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Abstract 

 

Design of debutaniser in fractionation train in gas processing requires accurate knowledge of 

phase equilibrium properties of n-butane with sulphur compounds like mercaptan. In this 

paper, we report high-quality isothermal vapor–liquid equilibrium data for n-butane + ethyl 

mercaptan (or ethanethiol) between 298.14 K to 388.18 K and pressures up to 2.0029 MPa. An 

equipment whose experimental technique is based on static-analytic method was considered. 

The equipment is composed by an agitated equilibrium cell with two online micro samplers 

connected to a Gas Chromatograph. The data was correlated with the Peng Robinson equation 

of state with classical alpha function. A comparison was also performed with two predictive 

models, PPR78 and PSRK UNIFAC. 

Key words: 

Equation of state, Static analytic method, data treatment, gas processing 

 

 

 

*Corresponding author : christophe.coquelet@mines-paristech.fr (tel :+33164694962 

Fax :+33164694968). 

  

mailto:christophe.coquelet@mines-paristech.fr


2 
 

1. Introduction 

 

Worldwide total energy requirements are increasing and natural gas appears to be the best 

temporary solution in the context of the energy transition. In order to have a safe and 

environmentally-friendly production, challenges related to processing and environmental 

protection arise. The presence of significant quantities of sulphur compounds in the exploited 

gas resources is one of these challenges. Mercaptans are sulphur compounds are present in 

natural gas. One major operation in Gas processing is to remove the acid gases (in an acid gas 

removal unit) [1]. During this operation some mercaptans are also removed. Hydrogen sulfide 

(H2S) and carbon dioxide (CO2) are removed by amine treating but the majority of amine 

solvents remove few to no mercaptans [2]. Mercaptans may then be removed in dehydration 

units. Any remaining mercaptan in the natural gas tends to accumulate in hydrocarbon 

condensates After dehydration, fractionation is performed. A fractionation train is composed 

of a series of distillation columns; a deethaniser, a depropaniser and debutaniser. Several 

products can be obtained: GNL, gaseous methane, Ethane/Propane mixtures (EP), 

Commercial Propane, Propane/Butane mixture (LPG), Butane and isobutene, Natural 

Gasoline and Mixtures with a vapour pressure specification. Mercaptans are not the only 

contaminants: Hydrogen sulphide, Carbon dioxide, Carbonyl sulphide, Carbon disulphide, 

Organic sulphides, Nitrogen, Water, methanol (prevention of hydrate formation) can also be 

present. 

Determining thermodynamic properties of systems composed of mercaptans and 

hydrocarbons is required to better understand how organic sulfur compounds in raw feed gas 

are distributed in the products of NGL fractionation systems. The main properties of interest 

are vapour-liquid equilibria in the range of pressure and temperature of the operating 

conditions in the train of fractionation. In the last 6 years, our research group has published 

VLE data of binary and ternary systems involving mercaptans (without water) in several 

articles: Awan et al. [3] (Phase Equilibria of Three Binary Mixtures: Methanethiol + Methane, 

Methanethiol + Nitrogen, and Methanethiol + Carbon Dioxide), Awan et al. [4] (1-

Propanethiol+ 1-Butanethiol+ CH4), Afzal et al. [5] (Ethane + Ethyl mercaptan). Mercaptans 

have similar molecular structure to alcohols with the oxygen (O) atom replaced by a sulfur (S) 

atom. This change gives mercaptans a more acidic behaviour compared to their alcohol 

counterparts. Mercaptans are only slightly acidic, and this acidity decreases with their 

molecular weight. 

Moreover, the knowledge of thermodynamic properties of mixtures of sulfur compounds with 

hydrocarbons is not only important in gas processing but also in the petroleum and chemical 

industries. The thermophysical properties and equilibrium data are important for the rational 

design of processes for the removal of sulfur compounds from petroleum streams but also for 

the purification of sulfur compounds for use in chemical processes. Because all of these 

sulphur compounds are highly toxic and volatile, obtaining reliable thermodynamic data like 

vapour-liquid equilibrium (VLE) data is not straight-forward. The Centre of Thermodynamics 

of Processes (CTP) at MINES ParisTech is one of the few places where toxic fluids can be 

studied to produce reliable data.  

About the binary system ethylmercaptan n-butane, the authors have found one set of data in 

the open literature from Giles and Wilson [6]. It concerns PTx data obtained using a synthetic 

method. 

The classical Peng Robinson Equation of state [7] with its classical mixing rule was used to 

correlate the data. A comparison was performed with two predictive models: PPR78 [8] and 

PSRK UNIFAC [9].  

 

http://pubs.acs.org/doi/abs/10.1021/je2011049?prevSearch=%255BContrib%253A%2Bcoquelet%255D&searchHistoryKey=
http://pubs.acs.org/doi/abs/10.1021/je2011049?prevSearch=%255BContrib%253A%2Bcoquelet%255D&searchHistoryKey=
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2. Materials and methods 

2.1. Materials 

In Table 1 are listed the chemicals used for the VLE measurements. Research grade n-butane 

with minimum purity of 99.95 % (obtained from Air Products) and ethyl mercaptan with 

minimum purity 99 % (obtained from Acros) were used. No further purification of the 

chemical products was needed, only degassing when loading the chemicals into the 

equilibrium cell. 

 

Table 1. Purities and suppliers of the chemicals used in this work 

Chemicals Purity (GC) Supplier 

n-butane 99.95 vol% Air Products 

Ethylmercaptan ≥ 99 vol% Acros 

 

2.2.Methods 

In order to measurements in the whole range of pressure, we have used two different 

equipments with an experimental technique based on the analytic-static method.  

At low pressure, we have used an equipment previously presented and described by 

Zhang et al. [10]
 
and Théveneau et al. [11]. The equilibrium cell is immersed in a thermo-

regulated liquid bath (LAUDA Proline RP 3530 C). Two (Pt-100) platinum probes are used to 

measure the temperature at the bottom and top of the cell. The two probes were calibrated by 

comparison with a 25 Ω reference platinum probe (Tinsley, France). The accuracy of the two 

probes was estimated to ± 0.02 K. Also, the pressure was measured by one pressure 

transducer (General Electric, model UNIK 5000) with a maximum absolute pressure of 10 

bar. The pressure transducer is maintained at a constant temperature (353 K) by means of a 

PID regulator (FUJI, model PXE-4). The accuracy of the pressure transducer was estimated to 

± 3 mbar after calibration. Both temperature and pressure signals were transmitted to a data 

acquisition unit (Agilent 34972A). Two samplers are connected to the equilibrium cell in 

order to take samples of vapor and liquid phases. Liquid and vapor samples were analyzed by 

means of a gas chromatograph (Perichrom, model PR-2100). A thermal conductivity detector 

(TCD) was calibrated and used to determine the molar composition of the two phases.  

At high pressure (P>0.5 MPa), we have used an equipment similar to the equipment 

used by Afzal et al. [5]. Briefly, the equilibrium cell consists of one sapphire tube, held 

between two flanges in Hastelloy with suitable o-rings. On each flange are located valves for 

loading, vaccum and cleaning of the cell. An agitation assembly is installed in the sapphire 

tube for the stirring of the two phases with two propellers. The agitation assembly is 

magnetically coupled to an external agitation motor capable of producing the desired level of 

agitation inside the cell. 
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Like the low-pressure equipment, two calibrated 100 Ω platinum resistance thermometer 

sensors (Pt-100) are used to measure equilibrium temperatures at the lower and upper parts of 

the cell. The accuracy of the two probes was estimated to ± 0.03 K. The pressures are 

measured using one calibrated Druck pressure transducer (Druck, model PTX 611) 

maintained at constant temperature (higher than the maximum temperature of study). The 

temperature is controlled by a PID regulator (WEST instrument, model 6100). The accuracy 

of the pressure transducer was estimated to ± 9 mbar after calibration. Two capillary samplers 

(ROLSI®, Armines’s patent) were vertically mounted on the equilibrium cell, one for liquid 

phase and the other for vapour phase. The samplers are connected to the Gas chromatograph. 

A thermal conductivity detector (TCD) is used for analysis.  

The two GC of the two equipments were equipped with a 4-meter long packed Porapack Q 

column. The WINILAB III (Perichrom, France) data acquisition software was used for peak 

integration. The relative accuracies of mole numbers are ±1.1% for n-butane and ±2.4 for 

ethylmercaptan. Consequently the maximum calibration uncertainty of mole fractions, 

calculated at xbutane = 0.5 is umax(x,y) = 0.007. 

At equilibrium conditions, each composition was determined 6-8 times for each phase 

and average values are reported along with relative standard deviation (σ). Equation 1 reminds 

the expression of the composition of component i (ncomp is the number of component in the 

mixture). 
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Equation 2 is used for the calculation of the uncertainty of mixture composition of component 

i. 
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Consequently, for a binary system, one can calculate uncertainty on mole fraction x1 by using 

equation 3. 
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Equation 4 reminds the combined standard temperature uncertainty on molar composition. 

     22

irepicalibi xuxuxu          (4) 

urep is obtained by considering the standard deviation (σ) accounting for the repeatability of 

the measurements. The experimental results are presented in Table 2 with the calculated 

uncertainties. 



5 
 

Table 2: Experimental isothermal VLE data for the n-Butane (1) + Ethylmercaptan (2) mixture system and their standard uncertainties. Maximum 

calibration uncertainty on composition u(x,y, k=2)=0.008. 

T: 298.14 K        u(T, k=2)= 0.02 K    u(P, k=2) = 0.0004 MPa  

P/ MPa n x1 x1 u(x1) n y1 y1 u(y1) 

0.0942 7 0.0644 0.0007 0.0009 5 0.2932 0.0007 0.003 

0.1261 7 0.161 0.003 0.002 5 0.5174 0.0002 0.004 

0.1439 7 0.236 0.003 0.003 5 0.6041 0.0005 0.004 

0.1691 7 0.387 0.002 0.004 5 0.7158 0.0008 0.003 

0.183 8 0.484 0.004 0.004 5 0.7558 0.0007 0.003 

0.2044 11 0.666 0.007 0.004 6 0.8308 0.0002 0.002 

0.2126 13 0.733 0.006 0.003 8 0.8598 0.0002 0.002 

0.2226 3 0.8358 0.0002 0.002 5 0.904 0.002 0.001 

0.2394 5 0.9606 0.0002 0.0006 4 0.9794 0.0001 0.0003 

T: 328.04 K        u(T, k=2)= 0.02 K    u(P, k=2) = 0.0004 MPa  

0.2300 6 0.0411 0.0002 0.0006 5 0.1845 0.0002 0.002 

0.2395 6 0.0513 0.0006 0.0008 6 0.2122 0.0006 0.003 

0.2752 6 0.0965 0.002 0.001 5 0.3525 0.0004 0.004 

0.3030 6 0.149 0.001 0.002 6 0.437 0.001 0.004 

0.3181 5 0.176 0.003 0.002 5 0.4835 0.0003 0.004 

0.3409 6 0.226 0.001 0.003 6 0.539 0.001 0.004 

0.3632 8 0.282 0.005 0.003 6 0.5892 0.0004 0.004 

0.3947 5 0.360 0.002 0.004 5 0.6466 0.0002 0.004 

0.4180 5 0.428 0.004 0.004 4 0.692 0.002 0.003 

0.4212 4 0.4353 0.0003 0.003 4 0.6964 0.0007 0.002 

0.4423 7 0.505 0.003 0.004 7 0.7374 0.0006 0.003 

0.4596 4 0.5569 0.0004 0.003 6 0.760 0.002 0.002 

0.5188 5 0.775 0.002 0.002 6 0.862 0.005 0.001 

0.5333 4 0.8298 0.0003 0.002 5 0.892 0.004 0.001 

0.5475 5 0.8893 0.0008 0.001 5 0.9284 0.0009 0.0008 

0.5573 5 0.9477 0.0003 0.0006 6 0.9632 0.0003 0.0004 

T: 358.11 K        u(T, k=2)= 0.02 K    u(P, k=2) = 0.0009 MPa  
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0.5335 7 0.0685 0.0003 0.0007 6 0.2092 0.0006 0.002 

0.6446 8 0.1775 0.0003 0.002 5 0.4011 0.0004 0.003 

0.7447 7 0.2974 0.0003 0.002 4 0.5312 0.0006 0.003 

0.8420 9 0.4336 0.0005 0.003 5 0.6371 0.0003 0.003 

0.9231 8 0.5691 0.0003 0.003 5 0.725 0.002 0.002 

1.0118 7 0.7159 0.0001 0.002 5 0.813 0.002 0.002 

1.0513 5 0.7881 0.0002 0.002 5 0.8574 0.0006 0.001 

1.0877 5 0.8838 0.0001 0.001 5 0.9187 0.0002 0.0009 

1.1101 6 0.9330 0.0003 0.0007 5 0.9514 0.0002 0.0005 

T: 388.18 K        u(T, k=2)= 0.02 K    u(P, k=2) = 0.0009 MPa  

1.0182 6 0.0681 0.0002 0.0007 6 0.168 0.001 0.002 

1.1923 6 0.1760 0.0003 0.002 6 0.3443 0.0006 0.003 

1.3764 5 0.3100 0.0008 0.002 5 0.4882 0.0007 0.003 

1.6589 5 0.5596 0.0001 0.003 6 0.6827 0.0002 0.002 

1.7145 5 0.6152 0.0001 0.003 5 0.7229 0.0002 0.002 

1.8182 7 0.7243 0.0001 0.002 6 0.7961 0.0002 0.002 

1.8734 5 0.7856 0.0002 0.002 4 0.8397 0.0006 0.002 

1.9402 4 0.8688 0.0002 0.001 4 0.8989 0.0002 0.001 

2.0029 6 0.9435 0.0002 0.0006 6 0.9552 0.0003 0.0005 
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3. Results and discussion 

3.1. Data treatment 

The critical temperatures (Tc), pressures (Pc) and acentric factors ( ) for pure n-butane and 

Ethylmercaptan are provided in Table 3. 

 

Table 3. Thermal properties for ethane and Ethylmercaptan pure components (Source Simulis 

Thermodynamics™) 

Component Tc /K Pc /MPa Acentric factor ω 

n-butane 425.12 3.796 0.200164 

EthylMercaptan 499.15 5.490 0.187751 

 

The experimental VLE data of (ethane + Ethylmercaptan) system were correlated using the 

Peng Robinson equation of state (Peng and Robinson, 1978) with the classical van der Waals 

mixing rules (model 1). PPR78 and PSRK Original alpha function is considered. Simulis 

Thermodynamics™ software by PROSIM (France) was used. kji is adjusted directly to the 

VLE data using the objective function given in Eq. (5). Calculations are based on a bubble 

point algorithm. The parameters are presented in Table 4 and experimental and modelling 

results are presented on Fig. 1. Relative volatility is presented on Fig. 2. We can see on figure 

2 that the evolution of relative volatility follows the good trend. 

  
   

 
             

 
  

             
  

        (5) 

 

Fig. 1: Pressure as a function of n-butane mole fraction in the n-butane (1) + Ethylmercaptan (2) 

mixture at different temperatures. : 298.14 K,  : 328.04 K, ■: 358.11 K, +: 388.18 K. Dashed 

lines: calculated with PR EoS with binary intercation parameters from Table 4. 
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Fig. 2: Relative volatility of the n-butane (1) + Ethylmercaptan (2) binary system at different 

temperatures. : 298.14 K,  : 328.04 K, ■: 358.11 K, +: 388.18 K. Dashed: calculated with PR 

EoS with binary interaction parameters from Table 4. 

 

Table 4: Values of the binary interaction parameters and objective function at each temperature. 

T/ K k12 F 

298.14 0.035 0.001 

328.04 0.044 0.002 

358.11 0.037 0.001 

388.18 0.033 0.001 

The variance of the binary interaction parameter was calculated using experimental data. 

Considering the objective function f given in Eq. (6), the variance is calculated using Eq. (7). 

                    
 
  

             
  

        (7) 

The variance of kij is given by Eq. 8. 
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 the residual variance. We have done the calculation at each 

temperature. The standard deviation for the binary interaction is the square root of the 

variance. Its value is almost constant and equal to 0.004 (k=2). The binary interaction 

parameters are plotted on Fig. 3. 
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Fig. 3: Evolution of the Binary interaction parameter kij as a function of temperature. Error 

bar: 0.004. 

In order to evaluate the quality of the data treatment, the Mean Relative Deviation (MRDU), 

and the BiasU were calculated based on pressures and vapour phase mole fractions, as defined 

in Eqs. (9) and (10). 
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where N is the number of data points, and U = P or y1. The MRDU and BiasU indicators, 

which give information on the agreement between model and experimental results, are 

presented in Table 5. 

Table 5: Mean Relative deviation MRDU and BiasU obtained in fitting experimental VLE data with 

PR EoS and Van Ness test. 

 

T/K BiasP % MRDP % BiasY % MRDY % 

Van Ness test 

      

298.14 -0.19 0.62 -0.18 1.50 0.8 0.6 

328.04 -0.42 1.10 0.77 1.74 0.9 1.1 

358.11 0.10 0.99 0.02 0.32 0.2 1.0 

388.18 -0.03 0.53 -0.17 0.20 0.1 0.5 

 

The Gibbs-Duhem equation (Eq. (11)) is considered to examine the consistency of the data. 
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Where v
E
  and h

E
 are the excess volume and excess enthalpy respectively and i the activity 

coeffcient of component i. At constant temperature and after integration, Eq. (12) is obtained. 
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By neglecting the excess volume v
E
, we obtained Eq. (13) wich can be used to test the 

consistency of our data: consistent data means A=0. 

          
  

  
 

 

 
            (13) 

The activity coefficient is estimated from Eq. (14). This equation can only be considered for 

low pressure data. Consequently, it is difficult to use the test with our data. 

   
   

    
            (14) 

Where   
  is the pure component vapor pressure of component i. Therefore, the van Ness test 

(van Ness et al. [12]) was preferred, using our model and our data treatment. This test, also 

called modelling capability test consists of applying a thermodynamic model and calculating 

pressure and vapour deviations as defined by Eqs. (15) and (16). 
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where N is the number of data points. If    and    are less than 1, the test is validated. The 

results of the van Ness test are presented in Table 5. As we can see, our data passes the test 

and so consistency of our data is validated. 
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3.2. Comparison with literature data 

We have compared our results with literature data (Giles and Wilson [6]) and two predictive 

models, PPR78 and PSRK UNIFAC. Using literature data, obtained by a synthetic method 

(PTx data) as explained in the paper, we have applied the Eq. (17) to estimate the value of the 

binary interaction parameter as a function of temperature. The parameters of the Eq. (17) are 

determined by using parameters presented in Table 3. 

                                           (17) 

Figure 4 presents the comparison and Table 6 the Mean Relative Deviation (MRDU), and the 

BiasU, applied on equilibrium pressure. The deviations are less than 1% and so the two sets of 

data, from literature and this work are in very good agreement. 

 

 

Fig. 4: Pressure as a function of n-butane mole fraction in the n-butane (1) + Ethylmercaptan (2) 

mixture at 323.15 (•) and 373.15 K (Δ) and comparison with the data from Giles and Wilson [6]. 

 

Table 6: Mean Relative deviation MRDU and BiasU obtained in application of our model to the data 

from Giles and Wilson [6]. 
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323.15 -0.16 0.56 

373.15 -0.01 0.21 

 

Table 7 presents the Mean Relative Deviation (MRDU), and the BiasU, applied on pressures 

and vapour phase mole fractions for the two predictive models. The performance of the two 

models is very similar with a slightly lower deviation for PSRK UNIFAC model. 
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Table 7: Mean Relative deviation MRDU and BiasU obtained in fitting experimental VLE data with 

PPR78 and PSRK UNIFAC. 

 

T/K BiasP % MRDP % BiasY % MRDY % 

PPR78 

298.14 -5.24 5.24 -1.98 3.38 

328.04 -1.40 1.91 0.22 1.94 

358.11 -1.29 1.72 -0.90 1.47 

388.18 -1.35 1.36 -1.15 1.50 

PSRK UNIFAC 

298.14 2.08 2.28 1.35 2.49 

328.04 3.39 3.39 4.20 4.52 

358.11 0.82 0.82 0.52 1.14 

388.18 -0.44 0.44 -0.25 0.53 

 

4. Conclusion 

Isothermal (P-x-y) VLE data for n-butane + Ethylmercaptan binary system were measured at 

four temperatures ranging from 298.14 K to 388.18 K using a static-analytic method. Two 

equipments for low and high pressure measurements were used to generate the data. The 

measured data are in good agreement with literature data from Gils and Wilson [6] and are 

very well predicted using PPR78 and PSRK models. This work is in the continuity of 

experimental and modelling work realised in the Centre of Thermodynamics from Mines 

ParisTech on the study of binary system phase diagrams involving sulphur components for 

gas processing industries. 
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