ. �

We denote by A(n) the Fq-vector space {a ∈ A : |a| < |θ|n}. If X = A1
C∞

and we look at

Γ = A(n) acting on X by translations, we have the quotient scheme Γ\X = Spec(C∞[x]Γ) (note
that C∞[x]Γ = C∞[En(x)] with En characterised by Proposition 4.7, by Euclidean division), and
Proposition 6.4 applies.

We now introduce the sets for n ≥ 1

Bn = D◦(0, |θ|n) \
⋃

a∈A(n)

D(a, 1).

We define, in parallel, with ln = (θ − θq) · · · (θ − θq
n

):

Cn = D◦(0, |ln|) \D(0, 1).

Each of these sets has an admissible covering by affinoid subsets so that it is a rigid analytic sub-
variety of A1,an

C∞
. A function f : Bn → C∞ is analytic if its restriction to every affinoid subset is

analytic. Note that Bn ⊂ Bn+1 and Cn ⊂ Cn+1 for all n ≥ 1. We set

ψm := 1 +
τ

lq−1
m

, m ≥ 0

(recall that τ(x) = xx for x ∈ C∞). It is easy to see that ψn induces an isometric biholomorphic
isomorphism of Cm for all n ≥ m (in fact, it induces isometric isomorphisms separately on the disks
D◦(0, |ln|) and D(0, 1)). In particular the non-commutative product

Fn := · · ·

(
1−

τ

lq−1
n+1

)(
1−

τ

lq−1
n

)
∈ K[[τ ]]

induces an isometric biholomorphic isomorphism of Cn (for every n).
In a similar vein, Proposition 6.4 implies:
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Corollary 6.5. The function En = lnEn is a degree qn étale covering Bn → Cn which induces an
isomorphism of rigid analytic spaces

Bn/A(n)→ Cn,

where the analytic structure on the pre-image is given by the analytification of Spec(C∞[x]A(n)).

Proof of Proposition 6.3. A global section gn of OCn
can be identified, in a unique way, with a

convergent series ∑

k∈Z

g
(n)
k xk, g

(n)
k ∈ C∞.

Let f : Ω→ C∞ be a rigid analytic function with the property that for all a ∈ A, f(z+a) = f(z). We
fix m > 0, let n be such that n ≥ m. Then, f : Bn → C∞ is holomorphic such that f(z + a) = f(z)
for all a ∈ A(n) and therefore there exists a unique gn ∈ OCn

such that f(z) = gn(En(z)) over Cn
and we can write:

f(z) =
∑

k∈Z

g
(n)
k (En(z))

k.

We observe that Bm ⊂ Bn. Thus, we have the following commutative diagram for n > m, where
the left vertical arrows are the identity, and the bottom right vertical arrow is ψm, while the top
one is ψm+1,n, where ψm,n is the composition ψm,n := ψn−1 ◦ · · · ◦ ψm:

Bm
En−−→ Cm

↑ ↑

Bm
Em+1
−−−→ Cm

↑ ↑

Bm
Em−−→ Cm,

and there also exists a unique gm ∈ OCm
such that f(z) = gm(Em(z)), this time over Cm ⊂ Cn so

that, noticing that ψm,n induces an isometric biholomorphic isomorphism of Cm, we must have:

g(n)(ψm,n(x)) = g(m)(x), x ∈ Cm.

In particular, we have the equality

g(n+1)(ψn(x)) = g(n)(x), x ∈ Cm.

Since ψn(x) = x(1 − ( x
ln
)q−1) and ψn(x)

k = xk(1 + σn,k(x)) with |σn,k(x)| ≤ |
x
ln
|q−1 < 1 for all

n ≥ m, k ∈ Z, we deduce that the function g(n+1)−g(n) tends to zero uniformly on every admissible
subset of Cm, for n ≥ m. This means that the sequence of functions (g(n))n≥m converges to an
element g =

∑
k gkx

k ∈ OCm
uniformly on every admissible subset of Cm.

With this new function g the existence of which is given by Cauchy convergence criterion, we
can write:

g(m)(x) = g(Fm(x)), x ∈ Cm.

We use the results of §4.2 and more precisely Proposition 4.8, or with a more manageable notation,
(5). We thus recall the identity of entire functions:

expA = Fn

(
1−

τ

lq−1
n−1

)
· · ·

(
1−

τ

lq−1
1

)
(1− τ)

︸ ︷︷ ︸
En

.
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In particular, by uniqueness:

f(z) = g(expA(z)), z ∈ Bm, ∀m.

Since the sets Bn cover the set Ω◦
1 := {z ∈ C∞ : |z|ℑ > 1} as it follows easily from (8), the result

follows. �

Restated in more geometric, but essentially equivalent langage, the arguments of the proof of
Proposition 6.3 lead to:

Proposition 6.6. For all M ∈]1,∞[∩|C×
∞|, the function z 7→ 1

expA
yields an isomorphism of rigid

analytic spaces A\ΩM
∼= Ḋ(0, S) for some S > 1 depending on M .

Remark 6.7. The above proof, although simple, is longer than the one we gave in the digression
5.2.1, in the complex case. This leads to the following question: is it possible to construct explicitly
an admissible covering (Ui)i of an annulus D(0, R) \ D◦(0, r) and local inverses gi ∈ OUi

of the
function expA or much more likely, the function 1

expA
delivering a simpler proof of Proposition 6.3

and making no use of the process of analytification? Also, note that the fact that the Grothendieck
ringed space A\A1,an carries a structure of rigid analytic variety and much more general results in
this vein can be also easily deduced from Simon Häberli’s thesis [28, Proposition 2.34].

6.3. The quotient GL2(A)\Ω. In the previous subsection we gave, in the most explicit way, but
also in compatibility with the purposes of this text, a description of the analytic structure of the
quotient space (A = Fq[θ] acting by translations) A\ΩM where M ∈ |C×

∞| is such that M > 1.
It is not difficult to show, on another hand, that the group GL2(A) is generated by its subgroups
GL2(Fq) (finite) and the Borel subgroup B(∗) = {( ∗ ∗

0 ∗ )} (not finitely generated). In fact, a Theorem
of Nagao in [33] asserts that, given a field k and an indeterminate t,

(9) GL2(k[t]) = GL2(k) ∗B(k) B(k[t]),

where ∗B(k) denotes the amalgamated product along B(k), which just means the quotient of the
free product GL2(k)∗B(k[t]) by the normal subgroup generated by those elements arising from the
natural identifications existing between the elements of B(k)∗1 and 1∗B(k) coming from the maps

GL2(k)→ GL2(k) ∗B(k[t])← B(k[t])

(a gluing along compatibility conditions). This theorem has been later further generalised by J.-P.
Serre. Note that B(k[t]) is not finitely generated, so that GL2(k[t]) is not finitely generated (this is
trivial if k is infinite) in contrast with a theorem of Livingston, asserting that GLn(k[t]) is finitely
generated if n ≥ 3, and also with the more familiar result that SL2(Z) ∼= Z/2Z ∗Z/3Z so that it is,
in particular, finitely presented.

Following [23, Chapter 10]), we describe the action of GL2(Fq) on certain admissible subsets of
Ω. We set, with M ∈ |C×

∞|∩]1,∞[:

DM := D(0,M) \ (Fq +D◦(0,M−1)) ⊂ Ω.

This is the complementary in P1(C∞) of the union of q + 1 disjoint disks and is an affinoid subset

of Ω. In the following, we can choose M = |θ|
1
2 . It is easy to see that the group GL2(Fq) acts

by homographies on DM (note that more generally, the subsets {z ∈ C∞ : |z| ≤ qn, |z|ℑ ≥ q−n},
which also are affinoid subsets, are invariant under the action by homographies of the subgroups
of GL2(A) finitely generated by GL2(Fq) and {( λ θi

0 µ ) : λ, µ ∈ F×
q , i ≤ n}, the union of which is
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GL2(A)). Further, if γ ∈ GL2(A) is such that γ(DM ) ∩ DM 6= ∅, then γ ∈ GL2(Fq); this property
follows easily by arguments similar to those of Lemma 5.3. It is also easily seen that

Ω =
⋃

γ∈GL2(A)

γ(DM ).

We can apply Proposition 6.4 to the isomorphism of affine varieties

GL2(Fq)\A
1 j0
−→ A1,

where

j0(z) = −
(1 + zq−1)q+1

zq−1

(this is the finite j-invariant of Gekeler in [18]) to obtain an isomorphism of analytic spaces

GL2(Fq)\DM
∼= D(0, 1).

In parallel, we have the Borel subgroup B(A) = {( ∗ ∗
0 ∗ )} which acts on ΩM and the isomorphism

of analytic spaces B\ΩM
∼= Ḋ(0, S) induced by the map expA(z)

−1 (Proposition 6.6). We recall
from Lemma 5.3 that γ ∈ GL2(Fq) is such that γ(ΩM ) ∩ ΩM 6= ∅ if and only if γ is in B.

There is a procedure of gluing two quotient rigid analytic spaces with such compatibility bound-
ary conditions, into a new rigid analytic space, along with (9) for k = Fq and t = θ. Note that
DM ∩ΩM = {z ∈ C∞ : |z|ℑ = |z| =M} and the two actions of B over ΩM and of GL2(Fq) on DM

agree on the action of B ∩ GL2(Fq) on DM ∩ ΩM and the gluing of these two quotient spaces is
a well defined analytic space whose underlying topological space is homeomorphic to the quotient
topological space GL2(A)\Ω which also carries a natural structure of analytic space. Additionally,
this quotient space is isomorphic to the gluing ofD(0, 1) and C∞\D◦(0, 1) along {z ∈ C∞ : |z| = 1},
which is in turn isomorphic to C∞. This construction finally yields:

Theorem 6.8. There is an isomorphism between the quotient rigid analytic space Γ\Ω and the
rigid line Å1

C∞
.

7. Drinfeld modular forms

We give a short synthesis on Drinfeld modular forms for the group Γ = GL2(A) in the simplest
case where A = Fq[θ], so that we can prepare the next part of this paper, where we construct new
modular forms for Γ with (vector) values in certain C∞-Banach algebras.

The map
GL2(K∞)× Ω→ C×

∞

defined by (γ, z) 7→ Jγ(z) = cz + d if γ = ( ∗ ∗
c d ) behaves like the classical factor of automorphy for

GL2(R). Indeed we have the cocycle condition:

Jγδ(z) = Jγ(δ(z))Jδ(z), γ, δ ∈ GL2(K∞).

Note that the image is indeed in C×
∞, as z, 1 are K∞-linearly independent if z ∈ Ω.

Definition 7.1. Let f : Ω→ C∞ be an analytic function. We say that f is modular-like of weight
w ∈ Z if for all z ∈ Ω,

f(γ(z)) = Jγ(z)
wf(z), ∀γ ∈ GL2(A).

It is a simple exercise to verify that w is uniquely determined.
We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists N ∈ Z such that the map z 7→ | expA(z)
Nf(z)|

is bounded over ΩM for some M > 1,



EXPONENTIAL AND MODULAR FORMS 33

(2) a modular form if the map z 7→ |f(z)| is bounded over ΩM for some M > 1.
(3) a cusp form if it is a modular form and maxz∈ΩM

|f(z)| → 0 as M →∞.

Let f be modular like (of weight w ∈ Z). Taking γ = ( 1 ∗
0 1 ) we see that f(z + a) = f(z) for all

a ∈ A. Therefore, by Proposition 6.3, there is a convergent series expansion of the type

f(z) =
∑

i∈Z

fi expA(z)
i, fi ∈ C∞.

There is a rigid analytic analogue of Riemann’s principle of removable singularities due to Barten-
werfer (see [4]) in virtue of which we see that the C∞-vector space M !

w of weak modular forms of
weight w embeds in the field of Laurent series C∞((u)) with the discrete valuation given by the
order in u, where u = u(z) is the uniformizer at infinity

u(z) =
1

π̃ expA(z)
=

1

π̃

∑

a∈A

1

z − a
,

which an analytic function Ω → C∞. Since M !
w ∩M

!
w′ = {0} if w 6= w′ we have a C∞-algebra

M ! = ⊕wM
!
m which also embeds in the field of Laurent series C∞((u)). Denoting by Mw the

C∞-vector space of modular forms of weight w and by M = ⊕wMw the C∞-algebra of modular
forms, we also have an embedding M → C∞[[u]] and cusp forms generate an ideal whose image in
C∞[[u]] is contained in the ideal generated by u.

It is easy to deduce, from the modularity property, thatM !
w 6= {0} implies q−1 | w. Furthermore,

for all w such that Mw 6= {0}, Mw can be embedded via u-expansions in C∞[[uq−1]] and therefore
the C∞-vector space of cusp forms Sw can be embedded in uq−1C∞[[uq−1]].

7.1. u-expansions. We have seen that we can associate in a unique way to any Drinfeld modular
form f a formal series

∑
i≥0 fiu

i ∈ C∞[[u]] which is analytic in some disk D(0, R), R ∈ |C×
∞|∩]0, 1[.

This is the analogue of the ’Fourier series’ of a complex-valued modular form for SL2(Z); for such
a function f : H → C we deduce, from f(z + 1) = f(z), a Fourier series expansion

f =
∑

i≥0

fiq
i, fi ∈ C,

converging for q = q(z) = e2πiz ∈ D◦
C
(0, 1). We want to introduce some useful tools for the study

of u-expansions of Drinfeld modular forms.

For n ≥ 0 we introduce the C∞-linear map C∞[z]
Dn−−→ C∞[z] uniquely determined by

Dn(z
m) =

(
m

n

)
zm−n.

Note that we have Leibnitz’s formula Dn(fg) =
∑

i+j=nDi(f)Dj(g). The linear operators Dn

extend in a unique way to C∞(z) and further, on the C∞-algebra of analytic functions over any
rational subset of Ω therefore inducing linear endomorphisms of the C∞-algebra of analytic functions
Ω → C∞. Additionally, if f : Ω → C∞ is analytic and A-periodic, Dn(f) has this same property,
and for all n, Dn induces C∞-linear endomorphisms of C∞[[u]] (this last property follows from the
fact that Dn(u) is bounded on ΩM as one cas easily see distributing Dn on u = 1

π̃

∑
a∈A

1
z−a , which

gives (−1)n 1
π̃

∑
a∈A

1
(z−a)n+1 . We normalise Dn by setting:

Dn = (−π̃)−nDn.

Lemma 7.2. For all n ≥ 0, Dn(K[u]) ⊂ u2K[u].



34 F. PELLARIN

Proof. It suffices to show that for all n ≥ 0, Dn(u) ∈ u2K[u]. We proceed by induction on n ≥ 0;
there is nothing to prove for n = 0. Recall that u(z) = 1

expC(π̃z) . Then, by Leibnitz’s formula:

0 = Dn(1) = Dn(u expC(π̃z)) =

= Dn(u) expC(π̃z) +
∑

i+qk=n
k≥0

Di(u)Dqk(expC(π̃z)),

because expC is Fq-linear. In fact, Dqk(expC(π̃z)) is constant and equals the coefficient of zq
k

in

the z-expansion of expC , which is 1
dk
. We can therefore use induction to conclude that

Dn(u) = −u


−

∑

i+qk=n
k≥0

Di(u)d
−1
k


 ∈ u

2K[u].

�

The polynomials Gn+1(u) := Dn(u) ∈ K[u] (n ≥ 1) are called the Goss polynomials (see [16,
§3]). It is easy to deduce from the above proof that Dj(u) = uj+1 as j = 1, . . . , q − 1. There is no
general formula currently available to compute Dj(u) for higher values of j.

7.1.1. Constructing Drinfeld modular forms. The first non-trivial examples of Drinfeld modular
forms have been introduced by Goss in his Ph. D. Thesis. To begin this subsection, we follow
Goss [25] and we show how to construct non-zero Eisenstein series by using that Az+A is strongly
discrete in C∞ if z ∈ Ω. We set:

Ew(z) =
∑′

a,b∈A

1

(az + b)w
.

There are many sources where the reader can find a proof of the following lemma (see for instance
[16, (6.3)]), but we prefer to give full details.

Lemma 7.3. The series Ew defines a non-zero element of Mw if and only if w > 0 and q − 1 | w.

Proof. The above series converges uniformly on every set ΩM and this already gives that Ew is
analytic over Ω. The first property, that Ew is modular-like of weight w, follows from a simple
rearrangement of the sum defining Ew(γ(z)) for γ ∈ Γ and its (unconditional) convergence, which
leaves it invariant by permutation of its terms. Additionally, it is very easy to see that all terms
involved in the sum are bounded on ΩM for every M which, by the ultrametric inequality, implies
that Ew itself is bounded on ΩM for every M . It remains to describe when the series are zero
identically, or non-zero.

For the non-vanishing property, we give an explicit evidence whyEw has a u-expansion in C∞[[u]],
and we derive from partial knowledge of its shape the required property (but we are not able to
compute in limpid way the coefficients of the u-expansion!). First note that

Dn(u) =
1

π̃n+1

∑

b∈A

1

(z − b)n+1
,
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so that we can use the Goss’ polynomialsGn+1(u) = Dn(u) as a ’model’ to construct the u-expansion
of Ew. Now, observe, for w > 0:

Ew(z) =
∑

b∈A

1

bw
+
∑′

a∈A

∑

b∈A

1

(az + b)w
.

If (q − 1) | w, we note that

∑

b∈A

1

bw
= −

∏

P

(
1− P−w

)−1
=: −ζA(w),

where the product runs over the monic irreducible polynomials P ∈ A and therefore is non-zero.
Then, if (q − 1) | w and if A+ denotes the subset of monic polynomials in A:

Ew(z) = −ζA(w) −
∑

a∈A+

∑

b∈A

1

(az + b)w

= −ζA(w) − π̃
w
∑

a∈A+

Gw(u(az)),

a series which converges uniformly on every affinoid subset of Ω. Note that for a ∈ A \ {0}, the
function u(az) can be expanded as a formal series ua of u|a|K[[u]] (normalise | · | by |θ| = q) locally
converging at u = 0 (in a disk of positive diameter r independent of a). This yields the explicit
series expansion (convergent for the u-valuation, or for the sup-norm over the disk D(0, r) in the
variable u):

(10) Ew(z) = −ζA(w) − π̃
w
∑

a∈A+

Gw(ua).

This also shows that Ew is, in this case, not identically zero. Indeed ζA(w) is non-zero, while the
part depending on u in the above expression tends to zero as |z|ℑ tends to ∞. On the other hand,
if (q − 1) ∤ w, the factor of automorphy Jw

γ does not induce a factor of automorphy for the group
PGL2(A) defined as the quotient of GL2(A) by scalar matrices and this implies that any modular
form of such weight w vanishes identically, and so it happens that Ew vanishes in this case. �

Remark 7.4. It is instructive at this point to compare our observations with the settings of the
original, complex-valued Eisenstein series. Indeed, it is well known, classically, that if w > 2, 2 | w
and q = e2πiz :

Ew(z) =
∑′

a,b∈Z

1

(az + b)w
= 2ζ(w) + 2

(2πi)
w
2

(w2 − 1)!

∑

n≥1

n
w
2 −1qn

1− qn
, ℑ(z) > 0.

The analogy is therefore between the series
∑

a∈A+

Gw(ua)

and
∑

n≥1

n
w
2 −1qn

1− qn
.
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However, it is well known that the latter series can be further expanded as follows, with σk(n) =∑
d|n d

k: ∑

n≥1

σw
2
−1(n)q

n.

For the series
∑

a∈A+ Gw(ua), this aspect is missing, and there is no available intelligible receipt to
compute the coefficients of the u-expansion of Ew directly, at the time being.

7.2. Construction of non-trivial cusp forms. We have constructed non-trivial modular forms,
but they are not cusp forms. We construct non-zero cusp forms in this section. Let z be an element
of Ω. Then, Λ = Λz = Az + A is an A-lattice of rank 2 of C∞. By Theorem 3.6, we have the
Drinfeld A-module φ := φΛ which is of rank 2. Hence, we can write

φθ(Z) = θZ + g̃(z)Zq + ∆̃(z)Zq2 , ∀(z, Z) ∈ Ω× C∞

for functions g̃, ∆̃ : Ω→ C∞.

We consider the function Ω× C∞
(z,Z) 7→E(z,Z)
−−−−−−−−−→ C∞ which associates to (z, Z) the value

(11) E(z, Z) := expΛ(Z) =
∑

i≥0

αi(z)Z
qi = Z

∏′

λ∈Λ

(
1−

Z

λ

)

at Z of the exponential series expΛ associated to the A-lattice Λ = Λz of C∞. It is an analytic
function and we have φa(expΛ(Z)) = expΛ(aZ) for all a ∈ A.

The following result collects the various functional properties of E(z, Z); proofs rely on simple
computations that we leave to the reader.

Lemma 7.5. For all z ∈ Ω, Z ∈ C∞, γ ∈ Γ and a ∈ A:

(1) φΛ(a)(E(z, Z)) = E(z, aZ),
(2) E(γ(z), Z) = Jγ(z)

−1E(z, Jγ(z)Z).
(3) E(z, Z + az + b) = E(z, Z), for all a, b ∈ A.

Remark 7.6. Loosely, we can say that E is a ’non-commutative modular form of weight (−1, 1)’.
The second formula can be also rewritten as:

E

(
γ(z),

Z

Jγ(z)

)
= Jγ(z)

−1E(z, Z), γ ∈ GL2(A),

so that E functionally plays the role of a Jacobi form of level 1, weight −1 and index 0 (this is in
close analogy with the Weierstrass ℘-functions).

By taking the formal logarithmic derivative in the variable Z of the Weierstrass product expansion
of expΛ(Z) (for z fixed) we note that

Z

E(z, Z)
= 1−

∑

k≥0
(q−1)|k

Ek(z)Z
k

so that the coefficients in this expansion in powers of Z are analytic functions on Ω, from which
we deduce, by inversion, that the coefficient functions αi : Ω → C∞ of E are analytic. By Lemma
7.3 and the homogeneity of the algebraic expressions expressing the functions αi in terms of the
Eisenstein series Ek we see that αi ∈ Mqi−1 for all i ≥ 0. As |z|ℑ →∞ we have Ek(z)→ −ζA(k),
after a simple computation we see that

E(z, Z)→ expA(Z)
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uniformly for Z ∈ D for every disk D ⊂ C∞. This means that the functions αi are not cusp forms
(the coefficients of expA ∈ K∞[[τ ]] are all non-zero). To construct cusp forms, we now look at the

coefficients g̃, ∆̃ of φθ which are functions of the variable z ∈ Ω. By (1) and (2) of Lemma 7.5, for
γ ∈ Γ, writing now φΛz

(θ) in place of φθ:

φΛγ(z)
(θ)(Jγ(z)

−1E(z, Jγ(z)Z)) = φΛγ(z)
(θ)(E(γ(z), Z))

= E(γ(z), θZ)

= Jγ(z)
−1E(z, θJγ(z)Z).

Hence, φΛγ(z)
(θ)(Jγ(z)

−1E(z,W )) = Jγ(z)
−1E(z, θW ) = Jγ(z)

−1φΛz
(E(z,W )) for W ∈ C∞. Since

it is obvious that the coefficient functions g̃, ∆̃ are analytic on Ω, they are in this way respectively
modular-like functions of respective weights q − 1 and q2 − 1. Furthermore:

Lemma 7.7. g̃ ∈Mq−1 \ Sq−1 and ∆̃ ∈ Sq2−1 \ {0}. Additionally, ∆̃(z) 6= 0 for all z ∈ Ω.

Proof. The modularity of g̃ and ∆̃ follows from the previously noticed fact that expΛz
(Z) →

expA(Z) uniformly with Z in disks as |z|ℑ → ∞. Indeed, this implies that φθ(Z)→ θZ + π̃q−1Zq

(uniformly on every disk) so that g̃ → π̃q−1 and ∆̃→ 0 as |z|ℑ →∞ and we see that g̃ is a modular

form of weight q − 1 which is not a cusp form, and ∆̃ is a cusp form.

We still need to prove that ∆̃ is not identically zero; to do this, we prove now the last property
of the lemma, which is even stronger. Assume by contradiction that there exists z ∈ Ω such that

∆̃(z) = 0. Then

φΛz
(θ) = θ + g̃(z)τ

which implies that the exponential expΛz
induces an isomorphism of A-modules expΛz

: C∞/Λz →
C(C∞) (the Carlitz module). But this disagrees with Theorem 3.6 which would deliver an iso-

morphism Λz
∼= A between lattices of different ranks. This proves that ∆̃ does not vanish on

Ω. �

Following Gekeler in [16], we define the modular forms g,∆ of respective weights q−1 and q2−1

by g̃ = π̃q−1g and ∆̃ = π̃q2−1∆. The reason for choosing these normalisations is that it can be
proved that the u-expansions of g,∆ have coefficients in A. We are not far from a complete proof
of the following (see [16, (5.12)] for full details):

Theorem 7.8. M = ⊕w∈ZMw = C∞[g,∆]

The proof rests on three crucial properties (1) existence of Eisenstein series (2) existence of the
cusp form ∆ which additionally is nowhere vanishing on Ω, and (3) modular forms of weight 0 for
Γ are constant, which follows from the fact that a modular form of weight 0 can be identified with
a holomorphic function over P1(C∞) by Theorem 6.8, which is constant. We omit the details.

8. Eisenstein series with values in Banach algebras

The final purpose of this and the next section of the present paper is to show certain identities
for a variant-generalisation of Eisenstein series (see Theorem 9.9). We recall that A = Fq[θ]. Let B
be a C∞-Banach algebra with norm ‖ · ‖ (extending the norm | · | = | · |∞ of C∞) with the property
that ‖B‖ = |C∞|. Let X be a rigid analytic variety. We set

OX/B = OX⊗̂C∞
B,
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with OX the structural sheaf of X , of C∞-algebras. In other words, if U ⊂ X is an affinoid subset of
X , then OX(U) carries the supremum norm ‖ · ‖U and we define OX/B(U) to be the completion of
OX ⊗C∞

B for the norm induced by ‖f⊗b‖ = |f |U , for f ∈ OX(U) and b ∈ B. If B has a countable
orthonormal basis B = (bi)i∈I , an element f ∈ OX/B(U) has a convergent series expansion

f =
∑

i∈I

fibi,

where fi ∈ OX(U), with |fi|U → 0 for the Fréchet filter on I.
One sees that that Tate’s acyclicity Theorem extends to this setting, namely, if X is an affinoid

variety, OX/B is a sheaf of B-algebras. The global sections are the analytic functions X → B.
We will mainly use the cases X = Ω and X = As. If X = As, an element of OX/B is a B-valued

entire function of s variables. We can identify it with a map Cs
∞ → B allowing a series expansion

in B[[t]] with t = (t1, . . . , ts) converging on D(0, R)s for all R > 0. A bounded entire function
C∞ → B is constant (this is a generalisation of Liouville’s theorem which uses the hypothesis that
‖B‖ = |C∞| is not discrete, see [38]).

We work with B-valued analytic functions where B = K is the completion of C∞(t) for the
Gauss norm ‖ · ‖ = ‖ · ‖∞, where t = (t1, . . . , ts). We have ‖K‖ = |C∞| and the residual field is
Fac
q (t). In all the following, we consider matrix-valued analytic functions and we extend norms to

matrices in the usual way by taking the supremum of norms of the entries of a matrix.
We extend the Fq-automorphism τ : C∞ → C∞, x 7→ xq, Fq(t)-linearly and continuously on K.

The subfield of the fixed elements Kτ=1 = {x ∈ K : τ(x) = x} is easily seen to be equal to Fq(t) by
a simple variant of Mittag-Leffler theorem. Let λ1, . . . , λr ∈ C∞ be K∞-linearly independent. This
is equivalent to saying that the A-module

Λ = Aλ1 + · · ·+Aλr ⊂ C∞

is an A-lattice. In this way, the exponential function expΛ induces a continuous open Fq(t)-linear
endomorphism of K, the kernel of which contains Λ⊗Fq

Fq(t) (it can be proved that expΛ is surjective
over K and the kernel is exactly Λ ⊗Fq

Fq(t) but we do not need this in the present paper). The

Drinfeld A-module φ = φΛ gives rise to a structure of Fq(t)
nr×n[θ]-module

φ(Knr×n)

by simply using the Fq(t)-vector space structure of K and defining the multiplication φθ by θ with
the above extension of τ .

We consider an injective Fq-algebra morphism

A
χ
−→ Fq(t)

n×n

and we set, with (λ1, . . . , λr) an A-basis of Λ (the exponential now applied coefficientwise):

ωΛ = expΛ


(θIn − χ(θ))

−1



λ1In
...

λrIn





 ∈ Krn×n.

Lemma 8.1. For all a ∈ Fq(t)[θ] we have the identity φa(ωΛ) = χ(a)ωΛ in Krn×n.
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Proof. Since the variables ti are central for τ and Fq(t)[θ] is euclidean, it suffices to show that
φθ(ωΛ) = χ(t)ωΛ. Now observe, for a ∈ A:

φΛ(a)(ωΛ) = expΛ((θIn − χ(θ))
−1



(aIn − χ(a) + χ(a))λ1

...
(aIn − χ(a) + χ(a))λr




= χ(a)ωΛ,

because (θIn − χ(θ))−1(aIn − χ(a)) ∈ Fq(t)[θ]
n×n so that (θIn − χ(θ))−1(aIn − χ(a))λi lies in the

kernel of expΛ (applied coefficientwise). �

Hence, ωΛ is a particular instance of special function as defined and studied in [2, 15]. Note also
that the map

ΦΛ : Z 7→ expΛ((θIn − χ(θ))
−1Z)

defines an entire function C∞ → Kn×n. An easy variant of the proof of Lemma 8.1 delivers:

Lemma 8.2. We have the functional equation τ(ΦΛ(Z)) = (χ(θ) − θIn)ΦΛ(Z) + expΛ(Z)In in
Kn×n.

We now introduce a ’twist’ of the logarithmic derivative of expΛ. We recall that A
χ
−→ Fq(t)

n×n

is an injective Fq-algebra morphism. We introduce the Perkins’ series (introduced in a slightly
narrower setting by Perkins in his Ph. D. thesis [40]):

ψΛ(Z) :=
∑

a1,...,ar∈A

1

Z − a1λ1 + · · ·+ arλr
(χ(a1), . . . , χ(ar)), Z ∈ C∞

(depending on the choice of the basis of Λ as well as on the choice of the algebra morphism χ).
The series converges for Z ∈ C∞ \ Λ to a function C∞ \ Λ → Kn×rn. We have (after elementary
rearrangement of the terms):

(12) ψΛ(Z − b1λ1 − · · · − brλr) = ψΛ(Z)− (χ(b1), . . . , χ(br)) expΛ(Z)
−1, b1, . . . , br ∈ A.

The next proposition explains why we are interested in the Perkins’ series: they can be viewed as
generating series of certain K-vector-valued Eisenstein series that we introduce below. Determining
identities for the Perkins’ series results in determining identities for such Eisenstein series.

Proposition 8.3. There exists r ∈ |C×
∞| such that the following series expansion, convergent for

Z in D(0, r), holds:

ψΛ(Z) = −
∑

j≥1
j≡1(q−1)

Zj−1EΛ(j;χ),

where for j ≥ 1,

EΛ(j;χ) :=
∑′

a1,...,ar∈A

1

(a1λ1 + · · ·+ arλr)j
(χ(a1), . . . , χ(ar)) ∈ Kn×rn.

The series EΛ(j;χ) is the Eisenstein series of weight j associated to Λ and χ.

Proof of Proposition 8.3. Since Λ is strongly discrete, D(0, r)∩ (Λ\ {0}) = ∅ for some r 6= 0. Then,
we can expand, for the coefficients ai not all zero,

1

Z − a1λ1 − · · · − arλr
=

−1

a1λ1 + · · ·+ arλr

∑

i≥0

(
Z

a1λ1 + · · ·+ arλr

)i

.
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The result follows from the fact that EΛ(j;χ), which is always convergent for j > 0, vanishes
identically for j 6≡ 1 (mod q − 1) which is easy to check observing that Λ = λΛ for all λ ∈ F×

q , and
reindexing the sum defining EΛ(j;χ). �

Lemma 8.4. The function F ♯(Z) := expΛ(Z)ψΛ(Z) defines an entire function C∞ → Kn×rn such
that, for all λ = a1λ1 + · · ·+ arλr ∈ Λ, F ♯(λ) = (χ(a1), . . . , χ(ar)) ∈ Fq(t)

n×nr.

Proof. This easily follows from the fact that ψΛ converges at Z = 0, and (12). �

The function ψΛ is intimately related to the exponential expΛ by means of the following result,
where expΛ on the right is the unique continuous map Kn×n → Kn×n which induces a Fq(t)

n×n[θ]-
module morphism Kn×n → φΛ(Kn×n).

Lemma 8.5. We have the identity of entire functions C∞ → Kn×n of the variable Z:

expΛ(Z)ψΛ(Z)ωΛ = expΛ((θIn − χ(θ))
−1Z).

Proof. By Lemma 8.4, the function

F (Z) := F ♯(Z) · ωΛ : C∞ → Kn×n

is an entire function such that

F (λ) = (χ(a1), . . . , χ(ar))ωΛ ∈ Kn×n, ∀λ = a1λ1 + · · ·+ arλr ∈ Λ.

We set

G(Z) = expΛ((θIn − χ(θ))
−1Z).

Let λ = a1λ1 + · · ·+ arλr ∈ Λ. We have, by Lemma 8.1,

G(λ) = expΛ((θIn − χ(θ))
−1((a1In − χ(a1) + χ(a1))λ1 + · · ·+ (arIn − χ(ar) + χ(ar))λr)

= (χ(a1), . . . , χ(ar))ωΛ.

Hence, the entire functions F,G agree on Λ. The function F −G is an entire function C∞ → Kn×n

which vanishes over Λ. Hence,

H(Z) =
F (Z)−G(Z)

expΛ(Z)

defines an entire function over C∞. Now, it is easy to see that

lim
|Z|→∞

‖H(Z)‖ = 0.

Since the valuation group of K is dense in R×, the appropriate generalisation of Liouville’s theorem
[38, Proposition 8] for entire functions holds in our settings and H = 0 identically. �

Remark 8.6. More generally, we can study A-module maps

Λ
χ
−→ Kn×n

with bounded image (the A-module structure on Kn×n being induced by an injective algebra ho-
momorphism A →֒ Fq(t) →֒ Kn×n) and Perkins’ series

ψΛ(n;χ) :=
∑

λ∈Λ

χ(λ)

(Z − λ)n
.
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Lemma 8.5 delivers an identity for ψΛ in terms of certain analytic functions of the variable
Z which are explicitly computable in terms of expΛ. To see this, observe that the K-algebra of
analytic functions D(0, r)→ K is stable by the K-linear divided higher derivatives DZ,n defined by

DZ,n(Z
m) =

(
m
n

)
Zm−n. In particular, DZ,n(ψΛ) is well defined for any n > 0. We write f (k) for

τk(f), f ∈ K or for f more generally a Kr×s-valued map for arbitrary integers r, s. If f =
∑

i≥0 fiZ
i

is an analytic function over a disk D(0, r) in the variable Z, then f (k) =
∑

i≥0 τ(fi)Z
qki is again

analytic if k ≥ 0. Observe that in particular,

ψΛ(Z)
(k) = Dqk−1(ψΛ(Z)), k ≥ 0.

Lemma 8.5 implies

ψΛ(Z)ωΛ = H(Z) := expΛ(Z)
−1 expΛ((θIn − χ(θ))

−1Z),

and we note that on the right we have an analytic function D(0, r) → Kn×n for some r ∈ |C×
∞|.

Applying Dqk−1 on both sides of this identity and observing that ωΛ does not depend on Z, we
deduce:

ψΛ(Z)
(k)ωΛ = Dqk−1(H)(Z), k ≥ 0.

Now, since the function ψΛ(Z)
(k) is in fact an analytic function of the variable Zqk , this is also true

for the function Dqk−1(H)(Z) so that

Hk(Z) = (Dqk−1(H)(Z))
(−k), k ≥ 0

are all analytic functions D(0, r)→ Kn×n (note that H0 = H). We introduce the matrices

ΩΛ = (ωΛ, ω
(−1)
Λ , . . . , ω

(1−r)
Λ ) ∈ Krn×rn, HΛ(Z) = (H0, . . . ,Hr−1),

where the latter is an n× rn-matrix of analytic functions D(0, r)→ K. Then,

ψΛ(Z)ΩΛ = HΛ(Z).

But a simple variant of the Wronskian lemma (see [34, §4.2.3]) implies that ΩΛ is invertible. We
have reached:

Theorem 8.7. The identity ψΛ(Z) = HΛ(Z)Ω
−1
Λ holds, for functions locally analytic at Z = 0.

The identity of the previous theorem connects the ’twisted logarithmic derivative’ ψΛ(Z) to the
inverse Frobenius twists of the divided higher derivatives of the mysterious function H, which are
certainly not always easy to compute, unless r = 1, where there is no higher derivative to compute
at all. If we set, additionally, χ = χt where χt(a) = a(t) so that n = 1, then we reach a known
identity, which was first discovered by R. Perkins in [41] (that we copy below adapting it to our
notations):

expA(Z)ω(t)
∑

a∈A

a(t)

Z − a
= expA

(
Z

θ − t

)
,

with ω Anderson-Thakur’s function and expA(Z) = Z
∏′

a∈A
(1 − Z

a ). This formula is expressed

in [38, Theorem 1] in a slightly different manner by using Papanikolas’ deformation of the Carlitz
logarithm. Note that these references also contain other types of generalisation. The above formula
can be viewed as an analogue of [31, Lemma 1.3.21] (the analogy can be pursued further). This
should be considered as a starting point for an extension of Kato’s arguments related to the con-
nection between the zeta-values phenomenology and Iwasawa’s theory appearing in that reference.
We owe this remark to Lance Gurney that we thankfully acknowledge.
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9. Modular forms with values in Banach algebras

In this section, more technical than the previous ones, we suppose that B is a Banach C∞-
algebra with norm ‖ · ‖ such that ‖B‖ = |C∞| and we suppose that it is endowed with a countable
orthonormal basis B = (bi)i∈I . The example on which we are focusing here is that of B = K the

completion of the field Ĉ∞(t) for the Gauss valuation ‖ · ‖. Any basis of Fac
q (t) as a vector space

over Fac
q is easily seen to be an orthonormal basis of K. We recall that we have considered, in §8,

a notion of B-valued analytic function. The main purpose of this section is to show, through some
examples, that if N > 1, there is a generalisation

Ω→ KN×1

of Drinfeld modular form which cannot by studied by using just ’scalar’ Drinfeld modular forms.
We consider a representation

ρ : Γ→ GLN (Fq(t)) ⊂ GLN (K).

Definition 9.1. Let f : Ω→ KN×1 be an analytic function. We say that f is modular-like (for ρ)
of weight w ∈ Z if for all γ ∈ GL2(A),

f(γ(z)) = Jγ(z)
wρ(γ)f(z), γ ∈ GL2(A).

We say that a modular-like function of weight w is:

(1) weakly modular (of weight w) if there exists L ∈ Z such that the map z 7→ ‖ expA(z)
Lf(z)‖

is bounded over ΩM for some M > 1,
(2) a modular form if the map z 7→ ‖f(z)‖ is bounded over ΩM for some M > 1.
(3) a cusp form if it is a modular form and maxz∈ΩM

‖f(z)‖ → 0 as M →∞.

We denote by M !
w(ρ),Mw(ρ), Sw(ρ) the K-vector spaces of weak modular, modular, and cusp

forms of weight w for ρ. Note that these notations are loose, in the sense that these vector spaces
strongly depend of the choice of K (in particular, of the variables t = (ti)).

We now describe a very classical example with N = 1 and B = C∞ (no variables t at all). If
ρ : Γ→ C×

∞ is a representation, there exists m ∈ Z/(q− 1)Z unique, such that ρ(γ) = det(γ)−m for
all γ. We write

ρ = det−m

(note that this is well defined). Gekeler constructed a cusp form h ∈ Sq+1(det
−1) \ {0}; see [16,

(5.9)]. The first few terms of its u-expansion in C∞ can be computed explicitly by various methods
(including the explicit formulas (14) and (15) below):

(13) h(z) = −u(1 + u(q−1)2 + · · · ).

We deduce that hq−1∆−1 is a Drinfeld modular form of weight zero which is constant by Theorem
7.8. The factor of proportionality is easily seen to be −1: ∆ = −hq−1.

The computation in (13) can be pushed to coefficients of higher powers of the uniformiser u
by using two formulas that we describe here. The first formula is due to López [32]. We have
the convergent series expansion (in both K[[u]] for the u-adic metric and in D(0, r) for some
r ∈ |C∞|∩]0, 1[ for the norm of the uniform convergence)

(14) h = −
∑

a∈A
monic

aqua ∈ A[[u]].
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The second formula is due to Gekeler [17] and is an analogue of Jacobi’s product formula

∆ = q
∏

n≥0

(1− qn)24 ∈ qZ[[q]]

for the classical complex-valued normalised discriminant cusp form ∆ (we have an unfortunate and
unavoidable conflict of notation here!). Gekeler’s formula is the following u-convergent product
expansion:

(15) h = −u
∏

a∈A
monic

(
u|a|Ca

(
1

u

))q2−1

∈ A[[u]],

with Ca the multiplication by a for the Carlitz module structure. Note that (u|a|Ca(
1
u ))

q2−1 ∈
1 +K[[u]] and the u-valuation of

(
u|a|Ca(u

−1)
)q2−1

− 1

goes to infinity as a runs in A \ {0}. One deduces, from Gekeler’s result [16, Theorem (5.13)], that
Mw(det

−m) = hmMw−m0(q+1) if m0 = m ∩ {0, . . . , q − 2} (m is a class modulo q − 1).

9.1. Weak modular forms of weight −1. We analyse another class of representations, this time
in higher dimension and we construct a new kind of modular form associated to it. Let

A
χ
−→ Fq(t)

n×n

be an injective Fq-algebra morphism. Then, the map

ρχ : Γ→ GL2n(Fq(t)) ⊂ GL2n(K)

defined by

ρχ

(
a b
c d

)
=

(
χ(a) χ(b)
χ(c) χ(d)

)

is a representation of Γ. We denote by ρ∗χ the contragredient representation

ρ∗χ = tρ−1
χ .

We shall study the case ρ = ρχ or ρ∗χ. We also set N = 2n.
We construct weak modular forms of weight −1 associated to the representations ρχ; the main

result is Theorem 9.3 where we show that a certain matrix function defined in (17) has its columns
which are weak modular forms of weight −1. We think that this construction is interesting because
there seems to be no analogue of it in the settings of complex-vector-valued modular forms for
SL2(Z).

Before going on, we need the next lemma, where we give a uniform bound for the valuations of
the coefficients of the u-expansions

∑
m≥0 ci,mu

m of the modular forms αi appearing in (11).

Lemma 9.2. There exists a constant C > 0 such that for all i,m ≥ 0,

|ci,m| ≤ q
−iqi |π̃|q

i−1Cm.

Proof. This is [36, Lemma 2.1]. Although the statement presented in this reference is correct, there
is a typographical problem in (2.17) so that, to avoid confusion, we give full details here. We set
without loss of generality |θ| = q. We recall ([36, (2.14)]) that

αi =
1

θqi − θ
(g̃αq

i−1 + ∆̃αq2

i−2), i > 0,
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with the initial values α0 = 1 and α−1 = 0. Now, writing additionally the u-expansions:

g̃ =
∑

i≥0

γ̃iu
i, ∆̃ =

∑

i≥0

δ̃iu
i,

we find (as in ibid.)

ci,m =
1

θqi − θ


 ∑

j+qk=m

γ̃jc
q
i−1,k +

∑

j′+q2k′=m

δ̃j′c
q2

i−2,k′


 , i > 0, m ≥ 0

with the initial values ci,0 = π̃qi−1

di
and c−1,m = 0. Clearly, we can choose C > 0 such that |δ̃j | ≤ Cj

and |γ̃j | ≤ B
j |π̃q−1| for all j ≥ 0, and additionally, we can suppose that the inequality of the Lemma

is true for |ci,m| with i = 0, 1. We now prove the inequality by induction over i. Indeed, note

that if j + qk = m, then, by induction hypothesis, |γ̃jc
q
i−1,k| ≤ Cjq−(i−1)qi−1qCkq|π̃|q

i−q|π̃|q−1 ≤

Cmq−(i−1)qi |π̃|q
i−1 and similarly, if j + q2k = m, then we have |δ̃jc

q2

i−2,k| ≤ Cmq−(i−2)qi |π̃|q
i−2−1,

and the inequality follows. �

We write ϑ = χ(θ). If we set

W = (θIn − ϑ)
−1 ∈ GLn(K),

we have that for all a ∈ A:

(16) (χ(a)− aIn)W ∈ Fq(tΣ)[θ]
n×n.

Now, we consider, for χ andW as in (16), the matrix function Q(z) =
(
zW
W

)
, which is a holomorphic

function Ω→ KN×n. We observe that if γ = ( a b
c d ) ∈ Γ, then

Q(γ(z)) = Jγ(z)
−1

(
(az + b)W

(cz + d)W

)
≡ Jγ(z)

−1ρχ(γ)Q(z) (mod ΛN×n
z ).

Hence, if we set

(17) F(z) := E(z,Q(z)),

then, by the fact that Λz ⊗ Fq(t) is contained in the kernel of expΛz
,

F(γ(z)) = Jγ(z)
−1E(z, Jγ(z)Jγ(z)

−1ρχ(γ)Q(z)) = Jγ(z)
−1ρχ(γ)F(z), ∀γ ∈ Γ.

This means that the function F : Ω→ KN×n is modular-like of weight −1 for ρχ. We are going to
describe this function F in more detail.

Theorem 9.3. We have F ∈M !
−1(ρχ)

1×n.

Proof. We set eC(z) = expC(π̃z) so that u(z) = 1
eC(z) . Lemma 8.2 implies:

τ(eC(W )) = (ϑ− θIn)eC(W ), τ(eC(zW )) = (ϑ− θIn)eC(zW ) + eC(z).

The subset W ⊂ R>0 of the r ∈ |C∞| such that the elements |d−1
i rq

i

| are all distinct for i ≥ 0 is
dense in R>0. Let z ∈ C∞ be such that r = |π̃z| ∈ W . Then:

|eC(z)| = max
i
{q−iqi |π̃|q

i

|z|q
i

}.

We write F =
(
F1

F2

)
with Fi : Ω→ Kn×n. We first look at the matrix function

F1 = expΛ(zW ) =
∑

i≥0

αi(z)z
qiτ i(W ).
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We suppose that |u(z)| < 1
B with B as in Lemma 9.2. Then

F1 =
∑

i≥0

zq
i

τ i(W )
∑

j≥0

ci,ju
j

so that if ‖zWπ̃‖ = r ∈ W with |u| < 1
B , then

‖F1‖ = max
i,j
{|z|q

i

q−iqi |π̃|q
i−1(C|u|︸︷︷︸

<1

)j}

= ‖ expC(π̃zW )‖

= ‖eC(z/θ)‖,

and F1

eC(z/θ) − π̃
−1In is bounded as |z|ℑ is bounded from below.

We now look at the matrix function F2 = eΛ(W ). Since F2 =
∑

i≥0 αi(z)τ
i(W ), for |u| < 1

B we

get in a similar way that F2 − π̃−1eC(W ) goes to zero as |z|ℑ → ∞. Hence, the n columns of the
matrix function F, which are modular-like of weight −1 are weak modular forms of M !

−1(ρχ). �

We set

F = (F, τ(F)) =

(
F1 τ(F1)
F2 τ(F2)

)
.

Then, F is an analytic function Ω → KN×N and the first n columns are weak modular forms of
weight −1, while the last n columns are weak modular forms of weight −q (for the representation
ρχ).

Lemma 9.4. We have the difference equation τ(F) = FΦ where

Φ =

(
0 ∆̃−1(χ(θ)− θIn)

1 −∆̃−1g̃In

)
.

Proof. For any choice of n,m > 0, we extend the function E(z, Z) of Lemma 7.5 to

Ω×Kn×m E
−→ Kn×m

by setting E(z, Z) =
∑

i≥0 αi(z)τ
i(Z) (so τ acts diagonally). Lemma 7.5 holds in this generalised

setting, where the Drinfeld modules φΛ now acts on Kn×m (case of Λ = Λz). The present statement
follows from (1) of Lemma 7.5 with a = θ in a manner which is sensibly similar to that of [36,

Theorem 1.3]. Indeed, note that, with φΛ(θ) = θ + g̃τ + ∆̃τ2, we have φΛ(θ)(F) − χ(θ)F = 0. �

Lemma 9.5. We have that supz∈ΩM
‖F−XYZ‖ → 0 as M →∞, where

X =

(
In 0
0 eC(W )

)
, Y =

(
eC(zW ) τ(eC(zW ))
In ϑ− θIn

)
, Z =

(
π̃−1In 0

0 π̃−qIn

)
.

Proof. We observe (recall that ϑ = χ(θ)):

XYZ =

(
π̃−1eC(zW ) π̃−q((ϑ− θIn)eC(zW ) + e0In)
π̃−1eC(W ) π̃−q(ϑ− θIn)eC(W )

)
.
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Since the second block column of F is the image by τ of the first block column, all we need to show

is that supz∈ΩM
‖F−

(π̃−1eC(zW )
π̃−1eC(W )

)
‖ → 0 as M →∞. We note that

F1 = eΛ(zW ) = π̃−1eC(zW ) +
∑

i≥0

zq
i

τ i(W )
∑

j>0

ci,ju
j

︸ ︷︷ ︸
=:Υ

.

We show that ‖Υ‖ tends to zero when |z|ℑ → ∞. We suppose that |z|ℑ is large so that |u|C < 1.
then, the double series defining Υ is convergent and we can write

Υ =
∑

j>0

∑

i≥0

ujci,jz
qiτ i(W ).

The general term of this series, Υi,j := ujci,jz
qiτ i(W ), has absolute value which satisfies:

‖Υi,j‖ ≤ q−iqi |π̃|q
i−1(|u|C)j |z|q

i

‖W‖q
i

≤ |u|Cmax
i
{|z|q

i

‖W‖q
i

|π̃|q
i−1}

≤ |π̃|−1C

∣∣∣∣
eC(z/θ)

eC(z)

∣∣∣∣

and tends to zero as |z|ℑ →∞. In a similar way, one proves that ‖F2 − π̃−1eC(W )‖ tends to zero
in the same way, we leave the details to the reader. �

Lemma 9.6. We have ‖ det(F) − (−1)neC(z)nπ̃−n(q+1) det(eC(W ))‖ → 0 as |z|ℑ → ∞, and
det(eC(W )) is non-zero.

Proof. The formula follows directly from the expression for XYZ. The non-vanishing of det(eC(W ))
is easy to show. �

This result implies that the columns of F are linearly independent. Moreover, it is plain that
supz∈ΩM

‖ det(F−1) − (−1)nunπ̃(q+1)n det(eC(W ))−1‖ → 0 as M → ∞. Since at once the scalar

function F = det(F−1) satisfies F (γ(z)) = Jγ(z)
n(q+1) det(γ)−nF (z) for all z ∈ Ω and γ ∈ Γ, we

get F ∈ Mn(q+1)(det
−n) ⊗C∞

K. Now, Fh−n is a modular form of weight 0, therefore equal to an

element of K×. We obtain:

Corollary 9.7. We have det(F−1) = (−1)nπ̃−(q+1)nhn det(eC(W ))−1 and, writing H := tF−1 =
(H1,H2) with Hi : Ω → Kn×n, we have that the n columns of H1 are linearly independent modular
forms of weight 1 and the n columns of H2 are linearly independent modular forms of weight q for
the representation ρ∗χ.

What can be further proved is, by setting

M(ρ∗χ) =
⊕

w

Mw(ρ
∗
χ)

the weight-graded (M ⊗C∞
K)-module of modular forms for ρ∗χ, where M =

⊕
wMw(1) is the

C∞-algebra of scalar modular forms (1 is the trivial representation):

Theorem 9.8. M(ρ∗χ) = (M ⊗C∞
K)1×NH.
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We will not give the details of the deduction of the proof of this theorem from Corollary 9.7,
since it rests on an easy generalisation and modification of [39, Theorem 3.9]. Instead of this, we
insist on the result of Gekeler [16, Theorem (5.13)], which implies that

Mw(det
−m) =Mw−m(q+1)h

m, m ≤ q − 1

with h the Poincaré series of weight q + 1 and ’type 1’ defined in ibid. (5.11) (with u-expansion
(13)) so that, with M(det−m) = ⊕wMw(det

−m),

M(det−m) =Mhm.

In view of this, we can think about H (up to normalisation) as to a matrix-valued generalisation of
the Poincaré series h.

9.2. Jacobi-like forms. We consider the series

Ψ(z, Z) := ψΛz
(Z) =

∑

a,b∈A

1

Z − az − b
(χ(a), χ(b)),

converging for Z ∈ C∞ \ Λ where Λ = Λz = Az + A, z ∈ Ω. We have the following functional
identities

Ψ

(
γ(z),

Z

Jγ(z)

)
= Jγ(z)Ψ(z, Z)ρ(γ)−1, γ ∈ Γ,

together with the identities arising from (12). Proposition 8.3 implies that, for Z ∈ D(0, r) for some
r ∈ |C∞|∩]0, 1[,

tΨ(z, Z) = −
∑

j>0
j≡1(q−1)

Zj−1E(j;χ)

where E(j;χ) is the Eisenstein series (non-vanishing if j ≡ 1 (mod q − 1))

E(j;χ) :=
∑′

a,b∈A

1

(az + b)j

(
χ(a)

χ(b)

)
,

which satisfies

E(j;χ)(γ(z)) = Jγ(z)
jρ∗χ(γ)E(j;χ), γ ∈ Γ, z ∈ Ω.

Since it is also apparent that ‖E(j;χ)(z)‖ is bounded on ΩM for M > 1 and j > 0, we deduce that
the n columns of E(j;χ) are modular forms of weight j for ρ∗χ in the sense of Definition 9.1 (see
[39, §3.2.1] for a special case). By Theorem 8.7 we obtain

(18) Ψ(z, Z) = [H(Z),Dq−1(H)(Z)
(−1)]ΩΛ(z)

−1

which allows to explicitly compute the Eisenstein series E(j;χ) in terms of the function H(Z). To
make this interesting relation a little bit more transparent, we give below an explicit expression of
the matrix ΩΛ(z)

−1. We have:

(19) ΩΛ(z)
−1 =

(
0 1
1 0

)
τ−1(Φ)F−1 =


1 −

(
g̃

∆̃

) 1
q

0 (χ(θ) − θ
1
q )∆̃− 1

q


F−1,

with Φ the matrix defined in Lemma 9.4. To see this, observe that in the notation of Theorem 8.7,

ΩΛ(z) = (F, τ−1(F)) = τ−1(F)

(
0 1
1 0

)
,



48 F. PELLARIN

with Λ = Λz as above. By Lemma 9.4, τ(F) = FΦ , so that τ−1(F) = F(τ−1(Φ))−1 which yields

ΩΛ = τ−1(F)

(
0 1
1 0

)
= F

(
0 1
1 0

)(
0 1
1 0

)
(τ−1(Φ))−1

(
0 1
1 0

)
,

which implies (19) by the (licit) inversion of the two sides.
Substituting in (18) and transposing, we get:

−
∑

j≥1
j≡1(q−1)

E(j;χ)Zj−1 = H




1 0

−
(

g̃

∆̃

) 1
q

∆̃− 1
q (tχ(θ) − θ

1
q )



(

tH(Z)
Dq−1(

tH)(Z)(−1)

)
.

For example, the Eisenstein series of weight one E(1;χ) arises as the coefficient of Z0 in the left-hand
side and the above yields an explicit formula for it. Note that the constant term of the Z-expansion
of t[H(Z),Dq−1(H)(Z)(−1)] is

t[(θIn − χ(θ))
−1, α1(z)

1
q ((θIn − χ(θ))

−1 − (θ
1
q In − χ(θ))

−1)].

The formula that we get is this one:

−E1(1;χ) = H




1 0

−
(

g̃

∆̃

) 1
q

∆̃− 1
q (tχ(θ)− θ

1
q )



( t(θIn − χ(θ))−1

α1(z)
1
q t((θIn − χ(θ))−1 − (θ

1
q In − χ(θ))−1)

)
,

and what looks as a miracle at first sight is that it greatly simplifies, by using the explicit compu-

tation of α1 which arises from [36, (2.14)], and which is α1 = g̃
θq−θ , we reach the following:

Theorem 9.9. The following identity holds

E1(1;χ) = −H

(
t(θIn − χ(θ))−1

0n

)
,

involving N × n matrices whose columns are modular forms of weight 1.

In fact, this is not a miracle; it is just due to the fact that the left-hand side must be bounded
at the infinity; this is only possible if the second matrix entry of the column above is identically

zero, because it is anyway a multiple by a constant matrix of the weak modular form g̃/∆̃ (this
somewhat forces α1 to be equal to the above multiple of g̃, giving this artificial impression of
miraculous simplification). It is easy from here to deduce [35, Theorem 8] in the special case of
N = 2, n = 1 and χ = χt.
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[12] G. Böckle & U. Hartl. Uniformizable Families of t-motives. Trans. Amer. Math. Soc. 359 (2007), no. 8, 3933–

3972.
[13] V. Drinfeld. Elliptic modules. Math. Sb. 94 (1974), 594–627 (in Russian). English translation in Math. USSR

Sb. (1974) No. 4.
[14] J. Fresnel, & M. van der Put. Rigid Analytic Geometry and its Applications. Birkhäuser, Boston (2004).
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[28] S. Häberli. Satake compactification of analytic Drinfeld modular varieties. ETH thesis dissertation 25544. Zürich,
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