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ABSTRACT

Context. Over the past 40 years, helioseismology has been enormously successful in the study of the solar interior. A shortcoming has
been the lack of a convincing detection of the solar g modes, which are oscillations driven by gravity and are hidden in the deepest
part of the solar body – its hydrogen-burning core. The detection of g modes is expected to dramatically improve our ability to model
this core, the rotational characteristics of which have, until now, remained unknown.
Aims. We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have
long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes.
Methods. The GOLF instrument on board the SOHO space observatory has provided two decades of full-disk helioseismic data. The
search for g modes in GOLF measurements has been extremely difficult because of solar and instrumental noise. In the present study,
the p modes of the GOLF signal are analyzed differently: we search for possible collective frequency modulations that are produced
by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing
statistical methods to take advantage of their asymptotic properties.
Results. For oscillatory periods in the range between 9 and nearly 48 h, almost 100 g modes of spherical harmonic degree 1 and
more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguously
provide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic
approximations. When the period equidistance has been measured, all of the individual frequencies of each mode can be determined.
Previously, p-mode helioseismology allowed the g-mode period equidistance parameter P0 to be bracketed inside a narrow range,
between approximately 34 and 35 min. Here, P0 is measured to be 34 min 01 s, with a 1 s uncertainty. The previously unknown
g-mode splittings have now been measured from a non-synodic reference with very high accuracy, and they imply a mean weighted
rotation of 1277 ± 10 nHz (9-day period) of their kernels, resulting in a rapid rotation frequency of 1644 ± 23 nHz (period of one
week) of the solar core itself, which is a factor 3.8 ± 0.1 faster than the rotation of the radiative envelope.
Conclusions. The g modes are known to be the keys to a better understanding of the structure and dynamics of the solar core. Their
detection with these precise parameters will certainly stimulate a new era of research in this field.

Key words. Sun: helioseismology – Sun: oscillations – Sun: rotation – Sun: interior

1. Introduction

A conference was organized in 2013 in Tucson, Arizona, to cel-
ebrate 50 years of seismology of the sun and stars. Solar seis-
mology became known in the early 1980s as helioseismology,
and was almost totally devoted in this conference to the analysis
of solar p modes, sometimes referred to as solar music, as only
one presentation among 87 was devoted to g modes. It was a his-
torical presentation (Appourchaux & Pallé 2013) that confirmed
how difficult the quest for g modes has been in these 40 years.

The observational g-mode quest began 40 years ago, when
Severny et al. (1976) reported the detection of a 160-min oscil-
lation using a modified differential Babcock solar magnetograph
and nine days of data. This period of 2 h and 40 min could not be
attributed to a p mode in any reasonable solar model. In 1976,

the field was still in its infancy, with the phenomena being re-
ferred to as solar oscillations and with no detections of individ-
ual p modes. Although the potential of p modes in probing the
deep solar interior was still not clear, the potential of g modes
was obvious, as these are mostly trapped inside the solar core.
The 160-min oscillation thus quickly became a hot topic, and at
least ten years passed before it finally became clear that it was
an artifact.

Following the first identification of global p modes by
Claverie et al. (1979) and the first South Pole expedition, which
allowed individual low spherical harmonic degree p modes to
be revealed (Grec et al. 1980, 1983), helioseismology quickly
grew on different fronts: on the ground with world-wide net-
works that were developed by the Birmingham Solar Oscilla-
tion Network (BiSON) in the UK, the International Research on
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the Interior of the Sun (IRIS) in France, and the Global Oscilla-
tion Network Group (GONG) in the USA In space the initial
studies of ESA and NASA led to the selection of the SOHO
space project in 1988. The SOHO payload included the Global
Oscillations at Low Frequency (GOLF, Gabriel et al. 1995), the
Michelson Doppler Imager for Solar Oscillation Investigation
(MDI/SOI), and the Variability of Irradiance and Gravity Oscil-
lations (VIRGO) instruments. As stated by Appourchaux & Pallé
(2013), in these days, the detection of g modes was thought to
only be a matter of time. In the end, it still required a further
20 years of effort. Some possible results were published during
these 20 years using GOLF data. One l = 1 mixed p-g mode was
reported at 284.7 µHz (Gabriel et al. 2002), and several candi-
dates were suggested in the vicinity of 220 µHz (Turck-Chièze
et al. 2004). García et al. (2007) reported the possible collec-
tive detection of a g-mode signature in a lower frequency range
between 25 and 140 µHz, with a possibly rapid rotation of the
solar core up to five times the rotation of the remaining radiative
zone. Possible detections of five l = 1 g modes were reported
by García et al. (2011) in the frequency range between 60 and
140 µHz, with rotational splittings in the range 850 to 950 nHz
consistent with a fast sidereal rotation (1760 to 1960 nHz) of
the g modes themselves, measured using the rotation-corrected,
m-averaged spectrum technique from Salabert et al. (2009). An
extensive review of different techniques of detection, as well as
possible results, can be found in Appourchaux et al. (2010). So
far, none of these possible results has been confirmed.

2. Looking differently and elsewhere

The search for g modes must overcome the difficulty that the
modes are trapped in the deepest part of the solar body and
are evanescent in the convective layers, so that their amplitudes
are not easily detectable at the solar surface. The p-mode am-
plitudes themselves decrease dramatically with decreasing fre-
quency (left side of Fig. 1), falling below the increasing back-
ground noise level before reaching the frequency range around
the fundamental p-mode oscillation, where a few mixed modes
(driven by both compressibility and buoyancy) are thought to ex-
ist. In this range, roughly speaking between 0.25 and 0.30 mHz,
the lowest frequency p modes and highest frequency g modes
are expected to exist with similar amplitudes at the solar sur-
face, an amplitude of the order of 1 mm s−1 with a large uncer-
tainty on any prediction (see again Appourchaux et al. 2010, for
a comprehensive review), and they have not been detected so
far. The amplitude uncertainty remains very high in the g-mode
domain, especially at lower frequencies, where the background
noise increases. It has never been demonstrated that the signal-
to-noise ratio (S/N) at these lower frequencies can improve in
any way. This is the fundamental reason why purported detec-
tions of g modes in this region of the spectrum have always been
doubted and have never been confirmed, despite numerous ef-
forts.

Kennedy et al. (1993) suggested that the g modes might be
detected as a source of modulation of p-mode frequencies, which
would manifest themselves as sidelobes in the p-mode frequency
profiles. However, as noted by the authors, convective noise is
a problem. The sidelobes cannot be narrower than the p-mode
lines, and the p modes are more sensitive to turbulent motions
near the surface than they are to the g-mode motions in the deep-
est solar structure. Despite serious efforts in this direction, this
approach has not been successful so far. Another approach was
also suggested by Duvall (2004): modifications of time-distance
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Fig. 1. Power spectrum of 16.5 years of full-disk velocity recorded by
the GOLF instrument on board the SOHO spacecraft.

helioseismology to enable travel time measurements for short
time intervals. This has not been successful either.

Although based on the same idea of time distance measure-
ment, our approach is nonetheless different. We seek to identify
a differential parameter in the p-mode frequency spectrum that
can significantly decrease the sensitivity to this convective turbu-
lence. Such a parameter should ideally exploit the p-mode fre-
quencies measured by the GOLF instrument, taking advantage
of the fact that these full-disk p modes are modes of the lowest
degrees, that is, from 0 to 3, which propagate through the solar
core.

The apparent ideal candidate would be the so-called small
separation, that is, the frequency separation between p modes
of degrees 0 and 2. This was immediately identified, after being
first resolved by the South Pole data set in 1980 (Grec et al. 1980,
1983), as a parameter probing the solar core because it measures
a difference of two kernels that are essentially identical in the
upper layers and different in the deepest layers. Unfortunately, it
requires more than two days of measurement to be resolved, so
that only g modes with periods longer than these two days could
be tracked. These very long period g modes are not accessible
in practice, largely because of the high density of g modes per
frequency bin.

The second-best choice is then the so-called large separa-
tion, or rather half this large separation (between even 0−2 and
odd 1−3 pairs of p modes), which defines the quasi-vertical lines
in the so-called Echelle diagram. The large separation is linked
to the propagation of the acoustic waves through the Sun and is
proportional to the mean density of the star. Thus, any modu-
lation of the solar structure produces a modulation of the large
separation. If these modulations are produced by the action of
g modes on the geometry or density of the deep solar core, they
should present the same spectral properties as those expected
for the g modes. We can also seek for g-mode signatures in the
large separation signal. The large separation offers an additional
benefit of a lower sensitivity to surface effects when adequate
care is taken to measure this separation. A detailed study of the
Echelle diagram shows that the almost vertical lines have a gen-
eral S-shape that contains the signature of the depth of the he-
lium ionization layer. This layer, not far below the solar surface,
is again a turbulent region, which we wish to avoid. We therefore
have to limit the frequency range used for measuring this large
separation to the straightest line part of this Echelle diagram, in
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practice, to the frequency range between 2.32 and 3.74 mHz,
which is defined precisely to ensure that it contains an integer
number of equidistances.

Even in this limited range, the frequencies plotted in the
Echelle diagram still display small oscillations around the
straight lines that contain the signature of the depth of the con-
vective zone. This boundary layer, named the tachocline, is an-
other dynamic region that we also wish to avoid here. It is then
essential to use the broadest possible frequency range in mea-
suring the large separation to reduce the sensitivity of its fluctu-
ations to this tachocline region. The range 2.32−3.74 mHz ap-
pears to be the best compromise between the need for limiting
the range to the most linear part and the need for the broadest
possible range.

There are two more reasons to justify the choice of this fre-
quency range limitation. Below 2.3 mHz, the individual spectra
are not sufficiently sensitive, and the p-mode peaks are lost in
background noise with 8 h of integration (see below). At the
other end, above 3.7 mHz, there is a sharp identified increase
of the p-mode parameter sensitivity to all solar surface effects
(Salabert et al. 2002). Frequency and line-width changes with
the solar cycle are much larger than in the lower p-mode fre-
quency domain, which would introduce more undesired errors
in the search for the subtle modulations produced in the solar
core.

We therefore use this semi-large separation, measured be-
tween 2.32 and 3.74 mHz, as a tool for the g-mode search. A
p-mode spectrum obtained from an 8-h time series reveals the
discrete structure of its frequency distribution, characterized by
this pseudo-periodicity on the order of 67.5 µHz. This spacing
corresponds to the inverse of the round trip time T of an acoustic
wave traveling through the solar center. One interesting conse-
quence is that the full-disk velocity signal has a strong correla-
tion peak at a lag T of about 4 h and 6 min (which is on the order
of the inverse of 67.5 µHz). This was used to advantage by the
IRIS network team (Fossat et al. 1999) in an optimal gap-filling
technique. In the present context, we consider T as the optimal
parameter to be monitored in the search for its possible mod-
ulations produced by a change of structure located inside this
core. Because we cannot filter the frequency spectrum before
sampling the time series T (t), we need to be careful about alias-
ing, which occurs when the spectrum is folded about the Nyquist
frequency. An easy and efficient technique consists of sampling
the signal twice faster than the integration time, which means
a 4-h sampling in the present case. The Nyquist frequency is
then doubled from 1/16h = 17.36 µHz to 34.72 µHz. This avoids
the spectrum folding, which would be around 17.36 µHz if we
were sampling at 8-h intervals. The search for g-mode frequen-
cies is then possible in the low-frequency range that corresponds
to periods longer than 8 h, even if the part of the spectrum ap-
proaching 34.72 µHz (inverse of 8 h) is progressively filtered and
contains aliases of frequencies coming from beyond 34.72 µHz.
It still provides access to potential g-mode frequencies in this
range.

We worked with a GOLF time-series calibrated in veloci-
ties as explained in García et al. (2005), which starts at 0:00:30
(T.A.I.) on April 11, 1996. It is sampled at 80 s. For the 16.5 year
interval with 8-h segments sampled every 4 h, we start with
36 131 possible samples, but because of data gaps (especially
the so-called SOHO vacation in 1998), we finally have 34 612
8-h p-mode spectra.
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Fig. 2. From the same 16.5-year data set as Fig. 1, this is an average of
34 612 spectra computed from 8-h selections taken at intervals of 4 h.
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Fig. 3. Example of one of the 34612 GOLF power spectra, limited to the
range 2.32−3.74 mHz and divided by the envelope of the mean spec-
trum of Fig. 2.

The general process developed for obtaining the time series
T (t) can be summarized as follows:

1. Split the GOLF time series into 8-h long sub-time series at
4-h intervals.

2. Compute the power spectrum of each 8-h long time se-
ries oversampled by filling zeroes up to 106 s to obtain a
convenient 1 µHz frequency bin (the mean of all these spec-
tra is shown in Fig. 2).

3. Divide each power spectrum by a Gaussian function
(exp(−x2/2σ2)) centered at 3.22 mHz with σ = 0.39 mHz,
as an approximation of the envelope of the mean spectrum,
and select the [2.32−3.74] frequency range. An example of
such a band-limited envelope-corrected spectrum is shown
in Fig. 3.

4. Compute the power spectrum of each of these windowed
power spectra oversampled by filling zeroes up to 125 mHz
to obtain a time bin of 8 s. These power spectra of power
spectra result in a function that has time as its abscissa, with
their main peak at this period T of approximately 4 h, as pre-
sented in Fig. 4, which shows one example of these power
spectra, or in Fig. 5, which is the sum of 34 612 similar
spectra.

5. Measure the precise location of the centroid of the main peak
around its mean value of 14807 s using a second-order poly-
nomial fit.

We now describe these steps in some more detail.
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Fig. 4. Power spectrum of the spectrum shown in Fig. 3. The abscissa is
in seconds and shows a main peak at a time T of about 14 800 s, which
is the round trip travel time of an acoustic wave through the solar center.

The nearly 67.5 µHz equidistance is measured by a Fourier
analysis that requires two levels of oversampling. A simple fast
Fourier transform (FFT) power spectrum of power spectrum
would return the initial sampling time of 80 s, which is not fine
enough for our purpose. The spectra shown in Figs. 2 and 3 are
oversampled to a convenient bin of 1 µHz (step 2), and then the
34612 spectra of spectra (see Figs. 4 and 5) are also oversampled
to a bin of 8 s, which was chosen to be smaller than the rms scat-
ter of T (step 4). We show that these oversampling steps do not
affect the statistical properties of the final product of this step of
analysis, that is, the power spectrum of T (Fig. 7).

For the most precise estimation of the equidistance through
this Fourier method, it is also necessary to ensure that the en-
tire selected frequency range contributes and not just the few
highest p-mode peaks around 3.2 mHz. Each of these individual
frequency spectra is then “flattened” (step 3) by dividing it by a
Gaussian function (centered at 3.22 mHz with σ = 0.39 mHz)
that approximates the envelope of the mean (16.5 year) spectrum
(Fig. 2), thus allowing optimal use to be made of the resolution
provided by the 1.42 mHz bandwidth. Figure 3 is an example
of such a selected and flattened individual spectrum. Each of
the 34 612 individual envelope-corrected 8-h p-mode spectra is
then analyzed by Fourier transformation, from which its respec-
tive mean p-mode separation is determined. This fifth step of
the analysis is not made through a fit of the GOLF signal auto-
correlation peak around 4 h because that would not permit the
correction of the power envelope, which is an essential step of
this analysis.

We note that our spectra such as shown in Fig. 4 are com-
puted from spectra such as shown in Fig. 3, minus their mean
value, and translated at abscissa zero. This means that the first
point of Fig. 4 is at zero and suppresses the 5-min modulation,
which would remain inside the 4-h peak, whose position can
then be measured more precisely. These spectra are arbitrarily
normalized at the height of the main peak, since each spectrum
is no longer exactly an autocorrelation that would automatically
be normalized at 1 on the zero lag. Only the precise position of
the 4-h peak centroid (our parameter T ) is relevant in our analy-
sis, and our general guideline is then to minimize the amplitude
of the random fluctuations of this parameter T around its mean
value.

Each value of T is estimated by a second-order polynomial
fit around the peak profile (step 5). The choice of the width over
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Fig. 5. Sum of 34 612 power spectra similar to the spectrum shown in
Fig. 4.
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Fig. 6. 16.5-year time series of 36 131 values of the time T fluctuations
defined in Fig. 4. The number of non-zero values is 34 261.

which this fit is computed is again guided by the goal of mini-
mizing the random fluctuations of T . A priori it should be made
at least on the true bin size defined by the inverse of the range
from 2.32 to 3.74 mHz, that is, about 700 s. In practice, the poly-
nomial fit made on a range of ±800 s around 14 800 s minimizes
the scatter of T . This is on the order of the full width of this
peak and not at all the best fit on the peak profile, but it is the
least noisy estimate of the peak centroid. The profile of this peak
could be sensitive to the way the raw intensities are corrected
and then calibrated into velocities, which is indeed the case for
the amplitude of the peak. However, the centroid of the peak
is our relevant parameter here, and there is no reason for it to
be calibration dependent, either through physics assumptions or
mathematical processes. This is indeed one of the reasons why
we selected this parameter in our g-mode search. The peak fit
sometimes fails; a limit of 240 s was therefore set to the values
of the fluctuations of T to eliminate these unrealistic poor-fit re-
sults. Less than 1 percent of the values is rejected, so that the
number of non-zero values of T is finally 34 261. The effects are
all negligible for clock and timing. The SOHO on board timer is
always maintained within 20 ms of TAI. We checked that the few
shifts that occurred in the GOLF sampling during the operations
had no signature in all of the processes we describe here. We
also checked that neglecting the SOHO-Sun distance variation
through the orbit has no influence on our results.
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Fig. 7. Power spectrum PS(ν) of the time series shown in Fig. 6.

Figure 6 shows the time series made up from 36 131 consec-
utive values of Ti fluctuations (where 1 ≤ i ≤ 36131, including
gaps). This is the new “signal” to be analyzed in the hunt for
g modes. It is interesting to know that the mean value of T , when
it is measured as we did, is 14 807 s, or 4 h, 6 min, 47 s. This can
be seen as the mean return travel time of a sound wave from the
visible surface through a diameter. The measured rms value of
the scatter of T around this mean value is 52 s. The distribution
around the mean value is nearly Gaussian with this σ of 52 s,
with slightly extended tails on both sides that correspond to the
poor fits and were cut, as mentioned above, at ±240 s.

We checked that our parameter T is remarkably insensitive to
surface effects such as solar activity or orbital velocity residuals
(again, it was carefully defined for that purpose). For instance,
Fig. 6 just marginally shows a slight increase of noise amplitude
with time, while the GOLF signal itself shows it more substan-
tially, as well as showing some consequences of a few technical
changes on the instrument through these years that are totally in-
visible here. T is also insensitive to the detailed characteristics of
the calibration steps used to process the GOLF signal, which will
in any case reveal the p-mode spectrum in our selected range.

Figure 7 shows the resulting power spectrum of the 16.5-year
time series of T fluctuations. Although, as discussed above, this
spectrum is limited to an extremely low frequency domain (be-
low 34.7 µHz, i.e., the lower 0.5 percent of the bandwidth shown
in Fig. 1), it is remarkably flat, whereas the GOLF signal spec-
trum itself is characterized by a very strong 1/ f 2 dependence
in this range (Fig. 1), where it would not make sense to look
for g modes. In addition, Fig. 8 shows an enlargement on the
extreme lowest frequency part that illustrates the absence of sig-
nature of either the solar cycle period or the orbital period of one
year, again demonstrating the very low sensitivity of T to the
surface velocity.

We now use this power spectrum to determine low-frequency
asymptotic values of g-mode parameters, taking the very low fre-
quency range into account over which this asymptotic search is
best possible. In this analysis, the relevant asymptotic g-mode
properties for a given degree are on one hand the equidistant pe-
riod spacing between consecutive radial harmonics, and on the
other hand, assuming a uniformly rotating core, a constant fre-
quency splitting value for the triplet structure of the l = 1 dipolar
modes and for the quintuplet structure of the l = 2 quadrupolar
modes. We show below that only degrees 1 and 2 have indeed
been detected.
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Fig. 8. Enlargement of the lowest frequency range of Fig. 7. The arrows
indicate the frequencies of the solar cycle and of the one-year orbit.

3. Real GOLF data versus artificial data sets

At various steps of the analysis below, it will be important to
check that the analysis itself is not responsible for creating the
results that we will claim. For this reason, it is essential to
compare the real GOLF data with artificial datasets presenting
all the GOLF p-mode amplitudes and noise characteristics and
for which the temporal coverage is identical to the GOLF win-
dow function.

In order to create a simulated time series with the same spec-
tral content and the same statistical behavior as the actual GOLF
data, we use the fact that the p modes are damped and randomly
excited so that the data can be regarded as a stationary random
process. Therefore, the periodogram of the time series, calcu-
lated as the square modulus of the FFT of the time series, can be
regarded as a particular realization of the power spectrum den-
sity (PSD) of the solar signal. The PSD is the asymptotic limit
of the Fourier transform of the autocorrelation of the solar sig-
nal observed for an infinite duration. When the data are evenly
spaced, the FFT calculated on the same number of points as the
time series for a finite observation is producing independent val-
ues, bin by bin, for both the real an imaginary parts, which are
also normally distributed, so that its square modulus follows a χ2

distribution. It is then possible to produce simulated time series
ysim with the same spectral contents and statistical properties by
multiplying the square root of the PSD of the data by two ran-
dom normal distributions to produce the real and imaginary parts
of the Fourier transform of the time series, in the form

ysim = FFT−1(X), (1)

with

X(νi) =
√

PS D(N1 + jN2), 0 < νi (2)

X(−νi) = X(νi)?, (3)

where N1 and N2 are two normally distributed random series
with half the number of points of the GOLF full time series. This
method has been extensively studied by Percival (1992) and has
been used in helioseismic data analysis (see, for instance, Fierry-
Fraillon et al. 1998; Appourchaux et al. 1998).

In order to estimate the PSD of the GOLF data, we used
the method developed by Welch (1967). We calculated 120 peri-
odograms corresponding to successive 90-day periods of the to-
tal 16.5-year time series overlapped by 50% and averaged them.
The resulting spectrum was convolved by a triangular 0.1 µHz

A40, page 5 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730460&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730460&pdf_id=8


A&A 604, A40 (2017)

Fig. 9. Estimate of the amplitude spectrum (square root of the density
power spectrum) in blue, superposed on the modulus of the Fourier
transform of the GOLF time series (in magenta). This estimate was used
to calculate simulated time series.

window function to obtain a smoother estimate of the PSD.
Figure 9 shows the square root of the PSD superimposed on the
GOLF time series FFT modulus. The PSD estimate contains all
the known properties of the p-modes spectrum, as its resolution
is sufficient to resolve all the components of the split p modes.
Therefore, any combination of split modes that could propagate
through any subsequent step of our analysis would exist in the
simulated data. In contrast, the possible modulation of the p-
mode separation by g modes is completely suppressed in the
averaging. It should be noted that the simulated data not only
have the same spectral contents for the p modes, including the
presence of all modes up to l = 4, with correct profile widths,
amplitudes and asymmetries, but also quantitatively reproduce
the surrounding noise level.

This process can be compared to the method described by
Percival (1992). We added one specific step to take the GOLF
data set specificity into account, however. The GOLF data duty
cycle is close to 96% in this 16.5-year time series. A few gaps
exist, in particular at the beginning of the time series (the SOHO
vacation). Some variations of the mean amplitude can also be
seen during the 16 years of observations, corresponding to the
change from one side of the sodium lines to the other, as well
as a yearly variation linked to the orbital ellipticity. These fea-
tures would result in an imperfect independence between the fre-
quency bins in the FFT. This was taken into account in the simu-
lated data. For that purpose, the time series ysim were multiplied
by the total GOLF window function and by an amplitude modu-
lation calculated from the GOLF dataset with a 3-month moving
average. By doing so, we ensure that the simulated spectra have
the same statistical behavior as the original time series. It is then
possible to analyze the simulated spectra with each step of the
procedure that was applied to the original GOLF data.

Ten such artificial GOLF time series were produced. They
were used for the first step of our analysis detailed so far: the
production of the time series of T (t). The rms values of the fluc-
tuations of these ten time series lie between 49.5 and 51 s, all
close to but slightly lower than the 52 s obtained for the GOLF
data set.

4. Rotational splitting and solar core rotation

Very many modes of degrees 1 and 2 are available that have
detectable amplitudes in the very low frequency range we are
considering. The best first step in this case, as suggested many
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Fig. 10. Autocorrelation function A(ν) of the frequency range
5.5−34.7 µHz of the power spectrum shown in Fig. 7. The first value
displayed is bin number 7, i.e., 0.013 µHz. The vertical lines are at 210,
630, and 1260 nHz.

years ago (Fossat et al. 1988), is to look for the rotational split-
ting that is assumed to be approximately independent of the ra-
dial order for a given degree of the g modes in the asymptotic
approximation. The obvious approach involves computing the
autocorrelation of the power spectrum shown in Fig. 7. To max-
imize the statistical improvement, we used the broadest possi-
ble frequency range, just avoiding the very lowest part, where a
slight increase in noise is visible, and where we also know that
the g-mode density per unit frequency (if this spectrum contains
any g-mode signature, of course) becomes too crowded to per-
mit any possible use. We also used a version of this spectrum
smoothed over 6 bins, which allows contributions from peaks
with frequencies that deviate slightly from the strict asymptotic
equality of all individual splittings. Figure 10 shows this auto-
correlation computed over the frequency range between 5.5 µHz
and the Nyquist frequency of 34.7 µHz. About 100 modes of de-
gree 1 and 170 modes of degree 2 could exist in such a broad
range.

The main peak of this autocorrelation, around 210 nHz, is
highly significant for two reasons. First, when we use the stan-
dard deviation σ of the autocorrelation, which has a Gaussian
distribution, the peak at 210 nHz is at 4.7σ above the mean level
of the autocorrelation. With the 6-bin smoothing and a Gaussian
distribution of 2000 bins of this autocorrelation in the range dis-
played in Fig. 10, that is, around 300 independent values, this
implies a low probability of lower than 10−3 for this peak to be
produced by a random fluctuation. Second, this peak remains the
main peak in various attempts to reduce the statistics, either by
exploring a narrower frequency range, or by reducing the dura-
tion of the 16.5-year initial data set to about half. Figures 11 and
12 show the autocorrelation computed on the two independent
frequency ranges, from 5.5 to 13.2 µHz in Fig. 11, and from
13.2 to 34.7 µHz in Fig. 12. This shows that this correlation
peak is clearly present over a very broad frequency range. This
is a first indication that many asymptotic g-mode signatures are
present in this broad range, and this is confirmed in the next sec-
tion by means of the other asymptotic parameter, namely the pe-
riod equidistance. Figure 13 shows the increase in 210 nHz peak
significance with increasing the duration of the time series. The
length of the time series can be adjusted by adding data points to
either the beginning or the end, and this figure is the average of
the two possibilities. This figure shows that the autocorrelation
clearly becomes significant with about 8 to 9 years of data.
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Fig. 11. Autocorrelation function of the frequency range 5.5−13.2 µHz
of the power spectrum shown in Fig. 7.
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Fig. 12. Autocorrelation function of the frequency range 13.2−34.7 µHz
of the power spectrum shown in Fig. 7.

The ten sets of artificial data never produce an autocorrela-
tion value above 4σ through the same analysis, and never pro-
duce a highest peak at 210 nHz. This excludes the idea that
the peak could be an artifact produced by a subtle effect of the
p-mode splittings themselves. As an example of these autocor-
relations from artificial data sets, Fig. 14 does not show any out-
standing peak, and the highest peak, not at 210 nHz, stands at
3.3σ. As we mentioned, interpreting this as a g-mode splitting
signature assumes a constant splitting value of the asymptotic
approximation, and this is probably true only within 3 percent in
the highest part of our frequency range (Berthomieu & Provost
1991). It can be verified that the smoothing of the power spec-
trum improves the S/N of this correlation peak. The maximum
benefit is obtained by a smoothing on 6 to 8 bins, which is con-
sistent with this small departure from the asymptotic approxima-
tion. If the same autocorrelation is computed without the 6-bin
smoothing, the main peak at 210 nHz is spread across 6 bins,
and we can note that bin number 2 at an abscissa of 1.92 nHz
is at lower than 0.02, which proves that there is essentially no
correlation between consecutive bins in the power spectrum.

Figure 15 shows the histogram of the ten autocorrelations
of the same frequency range of the power spectra of artificial
time series, all taken together and individually centered around
their mean value (which is not exactly zero because of the 6-bin
smoothing and the slow variations of the background noise). The
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Fig. 13. S/N of the 210 nHz peak of Fig. 10 as a function of the duration
of the time series, from 3 to 16.5 years.
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Fig. 14. Autocorrelation function of the frequency range 5.5−34.7 µHz
of a power spectrum resulting from an artificial data set. No peak is
visible at 210 nHz, and the highest peak stands at 3.3σ to be compared
to the 4.7σ of the peak obtained from the GOLF data set.

rms value is 0.0166 and the highest of these 20 000 values is at
3.8σ. This indeed corresponds to a probability of 1/20 000 in
a normal gaussian distribution. The 210 nHz peak of Fig. 10
(where the rms value is also 0.0166, which confirms the in-
ternal consistency of the simulation) that stands at 4.7σ, has a
probability of 2 × 10−6 to be a random outcome. These num-
bers are consistent with the estimated probability of lower than
10−3 mentioned above that an autocorrelation of 300 indepen-
dent values contains one of these as high as this main peak, as
300 × 2 × 10−6 = 0.6 × 10−3. Its position is shown by an arrow
in Fig. 15.

The statistical significance of this correlation peak is then
quite strong, and this test on artificial data demonstrates that it
is not produced by a subtle effect of the p-mode splittings. The
subsequent analysis has proved that it can really be interpreted
as the signature of g-mode triplets.

Before interpreting further Fig. 10, we have to mention that
special care must be taken here because of the specific process
we used for this g-mode detection; our detection agent is the set
of low-degree p modes, located inside the Sun and not on Earth
or at the Lagrange point. The g-mode signal is then seen from a
reference that rotates inside the radiative and convective zones.
This will have crucial consequences for the rotation analysis.
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Fig. 15. Histogram of ten figures similar to Fig. 10 obtained with artifi-
cial data, simulated as described in text.

When we assume that below the convection zone, the rota-
tion rate depends only on radius r and not on the colatitude θ
(Ω(r, θ) = Ω(r) for r ≤ rcz), then we can define a mean rotation
rate sensed by the asymptotic g modes by

Ωg =

∫ rcz

0 Ω(r)
(

N(r)
r

)
dr∫ rcz

0

(
N(r)

r

)
dr

=

∫ rcz

0
K(r)Ω(r)dr, (4)

where rcz is the base of the convection zone and N(r) is the
Brunt-Väisälä frequency. The sidereal asymptotic splittings are
then be given by Ωg/2 and 5/6 Ωg for l = 1 and l = 2,
respectively (Berthomieu & Provost 1991). For low-frequency
g modes, below 33 µHz with |n| ≥ 20, the relative difference be-
tween the mode splittings and these asymptotic values is smaller
than 3% (see Fig. 5 of Berthomieu & Provost 1991).

In this work, the rotational splittings are not seen from an
inertial frame. Instead we search for them in the signal of the
low-degree p modes that propagate through the rotating Sun.
Following Komm et al. (2003), we can define the mean rota-
tion rate sensed by p modes as the solid-body rotation of the Sun
given by

Ωp =

∫ R�
rc

ρr4
∫ π

0
3
4 sin3 θ Ω(r, θ) drdθ∫ R�
rc

ρr4dr
, (5)

where ρ is the density, R� is the solar radius, and rc ' 0.2 R�
is the boundary below which p-mode splittings become rather
insensitive to the rotation rate. From the inversion of MDI split-
tings, Komm et al. (2003) reported Ωp = 434.5 ± 5.9 nHz. In
analogy with the synodic-sidereal correction that is necessary
when the splittings are observed from a terrestrial perspective,
the expected asymptotic g-mode splitting components seen in
the p-mode signal are given for l = 1 and l = 2 by

s(1,m) = m
[
Ωg

2
−Ωp

]
(6)

s(2,m) = m
[
5Ωg

6
−Ωp

]
, (7)

respectively. When we use only the low-degree modes (those
used in this g-mode search), no inversion is possible, but a mean
rotation rate Ωp = 432.5 ± 1 nHz has been reported by Fossat

et al. (2002). Taking these two estimates into account, we used
a mean value of Ωp = 433.5 ± 7 nHz for the rotation of our “in-
strumental reference” (i.e., the p modes that corotate with the
Sun).

Because our instrumental reference is located inside the ro-
tating Sun, Eqs. (6) and (7) may imply a surprising consequence.
If the g-mode kernel rotation Ωg were on the same order as the
p-mode kernel rotation, close to 433 nHz (case of a nearly rigid
rotation down to the solar center), then Eq. (6) would imply a
negative value of the splitting s(1, 1), which would indeed be
equal to half the value of the p-mode rotation. A negative split-
ting means that the positions of the two tesseral peaks corre-
sponding to m = ±1 are reversed. It also means that an observer
located on the solar surface, with a constant internal rotation
down to the solar center, would “see” the g modes rotating in the
opposite direction, at half the global rotation rate. As in the case
of the Foucault pendulum, this is a non-intuitive consequence of
the Coriolis effect, which is itself due to the nearly horizontal
motions of the g modes.

Our main peak at about 210 nHz, close to half of 433 nHz
(although significantly different), could correspond to this situa-
tion if it is to be seen as a signature of the s(1, 1) splitting. This
would mean, incidentally, that the m = 0 gmodes are detected by
this method. Helioseismologists are used to the fact that p modes
with an odd value of (m + l) are not visible in full-disk observa-
tions. This is an observational bias that arises because the vis-
ibility is limited to half the total solar surface. In the present
case, the “observation” of g modes is made from inside the Sun
itself, so that this bias disappears and our measurements are sen-
sitive to all m components. The same benefit should then exist
for the m = ±1 of l = 2, which are also not directly accessible in
full-disk velocity p-mode measurements, but are also expected
to contribute here in the g-mode detection.

However, the autocorrelation does not see the difference be-
tween a negative and a positive splitting. We are then confronted
by an ambiguity between a possible nearly solid rotation pro-
ducing a splitting s(1, 1) = −210 nHz and a much faster g-mode
rotation of more than 1200 nHz, which would produce a splitting
s(1, 1) = +210 nHz.

To solve this ambiguity, we need to also detect the signature
of the l = 2 g modes. Their Coriolis coefficient, 5/6, is quite dif-
ferent so that the same 210 nHz splitting of l = 1 is associated
with very different values of the l = 2 splitting in the two possi-
ble solutions. The l = 2 g-modes’ splitting signature is certainly
seen with a lower S/N, as shown in Fig. 10, where no domi-
nant series of peaks can be clearly assigned to them. However,
they are potentially many, and they consist of quintuplets, so that
the increased statistical efficiency of the autocorrelation may still
offer a chance that some of the non-dominant peaks of Fig. 10
contain their signature.

In the case of slow rotation, the single s(2, 1) splitting should
be negative, around −60 nHz, while in the second case, its pos-
itive value is expected around 630 nHz. No significant peak can
be seen in Fig. 10 around 60 nHz, while the second highest
peak of this figure indeed stands near 630 nHz. The third high-
est peak, although not highly significant by itself, is located near
1260 nHz, and could be the signature of s(2, 2).

On the other hand, the 210 nHz high peak could mathemati-
cally also be the signature of any other splitting component such
as s(1,±1) or s(2, 1). Equations (6) and (7) must be satisfied, and
this will help to reduce the ambiguity.

The simplest way of checking the significance of these vari-
ous possible signatures of g-mode splittings is to plot the sum of
the autocorrelation values at the three abscissae s(1, 1), s(2, 1),
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Fig. 16. Sum S cor (Eq. (8)) of the three possible g-mode splitting signa-
tures in the autocorrelation, as a function of the g-mode kernel rotation
Ωg. It identifies a fast rotation rate of 1277 ± 10 nHz.
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Fig. 17. S/N of the main peak of Fig. 16 as a function of the duration of
the time series analyzed, from 3 to 16.5 years.

and s(2, 2) as a function of Ωg,

S cor = A(s(1, 1)) + A(s(2, 1)) + A(s(2, 2)), (8)

with s(l,m) defined by Eqs. (6) and (7), as abscissae of the ordi-
nate A plotted in Fig. 10.

This is shown in Fig. 16, where the sharp highest peak clearly
favors the rapid rotation solution. In this figure, Ωg is sampled
at 1 nHz intervals, and the three abscissae s(1, 1), s(2, 1), and
s(2, 2) are rounded to the integer value of the bin number ob-
tained from Eqs. (6) and (7). An easy Monte Carlo test demon-
strates the high significance of this peak: a random selection
is made of three abscissae in Fig. 10, and their three ordinates
are added. One million such selections can easily be made, and
repeating this one hundred times provides on average one oc-
currence of such a peak at 5.2σ (with respect to a mean value
of 0.04 and an rms scatter of 0.029 in each set of one mil-
lion selections). This occurrence always corresponds to contri-
butions of the 210 nHz peak plus two of the three or four highest
other peaks, and only one of these solutions satisfies Eqs. (6)
and (7). Figure 17 shows that the S/N of this g-mode rotation
peak at about 1280 nHz increases with increasing data set du-
ration. This increase does not differ much from the increase of
the 210 nHz peak alone, an indication that taking the assumed
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Fig. 18. Same as Fig. 16, but computed separately for the unique contri-
bution of l = 1, A(s(1, 1)) in blue, or for the contribution of two compo-
nents of l = 2, A(s(2, 1))+A(s(2, 2)) in red. This illustrates that the l = 2
contribution confirms one of the two possible rotation rates detected by
l = 1 with ambiguity.

l = 2 contributions into account does not only add noise. This
1280 nHz peak is consistent with the addition of the three high-
est peaks in Fig. 10, within their respective uncertainties of a few
nHz.

For the statistical significance of the l = 2 splitting contribu-
tion, it is possible to reproduce Fig. 16 by using separately only
the contribution of the l = 1 splitting, or the contributions of the
first two splitting values of l = 2. This is shown in Fig. 18 in blue
for l = 1 and red for l = 2. The blue curve shows the ambigu-
ity on the rotation rate created by Eq. (6), which is visible as a
symmetry around 866 nHz (2×433), so that two dominant peaks
that are equally high support either a slow or a fast rotation. The
red curve, corresponding to l = 2 and Eq. (7), displays a symme-
try around 520 nHz (433 × 6/5) and clearly helps selecting one
unique solution that is precisely located on one of the other two
peaks. They are slightly rescaled here for better visibility, and
Fig. 16 shows the sum of these two curves. The rapid rotation
of about 1277 ± 10 nHz could therefore almost be measured by
the only contribution of the l = 2 g modes, but the case becomes
very compelling with the two contributions taken together. The
error bar of 10 nHz around 1277 nHz takes the three contribu-
tions of the three correlation peaks into account. We can then
conclude that the autocorrelation shown in Fig. 10 indeed con-
tains the significant signatures of g-mode splittings of degrees 1
and 2. This indicates a rapid rotation of the solar core, and we
can move to the next step of the analysis, but we return to this
important point of the rotation in the general discussion.

It is also interesting to compare Fig. 18 with the same calcu-
lation made on the same artificial data set, shown in Fig. 19. It is
clearly more random.

5. Equidistant period spacing. The case of l = 1

For a sufficiently low frequency, the second-order asymptotic pe-
riod is given by

Pn,l = Pl(|n| + l/2 + θ) + O(1/Pn,l), (9)

where Pl is the equidistant period spacing, defined by

Pl = P0/
√

(l(l + 1)), (10)
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Fig. 19. Same as Fig. 18 for an artificial data set.

and θ is a phase factor that tends to a constant when the ra-
dial order increases (Berthomieu & Provost 1991; Provost et al.
2000). P0 is directly related to the denominator of the asymptotic
g-mode rotation kernel given by Eq. (4),

P0 =
2π2∫ rcz

0
N(r)

r dr
· (11)

P-mode helioseismology has bracketed the value of P0 to be
around 34 min, with an uncertainty smaller than one minute.
The two asymptotic values of Pl should then be approximately
24 min for l = 1 and 14 min for l = 2. We separately address
the case of l = 1 , which provides a highly significant result. The
case of l = 2 is expected to be more difficult.

In this section we assume that all of the gmodes participating
in our analysis indeed precisely follow this equidistant period
spacing asymptotic approximation. We discuss this hypothesis
in the general discussion section.

Given the expected equidistant period spacing of about
24 min, there must exist about 100 g-mode dipole frequencies in
the range explored to produce Fig. 7. We do not know how many
of these really contribute to this figure because they are not indi-
vidually detectable. We know from Figs. 11 and 12 that they are
many, however. A priori we should explore the broadest possible
frequency range to search for the equidistant period spacing. An-
other difficulty arises, however, which is the density of g modes
in the lowest part of this range. Because they are equidistant in
period, the consecutive modes approach each other with decreas-
ing frequency. At 6 µHz, two consecutive frequencies are sepa-
rated by about 51 nHz, while their s(1, 1) − s(1,−1) splitting is
420 nHz. This means that more than eight consecutive g modes
overlap. This density provides an interesting statistical benefit in
the autocorrelation, while it might create confusion in this part
of the analysis.

Provost & Berthomieu (1986) and Christensen-Dalsgaard &
Berthomieu (1991) estimated that the asymptotic approxima-
tions could be regarded as valid within about 10−3. In our fre-
quency range this means a few bins. The 6-bin smoothing we
used for the autocorrelation has indeed proved to optimize the
visibility of most of the following figures.

The search for equidistant period spacing makes use of the
assumed known splitting to produce one model of many multi-
plets that cover part of or all the frequency range used to measure
the rotation. This model has two free parameters: the equidis-
tant period spacing Pl, and the position of this equidistant series,
which is defined by the value Pmin,l of the shortest period of the
model.

A 2D exploration (Pl in abscissa and Pmin,l in ordinate) can
be computed by adding all of the individual contributions of the
spectrum of T (Fig. 7) along the abscissae of this model. This
can be written as

Cl(Pl, Pmin,l) =

Nl−1∑
i=0

l∑
m=−l

PS

(
(Pmin,l + iPl)−1 + m × sl

)
, (12)

where PS(ν) is the value of the power spectrum of T at the fre-
quency ν. The frequencies are approximated to the integer num-
ber of bins, which is close enough with the 6-bin smoothing used
in all the next steps of the analysis. Nl and sl = s(l,m)/m are re-
spectively the number of modes and the single splitting value
used in the model for degree l.

For l = 1, using s1 = 210 nHz, we started with the broadest
possible frequency range of 5.5−34.7 µHz, and then attempted to
reduce it by starting above 5.5 µHz and determining whether this
would increase or decrease the S/N. The best result is obtained
with a set of N1 = 76 modes, starting just above 7 µHz.

Figure 20 shows C1(P1, Pmin,1), which uses this model, in-
cluding the three components of 76 assumed l = 1 g-modes
triplet νn,1 and νn,1 ± 210 nHz. This shows the resulting sum-
mation of these 228 values, displayed for a 120 s range of the
equidistant period spacing centered on 24 min, 20 s (abscissa),
and a 2000 s time window starting at 30 000 s (ordinate axis).
The horizontal range is much wider than the estimated uncer-
tainty in the previous knowledge of the period spacing, and the
vertical range is wider than this spacing, so that the first two pe-
riods of the equidistant series can be seen. The two red spots
horizontally define an equidistant period spacing of 1443 s with
at worst an uncertainty of 1 s, and they are indeed vertically sep-
arated by 1443 s. The shortest period of the series is seen at
about 30 360 s. Figure 21 shows the series of maxima of each
line in Fig. 20. This demonstrates that there is no other maxi-
mum that can compare to the red spots in the broad range of the
2D figure that covers more than all the possibilities (4.7σ against
2.1σ for the second highest value). It also reveals, quantitatively
more precisely than the color view, the first two g-mode periods
of the series, at 30 360 ± 15 s and 31 803 ± 15 s, respectively,
which are indeed separated by the spacing of 1443 s. This is
obtained by construction because, as the above formula shows,
replacing P by P + P1 leads to a replacement of PS((P + iP1)−1)
by PS((P + (i + 1)P1)−1) and thus to a shift of the sum by one
term only. When we assume that the asymptotic regime has
been reached in this frequency range and by comparing these
values with the frequency table of Mathur et al. (2007), these
peaks, corresponding to frequencies of 32.94 ± 0.015 µHz and
31.44 ± 0.015 µHz, can tentatively be identified with the signa-
tures of dipolar g modes of radial orders n = −20 and n = −21,
that is, Pmin,1 = P−20,1 in Eq. (12). They might differ slightly
from the real frequencies of these two modes if the strict asymp-
totic regime starts beyond the 20th radial harmonics. We return
to this point in the general discussion.

At this step it is useful to make a comparison with the same
analysis made on an artificial data set. The equivalent of Fig. 20
with the artificial time series we used earlier is shown in Fig. 22,
where no specific period equidistance is clearly visible. The
equivalent of Fig. 21, shown in Fig. 23, confirms that it is not
the analysis that produces the results. We note that Figs. 21 and
23, as well as the next figures of the series (Figs. 24, 25, 27,
and 35) are all presented with the same power unit of s2Hz−1,
as the original spectrum of Fig. 7, so that the amplitudes of the
displayed peaks are directly comparable.
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Fig. 20. Sum C1(P1, Pmin,1) (Eq. (12)) of the 228 values of a model based
on 76 g-mode dipole triplets with the splitting value s1 = 210 nHz,
applied to the power spectrum of Fig. 7, smoothed over 6 bins. The
two free parameters of the model are the equidistant period spacing P1,
defining the abscissa, and the period Pmin,1 of the first selected mode,
defining the ordinate axis. The first (lowest) sharp peak is located at
30 360 ± 15 s (FWHM) and covers the radial order range from −20
to −95, the second (upper part of the figure) covers the radial order
range from −21 to −96. The equidistant period spacing is 1443 s, or
24 min 03 s, within less than 1 s.
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Fig. 21. Each value is the maximum of a row of Fig. 20, so that the
abscissa is the ordinate of Fig. 20. The interval between these peaks is
the l = 1 equidistant period spacing of 1443 s. The power scale is the
mean power per individual g-mode peak.

Given the very high S/N of Fig. 21, the idea of independently
carrying out the two steps of this analysis (rotation on one hand,
equidistance on the other hand) can be attempted by assuming
that the rotational splitting is unknown and by assuming a con-
tribution of the central component of the split triplet (the sig-
nature of the simple splitting s(1, 1) would not be visible in the
autocorrelation otherwise). Then, the search for the equidistant
period spacing can be made by the same analysis by reducing
the model to a simple series of equidistant central periods, in-
stead of the triplets. We have to expect a loss of sensitivity of
about

√
3, but it can still be successful because these peaks are

at 4.7σ. The result is shown in Fig. 24. The S/N is indeed sig-
nificantly reduced, but the series of equidistant periods starting
at 30 360 s is still clearly identified from the central g-mode fre-
quencies alone. After the 210 nHz peak in the autocorrelation,
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Fig. 22. As in Fig. 20, the sum of the 228 values of a model based
on 76 g-mode dipole triplets and applied on an artificial data set, with
an assumed splitting value of 267 nHz that corresponds to the highest
correlation peak in Fig. 14. No significant equidistant period is shown,
as demonstrated quantitatively by the next figure.
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Fig. 23. Each value of this figure is the maximum of a row of Fig. 22,
so that its abscissa is the ordinate of Fig. 22. This figure relative to an
artificial data set must be compared to Fig. 21 obtained with the real
GOLF data.

this is a second and independent strong indication of a signa-
ture of asymptotic g modes of degree 1 in the power spectrum of
Fig. 7.

We can conclude from this exercise that the central compo-
nents of the g mode indeed clearly contribute to the previous fig-
ures, and we can try to proceed one step further and directly de-
tect their mean contribution in the power spectrum of T (t) itself.
We cannot see the triplets individually, but since we know their
76 periods, we know 76 individual frequencies and can com-
pute the mean of 76 sections of Fig. 7 power spectrum, each one
centered on one of these 76 mode frequencies and broader than
the total splitting of s(1, 1) − s(1,−1). The statistical benefit for
each one of the three tesseral components is comparable to what
was shown in Fig. 24, where we were searching for the best so-
lution for efficiently adding 76 individual central components.
Now we have this best solution (the positions of the 76 periods,
equidistant by 1443 s), and we test whether their addition in the
frequency domain will also reveal the two tesseral splitting com-
ponents. The following formula was used to derive Fig. 25, over
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Fig. 24. Sum of the 76 values based on the same model based on 76
g modes; this model is simplified to the 76 central g-mode frequencies,
thus ignoring knowledge of their splitting.

the limited range of 1.2 µHz:

M(ν) =

−95∑
n=−20

PS(νn,1 − ν), (13)

where ν is the frequency and νn,1 is the inverse of Pn,1 = P−20,1 +
(|n| − 20) × P1 (rounded to the integer value of the bin number).

Figure 25 exhibits the two split tesseral components with
an S/N that can be compared to the S/N of Fig. 21, and with
a splitting value that is indeed consistent with the 210 nHz value
seen in the autocorrelation, and which can be here estimated at
209.5 ± 2 nHz. Figure 25 also shows that the central compo-
nent does not only contribute, but contributes with an amplitude
about 1.5 times larger than the other two components. This will
have to be understood, and it explains, or justifies, the fact that
the double splitting s(1, 1) − s(1,−1) is not detected in the auto-
correlation: with these relative amplitudes, its signature must be
three times smaller, so that it can easily disappear in the back-
ground noise.

It is also interesting to note that the mean heights of these
peaks can be translated into the modulation amplitude of the
sound wave travel time through the solar diameter. The prod-
uct of height × line-width is the square of this amplitude. With
a mean height of 107 s2 Hz−1 and a line width of about 10 nHz,
this results in a modulation amplitude of about

√
10−1 ' 0.3 s,

or as a fraction of the travel time of 4 h, a relative amplitude
modulation of 2 × 10−5.

6. Equidistant period spacing. The case of l = 2

The same general analysis can be applied to the search for the
quadrupole modes. This is of course significantly more difficult
because of the smaller detected amplitudes. In the autocorrela-
tion, the main peak of the l = 1 splitting signature is the sum
of (at most) 200 products of individual peaks corresponding to
m = 0 and m = ±1. In the same frequency range, there are about
170 frequencies of quadrupolar modes, composed of quintuplets.
The first signature of their splitting in the autocorrelation is then
the sum, at most, of 4 × 170 = 680 similar products of indi-
vidual peaks corresponding to neighbor tesseral orders. Despite
this encouraging ratio of 680 versus 200, the mean signature in
the autocorrelation is about twice smaller (relative heights of the
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Fig. 25. Mean profile M(ν) of 76 equidistant (in period) dipole modes
whose central frequencies are defined by Fig. 20, shown for a 1.2 µHz
bandwidth (Eq. (13)). The triplet splitting of this profile, even when
contaminated by the background noise and many overlapping neigh-
bors, is nevertheless directly measured on the modes themselves, at
209.5 ± 2 nHz.

peaks at 630 and 210 nHz), which indicates a mean amplitude,
individual mode by individual mode, smaller by at least a fac-
tor 4. An important additional difficulty is the very dense over-
lap of these modes, especially in the lowest frequency range.
They are closer to each other than the dipole modes by a factor
√

3, while their total splitting width is broader by a large factor:
2520/420 = 6. This makes it difficult to explore the very lowest
part of the frequency range (where each quintuplet is contami-
nated by the contribution of more than 80 neighbors) and thus
reduces the statistical benefit.

On the other hand, we have in hand the knowledge of the
splitting and even of the equidistance period spacing, which is
firmly constrained by the asymptotic equation Eq. (10), which
implies a value close to P2 = P1/

√
3 ' 833 s. We can then at-

tempt the search for equidistant period spacing in a limited range
near the expected value of 833 s.

In the case of Fig. 20 for l = 1, we used a g-mode model
of 76 triplets covering the frequency range from 7 to 33 µHz.
This does not work with l = 2 because of the large overlap near
7 µHz. In an attempt to find a compromise between the need for
a good S/N and the excess of confusion created by the overlap of
the modes, we tried here the frequency range starting at 8 µHz.
Figure 26 is then similar to Fig. 20. It shows C2(P2, Pmin,2)
(Eq. (12) for l = 2) for a model of N2 = 112 l = 2 g-modes
quintuplets and a single splitting value of s2 = 630 nHz. This
quantity is displayed over a range of possible equidistance val-
ues P2 between 825 and 840 s, and a range of 1500 s for the first
value Pmin,2 of the 112 periods, starting at 29 000 s. We can in-
deed see a possible signature close to the expected equidistance
of 833 s, with the visibility of the first two periods separated by
about 833 s.

Figure 27 is then a vertical cut of Fig. 26 at 832.8 s, extended
to the first three periods. It confirms the equidistant period spac-
ing of 832.8 s with an S/N of 3.65 and also shows the beginning
of the decrease in efficiency of the method when pushing it too
far toward very long periods. We show more reasons to accept
this l = 2 detection in the general discussion.
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Fig. 26. Sum C2(P2, Pmin,2) (Eq. (12)) of the 560 components of 112
l = 2 quintuplets, with a single splitting value of s2 = 630 nHz, and
the two free parameters are the period spacing P2 in the abscissa, in the
range 825−840 s, and the first central period of the series Pmin,2 in the
ordinate, as in Fig. 20. The equidistance is seen at 832.8 s.
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Fig. 27. Vertical cut of Fig. 26 at 832.8 s, extended to a third period.
It shows a good S/N and clearly locates the first period of the series at
29 380 ± 30 s. This peak is the mean of the 560 components of the 112
l = 2 g modes in the range of radial orders from −33 to −144. The other
two peaks cover the ranges (−34,−145) and (−35,−146).

When we again compare this with the same theoretical fre-
quency table of Mathur et al. (2007), the first mode of our model
can tentatively be identified with the radial order n = −33 (i.e.,
Pmin,2 = P−33,2 in Eq. (12)) at its period of 29 380 ± 30 s, and
thus a frequency of 34.04±0.03 µHz. We return to the error bars
in the general discussion.

Once again, the same analysis can be made on the artificial
data set, and Fig. 28 confirms that it does not show any signature
of period equidistance.

7. Discussion

The reliability of important results such as the solar g-mode de-
tection and the solar core rotation measurement requires a strong
statistical and physical case. The statistical significance of all re-
sults presented so far is comfortable, and we have also shown
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Fig. 28. Same as Fig. 26 for the artificial data set. This cut is naturally
random as no l = 2 splitting was identified with the simulated data set.
Consequently, no equidistant period spacing can be identified.

that the correlation peak at 210 nHz can be obtained from in-
dependent data sets in two non-overlapping frequency ranges.
We discuss the solar core rotation first, and then show that in-
dependent results can also be obtained for the period spacing
equidistances.

7.1. Rotation of the solar core

An interesting additional exercise can be carried out here to re-
inforce, were it needed, the reliability of this measurement. It
consists of considering the problem in the opposite direction. We
assume that the autocorrelation does contain the signatures of the
three g-mode splittings s(1, 1), s(2, 1), and s(2, 2) and that we do
not know their frequencies, they just have to follow, all together,
Eqs. (6) and (7). We do not know the value of Ωg, and this is the
most interesting part of this exercise. Then we take the p-mode
rotation Ωp as the unknown parameter of this exercise. We scan a
broad range of Ωp possibilities, and for each possibility we scan
the values of Ωg that cover the range of Fig. 16, and we select the
highest value of the sum Eq. (8), and we finally plot this highest
sum as a function of Ωp. We still do not need to know Ωg. The
goal is to determine the best value of Ωp that is consistent with
Eqs. (6) and (7). In other words, we use the only assumption of
the existence of g modes as a tool for measuring the rotation rate
sensed by the p modes. Figure 29 shows that the g modes in-
deed confirm the 433 nHz rotation rate of the p modes, just a
little less accurately than their direct surface measurements. We
already know (from Figs. 16 and 18) that this Ωp = 433 nHz cor-
responds to Ωg = 1277 nHz. We show here that taking Eqs. (6)
and (7) together, applied to the autocorrelation of Fig. 10, with-
out any a priori knowledge of Ωp or Ωg, provides an optimal
solution with the pair Ωp = 433 nHz and Ωg = 1277 nHz. As
433 nHz is already well known to be the mean global p-mode
rotation, this confirms the strong confidence in the measurement
of the g-mode mean rotation Ωg = 1277 nHz. The uncertainty of
this rotation rate is due to an uncertainty in both the measured g-
mode splittings and the 433 nHz p-mode rotation. They are both
very small, and the total does not exceed ±10 nHz, that is, the
uncertainty is smaller than 1 percent.

The mean rotation rate sensed by the asymptotic g-modes
Ωg = 1277 ± 10 nHz is a weighted average below the con-
vection zone (r ≤ rcz). The weighting function is given by the
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Fig. 29. Assumed unknown p-mode rotation rate tested against the op-
timum visibility of the three g-mode splitting values that are assumed
to exist, but are unknown so far. The well-known 433 nHz p-mode ro-
tation rate is confirmed by the g modes, only a little less accurately than
when measured directly on the p modes themselves.

Fig. 30. Asymptotic g-mode rotational kernel K(r) (Eq. (4)).

kernel K(r) (Fig. 30). However, the p-mode splittings have al-
ready given a good estimate of the mean rotation rate in the ra-
diative interior rc ≤ r ≤ rcz. In this zone, all results published so
far are compatible with a radiative zone that rotates rigidly at a
mean rate of 433 ± 10 nHz. The area of the kernel K(r) above
rc = 0.2 R� is 30 ± 1%, which leads to an estimate of the mean
value of the rotation rate below rc of 1644 ± 23 nHz (or one-
week period), that is, a mean rotation of the solar core 3.8 ± 0.1
times faster than the rotation of the mean radiative zone.

A rapid rotation of the solar core has been suggested by
García et al. (2007), who also gave an approximate estimate of
the P1 value with a precision much lower than that of our anal-
ysis: rotation between three and five times faster than that of the
radiative zone, and P1 between 22 and 26 min (obtained in a
higher frequency range not yet very close to the asymptotic pe-
riod equidistance). Our more accurate results do not contradict
the P1 estimate, but they cannot be reconciled with the more
precise values of the rotation given later by García et al. (2011),
which were based on the possible identification of five dipolar
g modes: the claimed high splittings of these modes, although
suffering large scatter, would imply a g-mode rotation of more
than 1800 nHz, to be compared to our result of 1277 ± 10 nHz.
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Fig. 31. Same as Fig. 21, computed on the same sequence of 76 layers of
the power spectrum, equidistant in periods. This sum is computed sepa-
rately here for the independent first half (red) and second half (blue) of
the 16.5-year time series. The power scale of this and the next three fig-
ures is arbitrary, as they contain two curves that are rescaled to facilitate
comparison.

7.2. Equidistant period spacing of the asymptotic g-mode

The broad frequency range across which this parameter has been
measured from the dipole l = 1 g modes implies an interesting
accuracy on its value, as 76 equidistant modes have been ex-
ploited. The degree of freedom for targeting the last mode from
the first mode is extremely small. From the results displayed
in Figs. 20 and 21, the equidistance can be estimated to be
P1 = 1443.1 ± 0.5 s.

Figure 21, produced by the sum of 76 equidistant (in period)
symmetrical triplets, does not permit much doubt about this in-
terpretation as a sequence of l = 1 g modes. However, two dif-
ferent tests can be made to reinforce this assessment. The very
high S/N once again permits us to divide either the period range
or the original time series itself into two independent parts that
can then provide totally independent results. Figures 31 and 32
illustrate these two possibilities.

Figure 31 was obtained in the same way as Fig. 21, with
the two independent time series of the first and second halves
of the original 16.5 years. A factor of 0.7 was applied on the
second half to display the two curves with a similar scale, as
the background noise is about 30 percent higher in the second
time series analysis. Despite an obvious reduction of the S/N
in comparison with Fig. 21, the first two periods of the series
are still clearly visible and stand precisely at the same values of
30 360 and 31 804 s. We recall that these two analyses are made
on completely independent data sets.

In Fig. 32, the complete 16.5-year time series is used, but
the sequence of 76 equidistant periods is separated into two. We
used a first range that contains the first 38 periods with the same
starting value of 30 000 s, and another range that also contains
38 more periods, starting at 84 834 s, which is 38 periods beyond
the first range. This figure illustrates the first four periods of two
series of 38 equidistant periods that are completely independent.
Not only is the 1443 s periodicity clearly identified in these two
independent parts, but the second periodicity is seen as an exact
extension of the first. This gives confidence in the high accuracy
of the period equidistance measurement, and it shows that many
g modes are indeed contributing in a very broad range of peri-
ods. We note that the second series (red) shows peaks that look
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Fig. 32. Following Figs. 21 and 31, this illustration uses two indepen-
dent sequences of 38 intervals that are equidistant in periods, the first
half (shorter periods, radial order range from −20 to −57 for the first
of the four peaks) plotted in blue, and the second half (longer periods,
radial order range from −58 to −95 for the first peak, rescaled by a fac-
tor 0.8) shown in red, both computed on the complete time series of
16.5 years. The first four periods of the sequences are shown.
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Fig. 33. Figure to be compared to Fig. 27 for the l = 2 g modes,
computed for the same sequence of 112 layers of the power spectrum,
equidistant in periods. This sum is computed here separately for the in-
dependent first half (red) and second half (blue) of the 16.5-year time
series. The first three periods of each sequence are shown.

significantly broader. This is due to the display in period, while
the power spectrum itself is obtained in frequency. At lower fre-
quencies, the same frequency bin contains a broader interval of
periods.

The same two separations into independent time series and
independent frequency ranges can be analyzed with the l =
2 g modes. We have to expect noisier results. The visibility is
indeed not as good as it is with l = 1, but as shown by Figs. 33
and 34, these separations clearly confirm that the l = 2 modes
are really present during the 16 years and also in the broad range
of frequencies or periods. Consequently, this detection also vali-
dates the result for the rotation of the solar core.

One last point has to be addressed in connection with this
asymptotic g-mode equidistant period spacing: a possible de-
parture from the asymptotic regime. All of the results shown
so far assume a perfect equidistance in period, and their im-
pressive sharpness supports this assumption. However, a small
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Fig. 34. As in Fig. 32 for l = 1, this illustration for l = 2 uses two
independent sequences of 56 intervals equidistant in period, the first
half (shorter periods, ranging from n = −33 to −88) is plotted in blue
and the second half (longer periods, ranging from n = −89 to −144,
slightly rescaled) is shown in red, both computed on the complete time
series of 16.5 years. The first three periods of each sequence are shown.

departure from this equidistance cannot be excluded and would
slightly modify both the value of the real equidistance and the
precise values of individual periods and frequencies. Provost &
Berthomieu (1986) cautioned that at such accuracy of an equidis-
tance measured within less than 1 s, we cannot pretend to have
reached the asymptote as early as at n = −20. The difference
between the periods and the linear asymptote should decrease
following an hyperbolic trend of the radial order n, and the dif-
ference between consecutive periods should become constant
within less than 1 s well beyond n = −20. This was tested by
taking a non-zero value of α in Eq. (14), derived from Eq. (9),
thereby introducing the hyperbolic decreasing term in the defini-
tion of our 76-period model,

Pn,1 = Pmin,1 + P1(|n| − 20) +
α

|n|
· (14)

We then scanned a broad range of values of the parameter α to
look for a possible improvement of the S/N of Fig. 21. The re-
sult is that, indeed, a small but significant improvement can be
obtained with a positive value of α. The contrast of Fig. 21 in-
creases by 6 percent with α = 1350 s, and decreases irregularly
on both sides of this value. This value of α = 1350 s corresponds
to an asymptotic equidistance of 1443.6 s and to a departure from
this equidistance of about 3 s at n = −20. It also implies a slight
change in the period of the first identified g mode of radial order
n = −20. A very precise adjustment can be made by optimiz-
ing the cumulated visibility of the mean triplet profile of these
dipolar g modes. When we recompute the sum of the 76 spec-
tral bands centered on the 76 frequencies defined by our model
including this additional term with α = 1350 s, and then the av-
erage of this profile and its left-right flipped image, we have a
sensitive tool for targeting the precise position of the central fre-
quencies (if it is not precisely located, the central peak is not at
zero in this plot and the average of the profile and its left-right
image is clearly not optimal). Incidentally, optimizing the visi-
bility of the central peak simultaneously optimizes the combined
visibility of the split side-lobes, which are the average of the two
m = ±1 components. This means that these two split components
are precisely symmetrical in frequency around the central peak.
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Fig. 35. Mean symmetrized profile of the 76 dipolar g modes, following
the model that includes a slight departure from the asymptotic equidis-
tance. The comparison with Fig. 25 shows that taking this slight depar-
ture into account improves the visibility.

Figure 35 shows this mean symmetrized l = 1 triplet profile, av-
eraged over the 76 modes that are not quite equidistant in period.
The splitting is clearly visible at its value of 209.5 nHz. This
fine analysis artificially equalizes the amplitudes of the m = ±1
tesseral components, but it has the additional benefit of improv-
ing the visibility of the triplet by a factor

√
2 thanks to its precise

left-right symmetry, and it brackets the value of the n = −20 pe-
riod at 30 385 ± 3 s with α = 1350 s. However, this period and
the equidistance are not independent, and both slightly depend
on α.

We conclude this discussion by setting the asymptotic
equidistance at 1443.6 s with a conservative uncertainty of about
0.7 s. The period of the radial order −20 g mode, which is not
yet on the asymptotic series, is then 30385 ± 30 s. Its distance
from the asymptote is 1350/20 = 67.5 s.

In the case of l = 2, the first accessible g modes correspond
to radial orders around 35. They are consequently closer to the
asymptotic approximation, and no departure from this approxi-
mation can be detected by a similar analysis. The best choice for
a similar α parameter is zero. The asymptotic equidistance re-
mains at 832.8 s with an uncertainty on the same order: 0.7 s.
Assuming a perfect equidistance gives an uncertainty smaller
than 0.7 s, but we have to take into account the small, but not
measured, departure from the exact equidistance of the detected
modes. For the same reason, even if we can measure the first
period within a few seconds, this apparent accuracy assumes
that everything is perfectly asymptotic. Taking the existence of
a small but not detected slight departure from this linear approx-
imation into account, the true uncertainty on the first period of
our model can again be estimated to 30 s. This is the number that
we have mentioned above.

Taken together, the measured asymptotic equidistances of
the modes of degrees 1 and 2 provide a value of the asymptotic
parameter P0 (which is usually given in min rather than in sec-
onds) P0 = 34 mn 01 ± 1 s.

7.3. About the g-mode amplitudes

An interesting question arises concerning the amplitudes of the
detected modes. This amplitude is not directly measured as a
velocity of the waves’ motions, it is indirectly detected by its

effects on the sound waves’ travel time integrated through the
volume of the g-mode kernels. It is then expressed in seconds,
to be taken as a fraction of this travel time. A careful calibra-
tion of the power spectrum shown in Fig. 7 and of all ensuing
by-products such as the mean profile shown in Fig. 25 leads to a
mean amplitude of 0.3 s for each individual component of each
contributing dipolar g mode. This is a small fraction, on the or-
der of 2 × 10−5, of the 4-h travel time. It is less for the l = 2
components, close to 0.1 s. These modulations occur only in-
side the g-mode kernels, however, and this means mostly inside
the solar core itself where the sound waves travel much faster
than in the radiative and convective envelopes. Its relative am-
plitude with respect to the travel time through the solar core is
then rather on the order of 2−3 × 10−4, which is not so small,
considering the many existing g modes that are revealed by this
analysis.

The meaning of this amplitude in terms of the frequency
modulation rate on the p modes themselves remains to be in-
vestigated. It seems clear, however, that the search for g modes
in the side lobes of the p modes could not give a similar re-
sult, either because the side lobes would have a tiny amplitude,
much lower than the noise level between the modes, or because
the nonlinear effects would spread the g-mode signature across
many peaks, as noted by Lou (2001), and would only contribute
to the noise.

When this is considered together with the rapid rotation of
the deep solar layers implied by the values of g-mode splitting
identified here, a new and very interesting challenge is raised
for the study of solar core dynamics, as well as for physics it-
self. Previous studies dedicated to the individual search of some
gravity modes have shown the potential of the Sun to place con-
straints on particle physics, including the search for dark mat-
ter in our Galactic environment (Turck-Chièze & Lopes 2012;
Turck-Chièze et al. 2012).

8. Results and conclusions

An original method has been applied to the search for solar
g modes, based on an analysis of the round trip time of acoustic
waves traveling through the solar diameter. This travel time is
affected by temporal modulations, which are presumably caused
by the presence of g modes that shake the structure of the core
region. These modulations provide the signatures of many so-
lar g modes with periods ranging between 0.4 and 2 days. This
very low frequency range makes it possible to take statistical
advantage of the asymptotic approximations, and thus to obtain
extremely accurate results. A time series of 16.5 years of GOLF
data was used for this analysis, and the results can also be ob-
tained by separating this time series into two independent halves.
This provides an extremely high level of confidence. The quanti-
tative results include the asymptotic equidistance of g-mode pe-
riods, the periods themselves, and the rotation of the solar core.

The mean rotation rate sensed by the asymptotic g modes,
Ωg = 1277±10 nHz, is a weighted average below the convection
zone (r ≤ rcz). This leads to a mean value of the rotation rate
below rc, of 1644 ± 23 nHz (one-week period), that is, a mean
rotation of the solar core that is 3.8 ± 0.1 times faster than the
mean radiative zone rotation.

This rapid rotation nevertheless remains difficult to explain
by models describing a pure angular momentum evolution with-
out adding new dynamical processes such as internal magnetic
breaking, which could have appeared when the Sun was young
(Turck-Chièze et al. 2010). Future more detailed analyses of the
inversion will undoubtedly shed light on this intriguing aspect of
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solar dynamics. Clarifying the transition between a nearly solid
rotation of the deep radiative envelope and a rapid rotation of the
core just beneath this envelope will be an interesting challenge.

Besides the rotation rate of the solar core, the other quan-
titative parameters obtained by this analysis are the asymptotic
period equidistances:

– for l = l, this is P1 = 1443.6 s = 24 min 03.6 s ± 0.7 s, and
– for l = 2, this is P2 = 832.8 s = 13 min 52.8 s ± 0.7 s.

These two values taken together provide the parameter in
Eq. (11):

– P0 = 2041 s = 34 min 01 s ± 1 s.

We have also proposed a tentative identification of the shortest
detected g-mode periods:

– for l = 1, this is P−20,1 = 30385 ± 30 s, ν−20,1 = 32.91 ±
0.03 µHz (very likely).
The next 75 l = 1 mode periods can be obtained by
Pn,1 = P−20,1 + (|n| − 20)(P1 − 67.5/|n|) for −95 ≤ n ≤ −21.

– for l = 2, this is P−33,2 = 29 380 ± 30 s, ν−33,2 = 34.04 ±
0.03 µHz (likely).
The next 111 l = 2 modes periods can be obtained by
Pn,2 = P−33,2 + P2(|n| − 33) for −144 ≤ n ≤ −34.

Our results in this very delicate and long quest have been ob-
tained from two independent time series, as well as two inde-
pendent frequency ranges. This lends them great credence. They
open exciting new questions about the g-mode amplitudes, their
excitation mechanism in such a broad and low-frequency range,
and the solar rotation evolution. They provide strong new con-
straints for a dramatically improved description of the solar core.
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