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Abstract :

Contrary to Alzheimers disease (AD), the APOEZ2-allele increases and the APOE4-allele
reduces the risk to develop age related macular degeneration (AMD) compared to the most
common APOE3-allele. The underlying mechanism for this association with AMD and the
reason for the puzzling difference with AD are unknown. We previously demonstrated that
pathogenic subretinal mononuclear phagocytes (MP) accumulate in Cx3crl-deficient mice
due to the overexpression of APOE, IL-6 and CCL2. We here show using targeted
replacement mice expressing the human APOE isoforms (TRE2, TRE3, and TRE4) that MPs
of TRE2-mice express increased levels of APOE, IL-6, and CCL2 and develop subretinal MP
accumulation, photoreceptor degeneration and exaggerated choroidal neovascularization
similar to AMD. Pharmacological inhibition of the cytokine induction inhibited the
pathogenic subretinal inflammation. In the context of APOE-dependent subretinal
inflammation in Cx3cr1®™”**-mice, the APOE4-allele led to diminished APOE and CCL2

levels and protected Cx3cr1CFP/erP

-mice against harmful subretinal MP accumulation
observed in Cx3crl®""°PTRE3 mice. Our study shows that pathogenic subretinal
inflammation is APOE isoform-dependent and provides rationale for the previously

unexplained implication of the APOE2-isoform as a risk factor and the APOE4-isoform as a

protective factor in AMD pathogenesis.
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Significance statement:

The understanding of how genetic predisposing factors, that play a major role in AMD,
participate in its pathogenesis is an important clue to decipher the patho-mechanism and
develop efficient therapies. In this study, we used transgenic, targeted replacement mice that
carry the three human APOE-isoform-defining sequences at the mouse APOE chromosomal
location and express the human APOE-isoforms. Our study is the first to show how APOE2
provokes and APOE4 inhibits the cardinal AMD features, inflammation, degeneration and
exaggerated neovascularization. Our findings reflect the clinical association of the genetic
predisposition that was recently confirmed in a major pooled analysis. They emphasize the

role of APOE in inflammation and inflammation in AMD.
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Introduction:

In humans, the APOE gene has three common genetic variants (APOE2, APOES3, and
APOE4), due to two polymorphisms rs7412 and rs429358 that are imbedded in a well-defined
CpG island, and lead to two cysteine-arginine interchanges at residues 112 and 158 (Yu et al.,
2013). The APOEZ2-allele is associated with higher APOE concentrations in plasma,
cerebrospinal fluid and the brain tissue (Riddell et al., 2008; Bales et al., 2009) due to
impaired clearance caused by APOE2’s decreased affinity for the LDL receptor (Mahley and
Rall, 2000). Its transcription can also be increased in certain cell types (astrocytes, neurons)
due to the loss of CpG sites associated with APOE3 and APOE4-alleles (Yu et al., 2013).
Compared to the APOE3-allele, the APOE4-allele is transcribed similarly in neurons and
astrocytes (Yu et al., 2013), but its protein concentration in plasma, the CSF and in brain
parenchyma are decreased (Riddell et al., 2008; Bales et al., 2009; Sullivan et al., 2011). The
structural changes in the APOE4 protein also lead to diminished association with HDL (Dong
and Weisgraber, 1996) and impaired reverse cholesterol transport (Heeren et al., 2004;
Mahley et al., 2009).

APOE2-allele carriers are at increased risk for developing late age-related macular
degeneration (AMD, odds ratio (OR) = 1.83 for homozygote APOE2-allele carriers) and are
protected against Alzheimer’s disease (AD), while the APOE4-allele protects against AMD
(OR = 0.72 per haplotype) and is a risk factor for AD compared to the most common APOE3-
allele (Mahley and Rall, 2000; McKay et al., 2011). This association was recently confirmed
in a pooled study of over 20 000 subjects (McKay et al., 2011). It is found for both clinical
forms of late AMD: wet AMD, which is defined by choroidal neovascularization (CNV) and

geographic atrophy (GA), which is characterized by an extending lesion of both the retinal
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pigment epithelium (RPE) and photoreceptors. In AD, the APOE4-allele is associated with
greater [-amyloid burden, possibly due to reduced efficacy in clearance of [-amyloid
clearance via multiple pathways (Bales et al., 2009; Mahley et al., 2009). The mechanism
underlying the associations of the APOE-isoforms with AMD remain unexplained.

APOE is the main lipoprotein of the brain and the retina (Mahley and Rall, 2000;
Anderson et al., 2001). It is strongly expressed in mononuclear phagocytes (MPs), such as
macrophages and microglial cells (Peri and Nusslein-Volhard, 2008; Levy et al., 2015) and
plays a major role in macrophage lipid efflux and reverse cholesterol transport in conjunction
with APOA-I (Mahley and Rall, 2000; Mahley et al., 2009). APOE and APOA-I can also
induce IL-6 and CCL2 in MPs the absence of pathogen-derived ligands (Smoak et al., 2010;
Levy et al., 2015).

We recently showed that subretinal MPs that accumulate in AMD, strongly express
APOE (Levy et al., 2015). The subretinal MPs of Cx3cr1® e P mice that develop subretinal
inflammation and cardinal features of AMD (Combadiere et al., 2007), express similar high
levels of APOE (Levy et al., 2015), but also IL-6 (Levy et al., 2015) and CCL2 (Sennlaub et
al., 2013). We showed that APOE-induced IL-6 release from MPs represses RPE immune-
suppression, prolongs subretinal MP survival, and promotes subretinal inflammation (Levy et
al., 2015). Furthermore, we demonstrated that increased levels of CCL2 in Cx3cr1CFP/eFP.
mice recruit pathogenic inflammatory CCR2" monocytes to the subretinal space (Sennlaub et

FPIGFP -
16FPICFP_mice due

al., 2013). In consequence, subretinal pathogenic MPs accumulate in Cx3cr
to increased MP recruitment and decreased MP elimination. APOE deletion in Cx3cr1CFP/erP_

mice prevented age- and stress-induced subretinal MP accumulation, and reduced associated

CNV (Levy et al., 2015).
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We here investigated the influence of the APOE alleles and isoforms on subretinal
inflammation and associated photoreceptor degeneration and choroidal neovascularization,

major hallmarks of AMD.
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Materials and Methods:

Animals
Targeted replacement mice that express human APOE isoforms (TRE2,3, and 4) were

engineered as previously described (Sullivan et al., 1997) and provided as a generous gift by
Dr. Patrick Sullivan, backcrossed with C57BL/6 mice to eliminate the Crb1™® contamination

in the three strains and crossed to Cx3cr1CFP/CFP

mice (Charles River). Mice were housed in
the animal facility under specific pathogen-free condition, in a 12/12h light/dark (100-500
lux) cycle with water and normal diet food available ad libitum. All experimental protocols
and procedures were approved by the local animal care ethics committee “Comité d’éthique
en expérimentation animale Charles Darwin” (Ce5/2010/013; Ce5/2011/033; Ce5/2010/044).
We used male mice for choroidal neovascularization experiments, whereas experiments on

aged and light-challenged mice were performed on mice of either sex, as we did not observe

differences between the sexes in these conditions.

Light-challenge and laser-injury model
Two- month-old mice of either sex were adapted to darkness for 6 hours, pupils dilated

and exposed to constant green LED light (starting at 2AM, 4500 Lux, JP Vezon equipements)
for 4 days as previously described (Sennlaub et al., 2013). Laser-coagulations were performed
on male mice with a 532nm ophthalmological laser mounted on an operating microscope
(Vitra Laser, 532 nm, 450 mW, 50 ms and 250 um) as previously described (Levy et al.,
2015). Intravitreal injections of 2ul of PBS, isotype control rat IgGl, and rat anti-mouse
CD14 (BD Biosciences) were performed using glass capillaries (Eppendorf) and a
microinjector. The 2ul solution of the antibodies were injected at 50pg/ml, corresponding to
an intraocular concentration of Sug/ml assuming their dilution by approximately 1/10th in the

intra-ocular volume.
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Immunohistochemistry, CNV and MPs quantification and histology
RPE and retinal flatmounts were stained and quantified as previously described

(Sennlaub et al., 2013) using polyclonal rabbit anti- IBA-1 (Wako) and rat anti-mouse CD102
(clone 3C4, BD Biosciences) appropriate secondary antibodies and counterstained with
Hoechst if indicated. Preparations were observed with fluorescence microscope (DMS5500,
Leica). Histology of mice eyes and photoreceptor quantification were performed as previously

described (Sennlaub et al., 2013).

Cell preparations and cell culture
In accordance with the Declaration of Helsinki, volunteers provided written and informed

consent for the human monocyte expression studies, which were approved by the Centre
national d’ophthalmologie des Quinze-Vingt hospital (Paris, France) ethics committees (no.
913572). PBMCs were isolated from heparinized venous blood from healthy volunteer
individuals by 1-step centrifugation on a Ficoll Paque layer (GE Healthcare) and sorted with
EasySep Human Monocyte Enrichment Cocktail without CD16 Depletion Kit (StemCells
Technology). Mouse peritoneal macrophages, bone marrow-derived monocytes and
photoreceptor outer segment (POS) isolation (all in serum-free X-Vivo 15 medium) were
performed as previously described (Sennlaub et al., 2013). In specific experiments, cells were
stimulated with the different recombinant human APOE isoforms (5pg/ml, Leinco
Technologies), recombinant human APOE3 90 minutes heat-denatured (5pg/ml, Leinco
Technologies), APOE3 (5pg/ml) with LPS inhibitor Polymyxin B (25pg/ml, Calbiochem), rat
anti-IgG isotype control (25ug/ml, R&D), rat anti-mouse CD14 (25ug/ml, R&D), mouse anti-
IgG isotype control (25ug/ml), mouse anti-human TLR2 (25ug/ml, Invivogen), human IgA2
isotype control (25pg/ml, Invivogen), human anti-human TLR4 (25pg/ml, Invivogen) and

POS prepared as previously described (Sennlaub et al., 2013).
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Reverse transcription and real-time polymerase chain reaction and ELISA
IL-6, CCL2, and IL-13 RT-PCRs using Sybr Green (Life Technologies) and ELISAs

using mouse or human IL-6 DuoSet (R&D Systems), mouse or human CCL2 Duoset (R&D)

and human APOE Pro kit (Mabtech) were performed as previously described (Sennlaub et al.,

2013; Levy et al., 2015; Hu et al., 2015).

Statistical analysis
Graph Pad Prism 5 (GraphPad Software) was used for data analysis and graphic

representation. All values are reported as mean = SEM. Statistical analysis was performed by
one-way or two-way Anova analysis of variance followed by Dunnetts post-test or Mann—
Whitney test for comparison among means depending on the experimental design. The p-

values are indicated in the figure legends.
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Results:

The APOE2 allele leads to age- and stress-related subretinal MP accumulation, retinal
degeneration, and exacerbated choroidal neovascularization

The subretinal space, located between the retinal pigment epithelium (RPE) and the
photoreceptor outer segments (POS), does not contain significant numbers of mononuclear
phagocytes (MPs) under normal conditions (Penfold et al., 2001 ; Gupta et al., 2003 ;
Combadiere et al., 2007; Levy et al., 2015). This is likely the result of physiologically low
levels of chemoattractants along with strong immunosuppressive RPE signals that quickly
eliminate infiltrating MPs (Sennlaub et al., 2013 ; Levy et al., 2015). We have previously
shown that the lack of the tonic inhibitory CX3CL1/CX3CRI1 signal, observed in Cx3crl-
deficient mice, is sufficient to induce pathogenic chronic subretinal MP accumulation as a
consequence of increased recruitment and decreased elimination (Combadiere et al., 2007;
Sennlaub et al., 2013; Levy et al., 2015). We showed that this accumulation is dependent on
the over-expression of APOE in Cx3crl-deficient MPs (Levy et al., 2015). To evaluate a
potential role of the human APOE isoforms in subretinal inflammation we used targeted
replacement mice expressing human isoforms (TRE2, TRE3, and TRE4) (Sullivan et al.,
1997). We first backcrossed the strains with C57BL/6J mice to eliminate the Crb1"®
contamination in the three strains, that can lead to AMD like features (Mattapallil et al.,
2012). The mice were raised under 12-h light/12-h dark cycles at 100-500 lux at the cage
level, with no additional cover in the cage, the conditions that induce MP accumulation in
Cx3crl-deficient mice with age (Combadiere et al., 2007). Quantification of subretinal IBA-
1"MPs on retinal and RPE/choroidal-flatmounts of 2m- and 12m-old TRE2, 3, and 4 mice

revealed that TRE2 mice develop age-dependent subretinal MP accumulation compared to

10
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TRE3 and TRE4 mice (Fig. 1A). Similarly, TRE2-mice accumulated significantly more
subretinal MPs after a four-day light-challenge and the MPs continued to accumulate after
return for 10 additional days in normal light conditions (Fig. 1B, the intensity of our light-
challenge model used herein was calibrated to induce subretinal inflammation in

inflammation-prone Cx3cr1® /6F?

-mice but not in WT mice (Sennlaub et al., 2013)).

We also observed a thinning of the outer nuclear layer (ONL) that contains the
photoreceptor nuclei on histological retinal sections from 12m-old TRE2-mice compared to
TRE3-mice (Fig. 1C, micrographs taken at equal distance from the optic nerve).
Photoreceptor nuclei row counts (Fig. 1C”) and calculation of the area under the curve (Fig.
1C”’) revealed that the age-related accumulation of subretinal MPs in TRE2-mice is associated
with significant photoreceptor cell loss when compared to TRE3-, and TRE4-mice.

In addition, subretinal IBA-1"MPs (green staining, counted on the RPE at a distance of
0-500um to CD102°CNVs, red staining) were significantly more numerous in TRE2 mice
seven days after a laser-impact (Fig. 1D), and had developed significantly greater CNV
lesions (Fig.1E) compared to the other strains.

Taken together, our data demonstrate that TRE2-mice, expressing the APOE2-AMD-

risk allele, develop age-related subretinal inflammation and photoreceptor degeneration and

exaggerated inflammation and CNV after laser-injury similar to late AMD.

The APOEZ2-allele increases APOE levels in the eye and APOE transcription and IIRC
activation in MPs.

We previously showed that the levels of soluble APOE are elevated in adult TRE2
mouse brains and diminished in TRE4 brains compared to TRE3 mice in a model of
Alzheimers disease (Bales et al., 2009). Similarly, ELISA analysis of APOE levels of

homogenates of PBS-perfused posterior segments (retina and RPE/choroid plexus) of 12-

11
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month-old mice revealed significantly higher levels of APOE in TRE2-mice compared to
TRE3- and TRE4-mice (Fig. 2A). Furthermore, immunohistochemical localization of APOE
on retinal flatmounts of TRE2-mice (Fig 2B, red staining) revealed strong APOE expression
in subretinal IBA-1"MPs (Fig. 2B, green staining).

The polymorphism rs7412 that defines the APOE2 isoform also leads to the loss of a
CpG site in the APOE2-allele that has been shown to moderately, but significantly, increase
APOE transcription in brain astrocytes, but not in hepatocytes (Yu et al., 2013). Our data
confirms that APOE transcription in hepatocytes does not differ between genotypes (Yu et al.,
2013) (Fig. 2C, rtPCR;) and that APOE concentrations in the blood were significantly
increased in TRE2-mice (Fig. 2D, blood plasma ELISA), shown to be due to its decreased
clearance rate (Mahley and Rall, 2000). However, bone-marrow derived monocytes (cultured
with photoreceptor outer segments for three days to mimic subretinal macrophage
differentiation) (Fig. 2E, rtPCR) and peritoneal macrophages (Fig. 2F, rtPCR) from TRE2-
mice transcribed signifivantly higher levels of ApOE mRNA compared to MPs of the other
mouse strains. Accordingly, the APOE secretion of TRE2-mice macrophages was robustly
increased (Fig. 2G, ELISA of supernatant), compared to the other groups.

APOE and APOA-I have been shown to activate the TLR2-TLR4-CD14-dependent
innate immunity receptor cluster (IIRC) in mouse peritoneal macrophages in the absence of
pathogen-derived ligands and to induce inflammatory cytokines such as IL-6 (Smoak et al.,
2010; Levy et al., 2015), but also CCL2 (shown for APOA-I(Smoak et al., 2010)). We here
show that human blood derived CDI14+monocytes significantly secrete IL6 after 24h of
recombinant lipid-free APOE3 stimulation (Fig. 2H) similar to mouse macrophages. 90min
heat-denaturation completely abolished the induction, while the LPS inhibitor Polymyxin B
did not, confirming that LPS contamination of APOE3 is not accountable for the effect, as

shown for APOA-I using multiple approaches (Smoak et al., 2010). This induction was due to

12
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the activation of the CD14/TLR2/TLR4-dependent IIRC, as neutralizing antibodies to CD14,
TLR2, and TLR4 inhibited this effect, when compared to control antibodies (Fig. 2H).
Accordingly, peritoneal macrophages from TRE2-mice that express increased amounts of
APOE (Fig. 2C and D), also transcribed significantly more IL-6, CCL2, and IL-13 compared
to macrophages of the other isoforms (Fig. 2I).

Taken together, our results show that the APOEZ2-allele increases APOE levels in the
tissue and APOE expression in MPs. We confirm that APOE activates IIRC and show that the
excessive APOE expression in macrophages from TRE2 mice is associated with increased

production of inflammatory cytokines in vitro.

Figure 3: [IRC-inhibition reduces subretinal MP accumulation and choroidal
neovascularization in TRE2-mice in vivo.

To evaluate if increased IIRC activation is implicated in subretinal MP accumulation
observed in TRE2-mice in vivo, we inhibited the IIRC by an intravitreal injection of a CD14-
neutralizing antibody in the laser-induced CNV model. The antibody, that blocks APOE-
dependent cytokine induction (Levy et al., 2015), inhibited subretinal MP accumulation
around the laser injury, quantified on IBA1-stained RPE/choroidal flatmounts (Fig. 3A) and
CD102°CNV formation (Fig. 3B) at d7 after laser-injury of TRE2-mice compared to control
IgG.

These results confirm that the CD14-dependent inflammatory cytokine induction
1GFP/

participates in subretinal MP accumulation in TRE2-mice in vivo, similar to Cx3cr

“FPrice (Levy et al., 2015).

The APOE4-allele protects APOE-overexpressing Cx3er1¢™ ©Pmice from subretinal MP
accumulation, retinal degeneration and exacerbated choroidal neovascularization.

Cx3crl deficient mice lack the tonic inhibitory signal of neuronal CX3CLI1, and

develop subretinal MP accumulation and concomitant photoreceptor degeneration with age

13
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when raised in cyclic light at 100-500 lux (Combadiere et al., 2007; Chinnery et al., 2011;
Sennlaub et al., 2013; Hu et al., 2015; Levy et al., 2015). The accumulation can be prevented
by raising the animals in darkness (Combadiere et al., 2007) or in dim light conditions
(Luhmann et al., 2013) and be accelerated by a light-challenge (Sennlaub et al., 2013; Hu et
al., 2015; Levy et al., 2015)(for more details see the mini review in the supplementary data of
Sennlaub et al. (Sennlaub et al., 2013)). Although these features do not mimic all the aspects
of AMD (Drusen formation and RPE atrophy) they do model subretinal inflammation and
associated photoreceptor degeneration, two hallmarks of AMD (Gupta et al., 2003). Cx3crl
deletion also increases subretinal MP accumulation in diabetes (Kezic et al., 2013), in a
paraquat-induced retinopathy model (Chen et al., 2013) and in a retinitis pigmentosa model
(Peng et al., 2014). We previously demonstrated that pathogenic MP accumulate in Cx3crl-
deficient mice due to the overexpression of APOE, IL-6 and CCL2 (Sennlaub et al., 2013;
Levy et al., 2015). To evaluate a possible influence of the APOE4 isoform in a model of
pathological subretinal inflammation, we crossed TRE3- and TRE4-mice to Cx3cr1CFP/erP.
mice. (Levy et al., 2015)

Quantification of subretinal IBA-1"MPs on retinal and RPE/choroidal-flatmounts of
2m- and 12m-old Cx3cr1®™*""TRE3-mice and Cx3cr1®™/°TRE4-mice mice revealed that
the age-dependent subretinal MP accumulation observed in Cx3cr1® CFPTRE3-mice was
prevented in Cx3cr1® CFPTRE4-mice (Fig. 4A). A 4-day light-challenge led to similar initial
subretinal MP accumulation, but the increase of MPs after return to normal light conditions
was significantly blunted in Cx3cr1® CFPTRE4-mice compared to Cx3cr1®CFPTRES-mice
(Fig. 4B).

Furthermore, micrographs of histological sections of 12m-old mice, revealed a thicker
outer nuclear layer (ONL) in Cx3cr1® CFPTRE4-mice compared to the thinned

Cx3cr1® CFPTRE3-mice (Fig. 4C). Photoreceptor nuclei row counts (Fig. 4C’) and

14
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calculation of the area under the curve (Fig. 4C’’) shows that the inhibition of the age-related
accumulation of  subretinal MPs in  Cx3cr1®"CFPTRE4-mice compared to
Cx3cr1® PCFPTRES-mice significantly inhibited the associated photoreceptor cell loss. Please
note that the age-related subretinal MP accumulation and photoreceptor degeneration
observed in Cx3cr1®CFPTRE3-mice are significantly increased compared to TRE3-mice

presented in Fig. 1, similar to Cx3cr1®F7/6f?

-mice expressing mouse APOE (Sennlaub et al.,
2013) (MP/mm” of 12-months old mice: TRE3-mice: 7.315+/-1.72SEM, Cx3cr1¢ CFPTRE3-
mice: 16.6+/-2.22SEM; Area under the curve: TRE3-mice: 148.3+/-1.52SEM,
Cx3cr1®FPCFPTRES-mice: 137.3+/-2.12SEM).

Moreover, laser-induced subretinal IBA-1"MPs in 2-months old mice (green staining)
adjacent to CDI02'CNVs (red staining) was again significantly inhibited in
Cx3cr1®FPCFPTRE4-mice compared to Cx3cr1® ™ FPTRE3-mice (Fig. 4D) and had developed
significantly greater CNV lesions at 14days after laser-injury (Fig. 4E) compared to the other
strains.

In summary, our data demonstrates that the APOE4-allele, which is protective for

AMD, inhibits subretinal inflammation and concomitant degeneration and CNV in Cx3crl-

deficiency compared to APOES3.

The APOE4-allele decreases ocular APOE levels in Cx3cri®™ “"Pmice and activates the 1IRC
inefficiently.

To investigate if the APOE3 and APOE4-allele influence the APOE level in the eyes of
Cx3cr1® CFPTRE-mice we analyzed APOE levels of homogenates of PBS-perfused posterior
segments (retina and RPE/choroid plexus) of 12-month-old mice. APOE levels were

significantly lower in homogenates of 12-month-old Cx3cr1C PCFPTRE4-mice compared to
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Cx3cr1® PCFPTRE3-mice (Fig. 5A), similar to APOE levels in the eyes of TRE mice (see
above) and brains of PDAPP mice expressing human APOE isoforms (Bales et al., 2009).

APOA-I and APOE likely activate the IIRC by modifying the cholesterol content of the
lipid rafts in which they are located (Smoak et al., 2010). As the APOE4 isoform has an
impaired capacity to promote cholesterol efflux and transport (Heeren et al., 2004; Mahley et
al., 2009), we next tested its ability to activate the IIRC of blood-derived human monocytes in
culture. Interestingly, stimulation of monocytes for 24h by recombinant APOE4 induced
significantly less IL-6 and CCL2 secretion compared to the induction of the cytokines by
equimolar concentrations of APOE3 (Fig. 5B).

APOE transcription (Fig. 5C, rtPCR) and APOE secretion (Fig. 5D, ELISA of
supernatant) in  peritoneal = macrophages  from Cx3cr1® CFPTRE3-mice  and
Cx3cr1®FPCFPTRE4-mice were comparable, similar to previous reports from astrocytes the
APOE4-allele did not diminish APOE production (Yu et al., 2013). However, in accordance
with a decreased ability to activate the IIRC, peritoneal macrophages from
Cx3cr1®FPCFPTRE4-mice transcribed significantly less CCL2 compared to macrophages from
Cx3cr1®CFPTRE3-mice while the IL-6 transcription was variable, but not significantly
different (Fig. 5SE).

Taken together, our results show that the APOE4 allele leads to decreased APOE tissue

levels and to a reduced capacity to activate the I[IRC and induce CCL2 in MPs.

Discussion:

We have previously shown that the lack of the tonic inhibitory CX3CL1/CX3CR1
signal, observed in Cx3crl-deficient mice, is sufficient to induce pathogenic chronic
subretinal MP accumulation due to increased CCL2-dependent monocyte recruitment and IL-

6 dependent decrease of subretinal MP elimination (Combadiere et al., 2007; Sennlaub et al.,
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2013 ; Hu et al., 2015; Levy et al., 2015). We showed that this accumulation is dependent on
the over-expression of APOE in Cx3crl-deficient MPs (Levy et al., 2015). As the APOE
isoforms are associated with significant differences in APOE levels in humans (Mahley and
Rall, 2000) and in humanized transgenic mice expressing APOE isoforms (Bales et al., 2009;
Yu et al., 2013), we here evaluated the consequences of the three isoforms on chorioretinal
homeostasis.

Our study shows that TRE2-mice, carrying the AMD-risk-allele, develop age-, light-,
and laser-induced subretinal mononuclear phagocyte (MP) accumulation associated with
photoreceptor degeneration and excessive CNV. TRE2-mice displayed increased tissue levels
of APOE measured in whole retinal/choroidal protein extracts compared to TRE3- and TRE4-
mice. This increase is likely due to reduced LDLR-dependent APOE2 uptake (Fryer et al.,
2005) of APOE that is produced in the RPE, the inner retina and by subretinal MPs (Anderson
et al., 2001 ; Levy et al., 2015). Similar to CX3CR1°™®Pmice and AMD patients (Levy et
al., 2015), subretinal MPs in TRE2-mice stained strongly positive for APOE. In vitro, we
show that the APOE2 allele is associated with increased APOE transcription and secretion in
macrophages from TRE2-mice, as previously shown for astrocytes (Yu et al., 2013). The
APOE-levels in and around subretinal MPs is therefore likely elevated because of increased
APOE-transcription and decreased LDLR-dependent clearance in the tissue. It is not yet clear
to what extent APOE from non-myeloid cells participate in the subretinal inflammation and
whether extracellular or intracellular APOE within the MPs is the determining factor.

APOE is capable of activating the CD14/TLR2/TLR4-dependent IIRC and inducing IL-
6, as previously shown for mouse macrophages (Smoak et al., 2010; Levy et al., 2015). We
here confirm that APOE can induce inflammatory cytokines in a similar manner in human
monocytes. Moreover, macrophages from TRE2-mice that express significantly higher levels

of APOE also transcribed higher levels of inflammatory cytokines, such as IL-6, CCL2, and
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IL-1B in accordance with an APOE-activation of the IIRC and similar to APOE-
overexpressing Cx3crl-deficient macrophages (Sennlaub et al., 2013; Hu et al., 2015; Levy et
al., 2015). We previously showed that CCL2 (Sennlaub et al., 2013) and IL6 (Levy et al.,
2015) promote subretinal MP accumulation by increasing monocyte recruitment and
decreasing MP clearance respectively. Indeed, inhibition of the IIRC by a CD14-blocking
antibody in laser-injured TRE2-mice decreased subretinal MP accumulation and
neovascularization. These results demonstrate that [IRC activation is significantly involved in

GFPIGFP __.
1 -mice

the subretinal MP accumulation in TRE2-mice in vivo. Taken together, Cx3cr
and TRE2-mice both over-express APOE in mononuclear phagocytes, although for different

reasons. In both mouse strains the increased APOE is associated with IIRC activation, CCL2

and IL6 induction, and pathogenic subretinal inflammation. Although these features do not
mimic all the aspects of AMD (Drusen formation and RPE atrophy) they do model subretinal
inflammation and associated photoreceptor degeneration, two hallmarks of AMD (Gupta et

al., 2003). We previously demonstrated the importance of APOE in this process, as APOE-

deletion protected Cx3cr1CFP/erP

-mice against the inflammation (Levy et al., 2015).
Interestingly, increased levels of CCL2 and IL6 are also observed in late AMD (Seddon et al.,
2005; Jonas et al., 2010; Sennlaub et al., 2013; Chalam et al., 2014), where chronic MP
accumulation is observed (Penfold et al., 2001; Gupta et al., 2003 ; Combadiere et al., 2007;
Sennlaub et al., 2013; Levy et al., 2015). The observation that inhibition of subretinal MP
accumulation in a variety of animal models represses CNV (Sakurai et al., 2003; Tsutsumi et
al., 2003; Liu et al., 2013) and degeneration (Guo et al., 2012; Rutar et al., 2012; Suzuki et al.,

2012; Kohno et al., 2013) strongly suggests that chronic subretinal inflammation partakes in

AMD pathogenesis.
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The chronic non-resolving inflammation in AMD is associated with an increase in
APOE (Klaver et al., 1998; Anderson et al., 2001 ; Levy et al., 2015) similar to other
inflammatory conditions (Rosenfeld et al., 1993). To evaluate if a potential influence of the
protective APOE4-allele would become apparent in a situation of increased inflammation and
APOE abundance, we crossed TRE3 and TRE4-mice to the APOE-overexpressing
Cx3cr1® e P mice. In the inflammatory context of Cx3cr1® PP _mice, the APOE4-allele
led to diminished APOE levels and the APOE4-allele protected Cx3cr1® e P mice against

GFPIGFP__.
1 mice.

harmful subretinal MP accumulation observed in APOE3 carrying Cx3cr
APOE4 is characterized, among others, by its decreased capacity to transport cholesterol
compared to APOE3 (Heeren et al., 2004) and might thereby be less capable of modifing the
cholesterol content of the lipid rafts and activating IIRC (Smoak et al., 2010). Indeed, our
results show that recombinant APOE4 induced less IL-6 and CCL2 compared to equimolar
APOE3 concentrations in human monocytes in vitro. Similarly, macrophages from
Cx3cr1® PFPTRE4-mice transcribed less CCL2 compared to macrophages from
Cx3cr1® CFPTRES-mice, although their APOE expression was comparable. It is not clear
why Cx3crlGFP/GFPTRE4—macr0phages did not differ from Cx3cr1® GFPTRE'S—malcrophages
in terms of IL-6 transcription levels. Other unknown regulatory elements likely influence the
transcription of the individual cytokines in macrophages and the interplay of Cx3crl-
deficiency and the human APOE3 and APOE4 isoform in the mouse macrophages might
affect these pathways. We previously showed that CCL2 inhibition in Cx3cr1® ™ FPmice
significantly inhibited age-, laser- and light-induced subretinal MP accumulation (Sennlaub et
al., 2013) and diminished production of CCL2, as a result of reduced APOE concentrations
and APOE4s impaired capacity to induce cytokines might explain the reduced inflammation

and inhibition of degeneration and CNV observed in Cx3cr1® PCSFPTRE4 mice.

19



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

APOE-isoforms control inflammation in AMD

To our knowledge, this is the first study to describe a comprehensive pathomechanism
of the involvement of APOE isoforms in AMD that is in accordance with the clinical
observation of the APOE2-allele being an AMD-risk factor and the APOE4-allele an AMD-
protective genetic factor. One previous study demonstrated that TRE4-mice on high fat diet
develop lipid accumulations in the Bruch’s membrane, proposed as similar to early AMD
(Malek et al., 2005) and that are also observed in ApOE'/'—mice (Ong et al., 2001). While these
observations might apply to early AMD, they are unlikely to play a role in late AMD in which
increased APOE immunoreactivity is observed (Klaver et al., 1998; Anderson et al., 2001;
Levy et al., 2015) and in which the APOEA4-allele plays a protective role (McKay et al., 2011).
The involvement of increased reverse cholesterol transport (RCT) in AMD might also be
supported by the observation that APOA-I levels are elevated in the vitreous of AMD patients
(Koss et al., 2014). Furthermore, a polymorphism of the ATP binding cassette transporter 1
(ABCAL1, associated with low HDL and therefore possibly impaired RCT) has recently been
shown to be protective against advanced AMD (Chen et al., 2010).

Our study also sheds an interesting light on the puzzling differences of the APOE-
isoform association with AMD (McKay et al., 2011) and AD (Mahley and Rall, 2000), two
major age-related neurodegenerative diseases: In AD, the APOE4-allele is associated with
greater B-amyloid burden, possibly due to decreased APOE tissue concentrations and reduced
efficacy in clearance of B-amyloid clearance via multiple pathways (Bales et al., 2009;
Mahley et al., 2009). Cx3crl”mice that express increased amounts of APOE in all MPs,
including MCs (Levy et al.,, 2015), are protected against beta-amyloid deposition in
Alzheimer disease mouse models (Lee et al., 2010). In AMD, we show that excessive APOE
expression associated with the AMD-risk APOEZ2-allele leads to the induction of

inflammatory cytokines that promote pathogenic subretinal inflammation (Figl-3 and (Levy
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et al., 2015)), similar to Cx3crl” mice (Combadiere et al., 2007; Sennlaub et al., 2013 ; Peng
et al., 2014; Levy et al., 2015). On the other hand we show that the APOE4-allele is protective
in the context of APOE-overexpression Cx3crl” mice (Levy et al., 2015)), due to decreased
APOE tissue concentrations (Riddell et al., 2008; Bales et al., 2009; Sullivan et al., 2011) and

its reduced capacity to induce inflammatory cytokines (Fig. 4 and 5).

Taken together, our study shows that the APOE2-allele leads to increased APOE
expression, [IRC activation and subretinal inflammation, while the APOE4-allele diminishes
IIRC activation and inflammation. Our study provides rationale for the previously
unexplained implication of the APOE genotype in AMD, and opens avenues toward therapies

inhibiting pathogenic chronic inflammation in late AMD.
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Figure Legends:

Figure 1: The APOE2 allele leads to age- and stress-related subretinal MP accumulation,
retinal degeneration, and exacerbated choroidal neovascularization

A: Representative 12m-old IBA-1 stained RPE-flatmounts of TRE3 and TRE2 mice and
quantification of subretinal IBA-1"MPs in 2m- and 12m-old mice of the indicated strains
(n=9-20/group ANOV A/Dunnetts multiple comparison test at 12m versus TRE3 control *
p<0.0001)

B: Quantification of subretinal IBA-1"MPs after a four day light-challenge followed by
10days of normal light conditions (d14) of 2m-old mice of the indicated strains (n= 14-
16/group ANOVA/ Dunnetts Multiple Comparison at 14d versus TRE3 control *
p<0.0001).

C: Micrographs, taken 1000 um from the optic nerve of 12m-old TRE3- and TRE2-mice.
(C’): Photoreceptor nuclei rows at increasing distances (-3000um: inferior pole, +3000m:
superior pole) from the optic nerve (Oum) in 12m-old mice. (C’’): Quantification of the
area under the curve of photoreceptor nuclei row counts of 2m- and 12m-old transgenic
mouse strains (n=4-7;, ANOVA/ Dunnetts Multiple Comparison at 12m versus TRE3
control * p=0.0102) Mice were taken from several (>3) independent cages for the
quantifications.

D: CD102 (red) and IBA-1 (green) immunohistochemistry and quantification of subretinal
IBA-1"MPs on the RPE counted at a distance of 0-500um to CD102°CNV 7 days after the
laser-injury of 2m-old mice of the indicated strains (n= 8-10/group ANOVA/ Dunnetts
Multiple Comparison *p<0.0001).

E: CD102 immunohistochemistry and quantification of CD102 area on RPE/choroidal
flatmount from 2m-old transgenic strains, 7 days after laser injury. (n=8-10/group; One-
way ANOVA/ Dunnetts Multiple Comparison test * p<0.0001)

TRE2-4: Targeted replacement mice expressing human APOE isoforms ONL: outer nuclear
layer; Scale bar Scale bar A, C, D, and E = 50um.

Figure 2: The APOE2-allele increases APOE levels in the eye and APOE transcription and

IIRC activation in MPs.

A: APOE ELISA of homogenates of PBS-perfused posterior segments of 12-month-old
TRE2, TRE3, and TRE4 mice (n=5-6/group; One way ANOVA/Dunnetts Multiple
Comparison test versus TRE3 control * and I p<0.0027).

B: Immunohistochemistry of APOE (red, upper panel), and IBA-1 (green, lower panel) of the
subretinal side of a retinal flatmount from a 12m-old TRE2-mouse (representative of 3
independent experiments, experiments omitting the primary antibody immunostaining
served as negative controls).

C : Quantitative RT-PCR of ApoE mRNA normalized with S26 mRNA of liver extracts from
transgenic replacement mice expressing human APOE isoforms (TRE2-, TRE3-, TRE4-
mice, n=3).

D : ELISA quantification of APOE plasma concentrations in transgenic replacement mice
expressing human APOE isoforms (TRE2-, TRE3-, TRE4-mice, n=3 ; ANOVA/ Dunnetts
Multiple Comparison versus TRE3 control * p<0.0001).

E : Quantitative RT-PCR of ApoE mRNA normalized with S26 mRNA of bone marrow
derived monocytes from transgenic replacement mice expressing human APOE isoforms
(TRE2-, TRE3-, TRE4-mice) cultured for 3d with or without porcine photoreceptor outer
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segments to simulate subretinal monocyte to macrophage differentiation (n = 6/group;
ANOVA/ Dunnetts Multiple Comparison Mo+POS versus TRE3 control * p=0.0033).

F and G: Quantitative RT-PCR of ApoE mRNA normalized with S26 mRNA (C, n=6;
ANOVA/Dunnetts multiple comparison test versus TRE3 control * p<0.0001) and APOE-
ELISA of supernatants (D, n=6; ANOVA/Dunnett’s multiple comparison test versus TRE3
control * p<0.0001) of peritoneal M¢s from TRE-mice cultured for 24h.

H: Human IL-6 ELISA of supernatants from human monocytes incubated for 24h in control
medium, APOE3 (5pg/ml), heat-denaturated APOE3 (dAPOE3, 5pg/ml), APOE3
(Spg/ml) and Polymyxin B (25pg/ml), APOE3 (5pg/ml) and rat IgG1 isotype or human
IgA2 isotype control, or mouse IgG1 isotype control, or rat anti-CD14 IgG1 antibody, or
human anti-TLR4 IgGA2 antibody, or mouse anti-TLR2 IgG1 antibody (all antibodies at
25ug/ml) (n=4-6/group; One way ANOVA/Bonferroni multi-comparison tests: *APOE3
vs. CTL p<0.0001; # dAPOE3 vs. APOE3 p<0.0001; # APOE3 IgG vs APOE3 aCD14 Ab
p<0.0001; # APOE3 IgG vs APOE3 aTLR4 Ab p<0.0001; # APOE3 IgA vs APOE3
aTLR2 Ab p<0.0001).

I: Quantitative RT-PCR of IL-6, CCL2, and IL1 mRNA normalized with S26 mRNA (n=6;
ANOVA/Dunnetts multiple comparison test versus TRE3 control IL-6*p=0.0069,
CCL2*p<0.0001, IL13 *p=0.0097,) of peritoneal Mes from TRE-mice cultured for 24h.

TRE2-4: Targeted replacement mice expressing human APOE isoforms; Scale bar B = 50um.

Figure 3: [1IRC-inhibition reduces subretinal MP accumulation and choroidal
neovascularization in TRE2-mice in vivo.
A and B: 7d laser-injured IBA-1 (green) and CD102 (red) double-stained RPE-flatmounts of
control IgG and anti-CD14 treated TREZ2-mice. Quantification of subretinal IBA-
1 "MPs/impact localized on the lesion surrounding RPE (G) and quantification of CD102"
CNV area (H) of TRE2-mice treated with control IgG or CDI14- blocking antibodies
(intraocular antibody concentration 5Sug/ml; n=12/group. Mann & Whitney t test
G*p=0.0012; H*p=0.0009)
TRE2-4: Targeted replacement mice expressing human APOE isoforms; Scale bar B, G, and
H = 50um.

GFP/GFP
1

Figure 4: The APOE4-allele protects APOE-overexpressing Cx3cr mice from
subretinal MP accumulation, retinal degeneration and exacerbated choroidal neovascularization.
A: Representative 12m-old IBA-1 stained RPE-flatmounts of Cx3cr1®PFPTRE3-mice and

Cx3cr1® PCFPTRE4-mice and quantification of subretinal IBA-1"MPs in 2m- and 12m-old
mice of the indicated strains (n=8-13/group Mann & Whitney t test at 12
months*p=0.0034)

B: Quantification of subretinal IBA-1"MPs after a four day light-challenge followed by
10days of normal light conditions (d14) of 2m-old mice of the indicated strains (n=
18/group Mann & Whitney t test at d14*p=0.0036).

C: Micrographs, taken 1000 um from the optic nerve of 12m-old Cx3cr1® PCFPTRE3-mice
and Cx3cr1®F"CFPTRE4-mice. (C’): Photoreceptor nuclei rows at increasing distances (-
3000um: inferior pole, +3000um: superior pole) from the optic nerve (Oum) in 12m-old
mice. (C”’): Quantification of the area under the curve of photoreceptor nuclei row counts
of 12m-old transgenic mouse strains (n=9-5; Mann & Whitney t test *p=0.0032) Mice
were taken from several (>3) independent cages for the quantifications.

D: CD102 (red) and IBA-1 (green) immunohistochemistry and quantification of subretinal
IBA-1"MPs on the RPE counted at a distance of 0-500um to CD102°CNV 14 days after
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the laser-injury of 2m-old mice of the indicated strains (n= 7/group Mann & Whitney t test
*p=0.0182).

E: CDI102 immunohistochemistry and quantification of CD102 area on RPE/choroidal
flatmount from 2m-old transgenic strains, 14 days after laser injury. (n=7/group; Mann &
Whitney t test *p=0.0034)

ONL: outer nuclear layer; Scale bar A, C, D, and E = 50um.

Figure 5: The APOE4-allele decreases ocular APOE levels in Cx3er1¢™ “Pmice and

activates the 1IRC inefficiently.

A: APOE ELISA of homogenates of PBS-Fgerfused posterior segments of 12-month-old
Cx3cr1 PSFPTRE3-mice and Cx3cr1® ¢ P TRE4-mice (n=11-8/group Mann & Whitney t
test *p=0.0276).

B: Human IL-6 and CCL2 ELISA of supernatants from human monocytes incubated for 24h
in control medium, APOE3 (5pg/ml), or APOE4 (5ug/ml) (n=6; One way
ANOVA/Bonferroni multi-comparison tests p<0.0001 for IL-6 and CCL2, *p<0,05
different from control, {p<0.05 different from APOE3).

C and D: Quantitative RT-PCR of ApoE mRNA normalized with S26 mRNA (C, n=4) and
APOE-ELISA of supernatants (D, n=4) of peritoneal M¢s from TRE-mice cultured for
24h.

E: Quantitative RT-PCR of IL-6 and CCL2 mRNA normalized with S26 mRNA (n=5-10;
Mann & Whitney t test § IL-6 p=0,0121, and CCL2 p=0,0035) of peritoneal Mos from
TRE-mice cultured for 24h.
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