
HAL Id: hal-02300986
https://hal.science/hal-02300986

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending SMT Solvers to Higher-Order Logic
Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, Cesare Tinelli, Clark

Barrett

To cite this version:
Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, Cesare Tinelli, Clark Barrett. Extending
SMT Solvers to Higher-Order Logic. CADE-27 - The 27th International Conference on Automated
Deduction, Aug 2019, Natal, Brazil. pp.35-54, �10.1007/978-3-030-29436-6_3�. �hal-02300986�

https://hal.science/hal-02300986
https://hal.archives-ouvertes.fr

Extending SMT Solvers to Higher-Order Logic?

Haniel Barbosa1, Andrew Reynolds1, Daniel El Ouraoui2,
Cesare Tinelli1, and Clark Barrett3

1 The University of Iowa, Iowa City, USA
2 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France

3 Stanford University, Stanford, USA

Abstract. SMT solvers have throughout the years been able to cope with increas-
ingly expressive formulas, from ground logics to full first-order logic (FOL). In
contrast, the extension of SMT solvers to higher-order logic (HOL) is mostly un-
explored. We propose a pragmatic extension for SMT solvers to support HOL
reasoning natively without compromising performance on FOL reasoning, thus
leveraging the extensive research and implementation efforts dedicated to effi-
cient SMT solving. We show how to generalize data structures and the ground
decision procedure to support partial applications and extensionality, as well as
how to reconcile quantifier instantiation techniques with higher-order variables.
We also discuss a separate approach for redesigning an HOL SMT solver from
the ground up via new data structures and algorithms. We apply our pragmatic ex-
tension to the CVC4 SMT solver and discuss a redesign of the veriT SMT solver.
Our evaluation shows they are competitive with state-of-the-art HOL provers and
often outperform the traditional encoding into FOL.

1 Introduction

Higher-order (HO) logic is a pervasive setting for reasoning about numerous real-world
applications. In particular, it is widely used in proof-assistants (also known as interac-
tive theorem provers) to provide trustworthy, formal, and machine-checkable proofs of
theorems. A major challenge in these applications is to automate as much as possible the
production of these formal proofs, thereby reducing the burden of proof on the users. An
effective approach to achieve stronger automation in proof assistants is to rely on less
expressive but more automatic theorem provers to discharge some of the proof obli-
gations. Systems such as HOLYHammer, MizAR, Sledgehammer, and Why3, which
provide a one-click connection from proof-assistants to first-order (FO) provers, have
led in recent years to considerable improvements in proof-assistant automation [14].
A similar layered approach is also used by automatic HO provers such as Leo-III [43]
and Satallax [17], which regularly invoke FO provers to discharge intermediate goals
that depend solely on FO reasoning. However, as noted in previous work [12, 30, 48],
in both cases the reduction to FOL has its own disadvantages: full encodings into FO,
such as those performed by the hammers, may lead to issues with performance, sound-
ness, or completeness. On the other hand, the combination of FO and HO reasoning

? This work was partially supported by the National Science Foundation under award 1656926.

2 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

in automatic HO provers may suffer from the HO prover itself having to perform sub-
stantial FO reasoning, since it is not optimized for FO proving. This would be the case
in HO problems with a large FO component, which occur often in practice. We aim to
overcome these shortcomings by extending Satisfiability Modulo Theories (SMT) [8]
solvers, a class of highly successful automatic FO provers, to natively support HOL.

The two main challenges for extending SMT solvers to HOL lie in dealing with
partial function applications and with functional variables, i.e., quantifier variables of
higher-order type. The former mainly affects term representation and core algorithms,
which in FOL are based on the fact that all function symbols are fully applied. The latter
impacts quantifier instantiation techniques, which must now account for quantified vari-
ables occurring in function symbol positions. Moreover, often HO problems can only
be proven if functional variables are instantiated with synthesized λ-terms, typically via
HO unification [23], which is undecidable in general.

Contributions We present two approaches for extending SMT solvers to natively sup-
port HO reasoning (HOSMT). The first one, the pragmatic approach (Section 3), targets
existing state-of-the-art SMT solvers with large code bases and complex data structures
optimized for the FO case. In this approach, we extend a solver with only minimal mod-
ifications to its core data structures and algorithms. In the second approach, the redesign
approach (Section 4), we rethink a solver’s data structures and develop new algorithms
aimed specifically at HO reasoning. This approach may lead to better results but is bet-
ter suited to lightweight solvers, i.e., less optimized solvers with a smaller code base.
Moreover, this approach provides more flexibility to later develop new techniques es-
pecially suited for higher-order reasoning. A common theme of both approaches is that
the instantiation algorithms are not extended with HO unification. This is a significant
enough challenge that we plan to explore in a later phase of this work. We include
proofs, more examples, and related work in a technical report [5].

We present an extensive experimental evaluation (Section 5) of our pragmatic and
redesign approaches as implemented respectively in the state-of-the-art SMT solver
CVC4 [6] and the lightweight solver veriT [16]. Besides comparisons against state-
of-the-art HO provers, we also evaluate these solvers against themselves, comparing a
native HO encoding using the extensions in this paper to the base versions of the solvers
with the more traditional FO encoding (not using the extensions).

Related work. The pioneering work of Robinson [41] on using a translation to reduce
higher-order reasoning to first-order logic inspired the successful tools such as Sledge-
hammer [36] and CoqHammer [19] that build on this idea by automating HO reasoning
via automatic FO provers. Earlier works on native HO proving are, e.g., Andrews’s
higher-order resolution [1] and Kohlhase’s higher-order tableau [29], inspire the mod-
ern day HO provers such as LEO-II [11] and Leo-III [43], implementing variations of
HO resolution, and Satallax [17], based on a HO tableau calculus guided by a SAT
solver. Our approach however is conceptually closer to recent work by Blanchette et
al. [9,48] on gracefully generalizing the superposition calculus [2,33] to support higher-
order reasoning. As a first step, they have targeted the λ-free fragment of higher-order
logic, presenting a refutationally complete calculus [9] and an initial implementation as
a prototype extension of the Zipperposition prover [18]. More recently they integrated

Extending SMT Solvers to Higher-Order Logic 3

their approach into the state-of-the-art FO prover E [48], showing competitive results
against state-of-the-art HO provers. Their next step, as is ours, is to extend their calculus
to superposition with λ-terms while preserving their completeness guarantees.

2 Preliminaries

Our monomorphic higher-order language L is defined in terms of right-associative
binary sort constructors→,× and pairwise-disjoint countably infinite sets S, X and F ,
of atomic sorts, variables, and function symbols, respectively. We use the notations ān
and ā to denote the tuple (a1, . . . , an) or the cross product a1×· · ·×an, depending on
context, with n ≥ 0. We extend this notation to pairwise binary operations over tuples
in the natural way. A sort τ is either an element of S or a functional sort τ̄n → τ from
sorts τ̄n = τ1 × · · · × τn to sort τ . The elements of X and F are annotated with sorts,
so that x : τ is a variable of sort τ and f : τ̄n → τ is an n-ary function symbol of sort
τ̄n → τ . We identify function symbols of sort τ̄0 → τ with function symbols of sort τ ,
which we call constants when τ is not a functional sort. Whenever convenient, we drop
the sort annotations when referring to symbols.

The set of terms is defined inductively: every variable x : τ is a term of sort τ . For
variables x̄n : τ̄n and a term t : τ of sort τ , the expression λx̄n. t is a term of sort τ̄n →
τ , called a λ-abstraction, with bound variables x̄n and body t. A variable occurrence
is free in a term if it is not bound by a λ-abstraction. For a term t : τ̄n → τ and terms
t1 : τ1, . . . , tm : τm withm ≤ n, the expression f(t̄n) is a term, called an application of
f, the head of the application, to the arguments t̄m. The application is total and has sort τ
ifm = n; it is partial and has sort τm+1×· · ·×τn → τ ifm < n. A λ-application is an
application whose head is a λ-abstraction. The subterm relation is defined recursively:
a term is a subterm of itself; if a term is an application, all subterms of its arguments
are also its subterms. Note this is not the standard definition of subterms in HOL, which
also includes application heads and all partial applications. The set of all subterms in
a term t is denoted by T(t). We assume S contains a sort o, the Boolean sort, and
that F contains Boolean constants >, ⊥, a Boolean unary function ¬, Boolean binary
functions ∧, ∨, and, for every sort τ , a family of equality symbols ' : τ × τ → o and
a family of symbols ite : o× τ × τ → τ . These symbols are interpreted in the usual
way as, respectively, logical constants, connectives, identity, and if-then-else (ITE). We
refer to terms of sort o as formulas and to terms of sort τ̄ → o as predicates. An atom
is a total predicate application. A literal or constraint is an atom or its negation. We
assume the language contains the ∀ and ∃ binders over formulas, defined as usual, in
addition to the λ binder. A formula or a term is ground if it is binder-free. We use the
symbol = for syntactic equality on terms. We reserve the names a, b, c, f, g, h, p for
function symbols; w, x, y, z for variables in general; F,G for variables of functional
sort; r, s, t, u for terms; and ϕ,ψ for formulas. The notation t[x̄n] stands for a term
whose free variables are included in the tuple of distinct variables x̄n; t[s̄n] is the term
obtained from t by a simultaneous substitution of s̄n for x̄n.

We assume F contains a family @ : (τ̄n → τ)× τ1 → (τ2 × · · · × τn → τ) of ap-
plication symbols for all n > 1. We use it to model (curried) applications of terms
of functional sort τ̄n → τ . For example, given a function symbol f : τ1 × τ2 → τ3

4 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

and application symbols @ : (τ1 × τ2 → τ3)× τ1 → (τ2 → τ3) and @ : (τ2 → τ3) ×
τ2 → τ3, @(f, t1) and @(@(f, t1), t2) have, respectively, the same denotation as
λx2 : τ2.f(t1, x2) and f(t1, t2).

An applicative encoding is a well-known approach for performing HO reasoning
using FO provers. This encoding converts every functional sort into an atomic sort,
every n-ary symbol into a nullary symbol, and uses @ to encode applications. Thus, all
applications, partial or not, become total, and quantification over functional variables
becomes quantification over regular FO variables. We adopt Henkin semantics [10, 27]
with extensionality and choice, as is standard in automatic HO theorem proving.

2.1 SMT solvers and quantified reasoning

SMT solvers that process quantified formulas can be seen as containing three main com-
ponents: a preprocessing module, a ground solver, and an instantiation module. Given
an input formula ϕ, the preprocessing module applies various transformations (for in-
stance, Skolemization, clausification and so on) to it to obtain another, equisatisfiable,
formula ϕ′. The ground solver operates on the formula ϕ′. It abstracts all of its atoms
and quantified formulas and treats them as if they were propositional variables. The
solver for ground formulas provides an assignment E ∪Q, where E is a set of ground
literals and Q is a set of quantified formulas appearing in ϕ′, such that E ∪Q proposi-
tionally entails ϕ′. The ground solver then determines the satisfiability of E according
to a decision procedure for a combination of background theories. If E is satisfiable,
the instantiation module of the solver generates new instances, ground formulas of the
form ¬(∀x̄. ψ) ∨ ψσ where ∀x̄. ψ is a quantified formula in Q and σ is a substitution
from the variables in x̄ to ground terms. These instances will be, after preprocessing,
added conjunctively to the input of the ground solver, which will proceed to derive a
new assignment E′ ∪Q′, if possible. This interplay may terminate either if ϕ′ is proven
unsatisfiable or if a model is found for an assignment E ∪Q that is also a model of ϕ′.

Extending SMT solvers to HOL can be achieved by extending these three compo-
nents so that: (1) the preprocessing module eliminates λ-abstractions; (2) the ground
decision procedure supports a ground extensional logic with partial applications, which
we denote QF_HOSMT; and (3) the instantiation module instantiates variables of func-
tional type and takes into account partial applications and equations between functions.
We can perform each of these tasks pragmatically without heavily modifying the solver,
which is useful when extending highly optimized state-of-the-art SMT solvers (Sec-
tion 3). Alternatively, we can perform these extensions in a more principled way by
redesigning the solver, which better suits lightweight solvers (Section 4).

3 A pragmatic extension for HOSMT

We pragmatically extend the ground SMT solver to QF_HOSMT by removing λ-expre-
ssions (Section 3.1), checking ground satisfiability (Section 3.2), and generating models
(Section 3.3). Extensions to the instantiation module are discussed in Section 3.4.

Extending SMT Solvers to Higher-Order Logic 5

3.1 Eliminating λ-abstractions and partial applications of theory symbols

To ensure that the formulas that reach the core solving algorithm are λ-free, a prepro-
cessing pass is used to first eliminate λ-applications and then eliminate any remain-
ing λ-abstractions. The former are eliminated via β-reduction, with each application
(λx̄. t[x̄]) ū replaced by the equivalent term t[ū]. The substitution renames bound vari-
ables in t as needed to avoid capture.

Two main approaches exist for eliminating (non-applied) λ-abstractions: reduction
to combinators [35] and λ-lifting [28]. Combinators allow λ-terms to be synthesized
during solving without the need for HO unification. This translation, however, intro-
duces a large number of quantifiers and often leads to performance loss [13, Sec-
tion 6.4.2]. We instead apply λ-lifting in our pragmatic extension.

In λ-lifting, each λ-abstraction is replaced by a fresh function symbol, and a quanti-
fied formula is introduced to define the symbol in terms of the original expression. Note
this is similar to the typical approach used for eliminating ITE expressions in SMT
solvers. The new function takes as arguments the variables bound by the respective λ-
abstraction and the free variables occurring in its body. More precisely, λ-abstractions
of the form λx̄n. t[x̄n, ȳm] of type τ̄n → τ with ȳm : ῡm occurring in a formula ϕ
are lifted to (possibly partial) applications f(ȳm) where f is a fresh function symbol of
type ῡm × τ̄n → τ . Moreover, the formula ∀ȳmx̄n. f(ȳm, x̄n) ' t[x̄n, ȳm] is added
conjunctively to ϕ. To minimize the number of new functions and quantified formulas
introduced, eliminated expressions are cached so that the same definition can be reused.

In the presence of a background theory T , the norm in SMT, a previous prepro-
cessing step is also needed to make all applications of theory, or interpreted, symbols
total: each term of the form h(t̄m), where h : τ̄n → τ is a symbol of T and m < n, is
converted to λx̄n−m. h(t̄m, x̄n−m), which is then λ-lifted as above to an uninterpreted
symbol f, defined by the quantified formula ∀ȳ∀x̄n−m. f(x̄n−m) ' h(t̄m, x̄n−m), with
ȳ collecting the free variables of t̄m.

We stress that careful engineering is required to perform λ-lifting correctly in an
SMT solver not originally designed for it. For instance, using the existing machinery for
ITE removal may be insufficient, since this may not properly handle instances occurring
inside binders or as the head of applications.

3.2 Extending the ground solver to QF_HOSMT

Since we operate after preprocessing in a λ-free setting in which only uninterpreted
functions may occur partially applied, lifting the ground solver to QF_HOSMT amounts
to extending the solver for ground literals in the theory of Equality and Uninterpreted
Functions (EUF) to handle partial applications and extensionality.

The decision procedure for ground EUF adopted by SMT solvers is based on clas-
sical congruence closure algorithms [24, 31]. While the procedure is easily extensible
to HOL (with partial applications but no λ-abstractions) via a uniform applicative en-
coding [32], many SMT solvers require that function symbols occurring in (FO) terms
be fully applied. Instead of redesigning the solver to accommodate partial applications,
we apply a lazy applicative encoding where only partial applications are converted.

6 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

t ∈ T(E)
REFL

t ' t

t ' u
SYM

u ' t

s ' t, t ' u
TRANS

s ' u

t̄n ' ūn f(t̄n), f(ūn) ∈ T(E)
CONG

f(t̄n) ' f(ūn)

t ' u, t 6' u
CONFLICT

⊥

f(t̄n), f ∈ T(E)
APP-ENCODE

f(t̄n) ' @(. . . (@(f, t1), . . .), tn)

f 6' g f, g : τ̄n → τ n > 0
EXTENSIONALITY

f(sk1, . . . , skn) 6' g(sk1, . . . , skn)

where sk1, . . . , skn are fresh symbols of respective sorts τ1, . . . , τn.

Fig. 1: Derivation rules for checking satisfiability of QF_HOSMT constraints in EUF.

Concretely, during term construction, all partial applications are converted to total
applications by means of the binary symbol @, while fully applied terms are kept in
their regular representation. Determining the satisfiability of a set of EUF constraints E
containing terms in both representations is done in two phases: if E is determined to be
satisfiable by the regular first-order procedure, we introduce equalities between regular
terms (i.e., fully applied terms without the @ symbol) and their applicative counterpart
and recheck the satisfiability of the resulting set of constraints. However, we only intro-
duce these equalities for regular terms which interact with partially applied ones. This
interaction is characterized by function symbols appearing as members of congruence
classes in the E-graph, the congruence closure of E built by the EUF decision pro-
cedure. A function symbol occurs in an equivalence class if it is an argument of an @
symbol or if it appears in an equality between function symbols. The equalities between
regular terms and their applicative encodings are kept internal to the E-graph, therefore
not affecting other parts of the ground decision procedure.

Example 1. Given f : τ × τ → τ , g, h : τ → τ and a : τ , consider the set of constraints
E = {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)}. We have that E is initially found
to be satisfiable. However, since f and g occur partially applied, we augment the set of
constraints with a correspondence between the HO and FO applications of f, g:

E′ = E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)}

When determining the satisfiability of E′, the equality @(@(f, a), a) ' @(g, a) will be
derived by congruence and hence, f(a, a) ' g(a) will be derived by transitivity, leading
to a conflict. Notice that we do not require equalities between fully applied terms whose
functions do not appear in the E-graph and their equivalent in the applicative encoding.
In particular, the equality h(a) ' @(h, a) is not introduced in this example. •

We formalize the above procedure via the calculus in Figure 1. The derivation rules
operate on a current setE of constraints. A derivation rule can be applied if its premises

Extending SMT Solvers to Higher-Order Logic 7

are met. A rule’s conclusion either adds an equality literal to E or replaces it by ⊥
to indicate unsatisfiability. A rule application is redundant if its conclusion leaves E
unchanged. A constraint set is saturated if it admits only redundant rule applications.

Rules REFL, SYM, TRANS, CONG and CONFLICT are standard for EUF decision
procedures based on congruence closure, i.e., the smallest superset of a set of equations
that is closed under entailment in the theory of equality. The rule APP-ENCODE equates
a full application to its applicative encoding equivalent, and it is applied only to applica-
tions of functions which occur as subterms in E. As mentioned above, this can only be
the case if the function itself appears as an argument of an application, which happens
when it is partially applied (as argument of @ or ').

Rule EXTENSIONALITY is similar to how extensionality is handled in decision pro-
cedures for extensional arrays [21, 44]. If two non-nullary functions are disequal in E,
then a witness of their disequality is introduced. The extensionality property is charac-
terized by the axiom ∀x̄n. f(x̄n) ' g(x̄n)⇔ f ' g, for all functions f and g of the same
type. The rule ensures the left-to-right direction of the axiom (the opposite one is en-
sured by APP-ENCODE together with the congruence closure rules). To simplify the pre-
sentation we assume that, for every term @(. . . (@(f, t1), . . .), tm) : τ̄n → τ ∈ T(E),
there is a fresh symbol f ′ : τ̄n → τ such that @(. . . (@(f, t1), . . .), tm) ' f ′ ∈ E.

Example 2. Consider the function symbols f, g : τ → τ , a : τ , and the set of constraints
E = {f ' g, f(a) 6' g(a)}. The constraints are initially satisfiable with respect to the
congruence closure rules, however, since f, g ∈ T(E), the rule APP-ENCODE will be
applied twice to derive f(a) ' @(f, a) and g(a) ' @(g, a). Then, via CONG, from
f ' g we infer @(f, a) ' @(g, a), which leads to a conflict via transitivity. •

Decision procedure Any derivation strategy for the calculus that does not stop until it
saturates or generates⊥ yields a decision procedure for the satisfiability of QF_HOSMT
constraints in the EUF theory, according to the following results for the calculus.

Proposition 1 (Termination). Every sequence of non-redundant rule applications is
finite.

Proposition 2 (Refutation Soundness). A constraint set is unsatisfiable if ⊥ is deriv-
able from it.

Proposition 3 (Solution Soundness). Every saturated constraint set is satisfiable.

Even though we could apply the rules in any order, for better performance we only
apply APP-ENCODE and EXTENSIONALITY once other rules have only redundant ap-
plications. Moreover, APP-ENCODE has precedence over EXTENSIONALITY.

3.3 Model generation for ground formulas

When our decision procedure for QF_HOSMT saturates, it can produce a first-order
model M as a witness for the satisfiability of its input. Typically, the models generated

8 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

by SMT solvers for theories in first-order logic map uninterpreted functions f : τ̄n → τ
to functions, denoted M(f), of the form

λx̄n. ite(x1 ' t11∧. . . xn ' t1n, s1, . . . , ite(x1 ' tm−11 ∧. . . xn ' tm−1n , sm−1, sm) . . .)

in which every entry but the last corresponds to an application f(ti1, . . . , t
i
n), modulo

congruence, occurring in the problem. In other words, functions are interpreted in mod-
els M as almost constant functions.

In the presence of partial applications, this scheme can sometimes lead to functions
with exponentially many entries. For example, consider the satisfiable formula

f1(a) ' f1(b) ∧ f1(b) ' f2 ∧ f2(a) ' f2(b) ∧ f2(b) ' f3 ∧ f3(a) ' f3(b) ∧ f3(b) ' c

in which f1 : τ × τ × τ → τ , f2 : τ × τ → τ , f3 : τ → τ , and a, b, c : τ . To produce the
model values of f1 as a list of total applications with three arguments into an element of
the interpretation of τ , we would need to account for 8 cases. In other words, we require
8 ite cases to indicate f1(x, y, z) ' c for all inputs where x, y, z ∈ {a, b}. The number
of entries in the model is exponential on the “depth” of the chain of functions that each
partial application is equal to, which can make model building unfeasible if just a few
functions are chained as in the above example.

To avoid such an exponential behavior, model building assigns values for functions
in terms of the other functions that their partial applications are equated to. In the above
example f1 would have only two model values, depending on its application’s first argu-
ment being a or b, by using the model values of f2 applied on its two other arguments.
In other words, we construct M(f1) as the term:

λxyz. ite(x ' a, M(f2)(y, z), ite(x ' b, M(f2)(y, z), _))

whereM(f2) is the model for f2 and _ is an arbitrary value. The model value of f2 would
be analogously built in terms of the model value of f3. This guarantees a polynomial
construction for models in terms of the number of constraints in the problem in the
presence of partial applications.

Extensionality and finite sorts Model construction assigns different values to terms not
asserted equal. Therefore, if non-nullary functions f, g : τ̄n → τ occur as terms in
different congruence classes but are not asserted disequal, we ensure they are assigned
different model values by introducing disequalities of the form f(s̄kn) 6' g(s̄kn) for
fresh s̄kn. This is necessary because model values for functions are built based on their
applications occurring in the constraint set. However, such disequalities are only always
guaranteed to be satisfied if τ̄n, τ are infinite sorts.

Example 3. Let E be a saturated set of constraints s.t. p1, p2, p3 : τ → o ∈ T(E)
and E 6|= p1 ' p2 ∨ p1 ' p3 ∨ p2 ' p3 ∨ p1 6' p2 ∨ p1 6' p3 ∨ p2 6' p3. In the
congruence closure of E the functions p1, p2, p3 each occur in a different congruence
class but are not asserted disequal, so a naive model construction would, in order to
build their model values, introduce disequalities p1(sk1) 6' p2(sk1), p1(sk2) 6' p3(sk2),
and p2(sk3) 6' p3(sk3), for fresh sk1, sk2, sk3 : τ . However, if τ has cardinality one
these disequalities make E unsatisfiable, since sk1, sk2, sk3 must be equal and o has
cardinality 2. •

Extending SMT Solvers to Higher-Order Logic 9

To prevent this issue, whenever the set of constraints E is saturated, we introduce,
for every pair of functions f, g : τ̄n → τ ∈ T(E) s.t. n > 0 and E 6|= f ' g ∨ f 6' g,
the splitting lemma f ' g ∨ f 6' g. In the above example this would amount to add the
lemmas p1 ' p2 ∨ p1 6' p2, p1 ' p3 ∨ p1 6' p3, and p2 ' p3 ∨ p2 6' p3, thus ensuring
that the decision procedure detects the inconsistency before saturation.

3.4 Extending the quantifier instantiation module to HOMST

The main quantifier instantiation techniques in SMT solving are trigger-based [22],
conflict-based [4, 38], model-based [26, 40], and enumerative [37]. Lifting any of them
to HOSMT presents its own challenges. We focus here on extending the E-matching
[20] algorithm, the keystone of trigger-based instantiation, the most commonly used
technique in SMT solvers. In this technique, instantiations are chosen for quantified
formulas ϕ based on triggers. A trigger is a term (or set of terms) containing the free
variables occurring in ϕ. Matching a trigger term against ground terms in the current
set of assertions E results in a substitution that is used to instantiate ϕ.

The presence of higher-order constraints poses several challenges for E-matching.
First, notice that the @ symbol is an overloaded operator. Applications of this sym-
bol can be selected as terms that appear in triggers. Special care must be taken so that
applications of @ are not matched with ground applications of @ whose arguments
have different types. Second, functions can be equated in higher-order logic. As a con-
sequence, a match may involve a trigger term and a ground term with different head
symbols. Third, since we use a lazy applicative encoding, our ground set of terms may
contain a mixture of partially and fully applied function applications. Thus, our indexing
techniques must be robust to handle combinations of the two. The following example
demonstrates the last two challenges.

Example 4. Consider E with the equality @(f, a) ' g and the term f(a, b) where f :
τ × τ → τ and g : τ → τ . Notice that g(x) is equivalent modulo E to the term f(a, b)
under the substitution x 7→ b. Such a match is found by indexing all terms that are
applications of either @(f, a) or g in a common term index. This ensures when matching
g(x), the term f(a, b), whose applicative counterpart is @(@(f, a), b), is considered.

We extended the regular first-order E-matching algorithm of CVC4 as described in this
section. Extensions to the other instantiation techniques of CVC4, such as model-based
quantifier instantiation, are left as future work.

Extending expressivity via axioms Even though not synthesizing λ-abstractions pre-
vents us from fully lifting the above instantiation techniques to HOL, we remark that,
as we see in Section 5, this pragmatic extension very often can prove HO theorems,
many times even at higher rates than full-fledged HO provers. Success rates can be fur-
ther improved by using well-chosen axioms to prove problems that otherwise cannot be
proved without synthesizing λ-abstractions.

Example 5. Consider the ground formula ϕ = a 6' b with a, b of sort τ and the quanti-
fied formula ψ = ∀F,G : τ → τ . F ' G. Intuitively ψ states that all functions of sort
τ → τ are equal. However, this is inconsistent with ϕ, which forces τ to contain at least

10 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

two elements and therefore τ → τ to contain at least four functions. For a prover to de-
tect this inconsistency it must apply an instantiation like {F 7→ (λw. a), G 7→ (λw. b)}
to ψ, which would need HO unification. However, adding the axiom

∀F : τ → τ . ∀x, y : τ.∃G : τ → τ . ∀z : τ.G(z) ' ite(z ' x, y, F (z)) (SAX)

makes the problem provable without the need to synthesize λ-abstractions. •

We denote the above axiom as the store axiom (SAX) because it simulates how
arrays are updated via the store operation. As we note in Section 5, introducing this
axiom for all functional sorts occurring in the problem often allows our pragmatically
extended solver to prove problems it would not be able to prove otherwise. Intuitively,
the reason is that instances can be generated not only from terms in the original problem,
but also from the larger set of functions representable in the formula signature.

4 Redesigning a solver for HOSMT

In the previous section we discussed how to address the challenges of HO reasoning
in SMT while minimally changing the SMT solver. Alternatively, we can redesign the
solver to support HO features directly. However, this requires a redesign of the core
data structures and algorithms. We propose one such redesign below. We again assume
that the solver operates on formulas with no λ-abstraction and no partial applications of
theory symbols, which can be achieved via preprocessing (Section 3.1).

4.1 Redesigning the core ground solver for HOSMT

Efficient implementations of the congruence closure (CC) procedure for EUF reasoning
operate on Union-Find data structures and have asymptotic time complexityO(n log n).
To accommodate partial applications, we propose a simpler algorithm which operates
on an E-graph where nodes are terms, and edges are relations (equality, congruence,
disequality) between them. An equivalence class is a connected component without
disequality edges. All operations on the graph (incremental addition of new constraints,
backtracking, conflict analysis, proof production) are implemented straightforwardly.
This simpler implementation comes at the cost of higher worse-case time complexity
(the CC algorithm becomes quadratic) but integrates better with various other features
such as term addition, support of injective functions, rewriting or even computation, in
particular for β- and η-conversion, which now can be done during solving rather than as
preprocessing. In the redesigned approach, the solver keeps two term representations,
a curried representation and a regular one. In the regular one, partial and total appli-
cations are distinguished by type information. The curried representation is used only
by the congruence closure algorithm. It is integrated with the rest of the solver via an
interface with translation functions curry and uncurry between the two different rep-
resentations. For conciseness, instead of writing @(. . . (@(f, t1), . . .), tn) below, we
use the curried notation (· · · ((f t1) · · ·) tn), omitting parenthesis when unambiguous.

Example 6. Given f : τ × τ → τ , g, h : τ → τ and a : τ , consider the constraints {f(a)
' g, f(a, a) 6' g(a), g(a) ' h(a)}. The congruence closure module will operate on
{f a ' g, f a a 6' g a, g a ' h a}, thanks to the curry translation. •

Extending SMT Solvers to Higher-Order Logic 11

SMT solvers generally perform theory combination via equalities over terms shared
between different theories. Given the different term representations kept between the
CC procedure and the rest of the solver, to ensure that theory combination is done prop-
erly, the redesigned core ground solver keeps track of terms shared with other theory
solvers. Whenever an equality is inferred on a term whose translation is shared with
another theory, a shared equality is sent out in terms of the translation.

Example 7. Consider the function symbols f : Int → Int, p : Int→ o, a, b, c1, c2, c3,
c4 : Int, the set of arithmetic constraints {a ≤ b, b ≤ a, p(f(a) − f(b)), ¬p(0), c1 '
c3 − c4, c2 ' 0}, and the set of curried equality constraints E = {p c1, ¬(p c2), c3 '
f a, c4 ' f b}. The equalities c3 ' f a and c4 ' f b keep track of the fact that f a and f b
are shared. The arithmetic module deduces a ' b, which is added toE′ = E∪{a ' b}.
By congruence, f a ' f b is derived, which propagates c3 ' c4 to the arithmetic solver.
With this new equality, arithmetic reasoning derives c1 ' c2, whose addition to the
equality constraints produces the unsatisfiable constraint set E′ ∪ {c1 ' c2}. •

Extensionality The EXTENSIONALITY rule (Figure 1) is sufficient for handling ex-
tensionality at the ground level. However, it has shortcomings when quantifiers, even
just first-order ones, are considered, as shown in the example below. In the redesigned
solver, extensionality is better handled via axioms.

Example 8. Consider the constraintsE = {h f ' b, h g 6' b, ∀x. f(x) ' a, ∀x. g(x) '
a}, with h : τ → τ → τ, f, g : τ → τ, a, b : τ . The pragmatic solver could prove this
problem unsatisfiable only with a ground decision procedure that derives consequences
of disequalities, since deriving f 6' g is necessary to derive f(sk) 6' g(sk), via extension-
ality, which then leads to a conflict. But SMT solvers are well known not to propagate
all disequalities for efficiency considerations. In contrast, with the axiom ∀F,G : τ̄n →
τ. F 6' G⇒ F (sk1, . . . , skn) 6' G(sk1, . . . , skn), the instantiation {F 7→ f, G 7→ g}
(which may be derived, e.g., via enumerative instantiation, since f, g ∈ T(E)), provides
the splitting lemma f ' g ∨ f(sk) 6' g(sk). The case E ∪ {f ' g} leads to a conflict by
pure ground reasoning, while the case E ∪ {f sk 6' g sk} leads to a conflict from the
instances f(sk) ' a, g(sk) ' a of the quantified formulas in E. •

4.2 Quantifier Instantiation module

In the pragmatic approach, the challenges for the E-matching procedure lied in prop-
erly accounting for the @ symbol, functional equality, and the mixture of partial and
total applications, all of which lead to different term representations, in the term index-
ing data structure. In the redesign approach, the second challenge remains the same,
and term indexing is extended in the same manner of Section 3.4 to cope with it. The
first and third challenge present themselves in a different way, however, since the cur-
ried representation of terms is only used inside the E-graph of the new CC procedure.
To apply E-matching properly, term indexing is extended to perform query by types,
returning all the subterms of a given type that occur in the E-graph, but translated back
to the uncurried representation.

12 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

Example 9. Consider E = {f(a, g(b, c)) ' a,∀F. F (a) ' h, ∀y. h(y) 6' a} and the
set of triggers {F (a), h(y)}where a, b, c : τ , h : τ → τ and f, g : τ × τ → τ . The set of
ground curried terms in E is {f a (g b c), f a, g b, g b c, f, g, a, b, c}. To do E-matching
with F (a) and h(y) the index returns the sets of uncurried subterms {f(a, g(b, c)), a,
g(b, c), b, c} and {f(a), g(b)} for the types τ and τ → τ , respectively. •

Since we do not perform HO unification, to instantiate functional variables it suf-
fices to extend the standard E-matching algorithm applied by SMT solvers by account-
ing for function applications with variable heads. When matching a term F (s̄n) with a
ground term t the procedure essentially matches F with the head of ground terms f(t̄n)
congruent to t, as long as each si in s̄n can be matched with each ti in t̄n. In the above
example, matching the trigger F (a) with the term f(a) yields the substitution {F 7→ f}.

5 Evaluation

We have implemented the above techniques in the state-of-the-art CVC4 solver and
in the lightweight veriT solvers. We distinguish between two main versions of each
solver: one that performs a full applicative encoding (Section 2) into FOL a priori,
denoted @cvc and @vt, and another that implements the pragmatic (Sections 3) or re-
designed (Section 4) extensions to HOL within the solvers, denoted cvc and vt. Both
CVC4 modes eliminate λ-abstractions via λ-lifting. Neither veriT configuration sup-
ports benchmarks with λ-abstractions. The CVC4 configurations that employ the “store
axiom” (Section 3.4) are denoted by having the suffix -sax.

We use the state-of-the-art HO provers Leo-III [43], Satallax [17,25] and Ehoh [42,
48] as baselines in our evaluation. The first two have refutationally complete calculi
for extensional HOL with Henkin semantics, while the third only supports λ-free HOL
without first-class Booleans. For Leo-III and Satallax we use their configurations from
the CASC competition [47], while for Ehoh we report on their best non-portfolio con-
figuration from Vukmirović et al., Ehoh hb, [48].

We split our account between the case of proving HO theorems and that of produc-
ing countermodels for HO conjectures since the two require different strengths from
the system considered. We discus only two of them, CVC4 and Satallax, for the second
evaluation. The reason is that Leo-III and veriT do not provide models and Ehoh is
not model-sound with respect to Henkin semantics, only with respect to λ-free Henkin
semantics. We ran our experiments on a cluster equipped with Intel E5-2637 v4 CPUs
running Ubuntu 16.04, providing one core, 60 seconds, and 8GB RAM for each job.
The full experimental data is publicly available.1

We consider the following sets2 of HO benchmarks: the 3,188 monomorphic HO
benchmarks in TPTP [46], split into three subsets: the 530 problems that are both λ-
free and without first-class Booleans (TH0); the 743 that are only λ-free (oTH0); and
the 1,915 that are neither (λoTH0). The next sets are Sledghammer (SH) benchmarks

1 http://matryoshka.gforge.inria.fr/pubs/hosmt/
2 Since veriT does not parse TPTP, its reported results are on the equivalent benchmarks as

translated by CVC4 into the HOSMT language [3].

http://matryoshka.gforge.inria.fr/pubs/hosmt/

Extending SMT Solvers to Higher-Order Logic 13

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

@cvc 4318 384 344 940 457 459 655 667 412
@cvc-sax 4348 390 373 937 456 457 655 668 412
cvc 4232 389 342 865 463 447 667 654 405
cvc-sax 4275 389 376 883 458 443 667 654 405
Leo-III 4410 402 452 1178 491 482 609 565 231
Satallax 3961 392 457 1215 394 390 407 404 302
@vt 370 332 404 396 525 529
vt 369 346 426 424 550 556
Ehoh 394 489 481 637 630

Table 1: Proved theorems per benchmark set. Best results are in bold.

from the Judgment Day test harness [15], consisting of 1,253 provable goals manu-
ally chosen from different Isabelle theories [34] and encoded into λ-free monomorphic
HOL problems without first-class Booleans. The encoded problems are such that they
are provable only if the original goal is. These problems are split into four subsets,
JD32

lift, JD32
combs, JD512

lift , and JD512
combs depending, respectively, on whether they have 32

or 512 Isabelle lemmas, or facts, and whether λ-abstractions are removed via λ-lifting
or via SK-style combinators. The last set, λoSH1024, has 832 SH benchmarks from 832
provable goals randomly selected from different Isabelle theories, encoded with 1,024
facts and preserving λs and first-class Booleans. Considering a varying number of facts
in the SH benchmarks emulates the needs of increasingly larger problems in interac-
tive verification, while different λ handling schemes allow us to measure from which
alternative each particular solver benefits more.

We point out that our extensions of CVC4 and veriT do not significantly compro-
mise their performance on FO benchmarks. The pragmatic extension of CVC4 has vir-
tually the same performance as the original solver on SMT-LIB [7], the standard SMT
test suite. The redesigned veriT does have a considerably lower performance. However,
while it is, for example, three times slower on the QF_UF category of SMT-LIB due to
its slower ground solver for EUF, it still performs better on this category than CVC4.
This shows that despite the added cost of supporting higher-order reasoning, the FO
performance of veriT is still on par with the state of the art.

5.1 Proving HO theorems

The number of theorems proved by each solver configuration per benchmark set is given
in Table 1. Grayed out cells represent unsupported benchmark sets. Figure 2 compares
benchmarks solved per time. It only includes benchmark sets supported by all solvers
(namely TH0 and the JD benchmarks).

As expected, the results vary significantly between benchmark sets. Leo-III and Sa-
tallax have a clear advantage on TPTP, which contains a significant number of small
logical problems meant to exercise the HO features of a prover. Considering the TPTP
benchmarks from less to more expressive, i.e., including first-class Booleans and then

14 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

1400 1600 1800 2000 2200 2400 2600
10 1

100

101

@cvc-sax
Ehoh
cvc-sax
Leo-III
vt
@vt
Satallax

Fig. 2: Execution times in secs on 5,543 benchmarks, from TH0 and JD, supported by all solvers.

λs, we see the advantages of these systems only increase. We also observe that both
@cvc and cvc, but especially the latter, benefit from -sax as more complex bench-
marks are considered in TPTP, showing that the disadvantage of not synthesizing λ-
abstractions can sometimes be offset by well-chosen axioms. Nevertheless, the results
on λoTH0 show that this axiom alone is far from enough to offset the gap between
@cvc and cvc, with cvc giving up more often from lack of instantiations to perform.

Sledghammer-generated problems stem from formalization efforts across different
applications. As others note [45, 48], the bottleneck in solving these problems is often
scalability and efficient FO reasoning, rather than a refined handling of HO constructs,
especially as more facts are considered. Thus, the ability to synthesize λ-abstractions
is not sufficient for scalability as more facts are considered, and Ehoh and the CVC4
extensions eventually surpass the native HO provers. In particular, in the largest set we
considered, λoSH1024, both @cvc and cvc have significant advantages. As in λoTH0,
@cvc also solves more problems than cvc in λoSH1024, which we attribute again to
@cvc being able to perform more instantiations than cvc On commonly solved prob-
lems, however, cvc is often faster than @cvc, albeit by a small margin: 15% on average.

Both CVC4 configurations dominate JD512 with a significantl margin over Ehoh
and Leo-III. Comparing the results between using λ-lifting or combinators, the former
favors cvc and the latter, @cvc. These results, as well as the previously discussed ones,
indicate that for unsatisfiable benchmarks the pragmatic extension of CVC4 should
not, in its current state, substitute an encoding-based approach but complement it. In
fact, a virtual best solver of all the CVC4 configurations, as well as others employing
interleaved enumerative instantiation [37], in portfolio, would solve 703 problems in
JD512

lift , 702 in JD512
combs, 453 in λoSH1024, and 408 in TH0, the most in these categories,

even also considering a virtual best solver of all Ehoh configurations from [48]. The
CVC4 portfolio would also solve 482 problems in JD32

lift, and 482 in JD32
combs, doing

almost as well as Leo-III, and 1,001 problems in λoTH0, The virtual best CVC4 has
a success rate 3 percentage points higher than @cvc on Sledghammer benchmarks, as
well as overall, which represents a significant improvement when considering the usage
of these solvers as backends for interactive theorem provers.

Extending SMT Solvers to Higher-Order Logic 15

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

@cvc-fmf-sax 224 58 43 80 20 18 1 1 3
cvc-fmf 482 90 17 205 93 73 1 1 2
Satallax 186 72 15 98 0 0 0 0 1

Table 2: Conjectures with found countermodels per benchmark set. Best results in bold.

Differently from the pragmatic extension in CVC4, which provides more of an alter-
native to the full applicative encoding, the redesigned veriT is an outright improvement,
with vt consistently solving more problems and with better solving times than @vt, es-
pecially on harder problems, as seen by the wider separation between them after 10s in
Figure 2. Overall, veriT’s performance, consistently with it being a lightweight solver,
lags behind CVC4 and Ehoh as bigger benchmarks are considered. However, it is re-
spectable compared with Leo-III’s and ahead of Satallax’s performance, thus validating
the effort of redesigning the solver for a more refined handling of higher-order con-
structs and suggesting that further extensions should be beneficial.

5.2 Providing countermodels to HO conjectures

The number of countermodels found by each solver configuration per benchmark set
is given in Table 2. We consider the two CVC4 extension, @cvc and cvc, run in in
finite-model-finding mode (-fmf) [39]. The builtin HO support in cvc is vastly superior
to @cvc when it comes to model finding, as cvc-fmf greatly outperforms @cvc-fmf-
sax. We note that @cvc-fmf is only model-sound if combined with -sax. Differently
from cvc-fmf, which fails to provide a model as soon as it is faced with quantification
over a functional sort, in @cvc-fmf functional sorts are encoded as atomic sorts. Thus
it needs the extra axiom to ensure model soundness. For example, @cvc-fmf considers
Example 5 satisfiable while @cvc-fmf-sax properly reports it unsatisfiable.

The high number of countermodels in JD32 indicates, not surprisingly, that pro-
viding few facts makes several SH goals unprovable. Nevertheless, it is still useful to
know where exactly the Sledghammer generation is being “incomplete” (i.e., making
originally provable goals unprovable), something that is difficult to determine without
effective model finding procedures.

6 Concluding remarks

We have presented extensions for SMT solvers to handle HOSMT problems. The
pragmatic extension of CVC4, which can be implemented in other state-of-the-art SMT
solver with similar level of effort, performs similarly to the standard encoding-based
approach despite its limited support for HO instantiation. Moreover, it allows numerous
new problems to be solved by CVC4, with a portfolio approach performing very com-
petitively and often ahead of state-of-the-art HO provers. The redesigned veriT on the
other hand consistently outperforms its standard encoding-based counterpart, showing
it can be the basis for future advancements towards stronger HO automation.

16 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

Acknowledgments We are grateful to Jasmin Blanchette and Pascal Fontaine for nu-
merous discussions throughout the development of this work, for providing funding for
research visits and for suggesting many improvements. We also thank Jasmin for gener-
ating several of the benchmarks with which we evaluate our approach; Simon Cruanes
and Martin Riener for many fruitful discussions on the intricacies of HOL; Andres
Nötzli for help with the table and plot scripts; Mathias Fleury, Hans-Jörg Schurr and
Sophie Tourret for suggesting many improvements. This work was partially supported
by the National Science Foundation under Award 1656926 and the European Research
Council (ERC) under starting grant Matryoshka (713999).

References

1. Peter B. Andrews. Resolution in type theory. J. Symb. Log., 36(3):414–432, 1971.
2. Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selec-

tion and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.
3. Haniel Barbosa, Jasmin Christian Blanchette, Simon Cruanes, Daniel El Ouraoui, and Pascal

Fontaine. Language and proofs for higher-order SMT (work in progress). In Catherine
Dubois and Bruno Woltzenlogel Paleo, editors, PXTP 2017, volume 262 of EPTCS, pages
15–22, 2017.

4. Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence closure with free vari-
ables. In Axel Legay and Tiziana Margaria, editors, TACAS 2017, volume 10206 of LNCS,
pages 214–230. Springer, 2017.

5. Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, Cesare Tinelli, and Clark Barrett.
Extending SMT solvers to higher-order logic. Technical report, The University of Iowa,
May 2019.

6. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, CAV 2011, pages 171–177. Springer, 2011.

7. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB standard: version 2.6.
Technical report, Department of Computer Science, The University of Iowa, 2017.

8. Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of FAIA, chapter 26, pages 825–885. IOS Press, 2009.

9. Alexander Bentkamp, Jasmin Christian Blanchette, Simon Cruanes, and Uwe Waldmann.
Superposition for lambda-free higher-order logic. In Didier Galmiche, Stephan Schulz, and
Roberto Sebastiani, editors, IJCAR 2018, volume 10900 of LNCS, pages 28–46. Springer,
2018.

10. Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In Jörg H. Siek-
mann, editor, Computational Logic, volume 9 of Handbook of the History of Logic, pages
215–254. Elsevier, 2014.

11. Christoph Benzmüller, Nik Sultana, Lawrence C. Paulson, and Frank Theiss. The higher-
order prover LEO-II. J. Autom. Reason., 55:389–404, 2015.

12. Ahmed Bhayat and Giles Reger. Set of support for higher-order reasoning. In Boris Konev,
Josef Urban, and Philipp Rümmer, editors, PAAR-2018, volume 2162 of CEUR Workshop
Proceedings, pages 2–16. CEUR-WS.org, 2018.

13. Jasmin Christian Blanchette. Automatic proofs and refutations for higher-order logic. PhD
thesis, Technical University Munich, 2012.

14. Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Ham-
mering towards QED. J. Formaliz. Reas., 9(1):101–148, 2016.

Extending SMT Solvers to Higher-Order Logic 17

15. Sascha Böhme and Tobias Nipkow. Sledgehammer: judgement day. In Jürgen Giesl and
Reiner Hähnle, editors, IJCAR 2010, volume 6173 of LNCS, pages 107–121. Springer, 2010.

16. Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT:
an open, trustable and efficient SMT-solver. In Renate A. Schmidt, editor, CADE–22, volume
5663 of LNCS, pages 151–156. Springer, 2009.

17. Chad E. Brown. Satallax: an automatic higher-order prover. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages 111–117. Springer,
2012.

18. Simon Cruanes. Superposition with structural induction. In Clare Dixon and Marcelo Finger,
editors, FroCoS 2017, volume 10483 of LNCS, pages 172–188. Springer, 2017.

19. Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq: automation for dependent type the-
ory, 2018.

20. Leonardo de Moura and Nikolaj Bjørner. Efficient e-matching for SMT solvers. In Frank
Pfenning, editor, CADE–21, volume 4603 of LNCS, pages 183–198. Springer, 2007.

21. Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures.
In FMCAD 2009, pages 45–52. IEEE, 2009.

22. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52:365–473, 2005.

23. Gilles Dowek. Higher-order unification and matching. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume II, pages 1009–1062. Else-
vier and MIT Press, 2001.

24. Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. J. ACM, 27:758–771, 1980.

25. Michael Färber and Chad E. Brown. Internal guidance for Satallax. In Nicola Olivetti and
Ashish Tiwari, editors, IJCAR 2016, volume 9706 of LNCS, pages 349–361. Springer, 2016.

26. Yeting Ge and Leonardo de Moura. Complete instantiation for quantified formulas in satis-
fiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors, CAV 2009, volume
5643 of LNCS, pages 306–320. Springer, 2009.

27. Leon Henkin. Completeness in the theory of types. J. Symb. Log., 15(2):81–91, 1950.
28. R. J. M. Hughes. Super combinators: a new implementation method for applicative lan-

guages. In Symposium on LISP and Functional Programming, pages 1–10, 1982.
29. Michael Kohlhase. Higher-order tableaux. In Peter Baumgartner, Reiner Hähnle, and

Joachim Posegga, editors, TABLEAUX ’95, volume 918 of LNCS, pages 294–309. Springer,
1995.

30. Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses.
J. Autom. Reas., 40(1):35–60, 2008.

31. Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J.
ACM, 27:356–364, 1980.

32. Robert Nieuwenhuis and Albert Oliveras. Fast Congruence Closure and Extensions. Infor-
mation and Computation, IC, 2005(4):557–580, 2007.

33. Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Alan
Robinson and Andrei Voronkov, editors, Handbook of automated reasoning, volume 1, pages
371–443. Elsevier Science, 2001.

34. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: a proof Assistant
for higher-order logic, volume 2283 of LNCS. Springer, 2002.

35. Kohei Noshita. Translation of turner combinators in O(n log n) space. IPL, 20:71 – 74, 1985.
36. Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with

Sledgehammer, a practical link between automatic and interactive theorem provers. In Geoff
Sutcliffe, Stephan Schulz, and Eugenia Ternovska, editors, IWIL-2010, volume 2 of EPiC,
pages 1–11. EasyChair, 2012.

18 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

37. Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumerative instantia-
tion. In Dirk Beyer and Marieke Huisman, editors, TACAS 2018, volume 10806 of LNCS,
pages 112–131. Springer, 2018.

38. Andrew Reynolds, Cesare Tinelli, and Leonardo de Moura. Finding conflicting instances of
quantified formulas in SMT. In FMCAD 2014, pages 195–202. IEEE, 2014.

39. Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. Finite model finding in SMT.
In Natasha Sharygina and Helmut Veith, editors, CAV 2013, volume 8044 of LNCS, pages
640–655. Springer, 2013.

40. Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark Barrett.
Quantifier instantiation techniques for finite model finding in SMT. In Maria Paola Bonacina,
editor, CADE–24, volume 7898 of LNCS, pages 377–391. Springer, 2013.

41. John Alan Robinson. Mechanizing higher order logic. Machine Intelligence, 4:151–170,
1969.

42. Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15:111–126, 2002.
43. Alexander Steen and Christoph Benzmüller. The higher-order prover Leo-III. In Didier

Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, IJCAR 2018, volume 10900 of
LNCS, pages 108–116. Springer, 2018.

44. Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure
for an extensional theory of arrays. In LICS 2001, pages 29–37. IEEE Computer Society,
2001.

45. Nik Sultana, Jasmin Christian Blanchette, and Lawrence C. Paulson. LEO-II and Satallax
on the Sledgehammer test bench. J. Applied Logic, 11:91–102, 2013.

46. Geoff Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reason.,
43:337–362, 2009.

47. Geoff Sutcliffe. The CADE ATP system competition - CASC. AI Magazine, 37:99–101,
2016.

48. Petar Vukmirović, Jasmin Christian Blanchette, Simon Cruanes, and Stephan Schulz. Ex-
tending a brainiac prover to lambda-free higher-order logic. In Tomas Vojnar and Lijun
Zhang, editors, TACAS 2019, LNCS. Springer, 2019.

	Extending SMT Solvers to Higher-Order Logic

