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Highlights 
 
This paper summarizes the properties, applications and feasible production of all known 
radioisotopes that can be used in the novel β+γ coincidence PET technique. These 
radioisotopes include: 10C, 14O, 22Na, 34mCl, 44gSc, 48V, 52mMn, 55Co, 60Cu, 66Ga, 69Ge, 72As, 
76Br, 82gRb, 86gY, 94mTc, 110mIn and 124I. 
 
Abstract 
 
Following the advancement of the Positron Emission Tomography (PET), a novel technique 
emerged which takes advantage of the gamma quanta emitted, in some cases, after the β+ 
decay. While 44gSc is commonly agreed the best choice to validate this new modality, other 
radioisotopes must also be considered in the future. We present them in this paper, along 
with their possible applications, properties and the optimal production routes with the use of 
the accelerators. 
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Introduction 
 

During the recent years, we have witnessed the birth and the steady development of 
a new approach in Positron Emission Tomography (PET) for the nuclear imaging, namely a 
β+γ coincidence technique (Martin et al., 1995; Pentlow et al., 2000; Herzog et al., 2002; 
Lubberink et al., 2002a; Beattie et al., 2003; Buchholz et al., 2003; Sandström et al., 2004; 
Grignon et al., 2007; Lang et al., 2013; Thirolf et al., 2015). Compared to the classical PET, it 
offers potentially better spatial resolution (Sandström et al., 2004; Grignon et al., 2007; Duval 
et al., 2009) or, alternatively, provides the same image quality with less radioactivity (hence 
reducing the dose to the patient). It also reduces the exposure time that may translate to the 
increased number of consultations in hospitals per day. 
 Today, the conventional PET is used worldwide and has been acknowledged as the 
gold standard in oncology imaging when used with FDG. Its principle and numerous 
applications were summarized recently by The International Atomic Energy Agency (IAEA, 
2008) and The European Association of Nuclear Medicine (EANM 2010, 2011). In general, 
PET is a technique commonly used in medicine for diagnostic purposes as it allows 
quantitative in vivo measurements of the distribution of administered positron-emitting 
radioisotopes in the human body. In short, the radioactive tracer (which have been defined to 
accumulate in some specific cells) is injected in the patient, decays and produces the 
positron (β+) that travels few millimetres (depending on the energy) from the decay vertex 
before annihilating with an electron. Positron-electron annihilation converts them into two 
511 keV energy photons (with over 99% probability), which are emitted in opposite directions 
(in positron-electron center of mass system) and can escape the human body. These 
photons are then detected in parallel rings of scintillation crystals surrounding the patient. 
Two detected photons of the right energy allow to assume that the positron emitter is located 
somewhere in between, at the Line of Response (LoR). In the first approximation, the 
intersection of multiple LoR provides the distribution of the tracer (although in practice many 
additional corrections are applied). 
 The β+γ coincidence is one of the possible extensions of PET modality and its key 
element is the use of a β+ source that emits additional γ quanta (sometimes called “third γ”). 
To prevent the overlap of the signals, the typical constraint in the acquisition systems is that 
the third γ should be emitted from the radioisotope few ps after the β+ decay allowing 
coincidence measurements (Grignon et al., 2007). Assuming that the β+ particle and the 
third γ are emitted at the same location, the position of the radioisotope is then obtained by 
the intersection of the arrival direction of the third γ with the conventional LoR (Fig. 1). This 
technique allows to localize the emission point on the event-by-event basis (Martin et al., 
1995; Pentlow et al., 2000; Grignon et al., 2007; Duval et al., 2009). The localization via 
direction cone implies the Compton scattering of the third γ and the detection of the 
scattered photon in the photoelectric interaction. This favours a third γ of high energy, 
around 1 MeV (Grignon et al., 2007). While it would give additional radiation dose to the 
patient, the precision of the β+γ PET is supposed to allow reducing the administered activity, 
significantly reducing the overall dose (Lang et al., 2013). 
 In this article, we review the medical radioisotopes suitable for β+γ coincidence PET. 
The most important criteria for the candidates are the β+ decay followed by a γ quanta of 
around 1 MeV emitted few ps later. However, there are many more requirements related to 
the practical aspects of medical radioisotopes. In particular, β+ branching ratio as well as the 
intensity of third γ should be as high as possible (preferably 100% for both) to assure the 
highest probability for the signal detection in the PET scanner. At the same time, 
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radioisotope of interest should emit a limited number of additional γ lines (which would only 
introduce the noise to the imaging and dose to the patient). Finally, the radioisotope should 
have feasible production route and convenient half-life (from few hours to few days), suitable 
for the clinical practice. Obviously, no radioisotope fulfils all these criteria. However, some 
are very close and could be potentially investigated in β+γ coincidence PET, depending on 
the parameters of available scanner and the aim of the research or imaging. The most 
promising radioisotopes are presented in this work, including their applications and 
production routes investigated so far. The physical properties of all candidates are listed in 
Table 1 and the natural abundance of the targets discussed for their production is shown in 
Table 2 (although in certain cases the discussed production route and its yield requires the 
use of an enriched target with modified composition discussed in the text). 
 

 
Fig. 1. Principle of the β+γ coincidence PET (Grignon et al., 2007). 

 
Finally, it is worth mentioning that with the development of new PET scanners, further 

advancement in β+γ coincidence technique can be expected. Already mentioned XEMIS and 
XEMIS2 machines offer a sub-millimetre position resolution, a good energy resolution, and a 
possibility to measure third γ of up to 5 MeV (Grignon et al., 2007; Duval et al., 2009; 
Cussonneau et al., 2017; Gallego Manzano et al., 2018). At the same time, the first PET 
scanner build from plastic scintillators, J-PET, offers cost-effective whole-body scans with 
the feasibility of ortho-positronium imaging (Gajos et al., 2016; Kamińska et al., 2016; 
Moskal et al., 2019). Recently constructed EXPLORER might be also of interest as it has 
proved its high-sensitive total-body scan (Badawi et al., 2019). 

As a side remark, it is possible to imagine an approach in which LoR is replaced with 
two (or more) γ-rays emitted from the nucleus, forcing the reconstruction based on three 
complete Compton events. Some radioisotopes satisfy this criterion, with three high-intensity 
γ lines and low β+ branching ratio: 94gTc (T1/2 = 4.9 h), 96Tc (T1/2 = 4.3 d), 108In (T1/2 = 58 min), 
110gIn (T1/2 = 4.9 h) and 206Bi (T1/2 = 6.2 d). However, the imaging with this method would 
require more activity compared to the β+γ coincidence counterpart and is not discussed 
further in this paper. 
 There is also a similar PET technique which utilizes a rare three γ quanta emission 
from the ortho-positronium annihilation (Kacperski et al., 2004; Kacperski and Spyrou, 2005; 
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Abuelhia et al., 2007; Gajos et al., 2016; Kamińska et al., 2016; Moskal et al., 2019). This 
method can be applied with all β+ radionuclides and is not discussed further here. 
 
34mCl 
 
 Compared to other radioisotopes from this overview, 34mCl is less popular in the 
nuclear medicine field. However, it was recognized as potential PET radionuclide (Qaim and 
Stöcklin, 1983; Helus et al., 1985) and has already been used to label dopamine D1 agonists 
(DeJesus et al., 2007; Murali et al., 2011). The first factor limiting its popularity is the number 
of high-intensity γ lines increasing the dose without providing the relevant diagnostic data. 
The γ line of the highest intensity could be used in β+γ coincidence imaging although other 
radioisotopes discussed here offer better physical properties for this purpose. 

The second limiting factor is the difficult production of 34mCl. The practical no-carrier-
added production uses natS(⍺ ,x) reaction. According to the cross-section data (Hintz and 
Ramsey, 1952; Umbarger et al., 1970; Nagatsu et al., 2008), the required beam energy is 
around 65 MeV. The saturation of the thick target irradiation results in radio-contaminant-free 
1500 MBq/μA 34mCl (Zatolokin et al., 1976; Takei et al., 2007; Nagatsu et al., 2008). A 
feasible production chain was also developed, consisting of the 80% effective separation 
using heated water and HPLC pump (Takei et al., 2007). Even though this production 
requires high energy ⍺  beam. Alternative methods face even more difficult problems. 
 
44gSc 
 
 The 44gSc radioisotope is one of the most promising β+γ candidate (mentioned as 
such by Lang et al., 2013 and Thirolf et al., 2015) and the perfect one to set-up the proof of 
concept of this new imaging modality. It has a convenient half-life (T1/2 = 3.9 h) and emits 
only one, high-intensity γ-line with a desirable energy (1157 keV, 99%). It has been already 
used in the study of β+γ coincidence PET with the use of XEMIS and XEMIS2 detectors 
(Grignon et al., 2007; Duval et al., 2009; Cussonneau et al., 2017; Gallego Manzano et al., 
2018). The general interest of 44gSc was also stressed by Huclier-Markai et al., 2018. It is not 
only related to its convenient physical properties, but also to the feasible chemistry (reported 
mainly for the labelling of DOTA-peptides) supported with the stability and biodistribution 
studies (Koumarianou et al., 2011; Cydzik et al., 2012; Krajewski et al., 2012, 2013; 
Pruszyǹski et al., 2012; Roesch, 2012; Severin et al., 2012; Müller et al., 2013; Huclier-
Markai et al., 2014; Alliot et al., 2015a, 2015b; Valdovinos et al., 2015; van der Meulen et al., 
2015; Domnanich et al., 2016; Kilian et al., 2018). Additionally, its metastable state, 44mSc 
(T1/2 = 58.6 h), can be used as long-lived in vivo generator (Huclier-Markai et al., 2014; Alliot 
et al., 2015a, 2015b; Duchemin et al., 2015) as it decays mainly by a low energy transition to 
the ground state. Finally, 44gSc can be used as counterpart of therapeutic partners. It forms a 
theranostic pair with 47Sc (T1/2 = 3.35 d), which is a low-energy β- emitter for targeted 
radiotherapy, allowing the application of the theranostic approach (Müller et al., 2014, 2018). 
It can also be used with the therapeutic 177Lu as they share similar chemistry (Umbricht et 
al., 2017). 

The most interesting production route is via 44Ca(p,n) reaction with the CaCO3 or 
CaO, (Khandaker et al., 2009; Krajewski et al., 2012, 2013; Severin et al., 2012; Müller et al., 
2013, 2014; Hernandez et al., 2014; Hoehr et al., 2014; Valdovinos et al., 2015; van der 
Meulen et al., 2015; Singh et al., 2015; Domnanich et al., 2016; Carzaniga et al., 2017; 
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Sitarz et al., 2018) which can be later easily dissolved for the chemical separation (Cydzik et 
al., 2012; Krajewski et al., 2012, 2013; Pruszyǹski et al., 2012; Severin et al., 2012; Müller et 
al., 2013; Huclier-Markai et al., 2014; Alliot et al., 2015b; Valdovinos et al., 2015; van der 
Meulen et al., 2015; Domnanich et al., 2016; Kilian et al., 2018). A standard 16 MeV proton 
beam of 1 μA can produce up to 20 MBq (CaCO3) or 35 MBq (CaO) after 1 h of irradiation of 
natural targets and 40-50 times more if the commercially available >90% enrichment is used. 
In case of natural target, 43Sc (T1/2 = 3.89 h) is present at the level of 3% while the use of the 
enriched target eliminates the radioactive impurities almost completely (Sitarz et al., 2018). 
Alternatively, 44gSc can be obtained from 44Ti/44gSc generator (T1/2 = 59.1 y) as pointed out by 
Filosofov et al., 2010; Pruszyǹski et al., 2010, 2012; Roesch, 2012 and summarized recently 
by Hassan et al., 2017. Currently, such generator is available in Mainz, with 185 MBq 44Ti 
and the possibility to extract 97% 44gSc in 20 mL solution (Filosofov et al., 2010). 
 Still, the most accessible optimal production route is the irradiation of >90% enriched 
44CaCO3 or 44CaO with proton beam, yielding up to 1000 MBq/μAh or 1700 MBq/μAh 
respectively and less than 1% of radioactive contaminants. 
 
48V 
 
 48V radioisotope is well-known only as a monitor for the beam current measurements 
(IAEA, 2017). It emits two high-intensity γ lines and has a β+ branching ratio of only 50%. 
However, it has the longest half-life (16 d) among all discussed β+γ candidates, suitable for 
the studies of slow metabolic processes and for the labelling of organic compounds (Qaim, 
2011). The prospects of 48V were recently reminded by Usman et al., 2017 as it is already 
finding applications as a tracer in biological actions in plants (Xuam Tham et al., 2001), in 
material science (Rorat et al., 2005) or in the renal artery brachytherapy (Arbabi et al., 2009). 
As suggested by Martin et al., 1995 it is also a promising candidate for the coincidence PET. 
However, it should be noted that the second high-intensity γ line from 48V would introduce 
additional dose for the patient and noise in the imaging without providing the relevant 
diagnostic data. 
 As summarized in IAEA, 2017, the cross-sections for different production of 48V are 
well measured and suggest the route via natTi(p,x) reaction (Smith et al., 2011). The major 
contribution comes from 48Ti(p,n) reaction suitable for the energy of the commonly available 
cyclotrons and the target nuclide has high natural abundance. With 16 MeV beam and 1 μAh 
irradiation of 90% enriched 48Ti target, over 20 MBq of 48V can be produced, with less than 
0.5% of radioactive impurity of 49V (T1/2 = 330 d). 
 
52mMn 
 
 The recent advancements in hybrid MRI induced the interest in 52gMn radioisotope. It 
was suggested as the tracer of Mn+2 ions (Lewis et al., 2015) that serve as the T1 MRI 
relaxation agent in the Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) 
(Koretsky and Silva, 2004; Silva et al., 2004; Wadghiri et al., 2004; Silva and Bock, 2008; 
Massaad and Pautler, 2011; Cacace et al., 2014). However, in the light of the reported risk 
regarding the use of the bulk manganese (Crossgrove and Zheng, 2004), the use of 52gMn in 
conventional PET/MRI was suggested (Graves et al., 2015) to obtain analogous data with 
lower biological toxicity. Meanwhile, its metastable level, 52mMn, has very high β+ branching 
ratio and emits only one, high-energy and high-intensity γ line. Since the β+γ coincidence 
imaging requires less activity, the toxicity of magnesium in PET/MRI could be further 
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reduced with the use of 52mMn (already suggested for β+γ coincidence PET by Martin et al., 
1995). However, it should be noted that significant modifications might be in order for PET 
hardware to permit the acquisition in the presence of a strong magnetic field and 
radiofrequency pulses (Disselhorst et al., 2014). 

The best access to 52mMn is through a generator, 52gFe/52mMn, since 52gFe decays in 
100% to 52mMn. The co-produced 52mFe (T1/2 = 46 s) decays in 100% to 52gMn though so it 
should be taken into account by managing the post-irradiation separation, rapidly removing 
early 52gMn and later waiting for 52mMn to be formed from 52gFe. The possible production 
routes for 52gFe/52mMn generator have been summarized by Atcher et al., 1980 and Steyn et 
al., 1990. According to the literature, a reasonable option is to irradiate thick natMn target with 
protons of energy from 40-50 to 60-75 MeV. This procedure is routinely used in Brookhaven 
Linac Isotope Producer. Up to 22 MBq/μAh of 52gFe/52mMn was reached, with no more than 
1% of 55Fe contaminant. 
 
55Co 
 
 55Co has been acknowledged as “the emerging PET radionuclide” by Amjed et al., 
2016, as it features high β+ branching ratio, half-life favouring the studies of slow biological 
process and feasible labelling with different complexes as well as satisfactory biodistribution 
(Srivastava, et al., 1994; Thisgaard et al., 2011; Mastren et al., 2015; Dam et al., 2016; 
Garousi et al., 2017). The mentioned paper summarized numerous applications of 55Co 
which include: the lung cancer detection (Nieweg et al., 1982), the renal imaging (Goethals 
et al., 2000) and the neuro-imaging (Jansen et al. 1994, 1996, 1997; Stevens et al.,1999; 
Reuck et al., 2004). These procedures can be also performed with β+γ coincidence PET 
(suggested by Martin et al., 1995) since 55Co emits one high-intensity high-energy γ line. 
Additionally, there is a theranostic matched pair with Auger-emitting 58mCo. However, it is 
worth mentioning that two additional low-intensity γ lines from 55Co would introduce 
additional dose to the patient and noise to the imaging. 
 The production routes of 55Co have been thoroughly studied via different nuclear 
reactions, for which the cross-section and thick target yield data are very well reported. The 
most promising one is 54Fe(d,n) reaction (Sharma et al., 1986; Zaman and Qaim, 1996; 
Hermanne et al., 2000; Zaman et al., 2003; Nakao et al., 2006; Király et al., 2009; Thisgaard 
et al., 2011; Závorka et al., 2011; Khandaker et al., 2013; Avrigeanu et al., 2014; Valdovinos 
et al., 2017) which requires enriched target to produce sufficient quantities as well as avoid 
the co-production of long-lived radioactive impurities of 56Co and 57Co as they emit high 
intensity γ lines which unnecessarily increase the dose. The commercially available 
enrichment exceeds 95% in the form of metal (54Fe) or oxide (54Fe2O3). For example, with 
the metal target and 1 μAh irradiation of 8 or 15 MeV deuteron beam, up to 20 MBq or 40 
MBq of 55Co respectively can be produced, with negligible amount of 56Co and 57Co (Sharma 
et al., 1986). 
 
60Cu 
 
 60Cu is a short-lived β+ emitter with an additional γ line making it suitable for β+γ 
coincidence PET (Martin et al., 1995). So far, it has only been used in standard PET 
technique along with the labelling studies of 60Cu-ATSM for tumor hypoxia imaging (Blower 
et al., 1996; McCarthy et al., 1999; Chao et al., 2001; Dehdashti et al., 2003; Dietz et al., 
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2008; Lewis et al., 2008). It also has a theranostic matched pair, 67Cu, the β- emitter for 
targeted radionuclide therapy. 
 The most commonly used production route of 60Cu is via 60Ni(p,n) or natNi(p,x) 
reactions (used in above-mentioned papers). The corresponding cross-sections have been 
already well reported (Blosser and Handley, 1955; Tanaka et al., 1972; Barrandon et al., 
1975; Levkovskij, 1991; Singh et al., 2006; Al Saleh et al., 2007; Amjed et al., 2014). 
Irradiations of thick 60Ni targets (with commercially available 99% enrichment) with proton 
beam of 16 MeV and 1 μA for 20 minutes, followed by 1 h post-irradiation processing time, 
are sufficient to achieve up to 400 MBq of 60Cu. 
 
66Ga 
 
 The radioisotope of 66Ga already has multiple applications and it has been widely 
used as PET radioisotope. Labelled with albumin colloids from commercially available kits 
designed for 99mTc, 66Ga was successfully used in the imaging of the lymphatic transport 
(Goethals et al., 1988). The feasible 66Ga labelling and purification was also reported for 
DOTA-peptides 66Ga-DOTA-Tyr3-octreotide and 66Ga-DOTA-biotin (Lewis et al., 2002), the 
blood cells (Ellis and Sharma 1999; Jalilian et al. 2003) and 66Ga-deferoxamine-folate for in 
vivo and in vitro imaging (Ke et al., 2003, 2004; Mathias et al., 2003). Additionally, the most 
abundant β+ emitted by 66Ga has a uniquely high energy, which allowed the use of 66Ga-
DOTATOC for both PET imaging and radiotherapy (Ugur et al., 2002). Finally, 66Ga emits 
high-energy γ line making it appropriate for β+γ coincidence PET. However, it also emits 
many less intense but high-energy γ lines that will introduce noise in the imaging and dose to 
the patient. 
 The method of choice to produce 66Ga is via 66Zn(p,n) reaction. In this case, several 
cross-section data (Hille et al., 1972; Little and Lagunas-Solar, 1983; Kopeckỳ, 1990; 
Tárkányi et al., 1990; Levkovskijj, 1991; Hermanne et al., 1991; Nortier et al., 1991; 
Szelecsényi et al., 1998, 2005) and thick target yield data (Barrandon et al., 1975; Intrator et 
al., 1981; Dmitriev, 1986; Kopeckỳ, 1990; Tárkányi et al., 1990; Nortier et al., 1991; Lewis et 
al., 2002; Rowshanfarzad et al., 2004) were investigated. This reaction was also 
summarized and re-evaluated with ALICE/ASH 0.1 and TALYS-1.2 by Sadeghi et al., 2010. 
The natural abundance of 66Zn is quite low but a feasible method was reported for the 
preparation and recovery of the enriched target (Rowshanfarzad et al., 2004). Around 200 
mg/cm2 of 66Zn material is enough for the optimal production of 66Ga with the 15 MeV proton 
beam. The reported yield for 99% enriched target was around 500 MBq/μAh of 
radionuclidically pure 66Ga. The optimal post-irradiation processing of Zn targets and 66Ga 
separation was found to be a cation-exchange chromatography and/or liquid-liquid extraction 
method (Lewis et al., 2002; Rowshanfarzad et al., 2004). 
 
69Ge 
 

The unravelled potential of 69Ge (Mirzadeh and Lambrecht, 1996) is mainly related to 
the common interest shifted on a different germanium isotope (namely, the 68Ge/68Ga 
generator, summarized by Rösch, 2013 and Velikyan, 2015). However, its physical 
properties make it a possible β+γ coincidence PET agent, yet with an inconveniently low β+ 
branching ratio, similarly low intensity of 1 MeV γ line, and the presence of additional γ lines. 
On the other hand, its chemistry is already well developed for the purpose of the mentioned 
generator. So far, it was only used to label nanoparticles for successful in vivo PET/MRI 
imaging (Chakravarty et al., 2014). Due to its long half-life, it can be also considered for 
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immunoPET studies and antibody labelling. 
 The production of the applicable amounts of 69Ge was not yet investigated but the 
cross-section for 69,natGa(p,n) reaction (Levkovskij, 1991; Porile et al., 1963; Johnson et al., 
1964; Adam-Rebeles et al., 2013; Hermanne et al., 2015) seems the most cost-efficient and 
available for small cyclotrons. The 16 MeV beam interacting on a thick natGa target would 
produce around 110 MBq/μAh. However, no cross-section data is available to estimate the 
co-production of radioactive impurity of 71Ge. The measurement is challenging due to no γ 
emission but important as 71Ge is the long-lived Auger-emitter which would contribute to the 
dose. 
 
72As 
 
 In the nuclear medicine, another popular PET radioisotope, 72As, can be considered 
in the β+ɣ coincidence PET thanks to its additional γ line. It has proven its favourable 
physical and chemical properties in labelling and preclinical studies (Hosain et al., 1982; 
Emran et al., 1984; Ballard et al., 2012; Ellison et al., 2016). Furthermore, it has a 
therapeutic matched pair in the form of the β- emitting 77As. Both radioisotopes have been 
studied in preclinical and clinical research (Nayak and Brechbiel, 2009; Ellison et al., 2016). 
Arsenic itself, in the form of the arsenic trioxide, is a popular anticancer drug (Ravandi, 
2004), successfully used recently in the clinical treatment of the acute promyelocytic 
leukemia (Miller et al., 2002; Lu et al., 2007). 
 There are many methods for the direct production of 72As, however much more 
attention is paid to the generator 72Se/72As due to its convenient half-life of 8.4 d. Many 
practical extraction methods for this generator have already been reported (Al-Kouraishi and 
Boswell, 1978; Phillips et al., 1991; Jennewein et al., 2004, 2005; Ballard et al., 2012, 2012b; 
Chajduk et al., 2012; Wycoff et al., 2014; Feng et al., 2019). According to the literature, the 
best method for the production of 72Se/72As leads via 70Ge( ⍺ ,2n) reaction (Amiel, 1959; Al-
Kouraishi and Boswell, 1978; Calboreanu et al., 1987; Mushtaq and Qaim, 1990; Levkovskij, 
1991; Jennewein et al., 2005; Szkliniarz et al., 2015; Takács et al., 2016; Feng et al., 2019). 
To reduce the formation of radioactive impurity 75Se that decays to stable 75As, the enriched 
70Ge target is recommended (commercially available enrichment is about 96%). The 6 h 
irradiation with 20 μA and the energy range of 47→0 MeV produces around 250 MBq 72Se 
(Feng et al., 2019) from which around 70 MBq 72As can be extracted each day during the 
following week. The reported radioactive impurities of arsenic can be removed during the 
preparation of the generator. 
 
76Br 
 
 The radioisotope of 76Br has a large number of accompanying γ rays, from which the 
most intensive makes 76Br a possible β+γ candidate (as suggested by Lubberink et al., 
2002a; Sandström et al., 2004; Lang et al., 2013; Thirolf et al., 2015) whose coincidence 
PET imaging and γ cascade correction have already been investigated (Lubberink et al., 
2002a). There are two factors limiting the possible interest in 76Br: the γ line used for the 
coincidence has quite low energy and other γ lines contribute to the dose. However, the 
labelling chemistry of bromine is similar to that of iodine, which is relatively well investigated 
(Maziere and Loc'h, 1985) and might render 76Br worth considering. So far, it has been 
successfully used to study the dopamine receptors associated with the diagnosis of 
schizophrenia (Martinot et al., 1991; 1994), as the amino acid tracer (Hanaoka et al., 2015), 
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as the monitor for corticotropin-releasing hormone (Jagoda et al., 2011), as the bromo 
analogue marker to diagnose heart disease (Loc'h et al., 1994), for the labelling of mouse 
epidermal growth factor (Scott-Robson et al., 1991) and to study the tumor angiogenesis by 
labelling a human antibody (Rossin et al., 2007). Additionally, 76Br was used to verify the 
thymidine analogue, BUdR, as the tumor cell proliferation imaging agent (Gardelle et al., 
2001). 
 As summarized by Hassan et al., 2004 and Sadeghi et al., 2010, the most feasible 
method for production of 76Br is the direct route via 76Se(p,n) reaction for which the cross-
section data (Kovàcs et al., 1985, Levkovskij, 1991, Hassan et al., 2004; El-Azony et al., 
2009) and experimental yields (Janssen et al., 1980; Tolmachev et al., 1998) are well 
measured. However, the favourable cross-section requires an enriched target due to the low 
abundance of 76Se. The literature indicates that around 360 MBq/μA of 76Br can be produced 
by the irradiation of the commercially available 97%  enriched metal target with 15→8 MeV 

proton beam. The radioactive impurity of 77Br was observed at the level below 2% and 
originated from 77Se impurity in the target. 
 
82gRb 
 
 An interesting case, 82gRb (T1/2 = 1.3 min), emits β+ radiation followed by only one 
low-intensity γ line. Still, it was introduced as the β+γ PET candidate (Lang et al., 2013; 
Thirolf et al., 2015). 
 The radioisotope of 82Sr (T1/2 = 25.4 d) that decays to 82gRb is the only reasonable 
method to acquire 82gRb. The generator 82Sr/82gRb has already gained incredible popularity 
and is widely used to diagnose the cardiovascular disease (a leading cause of death in 
modern industrialized countries) in myocardial perfusion imaging (Yano et al., 1977; Kensett 
et al., 1987; Go et al., 1990; Saha et al., 1990; Di Carli et al., 2007; Klein et al., 2007; 
Merhige et al., 2007; Yoshinaga et al., 2010; Dhar and Ananthasubramaniam, 2011; 
Scholtens and Barneveld, 2017). It provides significantly better precision compared to 201Tl 
(Go et al., 1990) and presents less radiation exposure for patients compared to 99mTc scan 
(Yoshinaga et al., 2010). Many studies have also been performed on the elution system and 
the optimized chemical separation (Grant et al., 1975; Yano et al., 1977; Kensett et al., 1987; 
Mausner et al., 1987; Saha et al., 1990; Cackette et al., 1993; Bilewicz et al., 2005; Klein et 
al., 2007; Yoshinaga et al., 2010). 

The method of choice for 82Sr/82gRb generator production is the (p,4n) reaction on 
85Rb which benefits from high natural abundance. This method was studied multiple times 
and is most often employed for the large-scale production (Mausner et al., 1987; Huszár et 
al., 1989; Deptula et al., 1990; Lagunas-Solar, 1992; Cackette et al., 1993; Gilabert et al., 
1998; Ido et al., 2002; Buthelezi et al., 2006), although, as summarized by Takács et al., 
2003, significant discrepancies still exist. For the proton energy of 70-60 MeV (with 40 MeV 
exiting from the thick Rb or RbCl target), the 82Sr/82gRb production yields of 8-13 MBq/μAh 
were reported. The observed long-lived radioactive impurity of 85Sr was below 1%. As the 
typical generator activity used for clinical studies reaches 4 GBq (Saha et al., 1990), the 
typical irradiation lasts for few days and requires high beam current. 
 
86gY 
 
 The potential of 86gY lies within its theranostic matched pair (Lopci et al., 2011; Rösch 
et al., 2017; Bandara et al., 2018), the β- emitter 90Y available from the long-lived 90Sr/90Y 
generator system, which is a versatile therapy agent (as reviewed by Goffredo et al., 2011). 
However, the emission of multiple intensive, dose-contributing γ rays from 86gY and the 
recent development of the 90Y imaging with the bremsstrahlung photons (summarized by 
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Wright et al., 2015) might render the matched pair obsolete. Still, many radiochemicals and 
in vivo PET imaging studies were performed with 86gY (summarized by Nayak and Brechbiel, 
2011) and its dominating γ line was recognized for the β+ɣ coincidence PET (Pentlow et al., 
2000; Beattie et al., 2003; Buchholz et al., 2003; Sandström et al., 2004; Lang et al., 2013; 
Thirolf et al., 2015). In fact, the quantitative coincidence imaging for this radioisotope have 
been already investigated (Pentlow et al., 2000; Beattie et al., 2003; Buchholz et al., 2003). 
 Several methods of 86gY production were investigated (in each, the co-produced 86mY 
decays with T1/2 = 47.4 min to 86gY). As reviewed by Schmitz, 2011, the most commonly 
used is the direct production via 86Sr(p,n) reaction, for which the excitation function has been 
also re-evaluated with nuclear codes by Sadeghi et al., 2010. It requires about 14 MeV as 
higher energies increase the percentage of the contaminants. The reported irradiation of 
around 200 mg/cm2 of the commercially available 95% enriched 86SrCO3 target yields about 
150 MBq/μAh with less than 3% of radioactive impurities (Rösch et al., 1993a,1993b; Kettern 
et al., 2002; Yoo et al., 2005, Avila-Rodriguez et al., 2008, Lukić et al., 2009; Elbinawi et al., 
2018). For comparison, around 10 MBq of 86gY is enough for in vivo mice studies (Lövqvist et 
al., 2001; McQuade et al., 2005). 
 
94mTc 
 
 Despite the clear dominance of 99mTc in nuclear medicine, other technetium 
radioisotope, 94mTc, is of a potential interest as a PET quantification of 99mTc-
radiopharmaceuticals (Bigott et al., 2001; Qaim, 2012) due to the same chemistry of both 
isotopes. It decays completely to 94Mo and emits one high-intensity high-energy ɣ line 
making it suitable for β+γ coincidence imaging (Martin et al., 1995; Lang et al., 2013; Thirolf 
et al., 2015). The feasibility of standard in vivo PET studies has been already reported 
(Nickles et al., 1993; Stone et al., 1994; Luyt et al., 2003). 
 The method of choice for the 94mTc production is the bombardment of 94Mo with 
medium energy proton beam (Rösch and Qaim, 1993c; Rösch et al., 1994; Bigott et al., 
2001, 2006; Uddin et al., 2004; Kakavand et al., 2013). The commercially available 
enrichment of about 95% is available in MoO3 powder form. The irradiation with the optimal 
energy range of 13→8 MeV produces about 2 GBq/μAh 94mTc with about 8% of 94gTc 
impurity. A 1 h irradiation with 4 μA beam followed by 0.5 h thermochromatographic 
separation with 90% efficiency results in 1300 MBq 94mTcO4

-, ready for medical application 
(Rösch et al., 1994). Other purification and target recovery methods were also investigated 
(summarized in Bigott et al., 2006). 
 
110mIn 
 
 So far, the radioisotope of 110mIn has not drawn a lot of attention in the nuclear 
medicine field. However, as confirmed by in vivo clinical studies, it provides 3 times better 
resolution than the typical 111In SPECT (Lubberink et al., 2002b) which opens the 
possibilities for the detection of small tumors with indium-labelled radiopharmaceuticals. This 
might be important in the light of an emerging radioisotope 114mIn (IAEA, 2007), an Auger 
emitter with almost instant β- emissions (from its short-lived daughter), whose therapeutic 
properties are expected (Tolmachev et al., 2000). Additionally, 110mIn emits medium-energy 
but high-intensity γ line which could be potentially interesting for β+γ coincidence PET. 
 Several cross-sections measurements are available, suggesting the potential 110mIn 
direct and indirect production options (summarized by Tárkányi et al., 2015). The direct 
production of 110mIn (Jπ = 2+) always leads to the co-formation of the radioactive impurity 
110gIn (Jπ = 7+) but the higher isomeric ratio can be achieved with lower projectile energies. 
The recommended reaction, 110Cd(p,n) (Otozai et al., 1966; Abramovich et al., 1975; Skakun 
et al., 1975; Kormali et al., 1976; Marten et al., 1985; Nortier et al., 1990; Tárkányi et al., 
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2006, 2015; Al-Saleh, 2008; Khandaker et al., 2008; Büyükuslu et al., 2010), at 15 MeV 
energy (available in the commonly used machines) and with electroplated natCd target 
(Kakavand et al., 2015b) yields 160 MBq/uAh of 110mIn with reported 3% of 110gIn and 6% of 
111gIn radioactive impurities (Mukhammedov et al., 1984; Kakavand et al., 2015b). 
 
124I 
 
 A textbook medical radionuclide 124I has relatively low β+ branching ratio and the 
medium-intensive medium-energy γ line but was still suggested as β+γ PET candidate 
(Martin et al., 1995; Herzog et al., 2002; Sandström et al., 2004; Lang et al., 2013; Thirolf et 
al., 2015) and the quantitative coincidence imaging have also been investigated (Herzog et 
al., 2002). This is mainly because it is the only isotope of iodine suitable for PET that can be 
paired with the strategic therapeutical 131I (Lopci et al., 2011) commonly used for the 
treatment of hyperthyroidism and thyroid cancer (overviewed by de Klerk, 2000 and Higashi 
et al., 2012). Furthermore, 124I itself has already been used for the imaging of tissue 
proliferation (Blasberg et al., 1996; 2000; Roelcke et al., 2002) and for multiple in vivo cancer 
imaging studies (Langen et al., 1990; Snook et al., 1990; Wilson et al., 1991), including 
thyroid (Frey et al., 1986; Phan et al., 2008; Capoccetti et al., 2009; Kharazi et al., 2011; 
Plyku et al., 2017). It is also considered as a potential Auger-emitter for the radiotherapy 
(Stepanek et al., 1996). 
 The methods for production of 124I were thoroughly studied by many groups with the 
use of protons, deuterons and ⍺ -particles (summarized by Schmitz, 2011 and Azizakram et 
al., 2016). As one of the “emerging isotopes”, its production cross-sections are also collected 
in IAEA database (IAEA, 2007). The most typical 124I production method is the 124Te(p,n) 
reaction (Kondo et al., 1977; Scholten et al., 1995; Qaim et al., 2003; Sajjad et al., 2006; Nye 
et al., 2007; Aslam et al., 2010) suitable for popular small cyclotrons but requiring the 
enriched target material (which is crucial to increase the yield and to reduce the radioactive 
impurities). Recent thick target yield measurements (Sajjad et al., 2006) indicate that the 
irradiation of the commercially available 124TeO2 targets (99.9% 124Te) with the energy range 
of 14→7 MeV produces around 21 MBq/μAh of 124I with around 0.03% of radioactive 
impurities of 125I and 126I, followed by the dry distillation. Basically, a few hours run with 
around 20 μA is enough to produce several 50 MBq batches used for the imaging (Plyku et 
al., 2017). 
 
Online monitors (10C, 14O) 
 
 There are two very short-lived β+γ PET radionuclide candidates mentioned in the 
literature (Martin et al., 1995; Lang et al., 2013; Thirolf et al., 2015), namely: 10C (T1/2 = 19.3 
s) and 14O (T1/2 = 70.6 s). They are formed via the fragmentation of the high energy heavy 
ions or different nuclear reactions induced by the high-energy projectiles on 12C, 14N, 16O 
nuclides which are immensely abundant in the organic compounds. The beams used in the 
ion therapy, apart from the delivery of the radiation dose, produce 10C and 14O allowing the 
visualization of the treatment with the online acquisition system. 

Online PET scans with 10C and 14O have already been reported (Litzenberg et al., 
1999; Enghardt et al., 2004; Cambraia Lopes et al., 2016; D’Ascenzo et al., 2018). Still, this 
technique poses a challenge from the point of the time resolution (Oelfke et al., 1996; 
Beebe-Wang et al., 2003; Cambraia Lopes et al., 2016). The method with β+ɣ coincidence 
PET can be potentially considered in cases where the lower statistic is expected. 
 
Calibration source (22Na) 
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 22Na is a common calibration source, used even in the recent PET research 
(D’Ascenzo et al., 2018). It has a very long half-life of 2.6 years and high β+ branching ratio, 
making it a convenient β+ emitter for the repetitive calibrations. 22Na also emits 1274.5 keV 
gamma-line that was used as a trigger during the calibration of liquid argon detector 
(Amaudruz et al., 2016). Being already recognized as the β+γ PET candidate (Martin et al., 
1995; Lang et al., 2013; Thirolf et al., 2015), 22Na can be therefore considered as a 
calibration source for β+γ coincidence PET. 
 22Na sources can be bought from the different suppliers or produced on-site with the 
proton beam of low and medium energy (as summarized by Takács et al., 1996). Today, the 
only large-scale production is performed with the use of 70 MeV proton cyclotron by 
iThemba LABS in South Africa. 
 
Summary 
 

In this paper, we summarized the properties and availability of radioisotopes suitable 
for the β+γ coincidence PET imaging. The 44gSc radioisotope is undoubtedly most useful for 
the proof of concept. However, there are many other attractive candidates, in particular 
those already popular in nuclear medicine: 66Ga, 72As, 82Sr/82gRb and 124I. The coincidence 
imaging can also be employed in PET/MRI technique with the use of 52mMn and 69Ge or with 
many 99mTc-radiopharmaceuticals with the use of 94mTc. The summary of β+γ PET 
radioisotopes is shown in Table 3. Despite discussed drawbacks, the presented 
radioisotopes can be useful in the β+γ coincidence PET depending on the available scanner 
and the nature of the study. 
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Table 1. Physical properties of the possible β+γ PET radioisotopes (IAEA, 2019) 
 

Isotope T1/2 Decay (%) Main gamma lines [keV] (intensity; delay) 

10C 19.3 s EC (0.1), β+ (99.9) 718.4 (100%; 0.71 ns) 

14O 70.6 s EC (0.1), β+ (99.9) 2312.6 (99.4%; 68 fs) 

22Na 2.6 y EC (10), β+ (90) 1274.5 (99.9%; 3.6 ps) 

34mCl 32 min EC (1.1), β+ (54.3), 
IT (44.6) 

146.4 (40.5%; instant), 1176.6 (14.1%; 136 fs), 
2127.5 (42.8%; 318 fs), 3304.0 (12.3%; 136 fs) 

44gSc 3.9 h EC (5.7), β+ (94.3) 1157.0 (99.9%; 2.61 ps) 

48V 16.0 d EC (50.1), β+ (49.9) 983.5 (100%; 4.04 ps), 1312.1 (97.5%; 0.76 ps) 

52mMn 21 min EC (1), β+ (97), IT (2) 1434.1 (98.3%; 0.783 ps) 

55Co 17.5 h EC (24), β+ (76) 477.2 (20.2%; 37.9 ps), 931.1 (75%; 8 ps), 
1408.4 (16.9%; 37.9 ps) 

60Cu 24 min EC (7), β+ (93) 826.1 (22%; 0.59 ps), 1332.5 (88%; 0.735 ps) 

66Ga 9.49 h EC (44), β+ (56) 1039.2 (37%; 1.68 ps), 2752 (23%; not found) 

69Ge 39 h EC (76), β+ (24) 574.2 (13.3%; 1.7 ps), 872.1 (11.9%; 0.25 ps), 
1107 (36%; 0.222 ps) 

72As 26 h EC (14), β+ (86) 834.0 (80%; 3.35 ps) 

76Br 16.2 h EC (44.4), β+ (55.6) 559.1 (74.0%; 12.3 ps), 657.0 (15.9%; 11 ps), 
1853.7 (14.7%; not found) 

82gRb 1.3 m EC (5), β+ (95) 776.5 (13%; 4.45 ps) 

86gY 14.7 h EC (68.1), β+ (31.9) 

443.1 (16.9%; 5 ns), 627.7 (32.6%; 0.9 ps), 
703.3 (15.4%; 5 ns), 777.4 (22.4%; 0.386 ps), 
1076.6 (82.5%; 1.46 ps), 1153.1 (30.5%; 1.73 
ps), 1920.7 (20.8%; not found) 

94mTc 52 min EC (28), β+ (72) 871.1 (94%; 2.77 ps) 

110mIn 69.1 min EC (38.8), β+ (61.2) 657.8 (97.7%; 5.42 ps) 

124I 4.2 d EC (77.3), β+ (22.7) 602.7 (62.9%, 6.2 ps), 722.7 (10.4%; 1.04 ps), 
1691.0 (11.2%; 0.17 ps) 
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Table 2. Natural abundance of the targets discussed in the text (IAEA, 2019). 
 

Element Natural isotopic composition 

Al 27Al = 100% 

C 12C = 98.93%, 13C = 1.07% 

Ca 40Ca = 96.94%, 42Ca = 0.647%, 43Ca = 0.135%, 44Ca = 2.09%, 46Ca = 0.04%, 
48Ca = 0.19% 

Cd 106Cd = 1.25%, 108Cd = 0.89%, 110Cd = 12.49%, 111Cd = 12.80%, 112Cd = 
24.13%, 113Cd = 12.22%, 114Cd = 28.73%, 116Cd = 7.49% 

Cr 50Cr = 4.35%, 52Cr = 83.79%, 53Cr = 9.5%, 54Cr = 2.37% 

Fe 54Fe = 5.85%, 56Fe = 91.754%, 57Fe = 2.12%, 58Fe = 0.28% 

Ga 69Ga = 60.11%, 71Ga = 39.89% 

Ge 70Ge = 20.57%, 72Ge = 27.45%, 73Ge = 7.75%, 74Ge = 36.5%, 76Ge = 7.73% 

Mo 92Mo = 14.53%, 94Mo = 9.15%, 95Mo = 15.84%, 96Mo = 16.67%, 97Mo = 9.6%, 
98Mo = 24.39%, 100Mo = 9.82% 

N 14N = 99.64%, 15N = 0.36% 

Ni 58Ni = 68.08%, 60Ni = 26.22%, 61Ni = 1.14%, 62Ni = 3.63%, 64Ni = 0.93% 

O 16O = 99.76%, 17O = 0.04%, 18O = 0.2% 

Rb 85Rb = 72.17%, 87Rb = 27.83% 

S 32S = 94.99%, 33S = 0.75%, 34S = 4.25%, 36S = 0.01% 

Se 74Se = 0.89%, 76Se = 9.37%, 77Se = 7.63%, 78Se = 28.77%, 80Se = 49.61%, 
82Se = 8.73% 

Sr 84Sr = 0.56%, 86Sr = 9.86%, 87Sr = 7.0%, 88Sr = 82.58% 

Ta 180mTa = 0.012, 181Ta = 99.988% 

Te 120Te = 0.09%, 122Te = 2.55%, 123Te = 0.89%, 124Te = 4.74%, 125Te = 7.07%, 
126Te = 18.84%, 128Te = 31.74%, 130Te = 34.08% 

Ti 46Ti = 8.25%, 47Ti = 7.44%, 48Ti = 73.72%, 49Ti = 5.41%, 50Ti = 5.18% 

Zn 64Zn = 49.17%, 63Zn = 27.73%, 67Zn = 4.04%, 68Zn = 18.45%, 70Zn = 0.61% 
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Table 3. The arbitrary summary of β+γ PET radioisotopes discussed in the text. “Plus” sign 
indicates favourable characteristic, “minus” stands for unfavourable, and “plus/minus” marks 
moderate. The order of the radioisotopes in the table corresponds to their overall score. 
 

radio-
isotope T1/2 

high β+ 
branching 

ratio 

intensive 
third γ 

(~1 MeV) 

no 
additional 

γ lines 
feasible 

production 
already 
used in 
practice 

theranostic 
pair 

44gSc 3.9 
h + + + + +/- + 

72As 26 h + + + +/- + + 

55Co 17.5 
h + + +/- +/- + + 

60Cu 24 
min + + +/- + - + 

52mMn 21 
min + + + +/- +/- - 

66Ga 9.49 
h +/- +/- +/- + + +/- 

110mIn 69.1 
min +/- +/- + + - + 

82gRb 1.3 
m + - + +/- + - 

94mTc 52 
min +/- + + + - - 

124I 4.2 
d - +/- +/- +/- + + 

48V 16.0 
d +/- + - + +/- - 

86gY 14.7 
h - + - + - + 

76Br 16.2 
h +/- +/- +/- + +/- - 

69Ge 39 h - +/- +/- +/- - - 

34mCl 32 
min +/- +/- - - - - 
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