
Fast and robust PRNGs based on jumps in N-cubes
for simulation, but not exclusively for that.

Sylvain Contassot-Vivier∗, Jean-François Couchot∗†, Mohammed Bakiri‡, and Pierre-Cyrille Héam†
∗ LORIA, CNRS, University of Lorraine, France

Email: Sylvain.Contassotvivier@loria.fr
† FEMTO-ST Institute, University Bourgogne Franche-Comté, France

‡ Development Center of Advanced Technologies, Algeria

Abstract—Pseudo-Random Number Generators (PRNG) are
omnipresent in computer science: they are embedded in all
approaches of numerical simulation (for exhaustiveness), opti-
mization (to discover new solutions), testing (to detect bugs)
cryptography (to generate keys), and deep learning (for initial-
ization, to allow generalizations). . . . PRNGs can be basically
divided in two main categories: fast ones, robust ones. The
former have often statistical biases such as not being uniformly
distributed in all dimensions, having a too short period of
time,. . . . In the latter case, statistical quality is present but the
generators are not fast. This is typically what is encountered
when running a cryptographically secure PRNG. In this paper,
we propose alternative architectures, based on jumps in N-cubes,
that provide fast and robust PRNGs for efficient simulations, but
not exclusively for that.

Index Terms—PRNG, Hamiltonian Cycles, FPGA, Simulation.

I. INTRODUCTION

Hardware devices for performing simulations are multiple:
multi-core processors, GPU cards, FPGA cards. Each device
is dedicated to a family of simulations and none should be
privileged over the others. Simulation methods, prediction of
parameters such as the Monte-Carlo method, are based more
or less on the generation of random events that allow the sim-
ulation of random physical events [1]. Many (pseudo)random
number generators have been proposed, but few can be used
for serious simulations: their statistical qualities are not suf-
ficient to ensure that the simulation will reflect all the cases
that may appear in reality.

But the use of Pseudo-Random Number Generators (PRNG)
is not limited to simulation, even if this field represents an im-
portant part of their applications. PRNGs can indeed be found
in public applications like random game universes, search for
new optimums in operational research, cryptography, . . .

Design of such PRNGs must fulfill some essential properties
to ensure that their use will not jeopardize the quality of the
overall application. Those properties can be listed as:

• Statistical robustness: the PRNG must generate bits se-
quences as close to real random sequences as possible.
This implies that the PRNG is an implementation of
a mathematical probability distribution. In other words,
each member of the output family, all tuples, all sets
or intervals of the same length on the distribution, are
equally probable. Today, verifying these types of prop-
erties is achieved by performing statistical tests on gen-

erators. These only check some properties about random
variables for predefined parameter values. Among the set
of PRNGs statistical evaluation batteries, the reference
one is the TestU01 [2].

• Speed or throughput: the PRNG must be able to reach
high throughput. This is equivalent to use as less machine
cycles as possible to generate one bit or one word of
bits. This implies that the PRNG must perform the least
operations as possible for each generation. For example,
the use of multiplications has a great impact over the
performance and area of hardware implementations and
should be avoided [3].

• Size: the PRNG must be as small as possible so that it can
be integrated in embedded systems (as a chip e.g.). This
implies to use an inner state that is as small as possible.
Also, the number and the nature of operations may be
dramatic for this feature, when considering the hardware
implementation on chips (FPGA,...).

In the scope of this paper, we do not consider cryptographic
aspects, but we address all the other features. We propose
several PRNG designs that allow to fulfill at least the first two
criteria given above. Also, we keep in mind the problem of
the size and we try to limit it whenever it is possible.

This article is organized as follows. The next section
gives the background over PRNGs that is required to fully
understand our work. Then, Section III shows how to produce
PRNGs based on one jump in a N-cube, and studies them
with respect to efficiency (on CPUs and on FPGAs) and to
statistical properties. Section IV adds one step to this kind
of combinations and shows how this additional step improves
PRNGs in terms of statistical quality without reducing the
efficiency. Section V provides a theoretical boundary of the
mixing time of this family of generators. This demonstrates
that the number of jumps can be very small without reducing
the statistical quality of the PRNG. Section VI presents some
numerical experiments on this family of generators. Sec-
tion VII summarizes this work and provides some perspectives.

II. BACKGROUND

As far as we know, it is an issue to gather statistical
robustness and high speed in a same PRNG. Currently,
the fastest PRNG are not robust as they do not pass the
TestU01 which is a reference to evaluate statistical robustness.

On the other hand, robust PRNGs are slower as they contain
either more operations or more complex ones.

Quoting [4], [5], a Random Number Generator (RNG) can
be defined by a tuple (S, f , g, U , x0), in which S is the
internal state space of the generator, U is the random output
space, f : S → S is the transition mapping function, g :
S → U is the output extractor function from a given state,
and x0 is the seed, see Fig. 1. The random output sequence is
y1, y2, . . . , where each yt+1 ∈ U is generated by the two main
steps described thereafter. The first step applies the transition
function according to the recurrence

xt+1 = f(xt), (1)

where f is an algorithm. The configuration xt+1 is the
new internal state. The second step consists in applying the
generator function, further denoted as g, to the new internal
state xt+1 leading to the output yt+1 = g(xt+1).

x0

yt

Transition function
|S|−bits state register

Seed

|U|−bits output function

g : S U

f : S S Next state xt+1

Current state xt

Figure 1: General Scheme of a Random Number Generator

Let B = {0, 1} be the set of Boolean values. In Listing 1,
Taus88 [6] is given as an example of such Pseudo Random
Number Generator. In this PRNG, the internal state is mem-
orized as a vector x = (x1, x2, x3) of three 32 bits length
integers in S = B32×B32×B32 ≡ B96 and the output space is
U = B32. The function taus88_f() (resp. taus88_g())
is the aforementioned f (resp. g) function.

It is not hard to establish in this example that

xt+1
1 [i] = f1(x

t
1)[i] =

�
xt
1[i− 12] if 14 ≤ i ≤ 32

xt
1[i+ 19]⊕ xt

1[i+ 6] if 1 ≤ i ≤ 13

xt+1
2 [i] = f2(x

t
1)[i] =

�
xt
2[i− 4] if 8 ≤ i ≤ 32

xt
2[i+ 25]⊕ xt

2[i+ 23] if 1 ≤ i ≤ 7

xt+1
3 [i] = f3(x

t
1)[i] =

�
xt
3[i− 17] if 22 ≤ i ≤ 32

xt
3[i+ 8]⊕ xt

3[i+ 11] if 1 ≤ i ≤ 21

The state variable x = (x1, x2, x3) jumps from configura-
tion xt ∈ B96 to xt+1 ∈ B96 according to rules defined in
previous equations. More generally, the modifications of the
internal state of a PRNG, made by function f , may be seen
as a way to define such jumps inside a N-cube.

The role of the g function is to pass from the internal space
to the output space. Generally, this corresponds to a dimension
reduction, but it may also apply a post-treatment over the
internal state, which often consists in a mixing operation.

Listing 1: Taus88 PRNG algorithm
1 // PRNG seed (static in this case)
2 #define SEED 12345
3 // Internal state
4 static uint32_t x1 = SEED,
5 x2 = SEED,
6 x3 = SEED;
7 // Internal state update function
8 void taus88_f() {
9 uint32_t b;

10 // XORs and shifts
11 b = (((x1 << 13) ^ x1) >> 19);
12 x1 = (((x1 & 4294967294) << 12) ^ b);
13 b = (((x2 << 2) ^ x2) >> 25);
14 x2 = (((x2 & 4294967288) << 4) ^ b);
15 b = (((x3 << 3) ^ x3) >> 11);
16 x3 = (((x3 & 4294967280) << 17) ^ b);
17 }
18 // Output value computation function
19 uint32_t taus88_g(){
20 // XOR of the three internal values
21 return (x1 ^ x2 ^ x3);
22 }
23 // PRNG function to be used by programmers
24 uint32_t taus88(){
25 taus88_f(); // Internal state update
26 return taus88_g(); // PRNG Output
27 }

In the example of Taus88, the g function is such a reduce
and mix function that goes from B96 to B32. In other schemes,
e.g. [7], [8], the dimension reduction is combined with a per-
mutation function of the bits to be produced, which improves
the statistical properties. However, in the case where function
g requires additional state variables, the evolution of these
variables must be placed into f . Also, the memory size of
these additional variables must be added to the size of S when
calculating the global generator’s dimension.

It therefore remains to define the elements S, f , g, and U .
The work presented in this paper asserts that both f and g can
be defined thanks to two weak PRNGs, i.e., not statistically
robust, but generally operating in low-dimensional spaces and
extremely fast. This approach has been successfully used in
the following cases [8] with U = B32, f similar to the
aforementioned Taus88, and the g function composed of a
XOR between the Taus88 state variables (x1, x2, x3) (as in
Taus88) and a simplified version of PCG32 [7] whose internal
state is Spcg32 = B64. This PRNG has been deployed on
FPGA. On this support, as far as we know, it is the generator
with the highest throughput rates that pass the entire TestU01.
The addressed question in this work is:

Does there exist a combination (and what kind of
combination) of lightweight PRNGs whose throughput on

this support is higher than the previous ones whilst passing
all the statistical tests of TestU01?

III. ONE JUMP IS NOT SUFFICIENT

A set of PRNGs has been selected for evaluation purpose:
• The size of state space S and thus the size of the output

space U is the first criterion we consider. Indeed, it is in
direct relation with the area that is required to be reserved
on the FPGA. A priori, the smaller the size of the spaces,
the smaller the area deployed on the FPGA to process
data of these spaces.

• The underlying mechanism of pseudo-random number
generation directly influences both the quality of the
sequence of generated bits and the time required to
generate them. It is well known that it is not efficient
to implement products with large factors on FPGAs. A
PRNG based on a LCG xt+1 = (a.xt + c) mod m
with a large a multiplier can be efficiently deployed on
CPU (where the multiplication operation is not an issue
anymore) but not on FPGA.

• The ability to pass the test TestU01. The TestU01 informs
us about the intrinsic qualities of the generator that will
be integrated internally into our combination approach.
To fully pass the TestU01, it is not hard to understand
that it is a priori better to use internally a generator that
passes almost all the statistical tests of the TestU01 than
to use a generator that fails most of them.

Among all PRNGs, seven have been selected according to
these criteria. First of all, a set of four efficient PRNGs based
on the LFSR scheme, namely LFSR113 [9], Taus88 [2], Xor-
shift128+ [10] and Xoroshiro128+ [11] whose internal space is
lower or equal to B128. Notice that none of these generators
use multipliers and all of them fail the Linear Complexity
test of TestU01. For efficiency comparison purpose, we have
furthermore evaluated three PRNGs that succeed the whole
TestU01, namely PCG32 [7] (based on a LCG and a permuta-
tion function), Taus88+PPCG32 [8] (a combination of Taus88,
for jumping in the 32-cube, and of a permutation function
based on a simplified version of PCG32) and CIPRNG [12]
(a combination of three Xorshift based PRNGs).

Results of this evaluation are summarized in Table I. The
second column gives the size of the internal state space S.
The third one specifies which part of TestU01 has failed (if
any). For this family of test, each PRNG is evaluated 100
times, with a different random seed each time. Only tests
that systematically fail, (i.e., 100 times with p-values less
than 10−15) are reported here. The fourth one indicates how
many cycles are required to generate 1 byte using Lemire’s
evaluation tool [13]. Finally, the last two columns present the
throughput (in Gb/s) and the area (in Gate Equivalent) obtained
with the FPGA implementation of each PRNG.

The hardware implementation of the selected PRNG are
evaluated by using Xilinx Vivado tool and Digilent Zybo Z7-
10 Board (PRNG of 64-bit uses Zybo Z7-20). The phys-
ical implementation results are based on two parameters,
the frequency of the circuit and the output range, whose
multiplication gives the throughput [12]. The gate equivalent
area ((FF+LUT)×8) is only evaluated by Flip-Flop (FF) and
Lookup-Table (LUT), which are the base elements for each
FPGA technologies (the slice parameter is calculated differ-
ently for Xilinx or Alteras).

Because multiplications are widely used in PRNGs, they can
be implemented with DSP. However, in hardware level, these
arithmetic operations (especially the multiplication) are hard
coded inside the tools (Xilinx) using optimized algorithms for
that. Unlike the CPU or GPU, all arithmetic operations in
FPGA are executed in parallel using Distributed Arithmetic

with less space and power usage (no complex multi-tasking or
multi-core used). They perform a multiply-and-add operation
at the same time using most basic logic elements (LUTs in
FPGA). Their size and performance depend on both the word
length and their binary representations, regarding dynamic
range and precision

Table I: Statistical and Efficiency Evaluation of Linear PRNGs

PRNG Output Size TestU01 failures Nb cycles/bytes Throughput Area
size of S (if any) on CPU (Gb/s) (GE)

LFSR113 32 128 Matrix Rank 2.6 16.49 1984
Linear Comp

Taus88 32 96 Matrix Rank 2.61 16.52 1616
Linear Comp

PCG32 32 64 No test failed 1.86 0.29 6106
Taus88+PPCG32 32 128 No test failed 3.8 6.95 4936
CIPRNG 32 352 No test failed 4.01 8.50 10720
Xorshift128+ 64 128 Linear Comp 0.9 15.77 2784
Xoroshiro128+ 64 128 Matrix Rank 1.09 14.88 2312

Linear Comp

It is clear from Table I that PRNGs like LFSR, Taus,
Xorshift and Xoroshiro have the highest throughput and lowest
areas compared to the others. These results confirm the first
remark concerning the drawback of using arithmetic operations
or physical accelerators such as DSP.

As an example, it can be seen that PCG32 takes 1.86
Cycle/Byte in CPU execution where physical accelerators
are used to optimize 64-bit multiplications. However, in the
domain of PRNGs, the goal is physical implementation for
industrial uses as ASIC, in which these accelerators must be
built from scratch to meet timing. Indeed, these is why in
hardware implementation of PCG32, the number of cycles
increases (20 cycles) with partial product, conducting to a
limited throughput.

The embedded PRNG is considered here to be a black box:
the internal state space, its 32-bit output st, are known, but
there is no change in the code of this embedded generator.
The studied space is B32 and the state we are interested in is
a vector xt = (x[0]t, . . . , x[31]t) of this space. Two jumping
approaches are defined.

The first one corresponds to a jump from xt into the
complete 32-cube following the st strategy. Formally, we have

xt+1 = xt ⊕ st,

or, in other words, f of the equation (1) is the binary negation
function restricted to items defined by st.

The second approach corresponds to a jump into a 32-
cube in which a balanced oriented Hamiltonian cycle has
been removed. It has indeed been shown that removing a
Hamiltonian cycle in an N-cube does not change its strong
connectivity [14]. Intuitively, the proof is based on the fact that
no edge of the same Hamiltonian cycle taken in the opposite
direction is removed and that this cycle allows, at least, to
connect all the vertices between them. In addition, it has also
been shown that the associated Markov matrix to this type of
jump is also doubly stochastic [14], which is a necessary and
sufficient condition for the output to be uniformly distributed.
Basically, the proof is that exactly one outgoing edge is

removed from each vertex in a N-cube (whose Markov Matrix
is obviously doubly stochastic) and its associated probability
is reallocated to the loop over this vertex. Notice that strong
connectivity is not is not guaranteed if two Hamiltonian cycles
are removed (the proof is left to the reader).

Table II shows experiments on combining one PRNG with
a jump, either in the complete N-cube (and denoted as PRNG-
XOR) or in a N-cube where a Hamiltonian cycle is removed
(denoted as PRNG-HAM). What can be first deduced is that
applying a XOR does not solve any failure in Matrix Rank or
Linear Comp tests. For the former, it is not a surprise. The
output yt+1 of this kind of generator is indeed a configuration
in B32 resulting of an exclusive or between the previous output
yt and the output of a combined LFSR whose recurrence
equation is xt

i+k = xt
i+q⊕xt

i. In other words, yt+1 = yt⊕xt.
It is a simple exercise to prove by recurrence on t that
yti+k = yti+q ⊕ yti for any t i.e., y is an LFSR and that such
kind of generator fails the Matrix Rank test.

Table II: Combining PRNGs with a jump, in the 32-cube

PRNG Size of S TestU01 failures Nb cycles/bytes Throughput Area
(bits) (if any) on CPU (Gb/s) (GE)

LFSR113-HAM
160

Random Walk 1 5.19 9.73 3720
LFSR113-XOR Matrix Rank, 4.00 16.09 2240

Linear Comp
Taus88-HAM

128
Random Walk 1 4.81 9.66 3352

Taus88-XOR Matrix Rank 3.61 16.15 1927
Linear Comp

In terms of throughput and area, the use of Hamiltonian
cycles induces a decrease of throughput, due to an important
increase of area. Indeed, the impact over the throughput is
lighter than over the area. The important increase in area is
due to the hardware implementation of the cycles functions.
Its limited impact over the throughput comes from using only
8-bits Boolean arithmetic operations in parallel without any
hard macro as memories or DSPs.

IV. ONE JUMP AND ONE MIXING BASED PRNG

Section IV-A starts with presenting the proposed combining
of PRNGs. Section IV-B shows how the allowed bits in the
PRNGs were technically stored. Finally, Section IV-C presents
candidates for combinations.

A. General Scheme Proposal

According to the previous results, we have designed a
general scheme of PRNG that includes the removing of a
Hamiltonian cycle in the N-cube of internal state. This scheme
involves two (weak) PRNGs that respectively correspond to f
and g functions in Fig. 1. It can be described as in Listing 2.

Concerning the building of the strategy, i.e., the st value
that is XORed to the current internal state, there are two
possibilities that depend on the function allowedBits. In
the classical case, where there is no constraint and the jump
can be everywhere in the N-cube, the allowedBits function
always returns a 32-bits word with all bits with value 1. In
the other case, where a Hamiltonian cycle is removed, the
allowedBits function must return a 32-bits word with

ones everywhere save at some positions corresponding to the
forbidden dimensions for the current move. As these forbidden
dimensions depend on the current state, i.e. the current position
in the N-cube, the allowedBits function must take the cur-
rent state as parameter. This additional constraint of forbidden
dimensions represents an increase in complexity that can be
useful for the robustness of the final PRNG.

Listing 2: General PRNG scheme using two inner PRNGs
1 // Get the current moving strategy in the n−cube
2 st = state.str(); // str() is a 32−bits PRNG
3 // Get the mask of allowed bits
4 // from the Hamiltonian cycle
5 ab = state.allowedBits(state.currentValue);
6 // Updating of the strategy according
7 // to the allowed bits
8 st = st & ab;
9 // New internal state deduced from a XOR between

10 // the current state and the moving strategy
11 state.currentValue = (state.currentValue ^ st);
12 // PRNG output deduced from the current state
13 // sent through the mixing function
14 return state.mix(state.currentValue);

B. Details over the allowedBits function

As described above, the allowedBits function must
return the mask of dimensions of the N-cube along which
a move is possible according to the current position.

To build this mask, a Hamiltonian cycle would be required
in the 32-cube. However, although it would be possible to
find such a cycle by using one of the generation algorithms
designed in [15], [16], this is not done in practice, due to the
very large state space. Indeed, the description of a Hamiltonian
cycle requires to store at least the dimension index (i.e., 232

values for a cycle in a 32-cube) for each vertex in the N-cube,
which is not pertinent in the current context.

So, in order to get smaller storage requirements, the 32-
bits word is divided into sub-words of k-bits each (k=8 or
16). For 16-bits sub-words, two Hamiltonian cycles in 16-
cube are needed, requiring 216 indices each, leading to a total
storage of 217 values. For 8-bits sub-words, four Hamiltonian
cycles are needed in 8-cube, leading to only 210 values to store.
Although N-cubes of any dimension between 2 and 32 may
be used, it is better, for statistical quality, to use sufficiently
large dimensions as well as dimensions that are powers of
2. Indeed, such dimensions of N-cubes are the only ones to
provide totally balanced Hamiltonian cycles. This is why we
consider in this work only N-cubes of dimension 8 or 16.

The direct consequence over the allowedBits function
is that it must manage several cycles (two or four) instead of
only one. This is done by concatenating the k-bits cycles states
in order to obtain the 32-bits internal state of the PRNG, as
depicted in Figure 2.

In classical programming language such as C/C++, such
word concatenation can be directly achieved by using the
union structure, as shown in Listing 3. This allows us to
get access to different parts of the same memory location,
which is the PRNG internal state in our case.

Finally, according to performance aspect, it is more efficient
to directly store the mask of allowed bits per N-cube vertex

32−bits

state

1st 8−cube

1st 16−cube 2nd 16−cube

2nd 8−cube 3rd 8−cube 4th 8−cube

(a)

(b)

Figure 2: Concatenation of several k-bits cycles states to compose the 32-bits PRNG internal state: (a) Four 8-bits cycles (b)
Two 16-bits cycles.

(denoted as ab in Listing 2), as it avoids building that mask
dynamically during the PRNG process.

Listing 3: Union structure used as a polymorphism of the
PRNG internal state.

1 typedef union {
2 // 32−bits integer representing
3 // the PRNG internal state
4 uint32_t i;
5 // two 16−bits integers representing
6 // the cycles in 16−cubes
7 uint16_t s[2];
8 // four 8−bits integers representing
9 // the cycles in 8−cubes

10 uint8_t b[4];
11 } Union;

Following this construction, the allowedBits function
can be described by Listing 4. In this code sample, the cycles
are stored in two dimensional arrays whose first dimension
is the cycle number, and the second dimension is the vertex
number in the N-cube. The content of array cell [i][j] is
the mask of allowed bits at vertex j in cycle i.

Listing 4: allowedBits function with the current state
parameter curState

1 // Union used to manage the cycles
2 Union u;
3 // Setting the current state into the union
4 u.i = curState; // 32−bits integer
5 // Getting the allowed bits for the
6 // respective states of each cycle
7 // (example with two 16−bits cycles)
8 u.s[0] = cycle[0][u.s[0]]; // Allowed bits for vertex
9 // u.s[0] in the 1st cycle

10 u.s[1] = cycle[1][u.s[1]]; // Allowed bits for vertex
11 // u.s[1] in the 2nd cycle
12 // Concatenation of allowed bits of the cycles
13 return u.i;

The obtained PRNG scheme allows us to easily build many
PRNGs by combining two 32-bits PRNGs and a given number
of Hamiltonian cycles in k-cubes. However, in this scheme, the
use of multiple cycles could be seen as a weakness, due to their
limited size (implying small periods) and their independent
use. Nevertheless, this can be overcome by mixing their
respective evolutions. This is done by circularly shifting the
cycles at each execution of the allowedBits function, as
depicted in Listing 5. In this algorithm, only one additional
variable is required to store the current shifting position, as
well as a few operations on the cycles indices.

From a probabilistic point of view, we will show in the next
section that when one Balanced Hamiltonian cycle per cube
is removed, it is sufficient to invert all the bits on average 4

Table III: Combinations of PRNGs used in the general scheme

Strategy Mixing
LFSR Taus88
Taus LFSR

Xorshift128+ Xorshift128+
Xoroshiro128+ Xoroshiro128+

iterations, i.e., to reach any vertex. The same is obviously true
when, in addition, at each iteration, the balanced Hamiltonian
cycle of a another 1-byte group is used.

Listing 5: allowedBits function with cycles shifts
1 // Current shift of the cycles
2 static char cycleShift = 0;
3 ...
4 // Shift update for two cycles (0 and 1)
5 cycleShift = 1 − cycleShift;
6 ...
7 // Getting the allowed bits for
8 // the respective states of each cycle
9 // (example with two 16−bits cycles)

10 u.s[0] = cycle[cycleShift][u.s[0]]; // Allowed bits for
11 // vertex u.s[0] in cycle "cycleShift"
12 u.s[1] = cycle[1 − cycleShift][u.s[1]]; // Allowed bits
13 // for vertex u.s[1] in the other cycle
14 ...

In the following subsection, we present different PRNG
constructions, based on this general scheme, and for each one
we consider two versions, with and without cycles shifts.

C. Considered combinations of PRNGs

As described previously, there are many possible variants to
build a PRNG by using our general scheme. In addition to the
choices of strategy and mixing functions, comes the number of
sub-words (N-cubes) to decompose the PRNG output word. In
the scope of this study, we consider only N-cubes of dimension
8 or 16. Also, as our general scheme requires two 32-bits
words internally, one for the strategy and one for the mixing,
we have considered to use one 64-bits PRNG instead of two
32-bits PRNGs. For performance sake, we have selected some
very fast 64-bits PRNGs, given in Table I.

Selected combinations given in Table III consider both
variants with and without cycle shifts.

Also, in order to preserve performance, 64-bits PRNGs are
always used for both parts of the global PRNG (strategy
and mixing), by splitting its output in two parts, as already
explained. Moreover, only the PRNGs with reduced storage
costs are kept.

Finally, for each combination in Table III, we consider three
variants according to the presence and size of Hamiltonian
cycles: 2×16-bits, 4×8-bits or none.

V. CONVERGENCE RATE

The are two main approaches to measure the convergence
rate of a Markov Chain, i.e., how fast it converges to the
stationary distribution: the mixing time and strong stationary
times. The mixing time of a Boolean function in the N-
cube provides accurate information on the average number
of iterations that are sufficient to provide an output with a
uniform distribution, to the nearest epsilon. The use of Markov
chains makes it possible to demonstrate that this average
number of iterations is constant. In a previous work, in which
walking in a N-cube (each move is along only one dimension
at a time) was considered instead of jumping (what we do
in this article), it has been proven that a upper bound of this
number was in N×log(N), where N is the number of produced
bits. Strong stationary times mathematically ensure that the
limit distribution is reached.

Using a classical result on symmetric and ergodic Markov
chains, walking or jumping in a N-cube where a Hamiltonian
cycle has been deleted induces a Markov chain M whose
stationary distribution π is the uniform one (see [14] for
details). Let us then recall some probabilistic definitions of
mixing and strong stationary times.

First of all, let be given two distributions µ and π on the
same set Ω, the Total Variation distance �µ−π�TV is defined
by:

�µ− π�TV = max
A⊂Ω

|µ(A)− π(A)|.

Let then M(x, ·) be the distribution induced by the x-th row
of the Markov matrix M . If the Markov chain induced by M
has a stationary distribution π, then we define

d(t) = max
x∈Ω

�M t(x, ·)− π�TV.

Finally, let ε be a positive number, the mixing time with
respect to ε is given by

tmix(ε) = min{t | d(t) ≤ ε}.
Intuitively, it defines the smallest iteration number that is

sufficient to provide a deviation lesser than ε to the stationary
distribution, which is here the uniform one. It is known that
tmix(ε) ≤ tmix(1/4) log2(ε

−1).
Intuitively, strong stationary time in a Markov chain is the

instant when the stationary distribution is reached. Let τstop
be the first time all the elements of �1,N� could have been
inverted. More precisely, for any element x in the N-cube
(where an Hamiltonian cycle has been removed), we denote
by mv(x) the set of elements j of {1, . . . , N} such that (x, yj)
(where yi is obtained from x by just switching the i-th bit)
is an edge in this modified N-cube. For a Markov Chain (xi)
in the modified N-cube, the random variable τstop is defined
as the minimum t such that ∪t

i=0mv(xi) = {1, . . . , N}. Each
bit of xτstop is uniformly distributed, proving that τstop is a
strong stationary time. We have the following theorem.

Theorem 1. E[τstop] is less than 4.

Proof. Let us consider a N-cube where a balanced Hamil-
tonian cycle has been removed. We re-use some notations

introduced in [15] to define a balanced Hamiltonian cycle.
Let L = w1, w2, . . . , w2N be the sequence of a N-bits cyclic
Gray code. The transition sequence S = s1, s2, . . . , s2N ,
1 ≤ i ≤ 2N, indicates which bit position changes between
code-words at index i and i + 1 modulo 2N. The transition
count function TCN : {1, . . . ,N} → {0, . . . , 2N} gives the
number of times i occurs in S, i.e., the number of times the
bit i has been switched in L.

Let N in N∗, and aN be defined by aN = 2
�
2N

2N

�
, where

�x� denotes the greatest integer less than or equal to the real
number x. A cyclic Gray code is balanced if and only if for
any bit position i, 1 ≤ i ≤ N,

aN ≤ TCN(i) ≤ aN + 2.

In the first stage, N − 1 bit can be modified. Since jumps
are executed in a N − cube where a Hamiltonian path has
been removed and without loss of generality, we can consider
that the first bit cannot be switched. Let us consider the jump
done and let C be the reached configuration. It remains thus to
calculate how many jumps are required to have the possibility
to modify the first bit.

In the configuration C, the probability that the first bit
cannot be switched again is p� where

a

2N
≤ p� ≤ a+ 2

2N
.

The probability of the complementary event, i.e., to be able
to switch the first bit, is p = 1− p�, which can be bounded as
follows.

1− a+ 2

2N
≤ p ≤ 1− a

2N
.

The random variable that counts the number of jumps
required to switch this first bit follows a geometric distribution
of success p. Its expected value is E = 1

p which can be
bounded as follows:

1

1− a

2N

≤ E ≤ 1

1− a+ 2

2N

,

i.e., 2N

2N − a
≤ E ≤ 2N

2N − a− 2
.

Since aN = 2
�
2N

2N

�
, aN is lower than 2N

N , and thus,

2N − aN − 2 ≥ 2N
�
1− 1

N
− 2

2N

�
,

leading to,

E ≤ 2N

2N − aN − 2
≤ 1

1− 1

N
− 2

2N

≤ N× 2N

N× 2N − 2N − 2N
,

if N is not equal to 2.
It is not hard to verify that over]2,∞), the function

x �→ x× 2x

x× 2x − 2x − 2x
is decreasing . Thus E is less than

3× 23

3× 23 − 23 − 2× 3
= 2.4. In the specific case where N = 2,

the Gray code is totally balanced, i.e., TC2 = 2. Hence
p� = p = 1

2 and E is 2.

All cases lead to the conclusion that E is less than 3 and
therefore that E[τstop] is less than 4, which ends the proof.

By using now t we have the Markov inequality:

P (τ > t) ≤ E(τ)

t
≤ 4

t
.

Therefore, using this inequality for t = 16 and [17, Lemma
6.13], it follows that tmix(

1
4) ≤ 16 = O(1), tmix(

1
4) is

bounded by a constant independent of N . The inequality also
points out that the probability of not achieving the equilibrium
decreases at least as 1

t with the number t of steps, showing a
fast convergence.

VI. EXPERIMENTS

For the experimental evaluation, we have used the TestU01
C library [2]. Our PRNG scheme has been fully implemented
with the possibility to choose the strategy and mixing func-
tions, among the four standard PRNGs given in Table III. Also,
a file of Hamiltonian cycles can be specified to activate con-
strained jumps in the N-cube. Indeed, as we need the allowed
bits for any vertex in the N-cube, the file can directly contain
the cycles expressed under that form. However, for hardware
implementation on FPGA, it is more efficient to express the
cycles as Boolean functions, as the use and accesses to static
arrays is much more area and time consuming.

Results are summarized in Table IV. The names of failed
test are listed in column TestU01 when there are just a few,
otherwise only the number of failed tests is given. Otherwise,
the column contains OK. In the 6th column reports the
average number of cycles to generate 1 byte on an Intel E5-
2640@2Ghz CPU, based on 1000 generations of 106 bytes.
The areas obtained after a place and route stage are reported
in the last column.

As can be seen, the combination with LFSR as the strategy
and Taus as the mixing function (L-*-T) is not robust, whatever
the cycles are used or not. However, the inverse combination
(T-*-L) is much better. This shows us that the choice for the
strategy and the mixing is not symmetric. Also, the second
combination shows that the use of Hamiltonian cycles can
bring robustness to a PRNG. Finally, the other combinations
pass all the tests but their respective internal states are larger
(128 bits) than those of T-C-L (96 bits).

Concerning the performance aspect in terms of cycles
per generated byte, the use of Hamiltonian cycles implies
overheads that depend on the dimension of the underlying N-
cube. However, those overheads stay quite limited for 8-bits
cycles, especially when combined with the fastest PRNGs like
Xorshift128+ and Xoroshiro128+ (respectively 13% and 14%).

Concerning hardware implementations, the different hard-
ware combinations can be classified in two categories based
on the results in Table IV:

a) Combining PRNGs with a jump in a complete N-cube:
The hardware implementations are based on strategy and
mixing words generations in parallel, followed by the updating
of the internal state and the generation of the output word. In
such architecture, the critical path is only related to either the

strategy or the mixing function. Indeed, Taus88-XOR-LFSR
has the highest throughput compared to the other combina-
tions, but it fails the TestU01. Both combinations Xorshift128-
XOR-Xorshift128 and Xoroshiro128-XOR-Xoroshiro128 pass
the test but with lower throughput. However, they provide
better performance than some single PRNGs given in Table I
and all the combinations listed in Table II.

b) Combining PRNGs with a jump in a N-cube where
a Hamiltonian cycle is removed: As mentioned before, these
combined PRNGs apply the jump in a set of N-cubes with
or without cycles shifts. First, the hardware design of the
combined PRNGs is based on three steps: generating the
strategies for each N-cube (only one inner PRNG call), split-
ting the internal state in 4 or 2 blocks depending on the size
of H-Cycles (8 or 16 bits), and updating the internal state by
applying the jump only over the allowed bits given by the
H-Cycles. When based on 8-cubes (resp. on 16-cubes), cycles
are expressed exclusively with Boolean arithmetic operations.
Therefore, implementing two 16-bits H-Cycles in FPGA re-
quires 2 SRAM dual-port memories. Also, applying shifts to
the H-Cycles composing the internal state requires more logic
and implies an additional delay to the PRNG output.

Finally, when looking at the combinations that pass
TesTU01, Taus88-HAM8-LFSR without cycles shifts
(T-H8-L) provides the best throughput, with 9.32Gb/s.
It is significantly better than the CIPRNG (8.5Gb/s) given in
Table II although T-H8-L has a smallest internal size (128 bits
instead of 352 bits) and a smaller area (5336 GE instead of
10720). By the way, the area of T-H8-L is one of the smallest
among all the PRNGs that pass TestU01.

VII. CONCLUSION

When performing numerical simulations, used pseudo ran-
dom numbers must be flawless in order to avoid any bias in the
results of the simulation. Also, they must be quickly produced
so that the simulation can be carried out as fast as possible.

This work has first shown that any PRNG can be seen as
a form of jumping into an N-cube whose dimension defines
the internal space. The way of jumping is specific to each
PRNG, the important aspect being that it is as "unpredictable"
as possible while remaining sufficiently fast.

Our approach is twofold. The former is a jump into a N-
cube in which a balanced Hamiltonian path has been removed
guided by an effective generator (Taus88 for example). The
latter one produces the output by mixing the current state
with another generator (LFSR113 for example). The result is
a generator that successfully passes the whole TestU01, which
is considered to be the most difficult for PRNGs.

If this combination of jumping and mixing had already been
sketched in a previous work, we have greatly strengthened it in
this work. From a theoretical point of view, we demonstrated
that the mixing time was constant (while it was in N log(N))
and that we could get rid of more complex generators (PCG32
for example), while continuing to pass the TestU01. We have
also conducted an exhaustive efficiency study of this family
of generators on both CPU and FPGA. On the first platform,

Table IV: Results for each combination and variant in the general scheme

Strategy H-Cycles Cycles Mixing TestU01 Nb cycles/byte FPGA Throughput Area
shifts on CPU (Gb/s) (GE)

LFSR none N/A Taus MatrixRank 5.20 15.78 3912
LinearComp

LFSR 2×16-bits YES Taus MatrixRank 8.01 4.54 5520
LFSR 2×16-bits NO Taus MatrixRank 7.58 4.92 5504
LFSR 4×8-bits YES Taus 14 tests 7.16 6.34 7640
LFSR 4×8-bits NO Taus 14 tests 6.59 8.99 5336
Taus none N/A LFSR MatrixRank 5.10 15.35 3848

LinearComp
Taus 2×16-bits YES LFSR OK 8.24 4.51 5368
Taus 2×16-bits NO LFSR OK 7.76 4.90 5104
Taus 4×8-bits YES LFSR OK 7.15 6.01 7648
Taus 4×8-bits NO LFSR OK 6.43 9.32 5336

Xorshift128+ none N/A Xorshift128+ OK 4.63 7.63 4048
Xorshift128+ 2×16-bits YES Xorshift128+ OK 7.26 4.40 6144
Xorshift128+ 2×16-bits NO Xorshift128+ OK 7.03 4.35 5880
Xorshift128+ 4×8-bits YES Xorshift128+ OK 5.70 5.66 7888
Xorshift128+ 4×8-bits NO Xorshift128+ OK 5.25 7.27 5552

Xoroshiro128+ none N/A Xoroshiro128+ OK 4.40 7.37 3088
Xoroshiro128+ 2×16-bits YES Xoroshiro128+ OK 7.22 4.51 5384
Xoroshiro128+ 2×16-bits NO Xoroshiro128+ OK 6.98 4.75 5112
Xoroshiro128+ 4×8-bits YES Xoroshiro128+ OK 5.37 6.15 7232
Xoroshiro128+ 4×8-bits NO Xoroshiro128+ OK 5.02 7.21 4784

we were able to provide a whole family of PRNGs that
pass the complete TestU01, but which is twice as slow as
PCG32. On FPGA, to the best of our knowledge, we obtain
the fastest generator in the world (9.32Gb/s) that passes the
entire TestU01. This result significantly improves our previous
score which was 8.5Gb/s. This is very promising and let us
think that it is possible to achieve even smaller PRNGs that
pass TestU01 with throughput beyond 10Gb/s.

Future works cover many aspects. A first track consists
in generating more bits (128 bits e.g.). Then, we plan to
further study XORShift-based generators to exhibit minimum
conditions to pass the TestU01, while improving the flow rate.
Also, exploring the reduction of the internal state size as well
as the number of operations should lead to faster generators.

ACKNOWLEDGMENT

This work is funded by the Labex ACTION program
(contract ANR-11-LABX-01-01). Computations have been
performed on the supercomputer facilities of the Mésocentre
de calcul de Franche-Comté.

REFERENCES

[1] Rany El Haddad, Christian Lécot, Pierre L’Ecuyer, and N. Nassif.
Quasi-monte carlo methods for markov chains with continuous multi-
dimensional state space. Mathematics and Computers in Simulation,
81(3):560–567, 2010.

[2] Pierre L’Ecuyer and Richard Simard. Testu01: A c library for empirical
testing of random number generators. ACM Trans. Math. Softw.,
33(4):22:1–22:40, August 2007.

[3] M Anwar Hasan and Christophe Negre. Sequential multiplier with sub-
linear gate complexity. Journal of Cryptographic Engineering, 2(2):91–
97, 2012.

[4] Pierre L’Ecuyer. Random numbers for simulation. Communications of
the ACM, 33(10):85–97, 1990.

[5] Mohammed Bakiri, Christophe Guyeux, Jean-François Couchot, and
Abdelkrim Kamel Oudjida. Survey on hardware implementation of
random number generators on FPGA: theory and experimental analyses.
Computer Science Review, 27:135–153, 2018.

[6] Pierre L’Ecuyer. Maximally equidistributed combined tausworthe gen-
erators. Mathematics of Computation of the American Mathematical
Society, 65(213):203–213, 1996.

[7] Melissa E O’Neill. Pcg: A family of simple fast space-efficient
statistically good algorithms for random number generation. ACM
Transactions on Mathematical Software, 2014.

[8] Mohammed Bakiri, Christophe Guyeux, Jean-François Couchot, Luigi
Marangio, and Stefano Galatolo. A hardware and secure pseudorandom
generator for constrained devices. IEEE Trans. Industrial Informatics,
14(8):3754–3765, 2018.

[9] Pierre L’Ecuyer. Tables of maximally equidistributed combined lfsr
generators. Mathematics of Computation of the American Mathematical
Society, 68(225):261–269, 1999.

[10] Mutsuo Saito and Makoto Matsumoto. Xorshift-add: a variant of xorshift.
http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/XSADD, 2014.

[11] David Blackman and Sebastiano Vigna. Scrambled linear pseudorandom
number generators. CoRR, abs/1805.01407, 2018.

[12] Mohammed Bakiri, Jean-François Couchot, and Christophe Guyeux.
CIPRNG: A VLSI family of chaotic iterations post-processings for F2-
linear pseudorandom number generation based on zynq mpsoc. IEEE
Trans. on Circuits and Systems, 65-I(5):1628–1641, 2018.

[13] Daniel Lemire and Melissa E O’Neill. Xorshift1024*, xorshift1024+,
xorshift128+ and xoroshiro128+ fail statistical tests for linearity. Journal
of Computational and Applied Mathematics, 350:139–142, 2019.

[14] Sylvain Contassot-Vivier, Jean-François Couchot, Christophe Guyeux,
and Pierre-Cyrille Héam. Random walk in a n-cube without hamiltonian
cycle to chaotic pseudorandom number generation: Theoretical and
practical considerations. I. J. Bifurcation and Chaos, 27(1):1–18, 2017.

[15] Sylvain Contassot-Vivier and Jean-François Couchot. Canonical Form of
Gray Codes in N-cubes. In Alberto Dennunzio, Enrico Formenti, Luca
Manzoni, and Antonio E. Porreca, editors, 23th International Workshop
on Cellular Automata and Discrete Complex Systems (AUTOMATA),
volume LNCS-10248 of Cellular Automata and Discrete Complex
Systems, pages 68–80, Milan, Italy, Jun 2017. Springer International
Publishing. Part 2: Regular Papers.

[16] Sylvain Contassot-Vivier, Jean-François Couchot, and Pierre-Cyrille
Héam. Gray codes generation algorithm and theoretical evaluation of
random walks in n-cubes. Mathematics, 6(6), 2018.

[17] Yuval Peres D.A. Levin and Elizabeth L. Wilmer. Markov Chain and
Mixing Times. American Mathematical Society, 2008.

View publication statsView publication stats

