" LABORATOIRE V
DE GENIE « e . . o .
CHIMIQUE Bringing interactivity into

TOULOUSE = UMR 5503

engineering courses
with BERT-based
Excel®-R applications

FIorent Bourgeois Prof

Toulouse France

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

with BERT-based Excel®-R applications

PRESENTATION OUTLINE

" |ntroduction

" Principles and implementation

= Examples in engineering education

.....

2 S 9 o &

- eocoo0o0®
S e o o o 00

""
¥ « e e ce o 00 eS8 Ew
oooooooooooo

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

[Z]BERT

Basic Excel R Toolkit

Introduction

"Engineer-Machine" interface for data processing. S T
VBA (not a full OO programming language, as no inheritance nor function =~

o

overloading, but includes classes and interfaces), interactive userform design, most
engineers have some knowledge of VBA.

Lacks power for data analysis, modeling and visualisation (not Excel®'s primary
function).

= BERT: Basic Excel R Toolkit (R console for Excel®)
" Free (from Structured Data, LLC)
= BERT version 2 (bert-toolkit.com)

Virtually limitless capability for data analysis, modeling and visualisation (R's

primary function), not limited to statistical data analysis.
Free

Still limited use and visibility amongst mainstream engineering community

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

https://www.riskamp.com/
https://www.riskamp.com/
https://www.riskamp.com/
https://www.riskamp.com/
bert-toolkit.com
bert-toolkit.com
bert-toolkit.com

Pae PR aene o § O

= |nstallation from https://bert-toolkit.com/download-bert
= Excel® add-in = BERT console (R editor)

Introduction

BERT console (R code)

File Edit View Packages Help
Welcome R Package s Preferences vFunctions_phreegc excel-scripting
®| H R |: Examples_CAPRI Sallelnfo.xlsm - Microsoft Excel o E = ..D..\(,,.\, & aak onsr @ references myfFunctions_phreeqcR excel-scnpting.r
005 iIrror
—))) .) . . 6 mylLinea on(Y, X1, X2) {
Fick A I Inserti M age Formules Données Révision Affichage Deéveloppeur | Compléments | &3 o B O3
ccuei nsertion ise en pag g pp p 0 - + ol Install Packages =i
Selector ~ [Paster Generator ~ Macros ~ help B BERT Console 8 print(cbind(Y,X1,X2))
RK4 9 res <- summary(lm(Y ~ X1 + X2 + 1))
1@ print(res)
. 11 # Sizing the output matrix
Commandes de la barre d'outils Barres d'outils personnalisées 12 row <- dim(coef(res))[l]
L15 (= fe 132 ncol <- dim(coef(res))[2]
14
L 15 # Creating the matrix that collects all the summary.lm object variables
= 16 output <- matrix(datas=NA, nrows=nrow+4,ncol=ncol)
A o] ¢ | o | e Ji| = H K 17
2.99 J%I 18 # Adding the summary.lm() values to the returned matrix
2.89 450 - -Cete! 19 output[l:nrow,1:ncol] <- coef(res) # Estimate, Std. Error, t value, PR(>|t]|) from summary.lm obj
3.53 26 output[nrow+l,1] <- res$r.squared # multiple R-squared
) 400 o 21 output[nrow+2,1] <- res$adj.r.squared # Adjusted R-squared
273 3.50 - @O O 22 output[nrows+3,1] <- res$sigma # Model standard error
3.31 (g? 23 output[nrow+d,1] <- res$df[2] # Degrees of freedom of the linear regression
3.41 3.00 ‘ Gé%%@ @ 24
2.53 2.50 4 25 return(output)
26 }
2.81 2.00 27
2.38 — v 28 mylLinearRegression_R2 <- function(Y, X1, X2) {
Example_rt | Example_rtriangle Example_MultiinearRegression -~ Example_MultiinearRegression_2 []4 » 29 # Calling the summary.lm() method
earkegressi earhegressic 8 Y
Prét Calculer | P | |g] 1w00% (-——0J——F) 32 res <- summary(lm(Y ~ X1 + X2 + 1))
= -] 31 print(res)
- o = = 32
e . e e 33 # Instead of creating the matrix that collects all the summary.lm object variables,
» : : o 24 # values are written directlv inta the active warksheat of vour Fxcel
e Ready Line7,Col 36 R
® ® & & =& =
® 0o e o &
@, ® & 5 o .
-_—
startup folder = “\Documents\BERT2\functions\
LN 2
@ 1

Ty N Yy)L

o
-
|
-
-
-

TR R R RSURE A

= R version 3.4.4

R

©93-15) -- "Someone to Lean On" il
Copyright (C) 2¢ The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ‘license()’ or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type ‘contributors()’ for more information and
‘citation()' on how to cite R or R packages in publications.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or
‘help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

BERT Version 2.2.1 (http://bert-toolkit.com).
Loading script file: C:\Users\admin-lgc\Documents\BERT2\funct
nctions.r
Loading script file: C:\Users\admin-lgc\Documents\BERT2\funct
Functions.R
Loading script file: C:\Users\admin-lgc\Documents\BERT2\funct
Functions_phreeqc .R
Error in phriocadDatabaseString(llnl.dat) :

could not find function phrLoadDataba eString”

(1] [,2]

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

https://bert-toolkit.com/download-bert
https://bert-toolkit.com/download-bert
https://bert-toolkit.com/download-bert
https://bert-toolkit.com/download-bert
https://bert-toolkit.com/download-bert
https://bert-toolkit.com/download-bert

Principles and implementation

2 types of applications = =

console besides installation of R packages if needed)

o Type 2: Calling user-defined R functions from Excel® (VBA code, R code, use of the BERT console)

Recommended VBA code structure for Type 1 applications
o Section 1: VBA reads the data from the Excel® spreadsheet as type Variant variables.

o Section 2: VBA calls and pass Variant variables to (native, package-imported, own) R functions, using VBA
Application.Run() call function.

.....

......
......

.....
.........

B . o o /e e o a e ®

........

Ll g o

P . Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019 5

Type 1: Calling native and package-imported R functions from Excel® (VBA code,

Principles and implementation

console besides installation of R packages)

-* Fichier Edition Affichage Insertion Format Débogage Exécution Qutils Compléments Fepétre 2

VBA editor

® &% atpvbaen.xis (ATPVBAEN.XLAM)
-85 Solver (SOLVERXLAM)
= 8 vBAProject (Examples_CAPRI_Sal
-5 Microsoft Excel Objets
!) Feui1 (Example_rt)
Feuil2 (Example_MultiinearRegre
Feuil3 (Example_MultiinearRegre
Feul4 (Example_Optimization)
Feuil5 (Example_rtriangle)
Feuilé (Example_SPC)
~Hl) Feuil7 (Example_phreeqc)
ThisWorkbook
E-E5 Modules
4% Example_Compression
~v& Example_phreeqc
¥ Example_SPC
+ Examples_Regression
-« Examples_Simple_Functions
&% VBAProject (FUNCRES.XLAM)

EE - 4 a9 » na WFE & @ Lcn
et CNRAEroerk x| [General) =] [Exampie_rt
TEN |

Option Explicit

Option Base 1 ' Necessary since R is l-based.

Sub Example rt ()

L I I I I IO U D I D O I DO N D RO DO D DO D D U A D U RO D DO DO DN NN D U N DO AN D RO DN DO BN D DO BN D BN D BN N B B D BN B B B)
' Objective:

' ==>> Running R from VBA

' ==>> Calling a simple native R function from VBA

LI T I T T T I I I O T I R I T I O O I B I B A I O AN B B A A A |

Dim n As Integer, df As Integer

Dim t As Variant

On Error Resume Next

Worksheets ("Example_ rt") .Activate
Range ("C:C") .ClearContents

n = Range ("A2") .Value
df = Range ("A4") .Value
' Calling rt() native R function from VBA

' Output from native R function MUST be written to a Variant
' rt() input parameters MUST be entered in the same order

' as specified in R manual, i.e.: rt(n, df, ncp)

t = Application.Run("BERT.Call", "rt", n, df)

' Writing output from rnorm() native R function into active worksheet

Range ("Cl:C" & UBound(t)) .Value = t

L P .._° °
™ R R Examples_CAPRI_Salleln|
Accueil Insertion Mise en page Formules Données Révision Affichage Dével
> " 3 Enregistrer une macro P— ‘gg' % _? Propriétés
- Utiliser les références relatives - . : & visualiser le code
Visual Macros Compléments Compléments Insérer Mode

sies s v a0 0
Y IR E RN

AT T EEEERERERE L

Basic /A\ Sécurité des macros coM ~ Création § Exécuter la boite
Code Compléments Contrdles
K2 v (= J< | '- Cet exemple utilise une fonction native sans installation de
| A |8 ¢ D E F G H [
1 n -0.15
LIS o | o
3 df 1.20 o
4.00 -
4 _ 1.08
5 0.82 (0] 2
6 -0.57 2% R
Generaten 4 g O @O Joree)
7 randomt- 0.13 0.00 ¢ o) (ORrS) T T T 1
8 | distributed 1.63) % 40%0 60 80 100 120
S | numbers -1.37 -2.00 - %
10 withrt() 0.40 o ©
11 | 141 ~4.00 1 &
12 -2.01
| i O
13 1.06 e
14 -2.45 —
15 | -3.61
16 -5.69

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

Principles and implementation

Type 1: Calling native and package-imported R functions from Excel® (VBA code, n :
console besides installation of R packages) —

VBA edltor ' Ccalling shapiro.test() function and printing the function outputs
Sub Example rtriangle () ' The shapiro.test function outputs an instance of the "htest™ class
R R R R R R R R R R R R N ' whose Components include: statistic, p.value, method.
' Objective: ' Use the VEBA debugger to see what's in var3.
"o ==>> RunningR from VBA LU T N I O O IO A N OO U N U I NN N AN A AN NN O A U O |
' ==>> Calling a simple R function from a specific R package. var3 = Application.Run ("BERT.Call", "shapiro.test"™, wvarl)
Call MsgBox ("shapiro.test() function output:" & vbCrLf &

BEFORE RUNNING THIS CODE: R packages used by the VBA code must be installed prior to running

Ll —
' In this example, install the "triangle" package from the BERT console: "________: _______________________ & vbCrLf & _
' Packages > install Packages > ... Install method: & var3 (3, 1) & vbCrLf & _
L T T I I I O O B A B I I A O I A B A B A B I "statistic: " & var3(l, 1) & wvbhCrLf &

Dim n As Integer, a As Double, b As Double, c As Double "p.value: " & wvar3(2, 1))

' Variables used to call R functions from VBA Fnd Sub
Dim lib As Variant ' Variable used to load a library when running the macro
Dim varl, var2, var3, var4 'Variant variables used as output to calls to Application.Run()

Excel® spreadsheet

Cn Error Resume Next =
\ X A9 -5 Examples_CAPRI_Salleln| -ﬂﬁu:d ll
[Loading an R package from VBA Requires Accueil Insertion Mise en page Formules Données Révision Affichage Dével
L O T T N T O I I T T O O B j q ﬂEnreglslrerunemauo {§§) ! ‘.;3] M _TPropnetes
. . = O; |e: - .
lib = Application. Run("BERT .Call" ’ "library“ r "triangle") Insta I I I ng the Visual l.;;?s .Uhllserl:sle'erences —— Compléments Comp':r?\}en(s lzu M_;jz ¥ ez ShaPIIO-tSlU function output:
Basic £\ sécurité des macros coM - Création 8 Exécuterlaboite] | ---mmmmmmm-mmmmommommmomooeeeee
" . " . L n Code Compléments Contréles method: Shapiro-Wilk normality test
gorkshfe?sj Example_rtriangle") .Activate tria ngle - —= n statistic: 0.994940082437777
ange ("C:C") .ClearContents ~ — p.value: 0.973582287245017
package from
n = Range ("A2") .Value
- —— A 8 c D E F G H 1
. a = Range("A4") .Value the BERT console E 28
b = Range ("A6") .Value / 2 oo 3.98 450
- > i 1
B c = Range ("A8") .Value 3 3.50 4.00 Jo °
= 45 2.84 350 0 o o
: ' Calling rtriangle() function from R package "triangle"™ from VBA 5 311 Qb @®° % OO
> frrrrrrrrrrrTTTYYRIYFIYTTIITYIFRIFRITITRITITIYTYTITITIITIYTITIIFTYTRITITITITITIrTYrrrrrrrrrrrrrrrrrrrrrn s 2.98 3.00 - gjﬁ O%O
- ' Output from native R function MUST be written to a Variant 7 2.26 ek OO @o & é% oo
2 ' rtriangle() input parameters MUST be entered in the same order as specified in R manual, 8} 2 2.00 - o
{ ' rtriangle(n, a=0, b=1l, c=(a+b)/2) 2 = 150
. . . 10 Generaten 272
4 varl = Application.Run("BERT.Call", "rtriangle", n, a, b, c) 11| random Doy 1.00
12 triangular- 2.99 050 1
' Writing output from rnorm() native R function into active worksheet 13| distributed 2.56)
Range ("C1:C" & UBound(varl)).Value = varl 1 "“v':‘i:’:'s 3.00 °'°°° 85 55 = = e e
Application.ScreenUpdating = True 'Useful so the Excel graphs are updated without delay 15| rtriangle(), 3.21
051 from 3.47
17 package 317
18 "triangle" 249
19— 3.08

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019 7

Principles and implementation

==

Type 2: Calling user-defined R functions from Excel® (VBA code, R code, use of the

" Purpose : S R
o ldeal when needing to develop an "engineer friendly'" interface for a running R code. LA
o Ideal for educators seeking to embed more advanced R functions, related to their engineering courses, into Excel®.

This brings interactivity (and fun) into the teaching, which helps with student learning.

= Principles
o Keep all calculations inside your R functions, limiting VBA to pass data back and forth between the Excel®
spreadsheet and the R functions.

= Recommended VBA code structure for Type 2 applications

o Section 1: VBA reads the data from the Excel® spreadsheet and stores them as type Variant variables.

o Section 2: VBA calls and pass Variant variables to user-defined R functions, whose code (.R files) is in the
-~ “\Documents\BERT2\functions\ folder.

)

(X]
o080
oo e
ayoeee
[\)

ind/or R writes the output from the R functions into the Excel® spreadsheet.

.....
Tl « o« o ®» & o & o
7/ v
VST PR « » v o o o & ®

B - o o /e e o a o &

.........

5 s 5 Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

Principles and implementation

Type 2: Calling user-defined R functions from Excel® (VBA code, R code, use bﬁhe oA

VBA editor BERT cons

ole (.R cbﬁ%v 3,

Sub myLinearRegression_VBA()

' Objective: File Edit View Packages Help
' ==>> Running R from VBA

Welcome myFunctions.R X functionsr @ Preferences myFunctions_phrey
5
myLinearRegression_R <- function(Y, X1, X2) {

==>> Calling your own R functions from VBA.
Dim Ndata As Integer, i As Integer
D3 l s > . 3
Dim varl As Variant 'Variant variables used as output to calls to Application.Run()

6

7 -

8 print(cbind(Y,X1,X2))

9 res <- summary(Im(Y ~ X1 + X2 + 1))
10 print(res)

11 # Sizing the output matrix

12 nrow <- dim(coef(res))[1]

On Error Resume Next

Worksheets ("Example MultilinearRegression") .Activate
Ndata = Application.WorksheetFunction.CountA (Range ("B:B")) - 1

' Reading the values in the Excel spreadsheet 13 ncol <- dim(coef(res))[2]

X1 = Range(Cells(2, 2), Cells(Ndata + 1, 2)).Value 14

X2 = Range(Cells(2, 3), Cells(Ndata + 1, 3)).Value 15 | # Creating the matrix that collects all the summary.lm object vari:
Y = Range(Cells(2, 4), Cells(Ndata + 1, 4)).Value 16 output <- matrix(data=NA, nrow=nrow+4,ncol=ncol)

17
' Calling myLinearRegression() function from R-Script from VBA . .
' to estimate the linear model parameter: Y = b0 + bl*X1l + b2*X2 8 ¥ Adding the ‘Sesmary.lm() values ‘to the r.‘eturned MEERIS
e EE R R R R R R SN E R L AR R R R R e e R R R R RN 19 Output[l:nrow,lzncoll<-Coef(res)#E$tlmate,Std. Er‘r‘or‘,tvalue,

varl = Application.Run("BERT.Call", "myLinearRegression R", ¥, X1, X2) 286 output[nrow+1,1] <- res$r.squared # multiple R-squared
RangezCeIIsZE, 7), Cells(2 + UBound(vari, 1) - 1, 7 + UBound(vari, 2) - 1)).vValue = varl 21 output[nrow+2,1] <- res$adj.r.squared # Adjusted R-squared

22 output[nrow+3,1] <- res$sigma # Model standard error
23 output[nrow+4,1] <- res$df[2] # Degrees of freedom of the linear rg

24
25 return(output)
26 }
e
: : © > .
2 ek p-
” = Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019 9

Principles and implementation

Intercept b

bl

b2

Multiple R-squared
Adjusted R-squared
Maodel S5td. Error

=

=

Type 2: Calling user-defined R functions from Excel® (VBA code, R code, use of the

\‘7 B _"" =~
BERT console¥{R code)

G | H | I | J
Estimate Std. Error t value
-0.00592123 002610861 -0.226792
0.06540543 0.01B30726 3572649
0.00837007 0.00268020 3.122106

09557

09529

0.0538
31

1
o
3
4
=N
LN
7
8 df
9
ETY 0.900 -
1n 0.800 -
12 0.700 |
23 0.600
4 '
15 0.500 -
16 0.400 -
-
17 0.300 |
| 18
- ey 0.200 -
| 19
w| 20 0.100
- —_—
o 21 0.000 §
o 2 0
i 0.100
. 23
o 7a -0.200 -
25

=

File Edit Wiew Packages Help

Welcome myFunctions.R X functions.r @ Preferences myFunctions_phreegc.R
27

28 myLinearRegression_R2 <- function(¥, X1, X2) {

29 # Calling the summary.lm() method

38 res <- summary{Im(¥Y ~ X1 + X2 + 1))

31 print{res)

32

33 # Instead of creating the matrix that collects all the summary.lm object
34 # values are written directly into the active worksheet of your Excel.
35 range <- EXCELSApplicationgget Range("Gl:74")

36 range$put Value(coef(res)) # Estimate, Std. Error, t value, PR(>|t|) from
37 range <- EXCEL$Application$get Range("G5")

38 ranga$put_Value(res$r.squared) # multiple R-squared

39 range <- EXCEL$Application$get Range("G5")

48 range$put_Value(res%adj.r.squared) # Adjusted R-squared

41 rangs <- EXCEL$Application$get_Range("G7")

132 range$put_Value(res$sigma) # Model standard error

43 range <- EXCEL$Application$get Range("G8")

44 ranga$put_Value(res$df[2]) # Degrees of freedom of the linear regression
45

46 #return(res)

a7}

.....

.....

<901

s a0 20l

.....
............

.......

.....

::formatted to resemble that of
REGLIN() worksheet function

Rather than formatting R's output in the

Excel spreadsheet using VBA, you can address
an Excel® spreadsheet directly from one's R
code using BERT's Excel® Scripting (COM)
interface (e.g. for reading from and writing to
specific cells in the Excel® spreadsheet).

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

10

Examples in engineering education

Numerical optimization and chemical engineering example

= The problem: e, e, P, -, e, 3
o 3-stage compression problem for ideal gas and adiabatic conditions. ! ']
o Starting with inlet temperature T, and pressure P,, and seeking an outlet pressure P,, the problem consists in finding -
the inlet and outlet pressures P, and P, of the intermediate compression stage that yield the minimum compression
work W. With P,<P,<P,<P,, k=1.4 and R the ideal gas constant, the compression work W can be expressed as

(k-1)/k (k=1)/k (k=1)/k
W= KRT, | [P, N P .\ P, 9
k-1|\ R P, P,

o Students are invited to try the Nelder-Meade algorithm to solve the problem.

= Stepl:

o Search the CRAN archive for the R package you need. A quick web search indicates that Nelder-Mead algorithm is
available in several R packages, e.g. “optimization” (https://cran.r-project.org/web/packages/optimization/index.html, Husmann et al.).

o The "Package > Install Packages" menu from the BERT console is used to install the “optimization” package.

o O & & =

$0000
TIILEX

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019 11

https://cran.r-project.org/web/packages/optimization/index.html
https://cran.r-project.org/web/packages/optimization/index.html
https://cran.r-project.org/web/packages/optimization/index.html
https://cran.r-project.org/web/packages/optimization/index.html

VBA editor

Sub Optimization VBA()

' Section 0: wvariables daclaration

' All wvariables passed to your R function should be

Dim k As Variant, R As Variant, T1 As Variant, Pl As Variant, P4 As Variant,

defined as Variant

"Variant wvariables used as output to Excel API function Application.Run()
Dim wvarl As Variant

P2init As Variant,

On Error Resume Next [
A C D

' Clear the output range |

Range ("BE") .ClearContents 1]
' SECTION 1: importing data from the Excel spreadsheet _L J-mol-1-k-1 Optimization
. = e 3 K example

Worksheets ("Example_Optimization™).Select a kPa

k = Range("B1") .Value —

R = Range ("B2") .Value 5 kPa

Tl = Range ("B3").Value ? kPa

Pl = Range ("B4") .Value —

P4 = Range ("B5") .Value 7 kPa

P2init = Range ("B&") .Value ?]

P3init = Range("B7").Value] I_I

Q

' SECTION 2 : Calling your own R function

This is where all the calculations are done, VBA does none !

varl = Application.Run("BERT.Call", "Compression_ R", k, R, Tl, Pl, P4, P2init, P3init)

In this example, outputs from your R function are writtent to the active
Excel spreadsheet directly from the R function utself.

e s ee 00 004
:ﬁ.
=
':‘.
D
o
5-
—t
=
0]
rm
x
(@)
o
@
wn
©
S
D
Q
o
wn
>
D
D
c

e
° °
AU A
o o
e o
L
- -
- o
- -

PRCRCR N I N R
cevennned

B BERT Console
File Edit View Packages Help

Welcome myFunctions.R X functions.r @ Preferences myFunctions_phreeqc.R excel-scripting.r
48

49 Compression_R <- function(k,R,T1,P1,P4, P2init, P3init) {

50 print(paste(k,R,T1,P1,P4, P2init, P3init))

51

52 # loading Nelder-Mead optimization algorithm to minimize W
53 | library(“"optimization")

54

55 # The function to be minimized

56 W <- function(x) {

57 (k*R*T1/(k-1)) *((x[1]/P1)~((k-1)/k) + (x[2)/x[1])"~((k-1)/k) + (P4/x[2])~((k-1)/k) - 1)
58 |}

59

60 @ # Calling the Nelder-Meade optimization algorithm

61 @ # See Package 'Optimization' for details

62 res <- optim_nm(fun=W, start=c(P2init, P3init), maximum=FALSE, k=2, tol=1e-6, trace=TRUE)
63 print(res$trace)

64

65 = # Outputting 2 graphs

66 par(mfrow=c(1,2))

67 plot(res)

68 @ plot(res, 'contour')

69

76 # Writing results to the active Excel worksheet

71 range <- EXCEL$Application$get_Range("B6");

72 range$put_Value(res$par[1]); # Pressure P2

73 range <- EXCEL$Application$get_Range("B7");

74 range$put_Value(res$par[2]); # Pressure P3

75 range <- EXCEL$Application$get_Range("B8");

76 range$put_Value(res$function_value); # Work W

27

78 }

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

12

Examples in engineering education

1 Excel® and R is done in a few minutes time, top!
ify the Excel® interface as they wish, making the work interactive and fun while giving them the
eractively test the behaviour of the numerical algorithm, such as its sensivity to initialisation, or

IRGaphes D20y M= -
Fichier Historique Redimensionnement _'
19920] 800 73 ERS:
1€ @ File Edit View Packages Help Sl 1L
o (2%
.ﬁ Welco... myFunctio... X functic.. ® Prefere.. myFunctions_phre... excel-script... R T T
-
D 48 iteration function_value x 1 ®_2 afff e ”
49 Compression R <- function(k,R,T1,P1,P4, P2init, P3init 1, 1 19918.46 381.8353 403.8637 Nio"
p | IG5 5
56 print(paste(k,R,T1,P1,P4, P2init, P3init)) F% 2 19916.35 387.3485 487.3485 ~ 230
3, 3 19987.36 384.8482 414.7477
— ol 4, 4 19899.98 316.2245 425.4169
19800 P
650 — 52 | # loading Nelder-Mead optimization algorithm to minimize W [5.] 5 10882.96 316.0121 445.5490
T 53 | library("optimization") [5,] 6 19867.54 340.0084 476.9547
° >] 5 1osac.a1 92,018 92,0050
. P > . 352.93 32.9232
55 # The 'FuncFlon to be minimized e a 19846.41 352.9318 532.8232
s 56 W <- function(x) { [1a, 10 360.7687 601.1736
g 57 (k*R*T1/(k-1)) *((x[1]1/PL)~((k-1)/k) + (x[2]/x[1])~((k-1)/k) + (P4/x[2])~((k-1 [11,] 11 368.7687 601.1736
™ 58 | 3} [12,] 12 368.7687 601.1736
29880 — . [13,] 13 347.7511 572.6742
=] = 500 =2 [14,] 14 347.7511 572.6742
B 66 # Calling the Nelder-Meade optimization algorithm [15,] 15 . .
5 61 | # See Package 'Optimization’ for details [16,] 16 . -
= : . _ _ . . A _ i [17,] 17 345.1688 592.5497
62 r‘e? <- optim_nm(fun=W, start=c(P2init, P3init), maximum=FALSE, k=2, tol=le-6, tra [15.] 15 Sa 1175 255 1047
63 print(res$trace) [12,] 19 340.1173 583.1047
64 [2e,] 28 348.1173 583.10847
- 65 | # Outputting 2 graphs [21,] 21 342.5688 584.6849
19860 66 m_F; _ gl 2g F [22,] 22 342.3957 585.9128
par(mfrou=c(1,2)) [23,] 23 342.3957 585.9128
450 67 plot(res) [24,] 24 342.2083 534.8258
68 plot(res, 'contour') [25,] 25 341.8889 584.7753
[26,] 26 341.8889 584.7753
o 27 27 342.1824 585.8784
76 | # Writing results to the active Excel worksheet E;B:% ;B ;4;8;28 584:;;63
71 range <- EXCEL$Application$get_Rangs("B6"); [22,] 29 342.08080 584.8763
19840 72 range$put_Value(res$par[1]); [38,] 30 342.09800 584.8763
73 range <- EXCEL$Application$get_Range("B7"); Efi’% f}‘ f:i:_;f g::féf?
32, 32 341.9753 .762
> T T T T T 1 74 range$put_Value(res$par[2]); [33,] 33 341.9753 584.7627
75 range <- EXCEL$Application$get_Rangs("B&"): [34,] 34 341.9876 584.8124
: > 0 5 10 ilgratizt?n 25 30 35 310 320 33? 340 350 360 76 range$put Value(res$function value); [35{] . 35 . 19836.96 342.9044 584.8114
o a7 Ready Line 48, Col1 R 35 iterations are displayed:>
- e T
- e /00 e o -
= e; a-contour plot) and data (here, the trace of the optimization path) returned from the R functions are
- ’ ® ® =
. = >3 LRl] . h I
- :e}@eeﬁe d. Data output by R functions are written to the BERT console.

Yo ime s e v 000000

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019 13

AN
e BB ENYE
R RN RN
'RER R ESE A(DER=
(D
a
D
Sy
(0]e]
1D
o
=t
—+
5
D
©
(=
5
T,
=)
0qQ
wn
<<
(7]
—+
(]
3
Q)
>
(0N
3
o
S
®

Statistical process control example : drawing and
analysing control charts using the gcc package
(https://cran.r-project.org/web/packages/qcc/index.html , Scrucca et al.)

BERT console

File Edit View Packages Help

Welcome myFunctions.R X functionsr @ Preferences myF
28 ewma_ R <- function(x, lambda, nsigmas) {

21

82 # loading the 'gcc' ppackage

a3 library("gcc™)

84

a5 # calling the ewma() function from the "qcc” package

a6 q <- ewma(data=x, lambda=lambda, nsigmas=nsigmas}

87 summary(q)

28

29 # Writing output values to the active Excel worksheet

° 2] range <- EXCEL$Application$get Range("F2:Glg");
¢ 91 rangefput Value(gflimits);

é g2 range <- EXCEL$Application$get Range("H3" };

= 93 rangae$put Value(gfcenter);

" a4 range <- EXCELfApplication$get Range("HS");

% rangefput Value(gfstd.dsav);

s e J e Je

......

(R FOCO R

.....

Examples in engineering education

Sub ewma_VBA()

' Section 0: variables déclaration
' All variables passed to your R function should be defined as Variant
Dim X As Variant, lambda As Variant, nsigmas As Variant
'Variant variables used as output to Excel API function Application.Run()
Dim varl As Variant

On Error Resume Next

' SECTION 1: importing data from the Excel spreadsheet
Worksheets ("Example SPC") .Activate
X = Range ("B2:B16") .Value
lambda = Range ("C2") .Value
nsigmas = Range ("C4") .Value

' SECTION 2 : Calling your own R function
' This is where all the calculations are done, VBA does none !

"ewma_ R", X, lambda, nsigmas)

' SECTION 3: Writing output from your own R function back into the Excel spreadsheet

' In this example, outputs from your R function are writtent to the active
' Excel spreadsheet directly from the R function utself.

, implicit that you can use all the
ilt into VBA (with userforms) to

luce neat interactive user interfaces.
3 Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

End Sub X lambda sample LCL ucL ‘::'I'::e
1 3318 33.87 center 33.68 [5.,
2 3310 3394 33.5233333 3349 |
3 33.07 3398 std.dev 3364 | 340 - e oo
4 33.05 33.99 042616515 33.69 +
5 33.05 34.00 3362 388 +
calt 6 33.04 34.00 33.74 /\‘/—\‘
ewma_VBA() | 338 \ +
7 33.04 34.01 3372 | - . -
8 33.04 3401 3859 | L, + \/\/\/
9 33.04 3401 3356 | .
10 33.04 34.01 3345 332 . +
1 33.04 34.01 3350 | : e +
12 33.04 3401 3335 | 330 ¥
13 33.04 3401 33.41 |
14 33.04 3401 33.32 328 '
15 33.04 34.01 33.48 | V] 2 4 [8 10 12 14 16

https://cran.r-project.org/web/packages/qcc/index.html
https://cran.r-project.org/web/packages/qcc/index.html
https://cran.r-project.org/web/packages/qcc/index.html
https://cran.r-project.org/web/packages/qcc/index.html

Geochemical example: Study of the relative thermodynamic stability (dissolution,
namely gypsum and anhydrite, as a function of temperature at 1 atm. (https://cran.r-pr

Charlton et al.)
VBA editor

Sub phreegc_VBA()

' Section 0: variables déclaration
' All variables passed to your R function should be defined as Variant
Dim Tmin As Variant, Tmax As Variant, Nsteps As Variant
'Variant variables used as output to Excel API function Application.Run()
Dim varl As Variant
' variables used to get the size of the R output variable varl
Dim nrow As Integer, ncol As Integer

On Error Resume Next

' Clear the output range
Range ("C:N") .ClearContents

' SECTION 1: importing data from the Excel spreadsheet
Worksheets ("Example_phreegc") .Activate
Tmin = Range ("A2") .Value
Tmax = Range ("A4") .Value
Nsteps = Range ("A6") .Value

' SECTION 2 : Calling your own R function
' This is where all the calculations are done, VBA does none !

varl = Application.Run("BERT.Call", "phreegc R", Tmin, Tmax, Nsteps)

SECTION 3: Writing output from your own R function back into the Excel spreadsheet
nrow = UBound(varl, 1)
ncol = UBound(varl, 2)

Range (Cells (1, 3), Cells(nrow, ncol + 2)).Value = varl

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

File Edit View Packages Help

Welcome myFunctions.R X functions.r @ Preferences myFunctions_phreeqc.R

98 phreegc_R <- function(Tmin, Tmax, Nsteps) {

99

1@ # loading the ‘phreeqc’ package

1e1 library(“phreeqc")

102

103 range <- EXCEL$Application§get_Range(“Ad4")
184 x <- range$get_Value()

185 print(paste(“x=",x))

106

107 # load the phreeqc.dat database

188 phrLoadDatabaseString(phreeqc.dat)

1e9

11@ # Building a PHREEQC script and passing it the input temperatures
111 phrRunString(phreeqc_script(Tmin, Tmax, Nsteps))
112

113 # retrieve selected_output as a list of data.frame
114 so <- phrGetSelectedOutput()

115

116 # returning the results output by PHREEQC

117 return(so$nl)

118 }

119

120 phreeqc_script <- function(Tmin, Tmax, Nsteps) {
121 # writing the PHREEQC script

122 input <- vector()

123
124 input <- c(input, "TITLE Example 2.--Temperature dependence of solubility")
125 input <- paste(input, "of gypsum and anhydrite")

126 input <- c(input, "SOLUTION 1 Pure water")

127 input <- c(input, "pH 7.8")

128 input <- c(input, "temp 25.9")

129 input <- c(input, "EQUILIBRIUM_PHASES 1")

138 input <- c(input, "Gypsum e.e 1.8"
131 input <- c(input, "Anhydrite e.e 1.e"
132 input <- c(input, "REACTION_TEMPERATURE 1")

133 # Creation of the modified line with new entries

134 Excel_input <- paste(Tmin,"” “,Tmax,” in “,Nsteps,” steps"”)
135 input <- c(input, Excel_input)

136 input <- c(input, "SELECTED_OUTPUT")

137 input <- c(input, "-file ex2.sel")

138 input <- c(input, "-temperature”)

139 input <- c(input, "-si anhydrite gypsum”)

140 input <- c(input, “END")

141

142 return(input)

143 }

—

https://cran.r-project.org/web/packages/phreeqc/index.html
https://cran.r-project.org/web/packages/phreeqc/index.html
https://cran.r-project.org/web/packages/phreeqc/index.html
https://cran.r-project.org/web/packages/phreeqc/index.html

Charlton et al.)

Y Rtes vse e 0
2 e o, I 0 e TN
...o..aoob’@.......\

--oo.o!........
....-.oo:-\oeooO’

Callto VBA
subroutine
phreeqc_R

7.41
7.37
7.32
7.27
7.22
7.17
7.13
7.08
7.03
6.99
6.94
6.90
6.86
6.82
6.78
6.74
6.71
6.67
6.64
6.60
6.57
6.54
6.51
6.48
6.45
6.43
6.40
6.38
6.36
6.33

J
pe
4
12.66
12.37
12.09
11.81
11.55
11.30
11.05
10.80
10.57
10.34
10.11
9.89
9.67
9.45
9.24
9.03
8.85
8.63
8.43
8.24
8.06
7.87
7.70
7.51
7.30
7.20
7.00
6.83
6.67
6.51

| K
temp.C.
25.0
0.0
3.4
6.9
10.3
13.8
17.2
20.7
241
27.6
31.0
34.5
37.9
414
4.8
48.3
51.7
55.2
58.6
62.1
65.5
69.0
724
75.9
79.3
82.8
86.2
89.7
93.1
96.6
100.0

l

L Y
si_anhydrite si_gypsum
65535.0000 65535
-0.5854 0
-0.5448 0
-0.5048 0
-0.4653 0
-0.4263 0
-0.3878 0
-0.3498 0
-0.3123 0
-0.2753 0
-0.2387 0
-0.2026 0
-0.1669 0
-0.1317 0
-0.0968 0
-0.0624 0
-0.0284 0
0 -0.0053
1] -0.0385
0 -0.0714
0 -0.1039
0 -0.1360
0 -0.1678
0 -0.1993
0 -0.2304
0 -0.2612
0 -0.2917
0 -0.3219
0 -0.3517
0 -0.3813
0 -0.4106

l

N | o | e | Q@ | R | s
00000 HENNNENEEENEEENNgececccc ot oo
*n
L4 [] ®si_gypsum
-0.1000 L] | : .
®] Is:_anhvdrlte
] |
< -0.2000 - * m|
o
3 . "
= .
2 -0.3000 -]
B ¢ u
3 L] jm|
-] | |
@ -0.4000 - L -~
.
°
05000 | o
*
o600 & — — —

00 100 20.0 30.0 400 50.0 600 70.0 80.0 90.0 1000
Temperature (*C)

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

16

https://cran.r-project.org/web/packages/phreeqc/index.html
https://cran.r-project.org/web/packages/phreeqc/index.html
https://cran.r-project.org/web/packages/phreeqc/index.html
https://cran.r-project.org/web/packages/phreeqc/index.html

Conclusions

With Excel®’s inescapability in the engineering community, both at unlver5|ty and t the worléplace lity'to k all c
R’s numerical strength into Excel® applications is a highly attractive proposition. & 42 o Rk

BERT is a simple, efficient and free R-Excel® interoperability solution. Interfacing an existing R code with an Excel® worksheet

adds interactivity and acceptability to one's R code. Very few lines of code (VBA and/or R) are necessary to embed your R
code into Excel®.

Interfacing Excel® and R for undergraduate engineering courses brings interactivity and fun into the learning of engineering
courses, which can only help with the understanding of the course material.

Beyond engineering education:

o Development of excel® applications that take advantage of R’s capabilities can be highly beneficial for practicing
engineers. .«

oooooo

1 of Excel® and R offers a highly competitive environment, technically and financially, for all engineering
companies.

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019 17

Q.

**; _LABORATOIRE

DE GENIE '
CHIMIQUE Thank you R

meeem= for youR Excellent attention

Should you want to get in touch:

Florent.bourgeois@toulouse-inp.fr

https://lgc.cnrs.fr/annuaire/florent-bourgeois/

ooooo
ooooo
ooooo

OOOOO

Speual%Eg@ks to the following INP-ENSIACET undergraduate engineering students for their contribution:

:f:.’ , Florent CHAUVIN, Camille HERBIN, EI Mehdi LAAISSAOUI, Robin MOINEAU and Roxanne TOUZE

........
« e o o o a0 o D

Why R? 2019 Conference — Warsaw, 26-29 Sept. 2019

mailto:Florent.bourgeois@toulouse-inp.fr
mailto:Florent.bourgeois@toulouse-inp.fr
mailto:Florent.bourgeois@toulouse-inp.fr
https://lgc.cnrs.fr/annuaire/florent-bourgeois/
https://lgc.cnrs.fr/annuaire/florent-bourgeois/
https://lgc.cnrs.fr/annuaire/florent-bourgeois/
http://www.ensiacet.fr/fr/index.html
http://www.ensiacet.fr/fr/index.html
http://www.ensiacet.fr/fr/index.html

Slide 2
Good morning to you.
Today, | stand before you to make a brief presentation about the merit of merging R and Excel® for engineers, using BERT as the interface.

The outline of my presentation will be a short introduction, followed by principles and implementation tips, then a few simple examples, and then I’
wrap up with some conclusions.

Slide 3
Engineers do love Excel®!

Without question, Excel® is engineers’ favorite tool when it comes to data processing. Most engineering education programs include VBA courses, and
most engineers in the field today develop their own applications using VBA.

VBA is not a full object-oriented language, and well, engineers do not often use of VBA’s object-oriented capability. What engineers do appreciate with
Excel® is the tabulated data, their simple handling and the easy and fast way by which Excel® allows them to build interactive interfaces with
Userforms and ActiveX controls.

Excel however offers only basic functions to analyze, model and visualize data.

R’s primary function and strength, on the other hand, is precisely to analyze, model and visualize data, and not just statistical data as it is too often being
reduced to.

Clearly, merging R and Excel makes a very desirable proposition not only for learning engineering, but also for “doing” engineering if I may say so.

Today, | would like to talk about interfacing Excel® and R using BERT, which stands for Basic Excel R Toolkit. It is developed by Structured Data in
the United States, and you can find them on riskamp.com.

Slide 4

Installation of BERT will add the BERT Console add-in to Excel®. Clicking on this add-in opens the BERT console, which is an R editor. You could
use it as such, but it is not a full-fledged editor like RStudio.

The BERT console will let you install R packages, and you should note that you will need to install them from the BERT console if you want your
Excel® applications to use them.

Also, you’ll have to put your R codes into a folder known to the BERT console, and there is a default folder for this, which you may change.
Slide 5

In this presentation, | will make the distinction between 2 types of applications that are the most useful ones, at least from my experience and that of my
students.

The first type consists in calling standard and package- imported R functions from Excel®.

The interfacing part requires concise and basic VBA programming only. You would need however to install R packages from the BERT console if you
want to use them.

The second type consists in calling user-defined R functions from Excel®.

The key difference here is that you will be able to call your own R code from Excel®, and obviously, this is the most interesting type as it literally pours
all of R’s capability into Excel®.

Let me start with Type 1 applications, where you just want to call standard or package imported R functions into Excel®.
Through practice, we have templated the way by which you could structure your applications so that it requires minimum coding and runs on first try.
You are invited to structure your VBA code using a 3 sections template.

o First, your VBA code reads the data from the Excel® spreadsheet into variables of Type Variant, using 1-based indexing to match R’s indexing
convention.

o Second, your VBA code calls the R functions you need, passing the Variant variables as arguments.

o Third and last, you use VBA or R to write R’s outputs into your Excel spreadsheet.

Really, that’s a no-brainer for the programmer!

And it’s painless also for the end-user! |

Indeed, when running an Excel® file with built-in R code using BERT, the end-user will see nothing but Excel® and therefore won’t be turned off by
the mention of using something other than Excel®.

Slide 6

This here shows the simplest type of application one may think of. The VBA code reads inputs from the Excel spreadsheet, and calls R’s native
functions, here the rt() function, which returns a vector of Student’s t-distributed values.

You can see here the simple syntax for calling an R function from VBA.

The VBA code then writes the Student’s t-distributed values to the spreadsheet, which are plotted into an Excel® scatter plot. You can just click on the
control button on the Excel® spreadsheet and the process repeats itself. Only 2 lines of VBA code were necessary here to interface Excel and R.

Of course, you could use the INV.T() worksheet function to do just that. But considering Excel®’s very limited support for probability distributions
needed for real world applications, how do you propose to repeat this with non-basic statistical distributions?

And what about all the other numerical functions you may need to solve your engineering problems, which are unknown to the standard Excel®
environment?

Slide 7

With BERT, this is just a walk in the park !

This example uses the same VBA code as before, the difference being that it calls an R package-imported function.

Here, we call R’s rtriangle() function to sample the triangular distribution. This function was made available simply by installing the triangle package
from the package install menu in the BERT console.

Also for sake of illustration, the VBA code calls R’s standard shapiro.test() function, whose output is written to a msgbox in Excel®.

This is very simple stuff of course, but | am hoping that you can start seeing the potential value it may bring to engineering students learning, and not
just about random variables and statistical distributions.

Slide 8

Now, I’ll move on to what I’ve called type 2 applications, where you call your own R functions from Excel®. It is clearly very useful for developing an
“engineer friendly” interface to an R code.

The recommendation | would make is to mostly keep all the data analysis calculations in your R code, and simply use VBA to pass data between the
Excel® spreadsheet and the R code.

The recommended structure of type 2 applications is very close to that of type 1.

The only difference lies with the 2" section, where you call your own R functions instead of standard and packaged R functions. This requires that you
place your R code in a dedicated BERT folder.

Slide 9
Here is an illustration of type 2 applications.

We have created a simple R function called myLinearRegression_R(), which runs a multilinear regression using R’s Im() function. It takes 3 vectors, Y,
X1 and X2 as inputs. The R code calls the Im() function and returns a matrix that contains some of the outputs from the Im() function.

Now, the VBA code on the left calls the R function we have created, passing the Y, X1 and X2 vectors to it, and then writes R’s output matrix to the
spreadsheet.

Slide 10
Here is the Excel®spreadsheet, with an activeX control button that runs the VBA code.

To the right, you can see a slightly different version of the R code, which writes directly into the Excel® spreadsheet instead of letting VBA do it, as
with the previous example. BERT offers different functions to address the spreadsheet directly, which can be useful to write nicely formatted outputs
into Excel.

You may recognize that the spreadsheet output was made to resemble that of Excel®’s REGLIN function.
Slide 11

Now that we have seen how simple it is to interface Excel® and R using BERT, I’ll move on to 3 examples to illustrate the value to engineering courses
and engineering problem solving.

The first example is used by a colleague of mine in a numerical optimization course for chemical engineers.

It is a 3 stage compression problem. The aim is to find the operating conditions of the intermediate compression stage in order to minimize the work,
that is the energy consumption, of the overall system. Students are asked to produce an Excel® application that uses the Nelder-Mead optimization
algorithm for this.

Of course, we could search for an implementation of the Nelder-Mead algorithm in VBA, and you’ll find some VBA implementations on the web, or we
could ask students to code one in VBA, but what would be the point, besides a course on VBA?

A quick web search identifies several R packages that implement this algorithm, among which the optimization package. We first install the package
with the BERT console as usual.

Slide 12

We then start by writing our R code, as we would do if we were only using R to solve the problem. This requires defining a function that calculates the
compression work, and calling the optim_nl() function that implements the Nelder-Mead algorithm.

Here, we chose to write the output into the Excel® spreadsheet directly from the R code. We could have decided instead to return the results and let
VBA do the writing into the Excel® spreadsheet.

Now back to the Excel part of the code. Input values are entered in the spreadsheet by the user, they are read by the VBA code, which then passes them
on to the R function, which we have named Compression_R().

End of story!

Slide 13

The interfacing between Excel® and R using BERT does not change anything about the way the R functions work.
For instance, calling the R’s optim_nl() function will output the optim_nl() graphs to the screen.
Moreover, the console output from the R functions are written to the BERT console should you want to take a look at them.

Solving this problem by interfacing the R code with Excel® took only a very few lines of code.

What it provided students with is an interactive Excel®worksheet that allows them to play with all the intricacies of this optimization and compression
problem, helping them with their learning and understanding in a rather fun, easily personalizable and interactive manner.

I would like to point out that we could go further and design a much neater interactive interface using Excel®’s userform capability, where the user
would change input values using ActiveX controls and make this engineering problem very interactive indeed.

Slide 14

This 2" example is relevant to a Statistical Process Control course, a subject that is widely being taught to engineers as it relates to quality control.
Here, we interface Excel® with R in order to draw an EWMA control chart, which is a particular type of control chart.

The R package of interest is gcc, which is installed from the BERT console.

The observations are read from the Excel® spreadsheet by the VBA code, which then passes them on to a user-defined function called ewma_R(). The
function loads the gcc library, calls the ewma() function from the package and writes the function outputs to the spreadsheet. This calculates key values
for the control chart, which are highlighted in yellow here, and Excel® is used to draw the control chart.

Students may here again build an interactive interface that will help them learn about control charts, their settings and performance.
Slide 15

I’ move on to the third and last example, the possibilities being virtually limitless considering the sheer number of packages available in R that are
relevant to solving engineering problems, some of which being highly specialized.

This example relates to geochemistry, which is a rather complex subject.

Here, students are asked to look at the thermodynamic stability of 2 minerals in water as a function of temperature. To this end, we want to use PhreeqC.
It is a renowned and free geochemical modelling software developed by the US Geological Survey, and there is now an R Interface to Phreeqc.

And so we go again with our Excel®-R interfacing using BERT, with a type 2 application. We start by writing the R code that runs our problem with
PhreeqC, as if we’d use R only to solve the problem.

We then install the PhreeqC package from the BERT console, and code the few lines of VBA that allows us to call our user-defined R function. Here,
VBA is used to write the results into the spreadsheet as you can see.

Slide 16

This slide shows the results from this simple call to the PhreeqC library, where start and end temperatures are entered in the spreadsheet, and the
saturation indices of the 2 minerals that are output by PhreeqC are written to the spreadsheet and plotted using Excel®’s scatter plot.

This is a trivial use of PhreeqC, but given its capability, I am hoping you can see the potential here. Indeed, it goes without saying that you can build far
more complex calls to PhreeqC, with more interactive Excel® interfaces, and hence build really neat applications to learn geochemistry with a great deal
of interaction and (hopefully) fun.

Slide 17
Now to some concluding remarks.

Given the omnipresence of Excel® in engineering education and the engineering community at large, | believe that bringing all of R’s numerical
strength into Excel® makes a highly attractive and pragmatic proposition for engineers.

We have found through use that BERT offers a very simple and efficient environment for doing just that.

Interfacing Excel® and R in engineering courses brings interactivity, personalization and fun into the learning process, which are powerful ingredients
for learning and understanding, while keeping the numerical analysis level high.

Going beyond engineering education, | think practicing engineers should consider developing Excel® applications that take advantage of R’s
capabilities for all their data analysis work.

Mixing advanced VBA and R programming has the potential to build really serious engineering applications, with very interactive user-interfaces that
are familiar to the engineering community, and that will not turn off even the most recalcitrant engineers.

Finally, I’d just like to point out that the combination of Excel® and R using BERT offers a highly competitive environment, technically and financially,
for all engineering professionals and companies, SME’s in particular.

Slide 18

Thank you very much for youR EXCELIlent attention !

