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Abstract

The fifth generation (5G) wireless networks is expected to support an all-connected world with a

multitude internet of things (IoT) applications. To reach this goal, network slicing is adopted to provide

flexibility in managing heterogeneous IoT networks. The focus of this paper is to implement an adaptive

dynamic network slicing mechanism in a Lora-based smart city network using a maximum likelihood

estimation. The latter avoids resource starvation and is combined with a slice-based optimization

method that configures spreading factor and transmission power parameters in a way that maximizes

the performance utility in each slice. Simulation results performed in realistic LoRa scenarios highlight

the utility of our proposition in respecting defined quality of service (QoS) thresholds in terms of delay,

throughput, energy consumption and improving reliability while providing a complete isolation between

LoRa slices.

Keywords: Internet of Things (IoT), smart city, LoRa, slice optimization, resource allocation,

dynamic network slicing

1. Introduction

By 2020, the fifth generation (5G) wireless networks will potentially support 50 billion devices in

an all-connected world of humans and machines communicating through the internet [1]. This in-

creasing number poses several challenges regarding wireless network management with each having

various service requirements. Therefore, network flexibility is needed to be able to provide services5

like monitoring smart objects using real-time connectivity. To achieve this flexibility and improve

the decision making in terms of resource allocation and parameters configuration, major technologies

arised namely network functions virtualization (NFV) and software defined networking (SDN). With

the development of the latter, network slicing is proposed as one of the most important technologies

to reach this goal by using a collection of logical functions and separating the software-based control10

plane from the hardware-based data plane in future generation networks.

The random-based access nature in the internet of things (IoT), gives the motivation to investigate

network slicing over LoRa technology with the objective to provide isolation between multiple virtual
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networks with each having specific QoS requirements to be created on a common LoRa physical15

device, being mutually instantiated on-demand and independently managed. Each slice suffers from

performance degradation even in isolated networks due to the limited number of available channels in

unlicensed bands of Long Range wide area network (LoRaWAN) [2]. This leads to new challenges in

finding an efficient resource reservation method supported with a slice-based parameters configuration

for LoRa devices (spreading factor (SF), transmission power (TP), bandwidth, etc.) to improve QoS20

of IoT devices and limit interference and collisions in LoRa network.

1.1. Related works

Many recent works focused on the importance of LoRaWAN as a candidate technology supported

by many network operators even for mobile things [3] compared to other low power, wide area (LPWA)

technologies like DASH7 [4], LTE-M [5] and NB-IoT [6]. Using its large coverage capability and low25

energy consumption, LoRa enables the opportunity to efficiently cover and support various smart

city IoT applications. The performance of LoRaWAN has been intensively evaluated in the literature

for IoT applications at the link and system level viewpoints [7] [8] and integrated in industrial IoT

monitoring applications [9] [10]. Many research studies focused on proposing various SF configuration

strategies over multiple network deployments [11] with the goal to overcome capacity limits [12] and30

to provide a trade-off solution that minimizes energy consumption while maximizing reliability [13].

Furthermore, authors showed the importance of configuring IoT devices with a proper combination

between SF and TP parameters to improve scalability of LoRaWAN [14] and to avoid performance

degradation and unfairness that happens in LoRa network if IoT devices configure SF and TP locally

[15]. LoRa originally includes a link-based adaptation of SF and TP configurations using the Adaptive35

Data Rate (ADR) mechanism. Many works tried to propose modified and improved ADR algorithms

with the goal to increase reliability and energy-efficiency without taking into consideration the possi-

bility of intra-SF and inter-SF collisions [16] [17] [18]. The latter can be decreased with the knowledge

of the entire network or by finding the optimum configuration after testing all combinations of LoRa

parameters that respects specific thresholds [19]. However, this method is considered as time consum-40

ing because sometimes, achieving multi-objectives in terms of reliability and energy-efficiency does not

always require tuning parameters, especially on IoT devices placed at the edge of their communication

range [20]. In [21], the performance of the official ADR mechanism proposed by LoRa is evaluated

and shows the impact of different configurable parameters in terms of slow convergence rate which

introduces higher energy consumption and packet losses. This highlights the need for an optimization45

solution that can decently configure LoRa parameters and improve the performance of LoRaWAN.

Nowadays, guaranteeing service requirements in LoRaWAN with traffic slicing remains as open

research issue [2]. Therefore, unlike the previous work, we aim in this article to extend network slicing

in LoRaWAN [22] by considering smart city applications belonging to different QoS classes and to

support the latter with a slice-based SF and TP configuration optimization which, to the best of our50

knowledge, has not been treated before by the research community.

1.2. Contributions and outlines

Our main contributions with respect to the surveyed literature are stated as follows:
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1. We include QoS in LoRa, which was previously considered as a best effort technology, with the

goal to test the flexibility that network slicing provides in terms of traffic management and QoS55

integration.

2. We propose an adaptive dynamic resource reservation algorithm where the bandwidth is effi-

ciently reserved on each gateway separately based on a maximum likelihood estimation (MLE).

The goal of this scheme is to avoid channels starvation of LoRa slices while considering the exact

need of each slice starting by the one with the highest slicing priority.60

3. We propose TOPG as a novel slicing optimization method that is based on Technique for Order

of Preference by Similarity to Ideal Solution (TOPSIS) and Geometric Mean Method (GMM).

The proposed method efficiently configures LoRa SF and TP parameters and improves the per-

formance of each slice in terms of QoS, reliability and energy consumption.

The remainder of this paper is organized as follows. We devote Section II and III to respectively65

describe the LoRa system model and the network slicing problem established in this paper. Section

IV presents the proposed slicing and optimization algorithm implemented over the LoRa module of

NS3 simulator [23]. The performance evaluation of the algorithm and simulation results are analyzed

and carried out through various scenarios in Section V. Finally, Section VI concludes the paper.

Figure 1: Smart City applications in LoRa-based network

2. Modeling slicing in Smart City Network70

In smart city networks, the vision is to reach a high quality of life environment relying on data

collected via connected objects and many sensors and actuators. Fig. 1 illustrates a smart city
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scenario enabled by IoT with various use cases for citizens in mobility, smart home, health and many

other fields. However, due to the heterogeneity of these applications, a single smart city network is

unable to support all of these traffic types within a network without compromising QoS for any of75

them. In case of accident, a connected vehicle should immediately communicate the information to

the people involved and responsible of emergency situations. However, this information could be lost

or arrived without respecting the required delay in urban cities.

Table 1: IoT QCIs table [24] [25]

QCI Slice Name Resource Type Priority Packet Delay Budget (ms) PER % Example Services

71 URA GBR 1 100 10−3 Real time, smart mobility

72 RA GBR 2 200 10−3 Real time, eHealth and home security

73 BE nGBR 3 300 10−6 Delay tolerant, smart agriculture

In this work, the focus is on applying traffic slicing in smart city scenarios, virtually isolated,

and with specific QoS thresholds. Table 1 summarizes the key QoS requirements of three virtual80

slices defined in terms of guaranteed bit rate (GBR), slice priority, packet delay budget (PDB) and

packet error rate (PER). Urgency and reliability-aware (URA) slice gives more importance for QoS and

reliability and requires the highest slicing priority. The latter can be required by many IoT applications,

i.e: surveillance, emergency alerting and smart mobility. Moreover, reliability-aware (RA) slice gives

equal importance for applications requiring reliability and are less critical in terms of delay. Some85

examples regarding this slice can be summarized in live monitoring applications like health sensors

and home security systems. The third and last slice denoted as best effort (BE) slice, gives the lowest

priority for IoT members running applications with non-guaranteed data rate and delay-tolerant QoS

requirements, i.e: smart metering and smart agriculture applications.

Figure 2: (a) Standard LoRa and (b) LoRa Network Slicing with parameters optimization

Fig. 2 illustrates how IoT devices are connected to a gateway in LoRa standard architecture (Fig.90

2a) and configured with one of SF-TP combinations available with the ADR configuration. The server

aims to increase both SF and TP values simultaneously to be able to decode packets at larger distance

from the gateway. However, when network slicing is applied on a Lora gateway (Fig. 2b), ADR
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mechanism becomes inefficient especially if the device in question belongs to a slice having specific

QoS thresholds that need to be respected before reaching external LoRa servers through the internet.95

For example, with traffic slicing, the receipt of urgent communications is now guaranteed at the GW

level. However, overestimating SF and TP configurations leads to an increase in energy consumption

due to the longer activity time for an IoT device when uploading a packet with high SF configuration.

Moreover, if a high SF is configured, achieved throughput may be lower than the one that needs to be

guaranteed in the corresponding slice. Hence, for each slice, one should not be limited to the possible100

configurations proposed by LoRa ADR mechanism. This work enables the possibility to define specific

slice-based SF and TP combination to be configured on an IoT device in a way that respects its QoS

thresholds.

In this case of work, we assume that centralized LoRa servers are aware of the QoS required by each105

active device in the network in terms of delay, throughput and reliability. Moreover, LoRa servers are

responsible on defining resource reservation strategies on LoRa gateways (GWs) and on configuring the

devices with SF and TP parameters. Let N(V,K) be a directed LoRa network including V={S,M,C}
components and consists of S LoRa servers, M = {m1, ..mm′ ..,mM} denotes the set of LoRa gateways

and C = {c1, ..cc′ .., cC} denotes the set of channels on each gateway. Let K = {k1, ..kk′ .., kK} be the110

set of IoT devices connected to the gateways and belongs to the set of slices L. Each slice is defined

based on delay, throughput and reliability requirements of IoT applications [24]. It is noteworthy

that to improve communications in an IoT environment, multiple objectives should be reached. More

precisely, we jointly consider in this work QoS, energy and reliability requirements as major key factors

to optimize parameters configuration of an IoT device belonging to a slice with a specific slicing priority115

spl. On each LoRa gateway, a slicing rate is estimated based on the throughput required by the devices

active in each slice l in order to define capacity cl that needs to be reserved. Each gateway has a fixed

number of C channels with Cl,m the set of channels reserved for slice l on GW m. We search to jointly

optimize QoS and network slicing energy efficiency by assigning slice members with the proper SF and

TP configurations. However, solving this multi-objective problem is challenging. Therefore, the goal120

in this work is to optimize parameters selection after evaluating the cost and benefits in each slice. We

added σ1, σ2 and σ3 as constant variables to equally distribute the weight between objective functions

and we introduced αk,l ∈ {0, 1} and βCl,m ∈ {0, 1} as two binary decision variables that respectively

indicate the admission of device k to slice l and the reservation of a channel Cl on GW m.

3. Problem Description125

Network slicing optimization in IoT is a twofold problem and involves: 1) Finding the best inter-

slicing resources reservation strategy ; 2) Configuring each slice member with the optimum SF and TP

parameters. In this work, the goal is to optimize the global performance of each slice in terms of QoS,

energy and reliability. This turns the second problem of finding the best SF and TP configuration for

an IoT device into a multi-objective problem formulated as follows:130
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3.1. QoS in a LoRa slice

LoRa adopts Chirp Spread Spectrum (CSS) modulation which tansmits symbols by encoding them

into multiple signals (chips) of increasing or decreasing radio frequencies making signals more robust to

multi-path interference, Doppler shifts and fading [26]. Each device k adopts a specific SF configuration

for information transmission. The choice of SF configuration is very crucial because the latter is135

directly related to throughput, range and transmission time. Moreover, the bandwidth is by definition

the number of wave cycles per second, which in LoRa, represents the number of chips transmitted per

second and is defined as the chip rate CR. Hence, with CSS, CR is always going to be numerically

equal to the selected bandwidth of a LoRa channel and their symbols can be interchangeably used [27].

LoRa spreads 2SF chips per symbol with SF being a discrete value that represents the number of bits140

per symbol and varies between 7 and 12 resulting a data rate computed as written in Eq. 1 below:

rk,c = SF.
CR

2SF
= SF.

bc
2SF

bits/s (1)

where CR denotes the chip rate and rk,c the data rate achieved by a device k assigned to a channel

c with specific bandwidth bc configured with a specific SF configuration. Moreover, delay in LoRa is

expressed following to Eq. 2 below:

dk,c =
L

rk,c
seconds (2)

dk,c represents the transmission delay of a packet with a length of L bits transmitted by device k145

with a specific SF configuration. Hence, a higher SF configuration increases throughput and simul-

taneously decreases delay. Based on what was previously mentioned, we model in Eq. 3 the QoS cost

as:

QoSk,c = rk,c + (1− dk,c)
Maximize

∑
k∈K

αk,lQoSk,c,∀l ∈ L,∀c ∈ Cl,m (3)

where QoSk,c denotes the benefits that should be maximized for each slice members and respectively

includes dk,c and rk,c normalized by dividing rk,c and dk,c values by the highest throughput and delay150

that can be achieved over a wireless LoRa link. The latter cannot exceeds thresholds defined for its

specific virtual slice defined in Table 1.

3.2. Interference in a LoRa slice

The reason for loosing a packet uploaded by an IoT LoRa device is three-fold: 1) when a packet is

received under-sensitivity if the transmitting device was out of range or configured with bad SF and

TP values, 2) when packets are lost due to collisions that happens between two devices transmitting

with the same spreading factor at the same time and 3) when a collision happens between two packets

transmitted with different spreading factors leading to a potential loss due to inter-SF interference.

The goal in this section is to reduce the probability of losing a packet. Let PLR′k,c be a binary variable

that indicates:

PLR′k,c =

{
0 if device k successfully reaches c ∈ Cl,m
1 Otherwise
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This mainly depends on the sensitivity of the gateway that increases alongside an increase in SF

configuration [23]. Based on random access formula [28], collisions happen on a gateway channel

between two devices configured with the same spreading factor. The probability of the latter GSF

depends on the number of packets generated during the transmission of 1 packet with the same SF

and is written in Eq. 4 based on random access formula below:

PLR′′k,c = 1− e−2GSF (4)

Moreover, we also follow the assumptions in [23] where a packet should survive interference that

comes from other LoRa transmissions. Signal-to-interference-plus-noise ratio (SINR) varies based on155

the adopted SF on each device. Each LoRa device experiences a SINR value computed based on the

Eq. 5 below:

SINRi,j =
P rxn,i

σ2 +
∑
n∈∂j P

rx
n,j

(5)

where P rxn,i is the power of the packet n under consideration sent by device with SF = i and ∂j a

set of interfering packets with a common SF = j. Each element in the cochannel rejection below [29]

denotes the minimum signal power margin Vi,j , with i, j ∈ {7, ..., 12}, that a packet sent with SF = i160

must have in order to be decoded successfully over every interfering packet with SF = j. Hence,

packet survives interference with all interfering packets if, considering all combinations of SF, a higher

power margin value (dB) is satisfied than the corresponding co-channel rejection value.



SF7 SF8 SF9 SF10 SF11 SF12

SF7 −6 16 18 19 19 20

SF8 24 −6 20 22 22 22

SF9 27 27 −6 23 25 25

SF10 30 30 30 −6 26 28

SF11 33 33 33 33 −6 29

SF12 36 36 36 36 36 −6


Therefore, the probability of collisions PLR′′′k,c that happens on a gateway channel between two

devices configured with different spreading factors is also modeled as a binary variable if it satisfies

interference thresholds:

PLR′′′k,c =

{
0 if device k survives interference

1 Otherwise

We finally model in Eq. 6, the reliability cost of a link with the objective of minimizing the

probability of loosing a packet due to interference or low channel sensitivity:

PLRk,c = PLR′k,c + PLR′′k,c + PLR′′′k,c
Minimize

∑
k∈K

αk,lPLRk,c,∀c ∈ Cl,m,∀l ∈ L (6)
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3.3. Energy Consumption in a LoRa slice

Increasing the spreading factor reduces the transmitted data rate, decreases the strength of the165

signal and offers a better sensitivity at the gateway receiver following to Eq. 7 below:

P txk,l,m =
P rxk,l,mL

grxk,l,mg
tx
k,l,me

ξ
(7)

where P rxk,l,m and P txk,l,m denotes the received and transmitted power of an active device with a

channel antenna gain expressed with grxk,l,m and gtxk,l,m respectively. eξ is the lognormal shadowing

component with ξ ∼ N(0, σ2) and L is the path loss which depends on the distance between the

transmitter and the receiver. The latter is adopted to evaluate the performance of LoRa devices in a170

dense environment and is expressed following to the Eq. 8 below:

L = L0 + 10 · n · log10

(
d

d0

)
(8)

where d the length of the path (m), n represents the path loss distance exponent, d0 the reference

distance (m) and L0 the path loss at reference distance (dB). We assume in this paper two energy

states for an IoT device which can be computed in active or in sleep mode. Accordingly, we compute

the energy of a LoRa device during a slicing interval time following to Eq. 9 with the objective of175

minimizing energy consumption in a LoRa slice without degrading QoS performance:

Ek,c = P txk,l,mTactive + P sleepk,l,mTsleep

Minimize
∑
k∈K

αk,lEk,c,∀c ∈ Cl,m,∀m ∈M,∀l ∈ L (9)

Due to the multi-objectivity of the problem, we search to find the optimum slicing strategy with the

proper SF and TP configurations that simultaneously maximize QoS benefits of each slice and minimize

energy and reliability costs without under-optimizing a function over another. This multi-objective

problem is formulated subject to the constraints below:180

C1 :
∑
l∈L

αk,l = 1,∀k ∈ K (10a)

C2 : bl,m ∩ bl′,m = ∅,∀l, l′ ∈ L,∀m ∈M (10b)

C3 : 0 ≤ Pk,c ≤ Pmaxk ,∀c ∈ Cl,m (10c)

C4 :
∑
kεK

αk,lβc,mRk,c ≤ Rmaxl,m ,∀l ∈ L,∀m ∈M,∀c ∈ Cl,m (10d)

C5 : αk,l ∈ {0, 1},∀k ∈ K,∀l ∈ L (10e)

C6 : βc,m =

{
1 if channel belongs to channel c ∈ Cl,m.

0 Otherwise.
(10f)
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Knowing that multiple virtual network slices are built on top of a common physical gateway, (10a)

ensures that each device should always choose exactly one and only network slice even if the latter

was implemented on different physical gateways. Moreover, a perfect isolation is guaranteed in (10b)

between two bandwidth parts assigned for two different slices regardless if the latter was reserved on

the same or on two different gateways. The transmission power of each device is limited in constraint185

(10c). Furthermore, constraint (10d) guarantees the sum of uplink traffic sent by slice members which

do not exceed the maximum data rate capacity of the slice that can be sent through each gateway.

Constraint (10e) ensures binary association values of device k to slice l and constraint (10f) ensures

binary reservation values of a channel c ∈ Cl,m that belongs to slice l on a LoRa GW m.

4. The Proposed Slicing Algorithm190

Figure 3: The Proposed Slicing and TOPG optimization algorithm

In this section, we expound the proposed slicing and configuration mechanism, illustrated in Fig. 3,

that will optimize LoRa network slicing by catching up to the multi-objective optimization problem

in finding the appropriate resource reservation and the best configuration to adopt for IoT devices.

Network slicing virtually splits the network into various virtual networks that are isolated with each

having heterogeneous degree of importance in terms of QoS, energy and reliability. The first problem195

appears in finding a decent slicing-strategy to split the physical network in a way that avoids resource

starvation. To this manner, we propose to estimate and reserve appropriate channel radio resources

by finding the maximum likelihood buffer demands for each slice starting by the one with the highest

slicing priority. Next, GMM [30] is adopted to define the weights based on the objectives importance

in each slice before being imported to a TOPSIS-based optimization [31] to find the best solution that200

maximizes utility requirements of the members of each slice.

4.1. Dynamic MLE-based Inter-Slicing Algorithm

The physical capacity of LoRa GW radio resources is limited. We assume that the traffic that needs

to be uploaded follows a Poisson distribution [32] knowing that the servers are aware of the amount

of data stored in the buffer Bi of each slice member.205

Lemma 1. Let Ti be the throughput needed by each device i, ∀i ∈ Kl captured at each slicing interval

time and identified by a corresponding probability distribution. For a fixed physical capacity, the opti-
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mum slicing strategy is to virtually reserve resources for each slice based on the mean throughput of its

members.

Proof : We consider Ti follows a Poisson distribution P(λ) where λ denotes the estimation parameter210

of throughput needed by device i assigned to slice l,∀i ∈ Kl. Let f(Ti|λ) be a probability density

function similar to L(λ|Ti) that represents the likelihood of λ given the observed throughput.

L(λ|T1, T2, ..., TKl
) = f(T1|λ)f(T2|λ)....f(TKl

|λ)

L(λ|T1, T2, ..., TKl
) =

Kl∏
i=1

e−λλTi

Ti!

logL(λ|T1, T2, ..., TKl
) = log

[
Kl∏
i=1

e−λλTi

Ti!

]

logL(λ|T1, T2, ..., TKl
) =

Kl∑
i=1

log

[
e−λλTi

Ti!

]

logL(λ|T1, T2, ..., TKl
) =

Kl∑
i=1

[
log(e−λ) + log(λTi)− log(Ti!)

]
logL(λ|T1, T2, ..., TKl

) =

Kl∑
i=1

[
− λ+ Tilogλ− log(Ti!)

]
To find the maximum likelihood parameter, we apply the first derivative and solve it to zero.

∂logL(λ|T1, T2, ..., TKl
)

∂λ
=

Kl∑
i=1

[
− 1 +

Ti
λ

]

= −Kl +

Kl∑
i=1

Ti

λ
= 0

λ̂ =

Kl∑
i=1

Ti

Kl
,∀i ∈ {1, ...,Kl}

To prove that the λ̂ is the maximum value, we apply a second derivative as follows:

∂2logL(λ|T1, T2, ..., TKl
)

∂2λ
= −

Kl∑
i=1

Ti

λ2
,∀l ∈ L

The obtained result is always a negative number which indicates that λ̂ is maximum and the opti-

mal parameter to consider. Hence, the best slicing decision is to consider the mean throughput λ̂l of215

slice l members ∀l ∈ L. However, slices are not equal in terms of priority. Therefore, GW resources will

be dynamically allocated to the most urgent slice starting by the channel with the highest reliability.

Let Θl = λ̂l/
L∑
l=1

λ̂l be the slicing rate based on which the algorithm reserves for each slice a capacity

cl,m = cm.Θl,∀l ∈ L.

220
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4.2. The Proposed TOPG Optimization Algorithm

After defining slicing objectives of each LoRa virtual slice, we next need to adapt the weight of

every objective before optimizing SF and TP configurations in a way that best meets the requirements

of the corresponding slice. To do this, we propose an optimization algorithm based on GMM and

TOPSIS methods. Let Al=(aij,l)n×n be a judgment matrix where aij,l > 0 and aij,l × aji,l = 1,

with n denotes the number of objectives compared in each judgment matrix for slice l. Based on

the objective importance in each slice, a priority vector is derived for each slice denoted as ψl =

(ψ1,l, ψ2,l, ..., ψ(n−1),l, ψn,l), where ψl ≥ 0 and
n∑
i=1

ψi = 1, from the decision matrix Al. With GMM,

weight configuration for each objective is defined as an objective function of the following optimization

problem: 
Minimize

n∑
i=1

∑
j>i

[ln(aij,l)− (ln(wi,l)− ln(wj,l))]
2

s.t. wi,l ≥ 0,
n∑
i=1

wi,l = 1,∀l ∈ L

which have a unique solution and can be simply solved by the geometric means of the rows of each

slice’s decision matrix Al:

wi,l =

n

√∏n
j=1 aij

n∑
i=1

( n

√∏n
j=1 aij)

(11)

After finding the objective weights for each slice, we import the weight vector of each slice into a

decision matrix Dl, which consists of a set of possible alternatives Ax as follows:225

Dl =

Alternatives w1,l .. wn−1,l wn,l


A1 a1,1 .. a1,n−1 a1,n

.. .. .. .. ..

.. .. .. .. ..

Am−1 am−1,1 .. am−1,n−1 am−1,n

Am am,1 .. am,n−1 am,n

where each value ax,y represents a parameter configuration of a device with y ∈ {1, 2, ..., n} defines

the objective and x ∈ {1, 2, ...,m} denotes a combination of SF i ∈ I = {7, ..., 12} and TP discrete

values j ∈ J = {2, ..., 14} in dBm among which LoRa servers need to assign the device with the best

configuration based on Wl, the set of objectives weight values of the corresponding slice. TOPSIS

method requires normalized values ax,y in Dl with the goal is to find the alternative with the shortest230

distance from positive ideal solution and the one with the largest distance from the negative ideal

solution.

ax,y =
ax,y√
m∑
x=1

a2x,y

, with x ∈ {1, ...,m}, y ∈ {1, ..., n} (12a)

In other terms, the goal is to find the best configuration that maximizes QoS benefits and minimizes

11



the costs in terms of PLR and energy consumption. For each positive ideal solution A+ and negative

ideal solution A−, normalized weight rating vx,y can be determined using the following equations:235

vx,y = wx,lax,y, with x ∈ {1, ...,m}, y ∈ {1, ..., n} (12b)

A+ = (v+1 , v
+
2 , ..., v

+
n ) (12c)

A− = (v−1 , v
−
2 , ..., v

−
n ) (12d)

where Vy value results using equations

V +
y =

{
max
x

vx,y, y ∈ Y1; min
x
vx,y, y ∈ Y2

}
(12e)

V −y =
{

min
x
vx,y, y ∈ Y1; max

x
vx,y, y ∈ Y2

}
(12f)

where Y1 and Y2 respectively respect benefit and cost criterias. We calculate next the euclidean

distance from the positive ideal solution and negative ideal solution of each alternative; respectively

as follows:

d+i =

√√√√ n∑
j=1

(d+i,j)
2 (12g)

d−i =

√√√√ n∑
j=1

(d−i,j)
2 (12h)

where d−x,y = V +
y − vx,y, with x = 1, ...,m and d−x,y = V −y − vx,y, with x = 1, ...,m.

ζx =
d−x

d+x + d−x
(12i)

We finally rank the configurations according to the relative closeness previously calculated and we240

assign each device with the configuration that provides the highest value ζx due to its closest position

to the positive ideal solution.
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Pseudo-code 1 Adaptive Slicing and (SF-TP) Configuration

Input : Capacities cm; Number of slices L;
Set of Throughput Requirements Tl

1 begin
2 Put slices in decreasing order based on priority spl

for each GW m do
3 for each slice l ∈ L do
4 Apply MLE based on the throughput required by slice l members in the range of GW m.

Define slicing rate Θl.
Reserve bandwidth capacity cl,m.

5 end

6 end
7 for each GW m do
8 for each slice l ∈ L do
9 Apply GMM to define Wl,n of each objective.

10 end

11 end
12 Sort devices in Kl,m based on urgency factor uk.

for each device k ∈ Kl,m do
13 Sort channels in Cl,m based on link budget.

for each Channel c in Cl,m do
14 if config=false then
15 Apply TOPSIS to define (SF-TP) parameters: SFk,TPk=TOPSIS(wl,1, .., wl,n)
16 else
17 config=true;

Configure the device with SFk and TPk.
18 end

19 end

20 end

21 end
Output: Set of resources reserved for each slice l.

(SF-TP) parameters configuration for each device k.

4.3. Complexity Analysis

We evaluate the complexity of the proposed algorithm briefly listed in Pseudo-code 1 compared

to other configuration methods implemented in this study. One primar method (static) is to statically245

configure all the devices with the same SF and TP configuration. The latter has a constant complexity

of O(1) due to its simplicity. Similarly, same complexity analysis is applied for dynamic random

(DR) and dynamic adaptive (DA) methods because in DA, centralized LoRa servers assign a specific

TP value based on the SF assigned for the device. The latter is determined based on the distance

between the device and its closest GW. Whereas in DR, the controller randomly select SF and TP250

values for all IoT devices in the network. Moreover, the complexity of the proposed dynamic algorithm

supported by (TOPG) is compared to the one supported by an optimal method (optimal). The latter

includes a complete TOPSIS algorithm where all alternatives are tested with each including a different

combination of SF and TP parameters. The complexity of the optimal algorithm is calculated as

follows: an attribute normalization and weighting which result is O(n2), the algorithm complexity255

ranking which result is O(1), the complexity of a positive-negative ideal solution and the distance to

13



alternative solutions is O(n). Hence, the overall complexity of the optimal and the proposed TOPG

configuration is O(n2) [33]. However, instead of testing all possibilities of SF and TP configurations

with the optimal algorithm, complexity is reduced in (TOPG) because the server reduces the search

space to SF values that respect the guaranteed bit rate threshold. This reduces computation time260

without highly affecting QoS performance as will be shown in the following section.

5. Performance Evaluation

In uplink, centralized LoRa servers enable the opportunity to make efficient slicing decisions and

optimum parameters configuration based on the knowledge of the data in the buffer of each LoRa

device. We implemented our methods in the open source NS3 simulator [34] using LoRa model that265

was firstly developed by authors in [23]. For further implementation details, we refer the readers to

LoRaWAN source code over github [35]. NS3 supports a protocol stack including PHY and MAC

layers where packets are uploaded from IoT devices to LoRa gateways. The latter are connected to

the network server in a point-to-point connection responsible of creating network slices and configur-

ing IoT devices. The first section of Table 2 gives a brief of LoRa parameters implemented in this270

work. Simulations are replicated 50 times with 95% confidence interval and are realized in realistic

LoRa scenarios. We assume that devices are defining a random time for transmission but periodically

uploading small packet payloads of 18 Bytes following to the work done in [26]. LoRa devices and

gateways are both placed over a cell of 7.5 KM radius based on a uniform random distribution. Each

device is configured with spreading factors that varies from 7 to 12 when uploading traffic to LoRa275

GWs. Each GW is characterized by 8 receiving channels wih each channel having a bandwidth of 125

kHz in the 867-868 MHz european sub-band.

The second section of Table 2 summarizes LoRa energy model parameters. Based on the Eq. 13

below, we seek to evaluate the energy consumed when we increase the number of LoRa devices in each

slice.

Ek,l,m =
ptxi + prxi
V + epa

.dtx/rx (13)

where Ek,l,m is the energy consumed by an IoT device, V the LoRa supply voltage, epa the amplifier’s

added efficiency, dtx the duration of transmission, prxi the power of reception and ptxi the power of280

transmission that varies between 2 and 14 dBm depending on the configuration strategy adopted. We

integrate an energy module for the LoRa module in NS3 similar to the one that already exists for Wifi

and we applied energy parameters and the power model specified for LoRa in [26] and [36]. In the

following, we start by a proof of isolation and we highlight the importance of finding proper SF-TP

combination with a parameters study in which we focus on showing the impact of SF and TP on energy285

consumption, mean PLR and the percentage of devices that respected GBR and PDB.

5.1. Parameters Study

In this section, we investigate the performance of each slice when we put in place different SF-

TP configuration strategies for a fixed number of 300 devices. We first study static configurations

in which all devices in the cell are configured with one of the following SF-TP combinations (i.e.,290
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Table 2: Simulation Parameters

Simulation Parameters

Simulation Time 600 seconds

Slicing Interval Time 50 seconds

Cell Radius 7.5 KM

Number of replications 50

LoRa devices and GWs distribution Random Uniform

Propagation loss model Log-distance

Bandwidth 125 kHz

Spreading Factor {7,8,9,10,11,12}
Confidence intervals 95%

European ISM sub-band 863-870 MHz

Power Consumption Parameters [26] [36]

Battery Maximum Capacity 950 mAh

LoRa Supply Voltage 3.3V

Amplifier Power’s added Efficiency 10%

Connected (Tx/Rx-SF7 to SF12) 1.58 to 25.11 mW

Standby 0.09 mW

Sleep 0 mW

SF7-TP2, SF8-TP5, SF9-TP8, SF10-TP11, SF11-TP14 and SF12-TP14). Then, we study the impact

of TP variation for static configuration compared to three types of dynamic configuration strategies

namely, DR where each device randomly picks a SF and TP values, DA where each LoRa device

dynamically adapts device parameters to one of the SF-TP configurations depending on the highest

receiving power measured from the gateway and we compare them with TOPG where dynamic slicing295

is supported with the proposed GMM and TOPSIS optimization.

Table 3: Parameters Study with static SF-TP configurations strategies

Slice Name
Static

SF7-TP2 SF8-TP5 SF9-TP8 SF10-TP11 SF11-TP14 SF12-TP14

Devices that respect GBR (%) Overall 2.9 6.21 14.65 23.08 0 0

Devices that respect PDB (%) Overall 41.15 30.7 13.85 12.3 0 0

Mean Packet Loss Rate (%)

Overall 78.37 58.68 20.46 23.73 47.73 70.89

URA Slice 6.94 6.80 10.23 3.33 5.33 5.94

RA Slice 10.34 10.89 16.91 10.50 10.61 18.22

BE Slice 82.71 82.31 72.87 86.16 84.07 75.84

Mean Energy Consumption (mJ)

Total 0.06 0.2 0.73 1.47 3.99 4.41

URA Slice 0.01 0.04 0.16 0.28 0.67 0.74

RA Slice 0.02 0.06 0.23 0.55 1.07 1.47

BE Slice 0.03 0.1 0.35 0.64 2.26 2.21
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Figure 4: Proof of Isolation

5.1.1. Proof of Isolation

The very first step before investigating the strategies that can be used to configure SF and TP

parameters is to prove the isolation concept between virtual slices in LoRa. Assuming that all devices

are transmitting with the same DA configuration, we consider a single LoRa GW scenario in which we300

fix 20 LoRa devices for URA slice and we increase the number of devices. Therefore, all the devices

that are left are assigned now to RA and BE slices. Fig. 4 proves the isolation concept because when

the number of devices increases in RA and BE slices, URA slice members were not affected and the

percentage of PLR remained constant and nearly null whereas PLR increased in RA and BE slices in

a more congested scenario.305

5.1.2. Parameters study with Static SF-TP Configuration

Performance comparison between static configuration strategies is summarized in Table 3 and

evaluated in terms of QoS for a fixed packet transmission interval. When static configurations are

adopted, all devices in the cell are configured with one of the following SF-TP combinations (i.e., SF7-

TP2, SF8-TP5, SF9-TP8, SF10-TP11, SF11-TP14 and SF12-TP14). Results show that increasing the310

SF improves QoS metrics in terms of throughput and delay except for SF11 and SF12 where perfor-

mance degrades tremendously. With high SF configurations, sensitivity is improved but the energy

increases as well because with this configuration IoT devices occupy the spectrum for the longest time

on air. This explains the increase in PLR and the probability that packets with same SF interfere

upon transmission. However, with small SF configurations, energy is reduced with an improved QoS315

performance compared to high SF configurations. However, more than 50 % are lost due to lack of

sensitivity, which means that a large number of packets are lost because they were not successfully

received and decoded by the gateway.

Regarding QoS, increasing the SF reduces the throughput and increases the transmission delay.320
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This explains why the percentage of devices that respect PDB decreases due to the increase in trans-

mission delay. However, knowing that throughput decreases when SF increases, it is noteworthy to

mention that the percentage of devices that respect GBR is not affected and improves with SF. This

is because a higher SF with higher TP helps more devices to deliver the required throughput while

improving at the same time packets sensitivity. This clearly explains the low values in PLR and high-325

lights the trade-off that some configurations deliver in terms of QoS, reliability and energy. Therefore,

we pursue this study with (SF9− TP8) configuration due to its trade-off performance that this con-

figuration provides between QoS, energy consumption and having the best overall PLR% between the

ones simulated with static strategies.

Table 4: Complete Parameters Study with static and dynamic SF-TP configuration strategies

Slice Name
Static-SF9 Dynamic

TP2 TP5 TP8 TP11 TP14 DR DA TOPG

Devices that respect GBR (%) Overall 6 9.35 14.65 23.04 37.67 7.65 16.75 60.99

Devices that respect PDB (%) Overall 0.45 1.7 13.85 19.32 29.86 76.3 94.8 85.73

Mean Packet Loss Rate (%)

Overall 61.77 45.96 20.46 12.3 9.59 20.86 4.37 12.26

URA Slice 6.85 8.75 10.23 9.45 3.27 12.32 0.67 6.18

RA Slice 15.54 16.00 16.91 15.24 5.84 23.69 0.97 11.13

BE Slice 77.61 75.24 72.87 75.31 90.89 64 98.37 82.69

Mean Energy Consumption (mJ)

Total 0.18 0.37 0.73 1.46 2.91 3.53 1.04 1.8

URA Slice 0.04 0.08 0.16 0.31 0.62 0.64 0.22 0.25

RA Slice 0.06 0.12 0.23 0.46 0.92 1.1 0.33 0.49

BE Slice 0.09 0.17 0.35 0.69 1.38 1.80 0.49 1.06

5.1.3. Parameters study with Dynamic SF-TP Configuration330

After defining (SF9 − TP8) as the best static configuration, we compare the latter to dynamic

configurations. First, we highlight in this study the impact of increasing TP for static configurations

before comparing its performance to DA, DR and the proposed TOPG method. Based on the results

shown in Table 4 below, one can conclude the importance of efficiently identifying TP parameter due

to its direct impact on QoS performance metrics. The results of each slice show the efficiency of URA335

compared to RA and BE slices in terms of reliability and energy consumption due to slicing priority

consideration in MLE resource reservation mechanism. Increasing TP for SF9 configuration will in-

crease packets arriving above sensitivity and improves the rate of devices that guaranteed delay and

throughput on the expanse of energy consumption. This highlights the motivation for optimizing SF

and TP parameters and the utility to sometimes increase TP for an IoT device, if the latter improves340

its QoS with respect to GBR and PDG thresholds defined for the slice it belongs to. Based on what

was previously mentioned, IoT devices are configured with the highest TP for static (SF9 − TP14)

configuration because it gives the best QoS performance for LoRa slices. The latter will be evaluated

in depth in the following section compared to DA, DR and the proposed TOPG methods.

345

Regarding dynamic configurations, DA was the best strategy in terms of energy compared to

DR and TOPG because in DA, the centralized server dynamically configures LoRa devices with
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one of the SF-TP combinations defined by LoRa. It measures the receiving power that a GW gets

from the device depending on its position and configure the parameters accordingly. The advantages

that dynamic configurations brings to LoRa are two-fold: first, depending on how far the device is350

from the gateway, a smaller distance requires a smaller SF configuration which also mean smaller TP

and energy consumption. Secondly, the fact of adopting different SFs configuration reduces the the

probability of collisions and the percentage of packets lost due to interference. However, similar to

static configurations, DA is week in terms of QoS. This is also due to unefficient SF-TP distribution

where it could be useful to improve QoS by keeping the same SF with higher TP value instead of355

increasing both SF and TP as it’s done inDAmethod. Moreover, when devices are close to the gateway,

it could be also interesting to reduce the TP to save energy without degrading QoS performance of IoT

devices. TOPG results in Table 4 clearly show the potential that this method brings and requires

further evaluation in complete simulations due to the trade-off results that were achieved in terms of

QoS, reliability and energy consumption.360

5.2. Performance Evaluation of SF-TP Configurations

Following to previous simulation results, we focus in this section on evaluating the proposed TOPG

configuration method that proved its worthiness for this study. We run now simulations starting by

100 devices over a network of four gateways managed by a centralized LoRa server and we increase the

number of devices until the maximum number connected to a single gateway is reached and limited365

to 1000 devices, as shown in the scalability study in [37]. A load of one is emulated due to the legal

duty-cycle limitations of 1% in the European region [38].

Figure 5: Total Energy Consumption Variation

5.2.1. Total Energy Consumption

In Fig. 5, when the number of devices increases, the total energy consumed increases as well

regardless of the adopted SF-TP configuration. DR scored the highest energy consumption whereas370
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DA was the most energy efficient method because it configures for each device the minimum TP

required. Moreover, it is normal that TOPG algorithm consumes more energy because it configures

SF and TP parameters while also considering QoS requirements of IoT devices in each slice. For further

investigation, energy consumption is evaluated in each slice which also increased when the number of

LoRa devices increases. In Fig. 6a, URA slice members scored the lowest energy consumption between375

the simulated slices. The reason for this result is due to the higher impact that SF parameter provides

by letting IoT devices occupy the spectrum for a smaller duration of time even if configured with

higher TP values. This also explains why even in RA and BE slices, TOPG always had a higher

energy consumption than DA and lower than DR and static configuration methods. RA and BE slice

members consumed more energy compared to URA as shown in Fig. 6b and Fig. 6c respectively. This380

returns to GMM method that considers a slice-based configuration that gives higher importance for

reliability and QoS in utility calculations. Hence, a higher weight is provided for QoS and reliability

that forces delay-sensitive devices to take the most reliable gateway with the lowest SF-TP values

compared to RA and BE slice members.

(a) URA Slice (b) RA Slice (c) BE Slice

Figure 6: Mean Energy Consumption in each slice with different SF-TP configurations

5.2.2. Packet Loss Rate385

In this section, packet loss rate for each configuration algorithm is evaluated. Results shown in

Fig. 7 prove the efficiency of the proposed optimization method in reducing PLR compared to static

and dynamic configuration strategies. With static (SF9 − TP14) configuration, PLR was highly

affected, continuously increased and more than 30 % of packets were lost due to congestion. However,

the worst result was scored with DR method where IoT devices lost approximately 40 % of their packets390

due to wrong configurations that lead to intra-SF and inter-SF collisions. The optimal configuration

had the lowest PLR percentage between the simulated strategies but with higher complexity compared

to the proposed TOPG configuration. This puts the latter as a trade-off solution between performance

and computation time. Moreover, we also look towards mean PLR results in URA, RA and BE slices

illustrated in Fig. 8a, Fig. 8b and Fig. 8c respectively. Here, URA and RA slice members requiring395

urgent and reliable communications are more prioritized in terms of resource reservation than the

best effort slice resulting lower PLR regardless of the method adopted for SF-TP configuration. This
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returns to the efficiency of the estimation method that avoids resource starvation and dynamically

reserves physical channels on LoRa gateways following to the throughput requirements of each slice

members. Additionally, the efficiency of the proposed configuration method can also be concluded400

which gave the lowest PLR with TOPG with a rate that did not bypass 20% in URA and RA slices

and 30% in the BE slice.

Figure 7: Packet Loss Rate Variation

(a) URA Slice (b) RA Slice (c) BE Slice

Figure 8: Mean Packet Loss Rate in each slice with different SF-TP configurations

5.2.3. Percentage of Unserved devices in Delay

In Fig. 9, static configuration had the worst results with 15% of devices that did not respect their

delay thresholds. Results of DR and static were nearly similar and return to the random configuration405

that did not take into consideration the link quality neither QoS requirements of IoT devices. With

DA configuration, IoT devices had much better results compared to the previous configurations with
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a rate that did not exceed 10% of the devices violating their delay thresholds. However, unlike DA

where the controller jointly increases or decreases SF-TP combination for an IoT device, TOPG

algorithm searches for the best SF-TP combination based on the objectives and the weight defined410

by GMM method. TOPG sometimes modify TP for a device instead of increasing both SF and TP

parameters like in the case of DA configuration. This explains the improvement and the decrease in

the percentage of devices that violated their PDB in TOPG with less computation complexity than

the optimal configuration.

Figure 9: Percentage of Unserved nodes in Delay

5.2.4. Percentage of Unserved devices in Throughput415

Further improvement in throughput is achieved in Fig. 10 where TOPG came as the second

best configuration method behind the optimal algorithm. The former scores nearly similar results

with less computation time. With both TOPG and optimal algorithms, the rate of devices that

did not guarantee their throughput did not exceed 30% even in a very congested scenario. This

mainly highlights the efficiency of reducing alternatives in TOPSIS instead of testing all SF and420

TP combinations. Moreover, static and DR configurations had the worst results with a rate that

exceeded 50% of the devices that violated the GBR defined in each slice. With DA, smaller SF values

provide an achievable throughput that can be sometimes very high compared to the one that needs

to be guaranteed. This is also true with smaller SF parameters where in both cases, an IoT device

with DA configuration is assigned a specific TP for each SF parameter. However with the proposed425

algorithm, TOPG provides the guaranteed throughput with an efficient SF or TP variation. With

TOPG optimization, a proper SF and TP combination is found that guarantees throughput while

saving lots of energy for each slice members.
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Figure 10: Percentage of Unserved nodes in Throughput

6. Conclusion

LoRa is emerging as one of the best technologies enabling LPWA for IoT networks. The goal of this430

paper is to evaluate how network performance can be improved in a Smart City environment in terms

of QoS, energy and reliability. Therefore, we implement network slicing in LoRa to increase flexibility

in the network and to enable the opportunity to consider QoS while optimizing LoRa configurable

parameters. Moreover, we propose a novel configuration method that gives a trade-off solution to the

multi-objective problem in a slice based manner. The proposed optimization algorithm consists of a435

dynamic network inter-slicing algorithm based on a maximum likelihood estimation and a slice-based

SF and TP configuration which includes a combination between GMM and TOPSIS optimization al-

gorithms. Numerical results show that our proposition outperformed static and dynamic configuration

strategies, highlighted the efficiency in providing LoRa slices with a dynamic slice-based configuration

and improved the performance in terms of reliability and the percentage of devices that satisfied their440

throughput and delay requirements.
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